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Abstract: Surface water stress remote sensing indices can be very helpful to monitor the impact of
drought on agro-ecosystems, and serve as early warning indicators to avoid further damages to the
crop productivity. In this study, we compare indices from three different spectral domains: the plant
water use derived from evapotranspiration retrieved using data from the thermal infrared domain,
the root zone soil moisture at low resolution derived from the microwave domain using the Soil
Water Index (SWI), and the active vegetation fraction cover deduced from the Normalized Difference
Vegetation Index (NDVI) time series. The thermal stress index is computed from a dual-source
model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) that relies on meteorological
variables and remote sensing data. In order to extend in time the available meteorological series, we
compare the use of a statistical downscaling method applied to reanalysis data with the use of the
unprocessed reanalysis data. Our study shows that thermal indices show comparable performance
overall compared to the SWI at better resolution. However, thermal indices are more sensitive for a
drought period and tend to react quickly to water stress.

Keywords: indicators; droughts; evapotranspiration; reanalyses

1. Introduction

Droughts are a recurring natural climate event that result from a reduction in precipita-
tion amount received over an extended period of time, such as a season or a year [1]. In arid
and semi-arid areas characterized by a significant temporal and spatial climatic variability,
the vulnerability advanced by recurrent droughts is considerable as it makes serious threats
to agroecosystem health and productivity [2]. More specifically, in several Mediterranean
countries, we observe during the last decade a significant warming trend, more pronounced
in summer, and a decrease in rainfall during the wet season [3]. This could have a strong
impact on water resources and constitutes the main driver of agricultural droughts which
appear as a result of a long-term period of precipitation deficiency and lead to lower soil
moisture. Droughts at a sensitive stage of crop development (emergence, pollination, and
grain filling) can lead to significant damages [4,5] specifically on rainfed agriculture. Thus,
an important issue for rainfed agriculture is to receive adequate rainfall at the appropriate
timing. In contrast, drought responses over irrigated areas are related to surface or ground-
water resource availability which can also suffer a severe drop during prolonged periods of
drought. Therefore, it is crucial to improve the monitoring of agricultural droughts and the
prediction of their occurrence in the future [6]. In this work, we are interested in agronomic
drought identification.

Several drought indices have been developed to quantify agronomic drought periods.
Initial drought indices rely essentially on meteorological variables. Most meteorological
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indices use precipitation either on its own or in combination with other meteorological vari-
ables [6]. The most commonly used meteorological index is the Standardized Precipitation
Index (SPI) [7], which classifies precipitation intensities according to a probability distri-
bution derived from historical records, over different durations (1 month SPI, 3 months
SPI, etc.). SPI is particularly useful for drought identification and frequency analysis [7–9].
However, meteorological indices bring information on meteorological droughts defined
only in terms of rainfall shortage, but not specifically on their consequences on vegetation
for instance, especially for agronomic droughts. On the other hand, remote sensing (RS)
is an effective tool to provide information on whether vegetation functioning is optimal
or sub-optimal. Indeed, RS has shown high potential to retrieve land surface properties
related to plant functionality, such as vegetation cover, from the visible/near infrared
domain [10,11], surface soil moisture from the microwave remote sensing using passive
or active radiometers [12–15], or surface temperature from the thermal infra-red (TIR)
data that exploits surface energy balance components to identify land surface energy
interactions [16].

RS observations of green biomass vegetation indices are relevant indicators of year-to-
year drought conditions and vegetation greenness, especially over the past few decades
thanks to the increasing number of multi and hyperspectral sensors [11,17], such as
Advanced Very High Resolution Radiometer (AVHRR), SPOT-Vegetation and Moderate-
Resolution Imaging Spectroradiometer (MODIS). These sensors provide spatial resolution
ranging from 250 to 1000 m. Historically, the Normalized Difference Vegetation Index
(NDVI) [18], built from the normalized difference between near-infrared (NIR) and RED
reflectances, has been used for decades to provide information on vegetation health due to
its strong correlation with the photosynthetic activity of plant cover. A suite of drought
indices based on NDVI were subsequently developed in order to provide more focused
information, such as the vegetation condition index (VCI) [19]. VCI uses the NDVI infor-
mation provided from each pixel normalized with the maximum and minimum statistical
range over the available time series of images. It has been tested in several regions of
the world, showing a relevant efficiency to characterize periods of droughts [20,21]. The
vegetation anomaly index (VAI) developed by [22], also forms a standardization of the
NDVI time series. Although RS-based vegetation observation indices have proven their
efficiency to assess drought impacts on vegetation growth, they are not able to detect
incipient stress because of the time lag needed for the plant to reflect drought-induced
physiological changes. Therefore, a delayed response to prolonged stress will be provided
using these indices [23]. Response of vegetation to drought is a gradual process altering
soil moisture, that leads to a time lag effect [24].

Surface soil moisture (SSM), which is inferred from microwave RS, is another efficient
key parameter for agricultural planning and water resource management [12,25]. Neverthe-
less, for drought monitoring and agricultural modeling, a representation of root-zone soil
moisture is needed [26]. A number of soil moisture-based indices have been developed and
widely used for drought monitoring, such as the Soil Water Index (SWI) [27]. This index is
retrieved from the Advanced SCATterometer (ASCAT) SSM estimates in C band, which
was found to be more suitable in bare soils or sparse vegetation cover [28], to determine soil
moisture (SM) distributions within the soil profile using an exponential relationship that
links surface and subsurface SM via a characteristic time length [29]. SWI is also used on
analysis of statistical anomalies over several years to derive the Moisture Anomaly Index
(MAI) [15], that has shown a good performance in providing quantitative information on
drought periods over the central region of Tunisia. The Soil Moisture Deficit Index (SMDI),
developed by [30], was helpful for planning to mitigate drought impacts. This index is
calculated from weekly percentage SM deficit or excess using long-term median, maximum
and minimum soil water [30]. The main limitation of drought indices based on passive
microwave data is their low resolution. Moreover, quantitative soil moisture estimation is
still a challenge nowadays, especially under vegetation cover [12,31].
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RS maps of land surface temperature (LST) are very informative of water availability
and form a good indicator of incipient droughts [32]. Indeed, water stress induces a stomatal
closure that generates in turn an elevated canopy temperature [33–37]. Thermal channels of
Landsat, AVHRR or MODIS were exploited to retrieve remotely sensed LST estimates. LST
can be used as a signature of the land surface energy budget and, in particular, to determine
whether the dissipation of available energy is more into sensible (dry conditions) and/or
latent heat (wet conditions) [38]. It also enables the computation of evapotranspiration
(ET) from latent heat, computed as the residual of the surface energy budget [39,40].
ET is particularly informative about water stress conditions [40,41]. Indeed, the crop
water requirements are adjusted to match the water losses from actual evapotranspiration
(ETa) [42]. Consequently, in water stress conditions, the plant reduces its transpiration in
comparison with unstressed vegetation under the same atmospheric conditions [43]. Thus,
the water stress intensity may be inferred from the ratio of actual and potential (unstressed)
ET. Several drought indicators that integrate ET have been explored and showed improved
drought monitoring. In [44], the authors proposed the so-called Water Deficit Index (WDI)
based on the approach Vegetation Index/Temperature Trapezoid (VIT). WDI is estimated
for each pixel to retrieve dry/wet conditions based on the fractional vegetation cover and
the difference between LST and air temperature (Ta). A good example of TIR indices is the
evaporative stress index (ESI) [35] that describes anomalies in the actual and the reference
ET ratio. ESI was shown to provide early warning particularly for flash droughts that could
produce damaging impacts over short time periods [5]. The stress index (SI) is defined as
the ratio between actual and potential evapotranspiration rates.

In summary, several drought indices are commonly used for drought monitoring and
impact assessment in agriculture. However, it is hard to assess their respective performance
in deciphering stress/non stress and drought/non drought situations. An inter-comparison
between the performance of these different drought indicators provided from different
wave lengths, in terms of consistency, reliability and ability to detect incipient water plant
stress, is thus relevant. Kogan [19] evaluated VCI and the Temperature Condition Index
(TCI) in different regions of the world. The analyses show that VCI has an excellent
ability to detect each period of stress, the drought onset, intensity, duration, and impact on
vegetation. The TCI provides additional information about vegetation stress through LST.
In Kogan [19], the authors used VCI and TCI to develop the so-called Vegetation Health
Index (VHI), a well known combined stress index that is widely used for drought detection
and assessment of drought severity and duration [45]. However, as a simple averaging is
performed, there is no real theoretical support for the way to weight the relative impact
of stress (through LST) and vegetation development (through NDVI). The relationship
between the changes in canopy temperature and the soil water supply in the fields is widely
applied as a drought indicator [46]. The Vegetation Supply Water Index (VSWI), which is
the ratio between the LST and NDVI, is found reliable to detect vegetation stress, moisture
and drought-affected areas [46,47]. However, in this work, we suggest to compare different
indices provided from individual biophysical variables (1) the “Normalized difference
vegetation index” (NDVI) from the solar (Visible/Near InfraRed spectrum), (2) “Soil Water
Index” (SWI) from the microwave domains and, (3) a “Thermal stress Index” (SI) from
Thermal InfraRed retrieved from a surface energy budget model. Analyses are carried
out in the Kairouan area in central Tunisia which is subject to a semi-arid climate. The
thermal stress index used is based on ET simulated from a dual source energy balance
model that provides robust estimates of ET when meteorological forcing and vegetation
cover are accurately known [48]. A statistical downscaling method [49] combined with
reanalysis data is used to generate surrogate series in order to extend the observation
period. Then, simulated ET series from the downscaling method or from the unprocessed
reanalyses are used to constrain the dual-source model Soil Plant Atmosphere and Remote
Evapotranspiration (SPARSE) [50]. In this paper, we address three objectives:

(1) We first assess at a regional scale, the consistency between those indices and a
precipitation-based drought index called the “Uniformized Precipitation Index” (UPI)



Remote Sens. 2022, 14, 1813 4 of 27

which is a variant of the SPI without the transformation into Normal quantiles. We assume
that a robustness of the indices at very low resolution (12 km) translates into a good
accuracy at higher resolution (kilometric).

(2) We assess the reliability of very low (UPI, SWI) and low (SI, NDVI) resolution
indices at higher resolution (kilometric) at local scale, by focusing on drought monitoring
for pixels either with a high proportion of rainfed wheat or that correspond to the extra
large aperture scintillometer (XLAS) transect;

(3) We compare SI when the energy balance model is either forced with the downscaled
meteorological data or with the unprocessed reanalysis data, in order to test the applicablity
of SI with routinely available data at a global scale.

2. Study Area

The study site, the Merguellil catchment (Figure 1), is located in central Tunisia, which
is typical of semi-arid environments. The study area is influenced both by the Mediter-
ranean climate (dry subhumid) and the pre-Saharan climate (arid). It is characterised by the
inter-annual irregularity of precipitation, with an average annual rainfall of about 300 mm
per year, with a short rainy season mostly between September and May [51] and with a
high evaporative demand of about 1600 mm per year. In our study region, the annual mean
air temperature did not show considerable variation during the study period. In Figure 2,
we observe that this variable is mainly steady during the study period, ranging from about
0 ◦C and 45 ◦C with a median of about 20 ◦C.

Figure 1. Merguellil catchment in central Tunisia with seasonal (winter–spring) land cover map of
2019–2020.

The upstream and the downstream sub-catchments are separated by El Haouareb dam
that protects the village from inundations and provides surface irrigation water for the plain.
However, most of the water used for irrigation is extracted from ground water. Merguellil
is emblematic of hydrological processes which have been profoundly modified by human
activities since the end of the 1960s, by the inclusion of soil and water conservation works,
the construction of large and small dams, and intensification of irrigated farming [51,52].
As expected, agriculture is the main water consumer of available water resources in this
region (around 80 of the available water%) [53]. Therefore, the aquifer system shows
a considerable decrease over time and space due to over-exploitation [52]. This makes
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the Merguellil catchment an interesting case study to investigate the ability to monitor
agricultural water management in the recent years. In this work, we are interested only
by the lower sub-catchment (3000 km2) which forms an alluvial plain mainly flat with
altitude between 50 and 200 m. The plain incorporates mainly small cultivated areas [54],
with characteristic vegetation of semi-arid regions: rainfed agriculture (olive trees and
cereals) and vegetables (melons, chilis and tomatoes), see Figure 1. The gauged network
in the Merguellil plain catchment has three stations (Figure 1), installed since 2012 for the
earliest ones.

Figure 2. Annual air temperature (using ERA5 data) variation over the study period (2000–2019).

3. Data and Methodology
3.1. Biophysical Indices Derivation
3.1.1. NDVI

We used the MOD13 version 6 product from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensor on board the NASA Terra and Aqua Earth Observation
System satellites that provides each 16-day composite at 1 km of spatial resolution. Time
series are retrieved between 2000 and 2019 over our study area (see Figure 1). NDVI uses
the normalized difference between near-infrared (NIR) and (RED) reflectances.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

. (1)

where ρNIR and ρRed are the near-infrared (NIR) and red reflectances, respectively. NDVI in-
creases with the amount of healthy green photosynthetically active vegetation. Uniformized
NDVI measures reflect the “current” vegetation conditions according to a longer-term his-
torical average NDVI value over the same study area.

3.1.2. SWI

The soil water index (SWI) data are derived from the surface soil moisture (SSM) using
an infiltration model to describe the relation between surface soil moisture and profile soil
moisture as a function of time.

SWI(t) = ∑ SSM(ti)e−(t−ti)/T

∑ e−(t−ti)/T
, (2)

where SSM is the surface soil moisture estimate from the ASCAT at time ti. The parameter
T, called the characteristic time length, represents the time period to integrate SSM data.
T is the most important input parameter to derive the profile soil moisture content from
remotely sensed surface time series: a high T value describes a deeper soil layer if the soil
diffusivity is constant, and the same T value describes different depths for different soils
(texture) [27]. In Ceballos et al. [55], the authors studied a semi-arid region characterized
with a similar heterogeneous texture distribution in the soil profiles as our study region,
having surface soils of sandy texture and a higher clay concentration to a depth of 2 m [56],
and found that T = 60 days is the best choice for the 50–100 cm soil profile, which corre-
sponds to the root layer according to the predominant agricultural use of our study region
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(olive trees and cereals). Indeed, the upper part of the profiles promotes high infiltration
rates and low water retention forces [55].

The SSM is retrieved from scatterometer observations from the ASCAT instruments on
board the MetOP satellites, which measures radar backscatter at C-band in VV polarization,
with an initial spatial resolution of 25 km, re-sampled at 12.5 km [57]. SWI product is
retrieved from the Copernicus Global Land service and provides global daily information
since January 2007 to present [58].

3.1.3. Thermal Infrared Stress Index

We used a stress index (SI) obtained from TIR. The surface temperature (LST) provides
indirect estimates of water stress since it enters in the surface energy balance equations
and it is thus related to the evapotranspiration rate flux. Daily ET simulation is detailed
in Appendix A section. The stress index is defined as the ratio between actual (ETa) and
potential evaporation rates (ETp) [40].

SI =
ETa

ETp
(3)

If the actual evaporation value is close to the potential value, the stress index takes
values close to one that reflect unstressed conditions. However, if the actual evaporation
is low compared to its potential value, the stress index values may reach zero, which
represents fully stressed conditions. ETa and ETp are simulated from the energy balance
model SPARSE [50] using meteorological observations and remote sensing variables.

LST, viewing angle and emissivity data are retrieved from the daily 1-kilometer LST
product (MOD11A1) from MODIS VI products on board Terra and Aqua sensors. Quality
control (QC) assessment for LST and emissivity product is also provided from the LST
product. For stress index retrieval, the Leaf Area Index (LAI) and albedo products are also
needed. We used the 8-day of albedo series (MCD43A3) from MODIS at 500 m, resampled
to a spatial resolution of 1 km. Finally, the LAI is retrieved from the NDVI time series using
an empirical equation [59], defined in the following Equation (4):

LAI = −1
k

ln
NDVImax − NDVIi

NDVImax − NDVImin
(4)

where k is an extinction factor, about 1.13, NDVImax = 0.97 and NDVImin = 0.05 correspond-
ing to the NDVI value of bare soil [48]. The region is characterized by tree-dominant cover
with interrow distance of 12 m corresponding to low LAI values (about 0.3 to 0.4) on an
image [60].

3.1.4. UPI

We used the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
data which are available from 1981 till now. This product incorporates three types of
information: global climatologies, satellite estimates and in situ observations [61]. CHIRPS
is available daily and at a spatial resolution of about 5 km. The CHIRPS precipitation data
are highly reliable to identify wet and dry periods in our study region [62].

The CHIRPS precipitation time series is used to compute the Uniformized Precipitation
Index (UPI), which is constructed following the same steps as the SPI except for the last
step that transforms into Normal standard quantiles [7]. SPI maps precipitation amounts to
the [0,1] interval by using either the empirical or a parametric cumulative function. Then,
a final transformation is applied to obtain values that are normally distributed. UPI is
computed with a single transformation: the empirical cumulative function is used to map
precipitation amounts derived from historical records, to uniform quantiles in the [0,1]
interval, as expressed in Equation (5):

F̂n(x) =
1
n

n

∑
i=1

1{xi≤x}, (5)
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where 1{·} is the indicator function, x1, . . . , xn are rainfall amounts aggregated at different
time scales (years, months or decades) and F̂n(x) is the UPI value with F̂n(x) = P(X ≤
x) ∈ [0, 1], with X the random variable representing the rainfall amounts at a given time
scale. In contrast, SPI is computed as Φ−1(F̂n(x)) where Φ−1 is the quantile function (the
inverse of the cumulative function) of the standard normal distribution.

We believe the interpretation in terms of uniform quantiles, which are simply proba-
bilities of non-exceedance, is more straightforward than normal quantiles. For example, if
UPI equals 0.1 on a given year, it means that 10% of the yearly precipitation amounts are
inferior or equal to the amount observed that year. In other words, that year is among the
10% driest years. The SPI value corresponding to 0.1 is approximately −1.28.

3.2. Thermal Stress Index Derived from Energy Balance Model
3.2.1. SPARSE Model

We rely on the dual source energy balance model SPARSE [50] to simulate evapotran-
spiration. It estimates evaporation (E) and transpiration (T) separately. This is particularly
relevant for arid and semi-arid areas which are characterized by sparse crop canopy and by
an uneven relative contribution of evaporation and transpiration [63].

The model can be run in two modes: retrieval and prescribed mode. In retrieval mode,
the respective stress levels (between non evaporating/transpiring and fully evaporating/-
transpiring, i.e., potential rates) are two unknowns which are determined from the single
piece of information provided by Tsur f by assuming at first that the vegetation is not
stressed, that allows a simplification to solve the underdetermination problem. Tsur f is
used to estimate the latent heat component from the soil (LEs), corresponding to the soil
evaporation E. If the vegetation is suffering from water stress, the resulting LEs will de-
crease to unrealistic levels (negative values). In that case, we assume that the soil surface is
stressed and LEs is set to a minimum value close to zero. Then the energy budget equation
is solved for the vegetation component of the latent heat flux (LEv), which corresponds
to the transpiration T. If LEv is also negative, fully stressed conditions are imposed for
both soil and surface components [60]. The prescribed mode provides an estimate of the
potential latent flux for the soil and the vegetation (LEspot and LEvpot respectively). The
water stress indice SI is then defined from the actual and unstressed evapotranspiration
rates (potential) at the time of the satellite overpass.

The SPARSE model is forced by a series of meteorological observations (air temper-
ature, relative humidity, global radiation and wind speed) and remote sensing variables
(NDVI, LAI, albedo and LST). Outputs are derived at meteorological time steps (half-
hourly).

3.2.2. Meteorological Forcing

It is important to consider a long meteorological series in order to perform a robust
statistical characterization of drought periods. In addition, owing to the temporal and
spatial scales of climate variability, evapotranspiration and water stress index must be
monitored at high temporal (subdaily to daily scales) and spatial resolution. However,
available gauged stations (see Section 2) are scarce with short observation periods and
numerous gaps, insufficient to perform a robust statistical analyses and characterization of
drought periods. We rely, therefore, on surrogate meteorological series that extend in time
the original series in order to be used to constrain the SPARSE energy balance model. In
this work, we used two types of surrogate meteorological data:

1. Unprocessed reanalysis data ERA5 extracted at the grid cell closest to the region of
interest (see Figure 1): ERA5 reanalyses are available at a 31 km spatial resolution [64])
from 1950 to present at an hourly temporal scale [64]. Reanalysis series that correspond
to the four meteorological variables required for the energy balance model to simulate
the corresponding index SIERA5 are: the incoming global solar radiation at the surface
(bottom of atmosphere), wind speed at 10 m, air temperature at 2 m and the relative
humidity that was derived from 2 m air temperature and 2 m dewpoint temperature
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ERA5 products, according to the procedures defined in [65]. The specific aim of using
unprocessed reanalysis data for our study, is to assess its performance to constrain an
energy balance model for regions with no gauged stations.

2. Simulated series from a Stochastic Weather Generator (SWG) called “MetGen” [49]:
Its implementation is publicly and freely available as an R library. MetGen generates
scenarios of meteorological variables at sub-daily temporal resolution in order to
extend local observations in the past. It relies on low resolution ERA5 reanalysis
data and exploits observations provided by three gauged stations located in our
study region (see Figure 1) to simulate regional climatic information. The correspond-
ing index simulated using the SWG meteorological to constrain SPARSE model, is
denoted SISWG.

Inter-comparison between indices will be computed at a daily time scale for a long
period in the past from 2000 to 2019. Characteristics of indices used are as follows, see
Table 1.

Table 1. Characteristics of indices used.

Wave
Lenghts

Visible/Near
Infrared Infrared + Visible + Meteo. Microwave

Meteo. +
Satellites Data

Indices NDVI SISWG SIERA5 SWI UPI

Satellites MODIS MODIS MODIS ASCAT CHIRPS

Model used 7 SPARSE SPARSE 7 7

Spatial
resolution 1 km 1 km 1 km 12.5 km 5 km

Temporal
resolution daily daily daily daily daily

Temporal
availability since 2000 since 2000 since 2000 since 2007 since 1981

3.3. Indices Standardization

For added interpretability, the different indices are usually re-scaled or standardized
in order (1) to be expressed as frequencies that can be easily interpreted [66] and (2) to
statistically characterize the deviation (anomaly) of the index values according to a long
series recorded over the study period. For this aim, we standardize each index X with its
empirical cumulative density function (ECDF). Let (x1, . . . , xn) be the values taken by the
index X for a given data set. Then the ECDF is given by :

F̂n(x) =
1
n

n

∑
i=1

1{xi≤x}, (6)

where 1{·} is the indicator function, Xi is the index value for time step i and Yi is the
standardized value of the index x. The ECDF standardizes by mapping a value x taken by
X to its empirical non exceedance frequency, i.e., the percentage of occurrences of values
lesser than or equal to x [67]. This is illustrated in Figure 3 : the ECDF maps the values
x ∈ [0.1, 0.6] to [0, 1]. In particular, the value xi = 0.31 is mapped to yi = 0.8 which means
that 80% of the values of the index X are expected to be below 0.31.

The advantages of the proposed standardization approach with the ECDF are that (1)
it does not rely on the assumption that the raw indices values follow a normal distribution
which is implicit in standardization approaches that rely on centering and scaling, (2) it
allows for flexibility in the choice of reference sample (depending on seasons for example),
and therefore can be used for short scale monitoring, and (3) it produces results that are
easily interpreted in terms of non-exceedance probabilities, as for UPI, especially when
simultaneous variables are analyzed [67]. Standardization using the empirical cumulative
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distribution function is performed over the whole period (20 years). At an annual scale,
standardization is performed over each year according to available values observed during
the whole study period. At a decadal scale, standardization is performed according to
season (winter, autumn, summer and spring).

Figure 3. Empirical cumulative density function illustration.

3.4. Evaluation of the Different Drought Indices Performance
3.4.1. At Regional Scale

For comparison at a regional scale, all indices are aggregated at a very low spatial
resolution (about 12 km). For this comparison, the CHIRPS precipitation time series is
used as a reference to identify water stress conditions at different time scales: annual and
decadal scales. In order to assess robustness and consistency between indices, we used
for instance time series for visual interpretation and Kendall’s τ, which is a rank-based
correlation coefficient that measures the strength of the relationship between two indices.

To focus on consistency between the precipitation index and other indices, we assess
the ability of the different indices to correctly identify the stress periods defined according
to UPI. We define the stress periods based on UPI as follows. We assume that a drought
event is a stress period with a probability of occurrence of approximately 20% and that it
lasts at least two decades. The threshold of 20% in terms of UPI corresponds to a threshold
of about −0.84 in terms of SPI. The drought classes defined in [7] begin when SPI values
fall below 0 (this corresponds to 50% in terms of UPI). In our study region, the threshold of
20% corresponds to precipitation amounts inferior to 200 mm, which is approximately the
precipitation amount average at a growth season. We transform the decadal standardized
indices into Boolean values according to the stress threshold: 0 to denote an unstressed
situation (>0.2) and 1 for stress conditions (<0.2). The second step is to check for each time
step (t) how many stress periods are recorded within the period between (t− 1) and (t + 1),
one decade being considered as a buffer (see Figure 4).

Figure 4. Identification of stress periods using UPI index transformed into Boolean values.

This method allows us to take into account the memory effects for three decades.
Moreover, the use of a moving average of UPI allows us to take further consideration of
memory effects and delayed responses of the different indices. We consider, therefore,
the use of a UPI moving average lagged up to 2, 3 and 4 decades. If the number of stress
periods based on UPI or lagged moving averages UPI exceeds two of the three decades
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considered, we assign a drought condition for this time step. Then we assess the response
stress/unstress of the other drought indices (SISWG, SIERA5, SWI and NDVI).

3.4.2. At Local Scale

For comparison at finer spatial resolution, a kilometric scale, we use local precise
information based on:

• XLAS in-situ measurements : Sensible heat flux measurements using an extra-large
aperture scintillometer (XLAS) are provided as part of the work of [60], for the period
ranging between March 2013 and June 2015. The scintillometer (XLAS) was installed
close to the Ben Salem village over a 4 km transect above a mixed vegetation canopy:
trees (mainly olive orchards) with some annual crops (cereals and market garden-
ing) [60]. For our analyses, pixels enclosed in the mean XLAS are selected in order to
compare the different drought indices with the stress index derived from the sensible
heat flux measurements, denoted SIXLAS.

• Historical rainfed areas selection : Rainfed crops are more sensitive to rainfall depletion
and thus to drought. For our analyses, we identify historical rainfed wheat areas
relying on a non-irrigated cereal mask (see Figure 5a), computed for the agricultural
year 2011–2012, as part of the work computed by [68]. It is computed using an object-
oriented classification technique basing on the Spot image of 31 March 2012. We
generate the percentage of non-irrigated cereal fields for this year, over each MODIS
pixel, (see Figure 5b). Then, we select pixels that contain more than 40% of rainfed
cereal cover. Rainfed cereal pixels selected are used as reference to locate non-irrigated
cereal fields in precedent years, in order to assess the response of the different indices
over a dry and a wet year.

In order to facilitate interpretation, we define four stress classes that characterize the
severity of water stress identified using the different drought indices. The four stress classes
are listed in Table 2, “High stress”, “Stress”, “Moderate stress” and “No stress” according
to the values of a given index.

Table 2. Drought indices classification.

Index Values Drought Class

0–0.15 High stress

0.15–0.3 Stress

0.3–0.7 Moderate stress

0.7–1 No stress

(a)

Figure 5. Cont.
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(b)

Figure 5. Identification of rainfed cereals in MODIS pixels over the 2011–2012 agricultural season.
(a) Rainfed cereal mask, produced for the 2011–2012 agricultural season [68]. (b) Percentages of
rainfed cereal in each Modis pixel of the 2011–2012 agricultural season.

4. Results
4.1. Drought Indices Inter-Comparison at Regional Scale
4.1.1. Annual Scale

Figure 6 presents the cumulative rainfall during the growth season (September to
May) with the corresponding NDVI variation for each year (Figure 6a), in order to vi-
sually characterize the inter-seasonal variation over the study period. Rainfall data are
provided from CHIRPS precipitation time series. The red line in Figure 6a corresponds to
200 mm/growth season of precipitation amount. We assume that a dry year presents a
cumulative rainfall below 200 mm during a growth season. The Figure 6b shows the time
series of different standardized drought indices: the TIR SI simulated when the SPARSE
model is constrained by the SWG or ERA5 meteorological data SISWG and SIERA5, the
standardized NDVI index, the UPI, and the standardized SWI which is available since 2007.
The red line in Figure 6b indicates the drought threshold, fixed in this study at 0.2 which
corresponds to a drought event with an approximately 20% non exceedance frequency. The
stress threshold is necessary to discuss drought events, as well as their onset, duration and
intensity. The farther below the red line a standardized index is, the worse the drought is.

Overall, we see that annual indices show a similar variation. SISWG and SIERA5 show
similar inter-annual variability. Moreover, we observe that they reproduce UPI variability
and succeed in identifying wet and dry conditions simultaneously. Dry periods, which
correspond to abnormally dry situations that fall below the drought threshold, are well
depicted also by a cumulative rainfall less than 200 mm during each growing season, and a
low NDVI level. However, we observe in some instances that UPI is not very well correlated
with other standardized indices. This is the case for 2004–2005 or 2008–2009 where we
observe that UPI is either above the unusual unstressed condition or below the drought
threshold while other indices present similar stress level. To better explore the allocation of
precipitation intensity along these years, we present in Figure 7, the monthly cumulative
precipitation and monthly NDVI variation over these agronomic years. In addition, in
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order to facilitate interpretation, we present in Figure 7c, the monthly rainfall and NDVI
average over the whole study period between 2000 and 2019. There are in Figure 7a, low
cumulative rainfalls in winter and spring in comparison with the monthly rainfall amount
mostly observed in our study region during this period (see Figure 7c). However, almost all
the largest cumulative rainfall amounts are observed from September to December. Rainfall
during this period was sufficient, and coincided with the beginning of the growth season.
For this reason, we observe a high level of NDVI in March and May that reflect a good
development of vegetation, particularly cereal crops. Consequently, unstressed conditions
were also shown by the rest of the standardized indices. We also observe an abnormally
unstressed situation depicted by UPI during the agronomic year 2008–2009. However, the
other standardized indices indicate a medium stress condition. Indeed, we observe very
low rainfall amounts during the whole year, especially in November and December that
correspond to seeding and early growth. Then, we observe an abnormally high rainfall
amount that exceeds 100 mm/month in January. This high cumulative amount increases
the annual cumulative rainfall but it is late for vegetation growth. Indeed, an adequate
response of the stress is always dependent on receiving sufficient rainfall at the appropriate
moments, with sufficient amounts. In contrast, the agronomic year 2017–2018 shows very
low cumulative seasonal rainfall. The TIR SI values succeed to detect the stress period,
by presenting low values. However, standardized SWI and NDVI show a medium stress
condition. SWI and NDVI did not succeed to detect the drought intensity for this year.

Figure 6. Time-series of seasonal variation of standardized drought indices accumulated in growth
season. (a) Seasonal cumulative rainfall (September to May) with the corresponding NDVI variation.
The red line indicates the 200 mm precipitation amount. (b) Drought indices.

To assess the consistency between the various indices at an annual scale, we use
Kendall’s τ. Kendall’s τ is suitable for non-Gaussian distributions, as opposed to the
Pearson correlation coefficient [69]. Positive values indicate that both indices tend to
increase or decrease simultaneously, while negative values indicate that they tend to vary
in an opposite manner. A value near zero signals a lack of dependence. In Figure 8, we see
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that all indices present positive correlation coefficients. All indices present high Kendall’s
coefficients with UPI that exceed 0.35, particularly SIERA5 which presents a Kendall’s τ of
about 0.46. However, SWI presents a very low correlation coefficient with UPI. This is could
be explained by the different responses of these indices to a rainfall supply. UPI presents
an instantaneous response to rainfall variation. In contrast, SWI which presents the root
zone soil moisture, presents a delayed response to rainfall supply. On the other hand, we
observe that SWI presents the highest τ value with NDVI, which reflects a very strong
seasonal correlation between them. Furthermore, SISWG is highly correlated with other
indices. It presents a Kendall’s τ of about 0.58 with NDVI and with SWI and the highest
correlation with SIERA5, with a Kendall’s τ of about 0.64. However, SIERA5 presents low
correlation coefficients with NDVI and SWI.

Figure 7. Precipitation and NDVI monthly variation over agronomic years (2004–2005) and (2008–
2009). (a) 2004–2005. (b) 2008–2009. (c) Monthly rainfall and NDVI over the study period 2000–2019.
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Figure 8. Seasonal Kendall’s τ correlation between drought indices.

4.1.2. Decadal Scale

We focus on a finer temporal scale, a decadal scale, in order to assess short term
variations. Indeed, a short time scale (monthly or decadal) is more appropriate to provide
information on the growing season development over a few months and, therefore, on the
water supply, unlike the annual time scale [6].

In Figure 9, we propose a comparison analysis carried out at a decadal scale of the cereal
growing season (from September to May) selected from some dry and wet years. We used
the values of precipitation index UPI lagged up to five decades rather than the instantaneous
value, in order to be more correlated with the aggregated response of the different indices. The
agronomic year 2012–2013 (see Figure 9a) is considered as a dry year, based on the cumulative
rainfall over the corresponding growth season (Figure 6a). We observe that the standardized
NDVI index presents moderate drought conditions (50% of probability of occurrence) at the
beginning. Then, it decreases in December to 0.4 and then it reaches 0.2 in the end of the growth
season. However, the standardized TIR indices show mainly similar variations, more correlated
with lagged UPI variations. UPI shows considerable fluctuations along the whole period. We
observe very low values during several decades in September and October and in January until
March, that lead to important drops of SISWG, SIERA5 and extended low values of SWI which
fluctuate around 0.2 in the beginning of the growth season.

The period 2013-2014 represents a typical wet growth season. In Figure 9b, we observe
that the different drought indices are above the drought threshold over the whole period.
The standardized NDVI index present high values in spring that reflect a good vegetation
health and a maximum crop development during this period. High NDVI values are
observed after an important water supply provided during the growing season. UPI
presents abnormally high values that reach 100% probability of non exceedance for several
decades. SISWG, SIERA5 succeed to reproduce the main fluctuation in the lagged UPI:
relevant increases in UPI values lead to an important elevation of both the TIR indices
and a relevant drop in UPI which falls below the stress threshold mainly in January and
February and induces an important rapid decline of both TIR SI values. SWI presents,
however, a more delayed response to UPI variations. In fact, we observe a depression in
SWI in autumn and spring due to successive drop fluctuations of UPI during these periods.

In Figure 9c, we present another dry growth season. The lack of precipitation observed
mainly at the beginning of the growth season induces a decrease in the standardized NDVI
and SWI indices at the end of the growing season. The rainfall shortage during this season
triggers a relevant depletion of the TIR indices, especially in winter where we observe
SISWG, SIERA5 and UPI are below the stress threshold. However, each lagged UPI value
increase leads to an elevation in TIR indices.
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Figure 9. Decadal times series of standardized stress indices derived from different wave-
lenghts over the growing season of two dry years (2012-2013) and (2017-2018), and a wet year 
(2013-2014).

Figure 9. Decadal times series of standardized stress indices derived from different wavelenghts
over the growing season of two dry years (2012–2013 and 2017–2018), and a wet year (2013–2014).
(a) 2012–2013. (b) 2013–2014. (c) 2017–2018.

A further analysis is carried out to assess more closely the consistency between the different
drought indices in identifying stress periods at the decadal timescale according to UPI. As
explained in Section 3.4.1, we define stress periods according to the different indices. Besides,
we identify three cases: (1) the stress indices correctly reproduce the drought condition identified
with UPI (stress period or not stress period), flagged as “Congruent with UPI”, (2) the stress
indices identify a stress period not confirmed by UPI, called a “Not confirmed by UPI”, and the
last case, (3) the stress indices do not succeed to identify a stress period detected by the UPI,
called a “missed stress”. The first case estimates the consistency between the different drought
indices and UPI to identify the same stress conditions. Analyses are performed according to
seasons, in order to assess drought index responses through different seasons.

In Figure 10, we present the probability to identify these three different cases, according
to seasons and UPI values in Figure 10a and lagged moving average UPI to 2, 3 and 4
decades, respectively, for Figure 10b–d. Overall, we observe that the different indices show
a good performance to identify the same stress condition in autumn, winter and especially
in spring. However, in summer, the probability to detect the same stress conditions using
the different stress indices is decreased at the expense of missed stress. Indeed, in summer
the probability of rainfall events is extremely low in our study region. Therefore, drought
periods identified by UPI increase, but they are not necessarily identified by other drought
indices due to the supply of water provided from irrigation as an alternative water supply
for this period. The NDVI shows high probability to detect stress status congruent with
UPI, especially in spring where we have the maximum of vegetation development. The
case of “congruent with UPI” could be related to a stressed or an unstressed period. In this
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case, the high level of the “congruent with UPI” performed by NDVI is mainly related to a
no stress period over the rainy season and particularly in spring.

Version April 6, 2022 submitted to Journal Not Specified 20 of 29
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Figure 10. Probability of drought detection based on UPI and lagged UPI during the period
between 2007 and 2019.

Figure 10. Probability of drought detection based on UPI and lagged UPI during the period between
2007 and 2019. (a) Stress identification basing on UPI. (b) Stress identification based on a UPI 2
decade moving average. (c) Stress identification basing on UPI 3 decade moving average. (d) Stress
identification basing on UPI 4 decade moving average.
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Besides, we observe that SISWG and SIERA5 show a good performance to correctly
detect the stress conditions determined from the UPI and it presents a low probability of
identifying stress periods not confirmed by UPI, especially using SISWG. This performance
is maintained during different seasons and even enhanced with the comparison with the
lagged moving average of the UPI. On the other hand, we observe that SWI shows a better
performance in winter and spring. Indeed, during this season, vegetation is well developed
with deeper root zones, which could explain the high performance of SWI to identify a
stress period or unstressed period according to UPI. Furthermore, this performance is
improved incrementally when we increase the lagged moving average value of UPI. The
application of a moving average of 4 decades seems to be the best delay period for adequate
responses for all drought indices. Beyond this value, too many memory effects are lost.

4.2. Drought Indices Inter-Comparison at Local Scale
4.2.1. Evaluation with XLAS In-Situ Measurements

In Figure 11, we present a decadal time series of the different standardized indices
during two growing seasons, where XLAS measurements are available at both local
(Figure 11a,c) and regional scale (Figure 11b,d). As mentioned above, we used for this
comparison the lagged UPI (up to 5 decades) and SIXLAS, respectively, as regional and local
references. The aim of the comparison of indices at a local and a regional scale is to assess if
an index found to be robust at low resolution (12 km) maintains its performance at higher
resolution (kilometric). For interpretation, we consider two groups of indices according
to their spatial resolution: a group with low resolution (kilometric) (SISWG, SIERA5 and
NDVI), and a second group with very low spatial resolution, at dozens of kilometers (SWI
and UPI).

In Figure 11a,b, we present a wet year (2013–2014). We see that indices SISWG and
SIERA5 succeed to better reproduce SIXLAS fluctuations in Figure 11a. In addition, we
observe that these indices, especially SISWG, follow the SIXLAS variations more closely,
particularly during the rainfall season (from October to February) and the last decades of
this growth season. Besides, we observe that stress periods defined by the SIXLAS (under
the threshold line), observed in October, December and February, are mostly isolated with
SISWG. Moreover, SISWG succeed in identifying stress conditions defined by SIXLAS, even
using its aggregated values at the regional scale (see Figure 11b). The NDVI, in spite
of being defined among higher resolution indices, did not succeed to reproduce SIXLAS
decadal variations. However, it brings, as expected, an overall delayed information about
stress conditions. We observe, for example, in Figure 11a, which presents a wet year, an
elevation in NDVI values in winter and spring that also correspond to several elevated
values observed by SIXLAS. On the other hand, we observe a different behavior of the
standardized SWI according to the different spatial scale. At a local scale (Figure 11a), SWI
did not succeed in correctly reproducing SIXLAS variations. However, at a regional scale
(Figure 11b), SWI succeeded in identifying dry or wet conditions, according to the lagged
UPI fluctuations. Dry conditions were observed at the beginning of the growth season and
in February. Wet conditions were observed in November–December and the end of the
growth season.

The 2014–2015 period represents a relatively dry year. We observe that NDVI presents
mainly moderate stress values in Figure 11d. In Figure 11c, we observe that TIR stress
indices succeed to better reproduce SIXLAS in this growth season, particularly using SISWG.
Indeed, SISWG succeed to identify a water stress period caught by SIXLAS which persists
for several decades during March, as well as an unstressed period observed later in April
and May, visible in the same figure. At a local scale (Figure 11c), SWI shows low values
observed below the stress threshold during several decades in Autumn and March, which
amply testify an overall dry situation during this growth season. Even at a regional scale
(Figure 11d), SWI shows moderate stress values. However, SWI was not able to accurately
identify stress conditions in comparison with in situ measurements. This could be explained
by its very low spatial resolution, inadequate for local stress detection.
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Figure 11. Decadal times series of standardized stress indices derived from different 
wavelenghts over the growing season of two years (2013-2014) and (2014-2015) at a lo-
cal scale 11a, 11c, in comparison with SIXLAS derived from XLAS measurements over pixels 
containing the scintillometer transect and at a regional scale 11b, 11d.

Figure 11. Decadal times series of standardized stress indices derived from different wavelenghts
over the growing season of two years (2013–2014) and (2014–2015) at a local scale (a,c), in comparison
with SIXLAS derived from XLAS measurements over pixels containing the scintillometer transect and
at a regional scale (b,d). (a) Local scale (2013–2014). (b) Regional scale (2013–2014). (c) Local scale
(2014–2015). (d) Regional scale (2014–2015).

4.2.2. Drought Detection in Rainfed Areas

In Figure 12, we present stress class maps of the different indices at the seasonal
scale (growth season) of the year 2011–2012: Figure 12a for the standardized thermal
index constrained by meteorological SWG data, Figure 12b for the standardized thermal
index constrained by meteorological ERA5 data, Figure 12c for standardized NDVI index,
Figure 12d for standardized SWI index and Figure 12e for standardized precipitation index.
In addition, we present the percentage of stress classes identified by each index using
extracted rainfed cereal pixels, as explained in Section 3.4.2 (see Figure 12f). Combined
results presented in Figure 12f show that most indices depicted a moderate stress class
for this year with the highest percentage. However, we observe that the TIR stress indices
and SWI show an elevated percentages of stress class and even a very low percentage of a
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high stress class for SISWG and SIERA5. This finding is in agreement with the hydrological
year characteristics presented in Figure 6a. Indeed, this year characterized by a cumulative
seasonal rainfall about 228 mm did not belong to very wet or very dry year. Stress classes
depicted by thermal indices and SWI could be more precise than NDVI characterized by
a delayed response and than the UPI which is less informative when aggregated at a low
temporal scale (seasonal scale).

(a) SI SWG (b) SI ERA5

(c) NDVI (d) SWI

(e) UPI (f) Percentages of classes

Figure 12. Stress classes for each drought index used over the agronomic year 2011–2012, (a) for
the standardized thermal index constrained by meteorological SWG data, (b) for the standardized
thermal index constrained by meteorological ERA5 data, (c) for standardized NDVI index (d) for
standardized SWI index, (e) for standardized precipitation index and (f) for percentage of the stress
class identified by each index.

Then, the same analysis was carried out for a dry year, 2009–2010. In Figure 13, we
observe that the rainfed cereal areas selected correspond mainly to high stress or stress
classes. More than 80% of rainfed cereal pixels indicate a high stress according to SISWG
and SIERA5 maps. Using the SWI information, we also identify a high stress of more than
50%. However, using the NDVI, we mainly identify stress class and moderate stress, as
well as the response of the UPI. Expected results are obtained mostly by the TIR indices and
SWI. In fact, these indices are related directly with vegetation water requirement, especially
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for the TIR that also depends on atmospheric demand. Precise information concerning
vegetation and surface stress should be obtained from these indices. Due to its low spatial
resolution, SWI might be less accurate for local analyses.

(a) SI SWG (b) SI ERA5

(c) NDVI (d) SWI

(e) UPI (f) Percentages of classes

Figure 13. Stress classes for each drought index used over the agronomic year 2009–2010, (a) for
the standardized thermal index constrained by meteorological SWG data, (b) for the standardized
thermal index constrained by meteorological ERA5 data, (c) for standardized NDVI index (d) for
standardized SWI index, (e) for standardized precipitation index and (f) for percentage of the stress
class identified by each index.

5. Discussion

We focused on growing seasons to perform our analysis (from September to May).
Indeed, droughts could be damaging for crop health in these periods of the year. Analyses
were carried out at different spatial scales: regional and local scale. At the regional scale, UPI
is considered as the reference index to characterize the year-to-year water statement, and to
assess the response of the aggregated indices used at a large scale (12 km). Overall, we find
that drought indices from the different wave lengths show mostly the same variations at
the annual time scale. All the indices succeed to reproduce the UPI variations. We also find
that thermal stress indices provided by the SPARSE model, when constrained either from
SWG or from ERA5 meteorological data, SISWG and SIERA5, respectively, are very well
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correlated with UPI. However, SIERA5 has a higher Kendall’s τ with UPI. Indeed, SIERA5 is
simulated using regional climatic information (ERA5 reanalyses) and local remote sensing
information. The use of the large scale meteorological data to simulate SIERA5 could explain
its high correlation with the UPI also provided by gridded data-sets. Moreover, we observe
a very strong seasonal correlation between SISWG and SIERA5. This correlation, measured
by Kendall’s coefficient, was also conserved at the decadal scale (see Figure 9), due to
their high spatial resolution. SWI and NDVI also present high correlation due to their
aggregated response to a stress condition. Indeed, the NDVI presents a delayed response
in comparison with the other indices, and shows less variability because of the time lag
needed for vegetation to respond for a supply or a lack of water. On the other hand, SWI,
due to the time needed for the water supply to be infiltrated to the root zone soil, also
shows a delayed response to water supply in comparison to the other indices.

We assess the consistency between drought indices and UPI as a reference stress index
for regional analyses. We find that there is more consistency between UPI and SISWG to
identify the stress condition, especially in autumn, winter and spring. Moreover, this index
presents the smallest probability to identify a stress period not confirmed by UPI. SWI
shows more consistency with UPI in spring. Indeed, during this season, vegetation presents
deeper root zones, which could explain the high performance of this index to identify a
stress period or unstressed period according to UPI. Our analyses show also that using a
moving average of UPI improves the adequation of drought indices to the hydric status. In
fact, all indices need a time lag to respond to a water supply or shortage. This temporal lag
depends obviously on the index used.

We can conclude, therefore, that TIR stress indices are more sensitive for a drought
period. Indeed, a shortage of water supply will affect the soil (evaporation) and the vegeta-
tion (root zone), inducing stomatal closure and a surface temperature elevation detected by
thermal sensors. However, SWI, which carries information on the soil moisture in the root
zone, did not show immediate response as a result of a lack of precipitation. Indeed, the
availability of some water storage in the profile soil after surface soil evaporation could
delay the response of SWI to a water stress. For this aim, we need further analyses to
identify the optimal parameter for the time infiltration (T) according to the characteristics
of our study region. Besides, satellite measurements to estimate soil moisture may not
be sufficiently precise because of the low spatial resolution of the SSM product used (see
Section 3.1.2). However, SIERA5, which is derived from very low resolution unprocessed
ERA5 reanalyses, shows a good performance in identifying water stress conditions, since
it is simulated at kilometric scale with precise satellite information. Analyses at the local
scale strengthen our findings. Indeed, comparison of the different drought indices with
the index derived from the XLAS measurements over the scintillometer transect show
that the thermal stress indices are promising tools for drought identification at low spatial
resolution scale (kilometric). In this case, SISWG, which incorporates information from the
local meteorological station close to the XLAS transect, shows better performances than
SIERA5 and allows an accurate identification of the stress condition. Moreover, the identi-
fication of drought classes in non-irrigated cereal pixels shows, therefore, an ambiguous
situation corresponding to SIERA5. This could be explained by the large spatial resolution of
meteorological data (31 km [64]) used to constrain the SPARSE model in order to simulate
SIERA5. For this task, although the SPARSE model allows the retrieval of separate estimates
of evaporation and transpiration, vegetation analyses seem to be insufficient to identify
plant stress periods, owing to the sparsity of the vegetation cover and the lack of consistent
information about rainfed areas.

6. Conclusions

Semi-arid areas are characterized by their high exposure to extreme climatic variability.
The occurrence of hot temperatures along with a deficit of rainfall leads to droughts and
impacts agricultural production. These trends in drought occurrence could be quantified
by a long time series of historical indicators. We rely on RS drought indicators provided by
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different wave lengths: the visible/near infrared, the thermal infrared and the microwave
domains. These indicators provide information about vegetation health, water require-
ment and soil moisture that can help us to identify the plant hydric status. We use the
SPARSE model, a dual source energy balance model [50], in order to retrieve estimates of
evapotranspiration and water stress indices from the thermal infrared domain. SPARSE
relies on satellite information and meteorological observation series to characterize vege-
tation cover and atmospheric demand. As far as we know, not many studies of drought
index comparison have been proposed in the literature. Our study shows that NDVI is
very informative on the year-to-year water stress conditions. However, in spite of its low
resolution (kilometric), its delayed response to water stress forms a major disadvantage.
Thermal indices and SWI show consistent information at an annual scale. Nevertheless,
SISWG seems to be more precise for relevant water stress identification, especially at a local
scale. Indeed, SWI is not sufficiently reliable to accurately identify stress intensity at finer
time scales due to it is large spatial scale. On the other hand, this work highlights the
performance of large scale meteorological variables (reanalyses in our case) to identify
periods of droughts. We proposed an efficient alternative when local meteorological data
are not available, particularly at regional analyses. Perspectives for this work include
the simulation of a drought index simulated from transpiration only in order to focus on
agronomic droughts. Indeed, information about vegetation water requirements rather than
information provided from the “vegetation + soil” composite could be an efficient tool
for drought management in semi-arid regions characterized by crop disparity. Moreover,
adding mesoscale numerical weather prediction could provide efficient drought prediction.
Lastly, the SWG-SPARSE tool will be tested for similar applications but in different climatic
conditions (e.g., coastal areas).

Author Contributions: writing original draft preparation, N.F.; data processing, N.F. and M.L.P.;
Software, N.F., M.L.P. and J.C.; data analysis, N.F. and G.B.; results interpretation N.F., G.B., Z.L.C.
and J.C.; Visualisation, G.B. and M.L.P.; writing review and editing, G.B., M.L.P. and J.C.; ideas and
discussions, J.C., M.L.P. and G.B.; data curation, Z.L.C., Z.K. and G.B.; funding acquisition, J.C., Z.L.C.
and G.B.; Conceptualisation, N.F. and G.B.; methodology, G.B. and N.F.; supervision, G.B.; validation,
G.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the NAILA International Laboratory through a PhD grant,
as well as the PHC Utique French-Tunisian bilateral “Amande” project, the H2020 RISE mobility
“ACCWA” project, the WaterWorks2017 “FLUXMED”, PRIMA 2018 “ALTOS” and ERANETMED
“CHAAMS” ERA-NET co-fund projects.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available in Environment Information System of CESBIO site:
https://sie.cesbio.omp.eu (generated on 11 October 2021).

Acknowledgments: We extend our warm thanks to all the technical teams of the IRD, GREEN-TEAM,
CESBIO and INAT for their strong collaboration and support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Post-Processing of Instantaneous Evapotranspiration Estimates

Evapotranspiration is simulated at the satellite overpass time and only during days
with clear sky. Some post-processing must be performed to reconstruct seasonal evapo-
transpiration useful for hydrological studies and particularly in agricultural applications.
The post-processing involves three steps: fusion, extrapolation and interpolation, that are
described below.

https://sie.cesbio.omp.eu
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Appendix A.1. Extrapolation

ET derived from TIR RS data rely on once-a-day acquisitions. An extrapolation
algorithm is used to reconstruct its sub-daily variations using a method based on the
evaporative fraction (EF), well described in [70]. EF at the satellite overpass t is defined as
the ratio between the latent heat flux (LE) and the available energy (AE), which is derived
from the net radiation (Rn) and soil heat flux (G), as defined in the following equation:

EFobs =
LE
AEt

=
LE

Rn− G
(A1)

According to [71], EF is relatively stable during the daylight hours on clear days. This
hypothesis allows the reconstruction of the diurnal behavior (hourly or half-hourly time
scale), see Equation (A2), based on the empirical equation of EF defined by [72] (denoted
EFsim), see Equation (A3), and observed EF at satellite overpass (Equation (A1)).

EF(30 min) = EFsim(30 min) ∗
EFobs
EFsim

(A2)

where,

EFsim = [1.2− (0.4 ∗ GRt

1000
+ 0.5 ∗ RHt

100
)] (A3)

GR and RH are, respectively, the global radiation and relative humidity for a time
scale t (semi-hourly or satellite overpass).

Finally, daily evaporation (Ed) can be simply obtained using the Equation (A4):

Ed = EF ∗ AEd, (A4)

where AEd is computed from an equation suggested by [73]: where AE is assumed to
present the same diurnal variation as the global radiation, see (A5).

AEd = Rgd ∗
AEt

Rgt
, (A5)

Appendix A.2. TERRA ET and AQUA ET Merge

ET simulations are derived from TERRA and AQUA satellites. We choose to combine
these two sources of data in order to increase the overall temporal availability. Results
presented by [60] show that ET derived from these different sensors is potentially biased
because of their different overpass time (10:30 a.m. and 13:30 a.m. for Terra and Aqua,
respectively) and that TERRA simulations are more correlated with ET derived from mea-
sured sensible heat flux (H) from an extra large aperture scintillometer (XLAS). Therefore,
in order to take into consideration systematic differences in distributional properties, we
perform a bias correction approach for the AQUA simulations (available since 2002) before
merging. We considered CDF-t [74], a univariate bias correction method which allows
non-linear corrections to reproduce the statistical distributions of the reference time series.
Our aim is to keep ET simulations derived from TERRA RS (available since 2000) and to
add bias corrected ET derived from AQUA only in days with no TERRA acquisition.

Appendix A.3. Interpolation

to derive seasonal evapotranspiration, we have to fill the gaps between satellite
acquisitions in order to reconstruct days with missing ET data. Methods that rely on self
preservation or known diurnal shape of the ratio of evapotranspiration to a scale factor are
usually used for this aim [70]. Indeed, this scale factor will monitor interpolation between
two acquisition dates of successive images. In this work, we used the global radiation as an
interpolation reference quantity. Delogu et al. [41] have shown that it is the most robust
and best performing scale factor for seasonal timescales.
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Appendix B. Daily ET Simulations

Figure A1 shows time series of the ET estimates derived from merging ET Terra
and ET Aqua over the agronomic year 2013–2014 (from September to August), for which
the residual ET derived from scintillometer (XLAS) measurements are available. We
present ET simulations separately when the SPARSE model is constrained by the SWG
meteorological data (see Figure A1a) and when the SPARSE model is constrained by the
ERA5 reanalyses meteorological data (see Figure A1b). Overall, we observe in both figures
that ET constrained from Aqua RS data (ET Aqua) is always biased in comparison with
ET constrained from Terra RS data (ET Terra), and that ET Terra present higher values. In
Figure A1a, we observe that, in almost all cases, ET derived from XLAS measurements
shows similar variation to ET Terra, excepted for summer periods. In addition, ET provided
by the merging of Terra and Aqua reproduces more closely ET XLAS and succeeds in
removing biases observed originally between ET Terra and Aqua. Using unprocessed
ERA5 reanalyses (Figure A1b), ET from merging succeeds as well to reduce biases observed
initially between ET Terra and Aqua. However, the three ET series simulated from ERA5
meteorological data are not as close to the ET XLAS variations as the ET series simulated
from the SWG meteorological data. Indeed, ERA5 series are always biased in comparison
with observations data.
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Figure A14. Weekly times series of evapotranspiration simulated initially from TERRA and
AQUA satellite data superposed with a time series computed from the merging (Merge) of
TERRA and bias corrected AQUA series and ET from XLAS measurements for the agronomic
year 2013-2014.
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