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Pascal’s formulas and vector fields

Philippe Chassaing ∗, Jules Flin †, Alexis Zevio ‡

September 14, 2023

Abstract

We consider four examples of combinatorial triangles (T (n, k))0≤k≤n (Pascal,
Stirling of both types, Euler) : through saddle-point asymptotics, their Pas-
cal’s formulas define four vector fields, together with their field lines that turn
out to be the conjectured limit of sample paths of four well known Markov
chains. We prove this asymptotic behaviour in three of the four cases.
Keywords. Markov chain, combinatorial triangle, Pascal formula, hydrody-
namic limit, vector field.
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1 Introduction

1.1 Pascal’s formulas

Set S = {(n, k) ∈ N2, 0 ≤ k ≤ n}, S̊ = {(n, k) ∈ N2, 0 < k < n}, and let S⋆ =
S\ {(0, 0)}. Besides Pascal’s triangle, other triangular arrays (T (n, k))(n,k)∈S of in-
terest satisfy a recursion formula similar to Pascal’s formula, i.e. of the following
form, for (n, k) ∈ S⋆ :

T (n, k) = a(n, k)T (n− 1, k − 1) + b(n, k)T (n− 1, k), (1)

with the convention that either (n, k) ∈ S or T (n, k) = 0. For instance, relation (1)
holds true for the following triangular arrays :

• for Pascal’s triangle, if (a, b)(n, k) = (1, 1) ;

• for Stirling numbers of the second kind, if (a, b)(n, k) = (1, k) ;

• for Stirling numbers of the first kind, if (a, b)(n, k) = (1, n− 1) ;

• for Euler’s triangle, if (a, b)(n, k) = (n− k, k + 1).

1.2 Transition probabilities

In view of (1), for (n, k) ∈ S⋆, consider

(p0(n, k), p1(n, k)) =

(
b(n, k)T (n− 1, k)

T (n, k)
,
a(n, k)T (n− 1, k − 1)

T (n, k)

)
(2)

as some transition probabilities from (n, k) to (n− 1, k), resp. to (n− 1, k− 1). For
each of these four triangular arrays, the transition probabilities

(pε(n, k))(ε,(n,k))∈{0,1}×S⋆ ,

together with the initial state (m, ℓ), define a Markov chain W = (Wk)0≤k≤n with
terminal state (0, 0). These four Markov chains are closely related to the simple
random walk, the coupon collector problem, the chinese restaurant process and the
one-dimensional internal DLA, respectively : they are the time-reversed versions of
these processes, once these processes are conditioned to be at level ℓ at time m, as
explained in the next section.
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1.3 Random walk, coupon collector, chinese restaurant, and
internal DLA

Consider a random process defined by X0 = 0, and, for n ⩾ 0, Xn+1 = Xn + Yn+1,
in which the Yi’s are Bernoulli random variables. Set

Wn = (m− n,Xm−n) ∈ S, 0 ≤ n ≤ m,

wm(t) = m−1X⌊mt⌋ ∈ S, 0 ≤ t ≤ 1,

and note that, by definition, Wn = (0, 0) if and only if n = m.

1.3.1 Simple random walk

Assume that (Yi)i≥1 is a Bernoulli process, i.e. a sequence of i.i.d. Bernoulli random
variables with parameter p ∈ (0, 1). Then

Proposition 1. The stochastic process W = (Wn)0≤n≤m, conditioned to W0 =
(m, ℓ), or equivalently to Xm = ℓ, is the Markov chain with transition probabilities
(pε(n, k))(ε,n,k)∈{0,1}×S⋆ related to Pascal’s triangle. Its distribution does not depend
on p.

This result goes back at least to Kennedy [Ken75], or even to the introduction
of the concept of sufficiency by Fisher around 1920 [Sti73]. We recall its proof at
Subsection 2. In the next cases, the Bernoulli random variables Yi are not i.i.d. .

1.3.2 Coupon collector’s problem

Consider the coupon collector’s problem with N different items. Let Xn denote the
number of different items in the collection after the nth step. Again :

Proposition 2. The stochastic process W = (Wn)0≤n≤m, conditioned on W0 =
(m, ℓ), or equivalently on the number of different items in the collection after the
mth step, Xm, to be equal to ℓ, is the Markov chain with transition probabilities
(pε(n, k))ε,n,k related to Stirling numbers of the second kind. Its distribution does
not depend on N .

1.3.3 Chinese restaurant process

In the Chinese restaurant process with (0, θ) seating plan, defined at Section 2 (see
also, e.g., [Pit06, Ch. 3]), let Xn denote the number of occupied tables after the
arrival of the nth customer.

Proposition 3. The stochastic process W = (Wn)0≤n≤m, conditioned to W0 =
(m, ℓ), or equivalently to Xm = ℓ, is the Markov chain with transition probabilities
(pε(n, k))ε,n,k related to Stirling numbers of the first kind. Its distribution does not
depend on θ.

Remark 1. As a consequence, in the three previous cases, given the data (Xn)0≤n≤m,
Xm (or W0) are sufficient statistics for the parameters p, N or θ, respectively.
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1.3.4 One-dimensional Internal Diffusion Limited Aggregation

Finally, in the one-dimensional Internal Diffusion Limited Aggregation process (iDLA),
let Xn denote the number of particles settled to the right of the origin after the re-
lease of the nth particle. Then

Proposition 4. The stochastic process W = (Wn)0≤n≤m, conditioned to W0 =
(m, ℓ), is the Markov chain with transition probabilities (pε(n, k))ε,n,k related to Eu-
ler’s triangle.

More precise definitions, and proofs, are to be found at Section 2.

1.4 Simulations

In the case of Pascal’s triangle, the behaviour of this time-reversed Markov chain is
well understood since forever. Quite recently, [AC19] gave a rather precise analysis
of the analog time-reversed Markov chain related to Stirling numbers of the second
kind, with combinatorial analysis of finite automata as a motivation. We hope to
improve some of their results and proofs.

In this section, in order to surmise the behaviour of these time-reversed Markov
chains, we present the result of some simulations. For each case, the figures below
show sample paths starting at (m,mt) with t ∈ {0.05, ..., 0.95} and m = 500 :
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Figure 1: Pascal’s triangle.
Figure 2: Stirling numbers of the

second kind.

Figure 3: Stirling numbers of the
first kind.

Figure 4: Eulerian numbers.

Now, in order to compare the four combinatorial triangles, we show the average
of 100 sample paths for each triangle, for m = 1000 and t ∈ {0.05, ..., 0.95} :
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Figure 5: Pascal’s triangle.
Figure 6: Stirling numbers of the

second kind.

Figure 7: Stirling numbers of the
first kind.

Figure 8: Eulerian numbers.

In the first two cases, the smooth nature of these averaged paths is not unex-
pected due to old, and more recent, fluid approximation results, see [AC19] or the
next sections. This paper aims at a global explanation of the asymptotic behaviour
of the four Markov chains exhibited by these simulations.

1.5 Asymptotics of sample paths, and field lines of vector
fields

Combinatorial analysis, see [Goo61] or [Ben73], yields that,

Theorem 1. In each of the four cases, there exists a function φ : (0,+∞) → [0, 1]
such that, for any positive number λ∞, when (m, ℓ) → +∞ and limm/ℓ = 1 + λ∞,

lim p1(m, ℓ) = φ(λ∞).
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At the end of this section, the function φ is described for each of the four cases.
We set, for (m, ℓ) ∈ S̊,

λ = λ(m, ℓ) =
m− ℓ

ℓ
.

As a direct consequence of Theorem 1, one expects a fluid approximation of the pre-
vious Markov chains by a special family of curves : let P(m,ℓ) denote the probability
distribution of the Markov chain W starting from (m, ℓ), and let (x, γλ(x))0≤x≤n be
the field line going through the point (1, ℓ/m) = (1, 1/(1 + λ)) for the vector field
(1, φ(−1 + x/y)), or, equivalently, let γλ denote the solution of the ODE

y′ = φ

(
x− y

y

)
(3)

that satisfies y(1) = 1/(1+λ). So far we have a complete proof of this approximation
only in the first three cases :

Theorem 2. In the first three cases, for any η ∈ (0, 1/2) and any λ∞ > 0, when
(m, ℓ) → +∞ and limλ(m, ℓ) = λ∞,

limP(m,ℓ)

(
sup
0≤t≤1

(|wm(t)− γλ∞(t)|) ≥ m−η

)
= 0.

Note that the special form of the ODE (3) entails that the set of field lines is invariant
by positive homotheties.

This kind of statement seems to hold true for eulerian numbers, according to our
simulations (see Section 1.4), but remains an open question. For Stirling numbers of
the first kind, Theorem 2 seems to be new, as far as we know. For Stirling numbers
of the second kind, Theorem 2 is a vastly improved version of a result that appeared
in [AC19], in which the proof relies mainly on uniform bounds for

m |p1(m, ℓ)− φ (λ(m, ℓ))| ,

on domains that approach S̊ as well as possible. These bounds follow from a careful
asymptotic analysis of T (m, ℓ), that should have some interest in itself. However
the proof given here is much simpler.

Our choice of combinatorial triangles may seem arbitrary, and we confess it is :
for instance, Bell’s triangle or Delannoy’s triangle have also Pascal’s formulas, but of
a slightly different form. It remains to see if the approach of this paper still produces
results for Bell’s triangle or Delannoy’s triangle, in spite of these slight differences.

1.5.1 Description of φ

• Pascal’s triangle. It is well known that for all (m, ℓ) ∈ S⋆,

p1(m, ℓ) =
ℓ

m
,

so that

φ1(λ) =
1

1 + λ
.

Relation (3) reduces to y′ = y/x, with the linear functions as solutions, as
expected.

7



• Stirling numbers of the second kind. For λ > 0, let φ2 be defined, through
ζ2(λ), the unique positive solution of

ζ2
1− e−ζ2

= 1 + λ, by φ2(λ) = e−ζ2 . (4)

Then, for x ≥ 0,

γλ(x) =
1− e−x ζ2(λ)

ζ2(λ)
. (5)

• Stirling numbers of the first kind. For λ > 0, let φ3 be defined, through ζ3(λ),
the unique solution, in (0, 1), of

ζ3
(ζ3 − 1) ln(1− ζ3)

= 1 + λ, by φ3(λ) = 1− ζ3.

Then, for x ≥ 0,

γλ(x) =
1− ζ3(λ)

ζ3(λ)
ln

(
1− ζ3(λ) + x ζ3(λ)

1− ζ3(λ)

)
. (6)

• Eulerian numbers. For λ > 0, let φ4 be defined, through ζ4(λ), the unique
solution, in R, of

1

1 + λ
=

eζ4

eζ4 − 1
− 1

ζ4
, by φ4(λ) = 1− ζ4

(1 + λ)(eζ4 − 1)
.

At the moment, we are unaware of any closed form formula for γλ in this case.

2 Time reversal and Markov property for W

In this section, we prove Propositions 1, 2, 3 and 4. The notations Xn, Yn, Wn are
defined at Section 1.3.

2.1 Time reversal

As already known at least since Kolmogorov, see [Kol35, (7)], a time-reversed Markov
process is still a Markov process, but it is an inhomogeneous one. Let us recall the
basic facts that we need here : if hk denotes the probability distribution of Xk and
if X = (Xk)k≥0 is an inhomogeneous Markov chain with kernels (Qk)k≥0, i.e.

Qk,i,j = P (Xk+1 = j |Xk = i) ,

then

Proposition 5. W = (Wn)0≤n≤m is a Markov chain with state space S and with
kernel P defined on S⋆ by

P(n,i),(n−1,j) =
hn−1(j)Qn−1,j,i

hn(i)
.
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Proof. First, since (0, 0) is only reached, eventually, at time m, there is no need
to define P(0,0),(.,.). Also, P is a probability kernel due the Chapman-Kolmogorov
equations for (hn) and (Qn). Then,

P ((Xk)0≤k≤m = (xk)0≤k≤m) = h0(x0)
m−1∏
k=0

Qk,xk,xk+1
,

thus, provided that xm = ℓ,

P ((Xk)0≤k≤m = (xk)0≤k≤m | Xm = ℓ) = h0(x0)
m−1∏
k=0

Qk,xk,xk+1
/ hm(ℓ),

=
m−1∏
k=0

P(k+1,xk+1),(k,xk).

That is,

P ((Wk)0≤k≤m = (m− k, xm−k)0≤k≤m | W0 = (m, ℓ)) =
m−1∏
k=0

P(k+1,xk+1),(k,xk),

as expected.

But for eulerian numbers, hn(k) = T (n, k)θk/Tn(θ), or hn(k) = T (n, k)θk↓/Tn(θ),
in which Tn(θ) is a normalizing constant :

Tn(θ) =
n∑

k=0

T (n, k)θk, or Tn(θ) =
n∑

k=0

T (n, k)θk↓. (7)

For eulerian numbers, hn(k) = T (n, k)/Tn(1) = T (n, k)/n!.
Note that Qn results from a natural growing mechanism with independent steps,

that is, a Markovian growth process, obtained as follows :

• by addition of an n+ 1th letter, either a or b, at the end of a random word of
{a, b}n, in order to form an n+ 1-letters long word, for Pascal’s triangle,

• by addition of the image of n + 1 to a random mapping from [[n]] to [[N ]],
in order to form a random mapping from [[n + 1]] to [[N ]], for the the second
Stirling triangle,

• by random insertion of n+1 in order to form a permutation on [[n+1]], starting
from a permutation on [[n]], for the 2 other examples.

In each case, the added letter, or integer, is chosen independently of the previous his-
tory of the growth process, hence the Markovian character of these growth processes.
For the sake of brevity, in this paper, we call the last growth process the random
permutation process. For these three nonhomogeneous Markov growth processes,
there exist well studied functionals that retain the Markov property, and whose one-
dimensional distributions are given by the rows of the corresponding combinatorial
triangle :
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• the sequence of counts of letter a, in the sequence of words defined previously,
forms one of the most studied Markov chain : the simple random walk, whose
one-dimensional distributions hn are binomial distributions, famously related
to Pascal’s triangle ;

• the sequence of sizes of images, derived from the sequence of random mappings,
is a famous inhomogeneous Markov chain, related to the coupon collector
problem : it is the sequence of successive sizes of the collection. Its one-
dimensional distributions hn have a simple expression in terms of the Stirling
numbers of the second kind ;

• the sequence of number of cycles, derived from the random permutation pro-
cess, is an inhomogeneous Markov chain, related to the chinese restaurant pro-
cess. Its one-dimensional distributions hn have a simple expression in terms of
the Stirling numbers of the first kind ;

• the sequence of the number of descents, also derived from the random per-
mutation process, is an inhomogeneous Markov chain, related to the internal
diffusion limited aggregation process. Its one-dimensional distributions hn

have a simple expression in terms of eulerian numbers.

Chapman-Kolmogorov equations for these Markov chains are derived from Pascal’s
formulas for corresponding triangles through renormalization : in our settings, Qn

is defined by (a, b) as follows

Qn,x,y = cn(θ)
(
b(n+ 1, y)1ly=x∈[[n]] + a(n+ 1, y) θ 1ly=x+1∈[[n+1]]

)
, (8)

in which cn(θ) denotes a normalizing factor Tn(θ)/Tn+1(θ), and θ = θx+1/θx should
be replaced, in the last factor of (8), with θ − x = θx+1↓/θx↓ in the case of Stirling
numbers of the second kind. For eulerian numbers, θ = 1. Then, Pascal’s formulas
appear as special cases of the Chapman-Kolmogorov equation hn−1Qn−1 = hn, and
relation (2) is just a special case of Proposition 5.

Here, Qn,xn,xn+1 ̸= 0 only if εn+1 = xn+1−xn belongs to {0, 1}, thus P(n,x),(n−1,y) ̸=
0 only if ε = x − y belongs to {0, 1} : in this paper, P(n,x),(n−1,x−ε) is abridged to
pε(n, x).

2.2 Simple random walk

Proof of Proposition 1. Here

T (n, k) =

(
n

k

)
, θ =

p

1− p
, Tn(θ) = (1 + θ)n

hn(k) =

(
n

k

)
pk(1− p)n−k, cn(θ) =

1

1 + θ
= 1− p.

Then, for instance,

P(n,i),(n−1,i−1) =
hn−1(i− 1)Qn−1,i−1,i

hn(i)

=

(
n−1
i−1

)
pi−1(1− p)n−i × p(
n
i

)
pi(1− p)n−i

=

(
n−1
i−1

)(
n
i

) = p1(n, i)
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as expected.

2.3 Coupon collector’s problem

Let us recall the famous problem studied by Gauss and Laplace, among others : a
collector wants to complete a collection of N different items (denoted 1, ..., N). At
each step, he receives a coupon chosen uniformly from [[1, N ]]. The average time to
complete the collection is known to be NHN , where

HN =
N∑
k=1

1

k

is the Nth harmonic number. If Xn denotes the number of different items in the
collection after the nth step, then we call the graph of t 7→ X⌊t⌋ the completion
curve.

Figure 9: Three completion curves
for a n = 20 items collection.

Figure 10: Three completion curves
for a n = 200 items collection.

Proof of Proposition 2. See [AC19, Proposition 1], in which the proof is given for
m = N . It fits with the frame given at Section 2.1 as follows : set

T (n, k) =

{
n

k

}
, θ = N,

but consider a variant of Tn. Here :

Tn(θ) =
∑
k

T (n, k)θk↓ = Nn

hn(k) =

(
N

k

){
n

k

}
k!

1

Nn
=

{
n

k

}
Nk↓

Nn
, cn(θ) =

1

N
.

Then, for instance,

Qn,k,k+1 = a(n+ 1, k)
θk+1↓

θk↓
cn(θ) =

N − k

N
.
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and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

{
n−1
k−1

}
Nk−1↓

Nn−1 × N−k+1
N{

n
k

}
Nk↓

Nn

=

{
n−1
k−1

}{
n
k

} ,

as expected.

2.4 Chinese restaurant process

Set θ ∈ (0,+∞). The chinese restaurant process, introduced in 1974 by Antoniak in
[Ant74], is defined as follows : when entering a metaphoric chinese restaurant, the
first customer seats at the first table. For n > 1, the nth customer seats at the kth
(non-empty) table with probability

cn,k

n−1+θ
(where cn,k is the number of customers

seated at this table), or at an empty table with probability θ
n−1+θ

. Let Xn denote
the number of non-empty tables after the arrival of the nth customer. For exemple,
let us sample the first 50 steps of the process, for θ = 1 :

Figure 11: A realization of the chinese restaurant process (here X50 = 6).

Proof of Proposition 3. In this example, (Yi)i≥1 is a family of independent Bernoulli
random variables with respective parameters pi = θ/(i− 1 + θ). We have :

T (n, k) =

[
n

k

]
, Tn(θ) =

∑
k

T (n, k)θk = (θ)↑n, cn(θ) =
1

θ + n
.

Thus the probability distribution of Xn is given, for n ≥ 1, by:

hn(ℓ) = P(Xn = ℓ) =
θℓ

(θ)↑n

[
n

ℓ

]
1l1≤ℓ≤n,

see [Pit06, Section 3.1.3]. For instance,

Qn,k,k+1 =
θ

n+ θ
= cn(θ) a(n+ 1, k) θ.
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and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

θk−1

(θ)n−1↑

[
n−1
k−1

]
× θ

n−1+θ[
n
k

]
θk

(θ)n↑

=

[
n−1
k−1

][
n
k

] ,

as expected.

2.5 One-dimensional Internal Diffusion Limited Aggrega-
tion process

Diaconis and Fulton [DF91] introduced the internal Diffusion Limited Aggregation
process (iDLA). Lawler, Bramson and Griffeath [LBG92] coined the terminology
iDLA, and obtained an asymptotic shape behaviour. In the iDLA process, an ag-
gregate of particles on Zd is built as follows:

i) the first particle settles at the origin;

ii) the next particles perform a symmetric random walk on Zd, starting from the
origin, and settle at the first empty site they encounter.

Figure 12: Normalized iDLA aggregates with 150, 1,500 and 15,000 particles on Z2.

When d = 1, let Xn denote the number of particles settled to the right of the
origin after the nth step. Then, according to [Mit20], the process (Xn)n is an inho-
mogeneous Markov chain with the same distribution as the sequence of number of
descents of the sequence of random permutations defined previously. Both processes
have the one-dimensional distribution below

P(Xn = k) = hn(k) =

〈
n
k

〉
n!

1l(n,k)∈S.

In the case of the one-dimensional iDLA we can stack successive aggregates upon
one another to form a space-time diagram. As with Figure 12, the longer it took to
visit a cell, the darker we color it.



Figure 13: Space-time diagram of
a one-dimensional iDLA.

Proof of Proposition 4. In this example, we have :

T (n, k) =

〈
n
k

〉
, Tn(1) =

∑
k

T (n, k) = n!, cn(1) =
1

n
.

Thus the probability distribution of Xn is given, for n ≥ 1, by:

hn(ℓ) = P(Xn = ℓ) =
1

n!

〈
n
ℓ

〉
1l1≤ℓ≤n,

see [Pit06, Section 3.1.3]. For instance,

Qn,k,k+1 =
n− k

n+ 1
= cn(1) a(n+ 1, k).

and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

1
n−1!

〈
n− 1
k − 1

〉
× n−k

n〈
n
k

〉
1
n!

=

〈
n− 1
k − 1

〉
(n− k)〈

n
k

〉 ,

as expected.



3 The limit vector field : proof of Theorem 1

One can see the set v of average jumps v(n, k), defined, for (n, k) ∈ S, by

v(n, k) = p0(n, k)× (−1, 0) + p1(n, k)× (−1,−1)

= (−1,−p1(n, k)) ,

as a kind of discrete vector field v on S, with slope p1(n, k) at point (n, k). As
a consequence, the convergence of the sample paths of the time-reversed Markov
chains of Section 1.3 (see Theorem 2) requires a precise asymptotic analysis of

p1(n, k) =
a(n, k)T (n− 1, k − 1)

T (n, k)
,

and thus, of T (n, k). Consider the generating functions Vk and Hn defined by

Vk(z) =
+∞∑
n=k

1

fn
T (n, k)zn, Hn(w) =

n∑
k=0

T (n, k)wk,

respectively. Here fn is either 1 (for Pascal’s, resp. Euler’s, triangle) or n!, for the
2 Stirling’s triangles : for the enumeration of sets of labelled structures, such as e.g.
subsets or cycles, as for the 2 Stirling’s triangles, cf. [FS09, Part A], the factor n! is
due to the use of EGFs, and since we consider sets, not sequences, of k objects, i.e.
unordered collections, the generating function Vk contains a factor 1/k!. In the first
three cases, Vk exhibits a factorisation A×Bk suitable for the saddle-point method,
while, for eulerian numbers, Hn is approximately of the form Bn, allowing the use
of large deviations methods.

Due to these factorisations, the limit vector field depends only on the slope y/x,
and the function φ depends on B alone, in the first 3 cases through the saddle-point
equation

B′ (ζ)

B (ζ)
=

1 + λ

ζ
, (9)

obtained by optimisation of the function x → B(x)

x1+λ
on (0,+∞), and, for eulerian

numbers, through the Legendre transformation of lnB, leading to the equation :

B′ (ζ)

B (ζ)
=

1

1 + λ
. (10)

Proof of Theorem 1. But for eulerian numbers, let ζ(λ) be defined implicitly by (9),
i.e. let ζ(.) be the inverse function of :

x −→ xB′ (x)

B (x)
− 1.

The eulerian case is similar, but uses large deviations rather than saddle-point meth-
ods, and will be handled separately. In the remaining 3 cases, recall that a(n, k) = 1,
and set :

1 + λ =
n

k
, ζ = ζ(λ), 1 + λ̃ =

n− 1

k − 1
, ζ̃ = ζ(λ̃).
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For these 3 cases, the saddle-point method, see [FS09, Part B, Chap. VIII], leads to

T (n, k) ∼ fn
fk

(
B (ζ)

ζ1+λ

)k

g(n, k), (11)

in which g(., .) is some factor such that g(n, k) ∼ g(n− 1, k− 1). The invariance by
homothetie of the field lines results from the factorisation Vk = A×Bk and from the
Cauchy formula, that leads to the key role of λ in the asymptotic behaviour (11),
and is thus a consequence of the decomposability of the underlying combinatorial
structures.

The factor fn/fk matters only for the 2 Stirling’s triangles. As a consequence,
for the two Stirling triangles, we have

p1(n, k) ∼
a(n, k) k

n

ζ̃1+λ̃

B
(
ζ̃
)
B

(
ζ̃
)

ζ̃1+λ̃

ζ1+λ

B (ζ)

k

∼ 1

1 + λ

ζ1+λ

B (ζ)

(
ζ̃1+λ

ζ̃1+λ̃

)k
B

(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

k

∼ 1

1 + λ

ζ1+λ

B (ζ)
ζ(λ−λ̃)k,

the last step due to

lim
k

k ln

B
(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

 = 0. (12)

Actually, since ζ is solution of the saddle-point equation, the derivative of

x → ln

(
B (x)

x1+λ

)
vanishes at ζ, thus

ln

B
(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

 = o
(
ζ̃ − ζ

)
= o

(
λ− λ̃

)
,

but

λ− λ̃ =
n

k
− n− 1

k − 1
∼ −λ

k
,

entailing (12). Thus

p1(n, k) ∼
1

1 + λ

ζ

B (ζ)
.
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Finally, for Stirling’s triangles, the saddle-point equation (9) gives

p1(n, k) ∼
1

B′ (ζ)
,

For Pascal’s triangle,
(
n
k

)
enumerates words with n letters, k among them being a’s

and the n − k others being b’s, thus Pascal’s triangle enumerates sequences (not
sets) of unlabelled objects1, for which one usually uses OGFs. As a consequence,
fn = 1, and, compared with the previous computation, we are rid of the factor n!/k!
in T (n, k), and of the factor k/n = 1/(1 + λ) in p1(n, k), thus we obtain

p1(n, k) ∼
ζ

B (ζ)
.

Before we turn to the case of eulerian numbers, let us derive φ for each of the 3 first
cases :

• Pascal’s triangle :

Vk,1(z) =
∑
n≥k

(
n

k

)
zn =

1

1− z

(
z

1− z

)k

,

B1(z) =
z

1− z
,

p1(n, k) ∼
ζ

B1 (ζ)
= 1− ζ.

Here (9) can be written
1

1− ζ
= 1 + λ,

thus φ1(k/n) =
1

1+λ
= k/n, that is :

p1(n, k) ∼
k

n
,

which is not a surprise, since it is well known that, actually, p1(n, k) =
k
n
.

• Stirling numbers of the second kind

Here :

Vk,2(z) =
∑
n≥k

{
n

k

}
zn

n!
=

1

k!
(ez − 1)k ,

B2(z) = ez − 1,

p1(n, k) ∼
1

B′
2 (ζ)

= e−ζ ,

1A word with n letters, k among them being a’s and the n− k others being b’s, can be seen as
a sequence of k words of the form bma followed by a word of the form bm.
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and (9) can be written

ζ

1− e−ζ
= 1 + λ, (13)

see [AC19]. Thus

φ2(k/n) = e−ζ(nk−1).

Note that, according to Good [Goo61] and others, ζ is a smooth concave
function of λ > 0, with positive values. Note also that (13) is the equation
to be solved when one wants to tune the parameter ζ of a Poisson random
variable conditioned to be positive in order to obtain the expectation 1 + λ.

• Stirling numbers of the first kind (unsigned)

Vk,3(z) =
∑
n≥k

[
n

k

]
zn

n!
=

1

k!
(− ln(1− z))k ,

B3(z) = − ln(1− z),

p1(n, k) ∼
1

B′
3 (ζ)

= 1− ζ.

Here (9) can be written

ζ

(ζ − 1) ln(1− ζ)
= 1 + λ, (14)

which defines ζ as smooth concave function of λ > 0, with values in (0, 1).
Thus

φ3(k/n) = 1− ζ
(
n
k
− 1
)
. (15)

Note that (14) is the equation to be solved when one wants to tune the parame-
ter ζ of a logarithmic probability distribution in order to obtain the expectation
1 + λ.

For eulerian numbers, though the computation of φ4 has a similar flavour, it
presents some notable differences. In order to sum up the asymptotic analysis of
eulerian numbers, set, as done in [Ben73] :

t =
k

n
=

1

1 + λ
.

In [Ben73, page 97], the main tool is the approximation of Hn(e
s), the Laplace

transform of hn, by

B(s)n+1 = r(s)−n−1 =

(
es − 1

s

)n+1

.
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In other terms, the key point in [Ben73] is that hn is approximately the distribution
of the sum of n + 1 i.i.d. uniform random variables, with Laplace transform B(s).
This is reminiscent of Tanny’s representation of eulerian numbers (cf. [Tan73]) :

hn (k) =

〈
n
k

〉
n!

= P (⌊U1 + U2 + · · ·+ Un⌋ = k) . (16)

Bender obtains the following asymptotic formula for

〈
n
k

〉
when (n, k) goes to infinity

〈
n
k

〉
n!

∼
(
B(ζ)e−ζt

)n
g(n, k)

in which g(., .) is some factor such that g(n, k) ∼ g(n− 1, k − 1), and in which ζ is
the only real number such that

1

1 + λ
= t =

∂

∂ζ
ln

(
eζ − 1

ζ

)
=

eζ

eζ − 1
− 1

ζ
. (17)

One recognize in ζ(.) the derivative of the Legendre-Fenchel transformation of the
cumulant-generating function of the uniform distribution, i.e. the unique solution of

∂

∂ζ
ln
(
B(ζ)e−ζt

)
=

B′(ζ)

B(ζ)
− t = 0. (18)

As a consequence, for eulerian numbers, we have

p1(n, k) ∼
a(n, k)

n

(
B(ζ̃)n−1e−ζ̃(k−1)

B(ζ)ne−ζk

)

∼ a(n, k)

n

eζ̃

B(ζ̃)

(
B(ζ̃)ne−ζ̃k

B(ζ)ne−ζk

)

∼ (1− t)eζ

B(ζ)

(
B(ζ̃)e−ζ̃t

B(ζ)e−ζt

)n

∼ (1− t)eζ

B(ζ)

the last step due to

lim
n

n ln

(
B(ζ̃)e−ζ̃t

B(ζ)e−ζt

)
= 0. (19)

Actually, since ζ is solution of (18), the derivative of

x → ln
(
B(x)e−xt

)
19



vanishes at ζ, thus

ln

(
B(ζ̃)e−ζ̃t

B(ζ)e−ζt

)
= o

(
ζ̃ − ζ

)
= o

(
t− t̃

)
,

but

t− t̃ =
k

n
− k − 1

n− 1
∼ 1− t

n
,

entailing (19). Thus

p1(n, k) ∼
(1− t)ζeζ

eζ − 1
=

λζ

(1 + λ)(1− e−ζ)
= ϕ4(λ).

Note that :

ζ(1− t) = −ζ(t), φ4(1− t) = 1− φ4(t) =
tζ

eζ − 1
,

as expected from the relation

〈
n
k

〉
=

〈
n

n− k − 1

〉
.

4 Sample path convergence

This section is devoted to the proof of Theorem 2 for the first three triangles. For the
sake of completeness, we first give the well known proof of Theorem 2 for Pascal’s
triangle. In the case of Stirling numbers of the second kind, a weaker form of
Theorem 2 was obtained in [AC19] at the price of a tedious proof using Wormald
method and saddle-point asymptotics. For Euler’s triangle, we think that the same
property holds true, but the proof is still a work in progress. In the case of Stirling
triangles of both kind, we believe that the proofs given in the next sections are new.

4.1 Proof of Theorem 2 : Pascal’s triangle.

Consider two probability distributions for the processes (W,X, Y ) defined at sec-
tion 1.3. Under P(m,ℓ), W is a Markov chain starting from (m, ℓ), with transition
probabilities (pε(n, k))ε,n,k related to Pascal’s triangle, and the processes (X, Y ) are
distributed accordingly. On the other hand, under Pp, Y = (Yk)1⩽k⩽m is a sequence
of i.i.d Bernoulli random variables with parameter p, and the processes (X,W ) are
distributed accordingly. According to Proposition 1, for any p ∈ (0, 1), and any set
B in the relevant state space,

P(m,ℓ) ((W,X, Y ) ∈ B) = Pp ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pp (Xm = ℓ) (20)

= Pp ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pp (W0 = (m, ℓ)) .

By Hoeffding’s inequality, for all t > 0, and all n ∈ [[1,m]],

Pp(|Xn − np| ⩾ t) ⩽ 2 exp

(
−2t2

n

)
⩽ 2 exp

(
−2t2

m

)
.
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In particular, for any η ∈ (0, 1/2) and for t = m1−η/
√
2,

Pp(|Xn − np| ⩾ m1−η/
√
2) ⩽ 2 exp

(
−m1−2η

)
.

Thus

Pp(∃n ∈ [[0,m]] s.t. |Xn − np| ⩾ m1−η/
√
2) ⩽

m∑
n=1

Pp(|Xn − np| ⩾ m1−η/
√
2)

⩽ 2m exp
(
−m1−2η

)
.

Set

Am =
{
∃n ∈ [[0,m]] s.t. ∥Wn − (m− n, (m− n)p)∥1 ⩾ m1−η/

√
2
}
.

Then Pp(Am ∩ {Xm = ℓ}) ⩽ 2m exp (−m1−2η) and, according to (20),

P(m,ℓ)(Am) =
Pp(Am ∩ {Xm = ℓ})

Pp(Xm = ℓ)
⩽

2m exp (−m1−2η)

Pp(Xm = ℓ)

This is true for any p ∈ (0, 1), thus for p = ℓ/m too, but, using Stirling formula, one
finds

Pℓ/m(Xm = ℓ) =

(
m

ℓ

)(
ℓ

m

)m(
m− ℓ

m

)m−ℓ

∼ 1√
2πp(1− p)

1√
m
.

Finally, P(m,ℓ)(Am) = O(m3/2e−m1−2η
) and vanishes for η ∈ (0, 1/2). For Pascal

triangle, recall that γm,ℓ(t) = ℓt/m, thus

Am =
{
sup {|wm(t)− γm,ℓ(t)| ,mt ∈ [[0,m]]} ≥ m−η/

√
2
}
,

and

0 ≤ sup
t∈[0,1]

{|wm(t)− γm,ℓ(t)|} − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ≤ ℓ

m2
≤ 1

m
,

so that, for m large enough,{
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ≥ m−η

}
⊂ Am,

and, as expected,

lim
m

P(m,ℓ)

(
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ≥ m−η

)
= 0.
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4.2 Proof of Theorem 2 : Stirling numbers of the first kind.

Consider two probability distributions for the processes (W,X, Y ) defined at sec-
tion 1.3. Under P(m,ℓ), W is a Markov chain starting from (m, ℓ), with transition
probabilities (pε(n, k))ε,n,k related to Stirling numbers of the first kind, and the pro-
cesses (X, Y ) are distributed accordingly. On the other hand, under Pθ, (Yi)i≥1

is a family of independent Bernoulli random variables with respective parameters
pi = θ/(i − 1 + θ), and the processes (W,X, Y ) are distributed accordingly : for
instance, Xn can be seen as the number of non-empty tables after the arrival of
the nth customer, as in Section 2.4. As before, according to Proposition 3, for any
θ > 0, and any set B in the relevant state space,

P(m,ℓ) ((W,X, Y ) ∈ B) = Pθ ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pθ (Xm = ℓ) (21)

= Pθ ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pθ (W0 = (m, ℓ)) .

Also, as in (14), recall that

ζ

(ζ − 1) ln(1− ζ)
=

m

ℓ
= 1 + λ,

and that, for t ≥ 0,

γm,ℓ(t) =
1− ζ

ζ
ln

(
1− ζ + t ζ

1− ζ

)
.

Let µ = µθ,n denote the expectation of Xn under Pθ, that is

µ = µθ,n =
n∑

k=1

θ

k − 1 + θ
,

and note that, for the choice θm = m(1− ζ)/ζ,

|µθm,n −mγm,ℓ(n/m)| ≤ nζ

m(1− ζ)
≤ ζ

1− ζ
. (22)

According to Hoeffding’s inequality, for all t > 0, and all n ∈ [[1,m]],

Pθ(|Xn − µθ,n| ⩾ t) ⩽ 2 exp
(
−2t2/n

)
⩽ 2 exp

(
−2t2/m

)
.

In particular, for all η ∈ (0, 1/2) and for t = m1−η/
√
2,

Pθ(|Xn − µθ,n| ⩾ m1−η/
√
2) ⩽ 2 exp

(
−m1−2η

)
.

Set

Am =
{
∃n ∈ [[0,m]] s.t. |Xn − µθ,n| ⩾ m1−η/

√
2
}
.

Thus

Pθ(Am) ⩽
m∑

n=1

Pθ(|Xn − µθ,n| ⩾ m1−η/
√
2)

⩽ 2m exp
(
−m1−2η

)
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Then Pθ(Am ∩ {Xm = ℓ}) ⩽ 2m exp (−2m1−2η) and, according to (21),

P(m,ℓ)(Am) =
Pθ(Am ∩ {Xm = ℓ})

Pθ(Xm = ℓ)
⩽

2m exp (−m1−2η)

Pθ(Xm = ℓ)

This is true for any θ > 0, thus for θm = (1− ζ)m/ζ too, but, using relation (13) in
[Goo61], one finds

Pθm(Xm = ℓ) =
θℓm

(θm)↑m

[
m

ℓ

]
1l1≤ℓ≤m,

∼ 1√
m

√
ln(1− ζ)

2π(1 + λ)(ζ + ln(1− ζ))
.

Finally, P(m,ℓ)(Am) = O(m3/2e−m1−2η
) and vanishes for η ∈ (0, 1/2). But, for m large

enough,

Bm =

{
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ≥ m−η

}
⊂ Am,

and, as expected,
lim
m

P(m,ℓ) (Bm) = 0.

Actually, due to (22), for 0 ≤ n ≤ m,∣∣∣µN0,n

m
− γm,ℓ(n/m)

∣∣∣ ≤ ζ

m(1− ζ)
,

and

0 ≤ sup
t∈[0,1]

{|wm(t)− γm,ℓ(t)|} − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ≤ 1

m
,

thus Bm ⊂ Am provided that

m−η

√
2

+
ζ

m(1− ζ)
+

1

m
≤ m−η.

4.3 Proof of Theorem 2 : Stirling numbers of the second
kind.

Consider two probability distributions for the processes (W,X, Y ) defined at sec-
tion 1.3. Under P(m,ℓ), W is a Markov chain starting from (m, ℓ), with transition
probabilities (pε(n, k))ε,n,k related to Stirling numbers of the second kind, and the
processes (X, Y ) are distributed accordingly. On the other hand, under PN , Xn is
the number of different coupons that have been collected after n draws with re-
placement in a collection of N available coupons, and the processes (X, Y,W ) are
distributed accordingly. According to Proposition 2, for any N ≥ ℓ, and any set B
in the relevant state space,

P(m,ℓ) ((W,X, Y ) ∈ B) = PN ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /PN (Xm = ℓ) (23)

= PN ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /PN (W0 = (m, ℓ)) .
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Let µ denote the expectation of Xn under PN , that is

µ = µN,n = N

(
1−

(
1− 1

N

)n)
,

and note that ∣∣µN,n −N
(
1− e−

n
N

)∣∣ ≤ n

2N
. (24)

Also, as in (13), set

ζ

1− e−ζ
= 1 + λ =

m

ℓ
.

According to [MR95, Ch. 4, Theorem 4.18], by Azuma-Hoeffding’s inequality, for
all t > 0, and all n ∈ [[1,m]],

PN(|Xn − µN,n| ⩾ t) ⩽ 2 exp

(
−t2

N − 1/2

N2 − µ2
N,n

)

⩽ 2 exp

(
− t2

2N

)
.

In particular, for all η ∈ (0, 1/2) and for t = m1−η/
√
2,

PN(|Xn − µN,n| ⩾ m1−η/
√
2) ⩽ 2 exp

(
−m2−2η/4N

)
.

Set

Am =
{
∃n ∈ [[0,m]] s.t. |Xn − µN,n| ⩾ m1−η/

√
2
}
.

Thus

PN(Am) ⩽
m∑

n=1

PN(|Xn − µN,n| ⩾ m1−η/
√
2)

⩽ 2m exp
(
−m2−2η/4N

)
Then PN(Am ∩ {Xm = ℓ}) ⩽ 2m exp (−m2−2η/4N) and, according to (23),

P(m,ℓ)(Am) =
PN(Am ∩ {Xm = ℓ})

PN(Xm = ℓ)
⩽

2m exp (−m2−2η/4N)

PN(Xm = ℓ)

This is true for any N ≥ ℓ, thus for N0 = ⌈m/ζ⌉ too, but, using relation (3) in
[Goo61], one finds

P⌈m/ζ⌉(Xm = ℓ) =
N0!N

−m
0

N0 − ℓ!

{
m

ℓ

}
∼

√
ζ eζ

2π(ζ − λ)m
.
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Finally, P(m,ℓ)(Am) = O(m3/2e−ζm1−2η
) and vanishes for η ∈ (0, 1/2). For Stirling

numbers of the second kind, recall that γm,ℓ(t) =
(
1− e−ζt

)
/ζ, thus

Bm =
{
sup {|wm(t)− γm,ℓ(t)| ,mt ∈ [[0,m]]} ≥ m−η

}
⊂ Am.

Actually, due to (24), for 0 ≤ n ≤ m,∣∣∣µN0,n

m
− γm,ℓ(n/m)

∣∣∣ ≤ n

2N0m
+

∣∣∣∣N0

m

(
1− e

− n
N0

)
− γm,ℓ(n/m)

∣∣∣∣
≤ n

2N0m
+

∣∣∣∣∣1− e−ζ̃n/m

ζ̃
− 1− e−ζn/m

ζ

∣∣∣∣∣
≤ ζ̃

2m
+

1 + ζ̃

m
, (25)

in which
m

ζ̃
=

⌈
m

ζ

⌉
= N0, thus 0 ≤ ζ − ζ̃ ≤ ζζ̃

m
.

Thus Bm ⊂ Am for m large enough, i.e. provided that

m−η

√
2

+
ζ̃

2m
+

1 + ζ̃

m
≤ m−η.

Finally

0 ≤ sup
t∈[0,1]

{|wm(t)− γm,ℓ(t)|} − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ≤ 1

m
,

so that, for m large enough,{
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ≥ m−η

}
⊂ Am, (26)

and, as expected,

lim
m

P(m,ℓ)

(
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ≥ m−η

)
= 0.

4.4 Application to the enumeration of accessible complete
deterministic automata with k letters and n vertices

Let ak,n denote the number of accessible complete deterministic automata (ACDA)
with k letters and n vertices (see [Nic00, AC19] for definitions). According to
Koršunov [Kor78, Kor86], for any given k ≥ 2,

ak,n ∼ ck

{
kn+ 1

n

}
n!, (27)
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in which ζ2 is defined by (4), and

ck = 1− k e−ζ2(k−1). (28)

Following [AC19], this section gives a probabilistic interpretation of Koršunov’s for-
mula, that relies on Theorem 2 for Stirling numbers of the second kind : according
to [Nic00], there exists a bijection between the set of ACDA with k letters and n
vertices and a subset Ak,n of the set Ωkn+1,n of surjections from [[kn+1]] to [[n]]. Thus
(27) states that the ratio #Ak,n/#Ωkn+1,n converges to ck with n. But an element of
Ωkn+1,n can be seen as the sample path of a coupon collector process such that the
collection of n items is complete at step kn+ 1. As a consequence, in the notations
of Section 4.3,

P(kn+1,n)(Ak,n) =
#Ak,n

#Ωkn+1,n

=
ak,n{

kn+1
n

}
n!
, (29)

and Koršunov’s formula can be rephrased as

lim
n

P(kn+1,n)(Ak,n) = ck. (30)

Now, according to [Nic00], Ak,n is the set of elements ω ∈ Ωkn+1,n such that

∀ℓ ∈ [[0, n− 1]], Xℓk+1(ω) ≥ ℓ+ 1,

or, equivalently,
∀ℓ ∈ [[0, kn]], k Xℓ(ω) ≥ ℓ. (31)

Relation (31) is, as usual, required from a breadth first search walk to insure the
connexity of the underlying graph.

We shall now sketch the argument, taken from [AC19], which, using Theorem 2,
shows that Υn = Ak,n satisfies

lim
n

P(kn+1,n)(Υn) = 1− ck = k e−ζ2(k−1).

Note that limn λ(kn+ 1, n) = k − 1, and that the corresponding concave limit field
line,

γm,ℓ(t) =
1− e−ζ2(k−1)t

ζ2(k − 1)
,

crosses the line y = x/k only at its endpoints (0, 0) and (k, 1), so that, accord-
ing to Theorem 2, but for an exponentially small probability, the sample path
{(ℓ,Xℓ), 0 ≤ ℓ ≤ kn+ 1} crosses the line y = x/k only close to its endpoints. The
probability that such a crossing occurs close to (0, 0) is very small too, see [AC19,
Proposition 2]. As a consequence, P(kn+1,n)(Υn) has the same asymptotic behaviour
than the probability that the sample path {(ℓ,Xℓ), 0 ≤ ℓ ≤ kn+ 1} crosses the line
y = x/k close to its endpoint (kn + 1, n). Close to this endpoint, the sample path
has approximately the same transition probabilities as a standard random walk with
step distribution (

1− e−ζ2(k−1)
)
δ0 + e−ζ2(k−1)δ−1.

The probability of a crossing of the line y = x/k by such a standard random walk
is 1− ck = k e−ζ2(k−1), as follows for instance from the Pollaczek-Khinchine formula
(cf. Corollary 6.6 of [Asm03], or Proposition 3 of [AC19], in which one can find a
proof of Koršunov’s formula along these lines).
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