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A B S T R A C T   

We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that 
can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to 
provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for 
surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to in
crease the calibration data although spatial dependence is not modeled. The approach relies on Generalized 
Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen 
aims at preserving key features of the meteorological variables along with inter-variable dependencies. We 
illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as al
ternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale 
variables.   

1. Introduction 

In semi-arid areas, water is a major limitation factor for agricultural 
production. Indeed, these areas are characterized by short rainy seasons 
and strong variability of precipitation events in time and space (Baccour 
et al., 2012). Natural variations in the water cycle affect the availability 
of water, leading to irregularities in agricultural production (Saadi et al., 
2018) and constitutes the main driver of agricultural droughts. The 
vegetation health status being generally representative of water avail
ability (Sheffield and Wood, 2012), an important issue concerns the 
detection of surface water stress and the estimation of evapotranspira
tion (ET). Water stress may be deduced from ET with energy balance 
models. At satellite overpass time, energy balance models compute 
instantaneous ET as the residual term of the land surface energy balance 
equation, once net radiation, soil heat flux and sensible heat flux are 
derived from remotely sensed surface temperature (Hoedjes et al., 2008; 
Norman et al., 1995; Timmermans et al., 2007). Such water stress esti
mates are particularly informative for the detection of incipient plant 
stress during early stages of drought development compared to estimates 

derived from other wave lengths (microwave or visible) and allow to 
launch early drought alerts (Otkin et al., 2013). 

Energy balance models use as inputs satellite data (normalized dif
ference vegetation index, albedo and surface temperature) and in-situ 
meteorological observations (air temperature AirT, relative air humid
ity Rh, global radiation GR and wind speed WS) as provided by gauged 
networks. ET and water stress estimates computed from the instanta
neous surface energy budget constrained by the surface temperature 
require meteorological observations acquired at the satellite overpass 
time. To ensure precise timing with satellite information, in-situ mete
orological observations must be available at sub-daily resolution. In this 
work, we use satellite data provided by the latest MODIS collection 
(http://earthexplorer.usgs.gov) that has a 1 km spatial resolution. ET 
and water stress are estimated over a region covered by several MODIS 
grid cells. This region is defined so that it can be considered to be ho
mogeneous in terms of climate and weather. As a consequence, a single 
multi-variable meteorological series representative of the region is 
needed. Nevertheless, there may be several gauged stations in the region 
with different observation periods and different gaps in the observation 
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series. Moreover, it is often the case that the observed meteorological 
series are available over too short periods of time. Therefore, an 
important task is to develop a rigorous way to obtain a representative 
sub-daily multi-variable meteorological surrogate series in which gaps 
are filled and that extends in time the original series by exploiting the 
information provided by all the gauged stations in the region. 

Stochastic Weather Generators (SWGs) are stochastic models based 
on statistical approaches for simulating, at high spatial resolution, sur
rogate meteorological series that are similar to observation series in 
terms of distributional properties, preserving both systematic and 
random variations (Ailliot et al., 2015). SWGs are thus very useful 
models to perform coherent gap filling and to generate realistic surro
gate series over periods for which no observations are available. In the 
aforementioned surface water stress application, the sub-daily series of 
the four meteorological variables (AirT, Rh, GR and WS) display both 
annual and diurnal cycles. Once these primary systematic variations are 
accounted for, there will likely remain some random variations. There 
are two main strategies in SWGs to model systematic and random 
variability which are applicable in the case of multiple meteorological 
variables at several gauged stations: the weather type approach that 
breaks down weather into classes (or types or states) of typical recurring 
meteorological situations (e.g., clear blue sky, cloudy, rainy, etc …) and 
the stochastic regression approach that captures the variability of 
weather smoothly by using suitable covariates. 

In the weather type approach, the underlying assumption is that each 
time step belongs to one weather type and all the time steps belonging to 
the same weather type can be modeled with a relatively simple statis
tical approach. In other words, the temporal sequence is grouped into 
blocks, each block being associated to one weather type (Ailliot et al., 
2015; Wilks and Wilby, 1999). One of the earliest weather type SWG 
proposed by (Katz, 1977) models precipitation as a two-state Markov 
chain that corresponds to two simple weather types: wet and dry types. 
(Richardson, 1981) builds on the latter model and represents the in
tensity of precipitation, for the wet weather type, as an exponential 
probability distribution. The other three variables (maximum/minimum 
temperature and solar radiation) are modeled with a multivariate 
normal distribution whose means and standard deviations change ac
cording to the wet or dry types. In more recent approaches, more general 
weather types may be obtained automatically as an unsupervised clas
sification problem. They thus are defined as the classes resulting from 
the clustering of time steps with each time step characterized by climatic 
or meteorological features (Flecher et al., 2010). Weather types may also 
be defined indirectly as the states of a latent variable using, for instance, 
hidden markov models (Ailliot et al., 2009). The analog approach in 
SWGs can be seen as pushing the weather type strategy to the limit 
where each time step constitutes a weather type (Oriani et al., 2014; 
Yiou, 2014). Analog-based SWGs may be entirely non-parametric and 
they may succeed in reproducing complex patterns between variables 
and between sites. However, non-parametric analog-based SWGs are 
essentially resampling schemes that are unable to simulate values and 
patterns that differ from those present in the observations. This may be a 
serious drawback when observation periods are not long enough to 
contain all potential patterns. To account for annual cycles, weather 
types may be modeled separately for each season, with the difficulty that 
the definition of seasons might be somewhat arbitrary (Flecher et al., 
2010; Garavaglia et al., 2010). Except in the case of rainfall (Benoit 
et al., 2020), sub-daily weather typing for variables such as temperature, 
humidity and solar radiation requires a suitable model of the daily cycle. 
The interpretation of weather types at the sub-daily scale may be less 
intuitive than at the daily scale. It is not yet clear how to adapt the 
weather type strategy in order to account for the presence of diurnal 
cycles (Ailliot et al., 2015). 

Stochastic regression or, equivalently conditional distribution 
modeling, is another widely used strategy that can account for both 
systematic and random variability in SWGs. For instance, (Williams, 
1998) links the two parameters of the gamma distribution that models 

the intensity of rainfall and the probability of rainfall to information on 
the rainfall pattern on the preceding day, the time of the year, etc … with 
a one-hidden-layer feed-forward neural network. More generally, 
instead of focusing on estimating the conditional mean as is the case in 
conventional regression, stochastic regression seeks to estimate the full 
conditional distribution from which simulations can be drawn thereby 
allowing to reproduce the observed variability. Covariates that carry 
temporal and spatial information can be introduced letting the param
eters of the conditional distribution vary in time and space. As an 
alternative to neural networks, Generalized Linear Models (GLMs) have 
been used within SWGs for the past 20 years or so, see for instance 
(Chandler, 2005; Verdin et al., 2018) and the references therein. In 
GLMs, the conditional distribution belongs to the exponential family 
that encompasses the gaussian distribution. The link between the pa
rameters and the covariates is established with a potentially transformed 
(e.g., with a logarithm) linear regression (McCullagh and Nelder, 1989). 
Routines to implement GLMs are readily available in standard statistical 
software (e.g., R (R Core Team, 2020)). Spatial dependence may be 
accounted for by modeling the dependence structure of the residuals, e. 
g., with gaussian processes (Verdin et al., 2018). If informative enough 
covariates are used, GLM-based SWGs can reproduce very accurately 
both systematic and random variability (Chandler, 2020). In particular, 
despite that GLM-based SWGs generally operate at the daily resolution, 
sub-daily resolution modeling may be achieved by introducing cova
riates carrying sub-daily information. Most GLM-based SWGs simulate 
only one or two meteorological variables (very often, precipitation and 
temperature as in (Verdin et al., 2018)). One notable exception is 
(Chandler, 2020) who proposes a simple scheme to model jointly several 
meteorological variables based on the decomposition of the multivariate 
density into a product of conditional univariate densities. 

In this work, we introduce MetGen, an SWG based on GLM, hence 
relying on stochastic regression, that extends the approach described in 
(Chandler, 2020) to the sub-daily resolution. Its implementation is 
publicly and freely available as an R library (https://CRAN.R-project. 
org/package=MetGen). In MetGen, the scheme proposed in (Chan
dler, 2020) to model jointly several meteorological variables is adapted 
to the four meteorological variables (AirT, Rh, GR and WS) required for 
surface water stress estimation for which inter-variable dependencies 
are rather strong. In contrast to (Chandler, 2020) who has proposed a 
way to model spatial dependence, inter-site dependence is not explicitly 
modeled in MetGen. The proposed SWG works in a manner similar to 
the so-called regional approach developed in hydrology (Hosking and 
Wallis, 2005). Indeed, several stations within the region of interest may 
be used to calibrate the SWG to augment the size of the data set. Instead 
of relying on the homogeneity assumption of the regional approach, 
spatial variability, when present, is modeled with covariates. In addition 
to the covariates proposed in (Chandler, 2015), special covariates are 
considered to enable the reproduction of diurnal cycles, based on pairs 
of sines and cosines, similarly as for annual cycles. An important cate
gory of covariates used to carry sub-daily information albeit at a 
large-scale (horizontal resolution of 31 km) are the meteorological 
reanalyses provided by ERA5, available at hourly resolution (Hersbach 
et al., 2020). 

Since MetGen makes use of reanalyses in its covariates and because 
there are no other, to our knowledge, publicly and freely available multi- 
variable sub-daily SWG, we resorted to two statistical downscaling 
methods as comparative approaches. Statistical downscaling aims to 
bridge the gap between low resolution and potentially biased simula
tions from global climate models and the high resolution series required 
for impact studies such as observation series from gauged networks 
(Ayar et al., 2016; Maraun et al., 2010). Although often used to obtain 
climate change scenarios over future periods, statistical downscaling 
methods may be applied to reanalysis products in order to generate 
surrogate series over past periods (Ayar et al., 2016). An active area of 
research in statistical downscaling concerns the so-called bias correction 
methods (François et al., 2020). Bias correction aims at transforming the 
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low resolution series of meteorological variables such as provided by 
reanalyses so as to match, in terms of distributional properties (e.g., in 
terms of means), the high resolution series such as measured at gauged 
stations. In order to assess whether explicitly accounting for 
inter-variable dependencies is essential, we include as comparative ap
proaches a univariate (CDF-t developed in (Michelangeli et al., 2009)) 
and a multivariate bias correction method (MBCn proposed by (Cannon, 
2018)). Both methods provide fast, non-parametric (i.e., without strong 
distributional assumptions) alternatives to MetGen and are imple
mented as publicly available R libraries. 

The paper is organized as follows. Section 2 presents our study area, 
the Merguellil plain in central Tunisia together with the meteorological 
data provided by gauged stations and derived from ERA5 reanalyses. 
The multi-variable sub-daily GLM-based SWG MetGen is described in 
section 3 along with the two aforementioned bias correction methods 
and their adaptation to enable their application at the sub-daily reso
lution. Section 4 is dedicated to the comparison of the statistical 
methods at generating surrogate meteorological series both in terms of 
the ability to fill gaps in the observation series and in terms of the ability 
to extend in time the observation series. Section 5 reports an evaluation 
of the surrogate meteorological series in terms of surface water stress 
estimation. In section 6, a discussion is presented followed by conclu
sions and research perspectives in section 7. 

2. Study area and meteorological data 

2.1. Study area: the Merguellil plain 

The study area is part of the downstream plain of the Merguellil 
catchment called the Merguellil plain, see Fig. 1. Lying in a semi-arid 
region located in central Tunisia, the catchment is characterized by a 
relatively mountainous upstream area (1200 km2) and by a downstream 
alluvial plain (676 km2). The upstream area presents a hilly topography 
(altitude between 200 and 1200 m with a median elevation of 500 m) 
(Leduc et al., 2007). In the plain, the landscape is mainly flat and the 
vegetation is typical of semi-arid regions: rainfed agriculture (olive tree 
and cereals) and summer vegetables (melons, peppers and tomatoes). 
Downstream farms are composed mainly of small cultivated areas 
(Molle and Wester, 2009). The upstream and downstream areas are 

separated by the El Haouareb dam (Fig. 1), which was built in 1989 to 
protect villages from inundations and to store irrigation water for the 
plain (Ben Ammar et al., 2006). The study area is influenced both by the 
Mediterranean climate (dry subhumid) and the pre-Saharan climate 
(arid) (Baccour et al., 2012). It is characterized by the inter-annual ir
regularity of precipitation, with an average of annual rainfall of about 
300 mm per year, and by a high evaporative demand of about 1600 mm 
per year. Water supply is by far insufficient to meet water demand which 
is rising steadily. The rise is due to the increase in population and in
dustrial development and, most importantly, to the intensification of 
agriculture, which is the main water consumer (around 80%) (Leduc 
et al., 2004). 

2.2. Meteorological observations 

Hourly observation series of the four meteorological variables (air 
temperature AirT, relative air humidity Rh, global radiation GR and 
wind speed WS) needed for surface water stress estimation are collected 
from the three gauged stations, Ben Salem, Chebika and Barrouta, 
located in the Merguellil plain (see Fig. 1). The observation period, 
approximate number of observations and approximate percentage of 
missing values are given in Table 1. In addition, Fig. 2 illustrates the 
observation period and the positions of the gaps in the series. 

The three gauged stations provide similar meteorological informa
tion owing to their geographical proximity (7.9 km between Ben Salem 
and Chebika, 11.7 km between Ben Salem and Barrouta and 11 km 
between Chebika and Barrouta). As shown by the annual and diurnal 
cycles in Fig. 3, these stations share similar climatic behaviors with the 
exception of the wind speed observed at Chebika. Lower wind speed 

Fig. 1. Localisation of gauged stations: the plain located downstream of the Merguellil catchment in central Tunisia.  

Table 1 
Observation series at the three stations in our study area (see Fig. 1). The number 
of observations and of missing values may vary slightly depending on the 
meteorological variable.  

Station Obs. period # Obs. % Miss. values 

Chebika 2011–2016 54 181 0.01 
Ben Salem 2012–2016 43 818 0.2 - 1.2 
Barrouta 2014–2016 18 106 4  
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values are caused by the presence of a windbreak in the vicinity of the 
station. In addition, inter-station pair plots (not shown) confirmed the 
strong relationship in the meteorological information provided by the 
three stations. The observation series at these three stations enter in the 
calibration of the stochastic generator MetGen proposed in this work. 
When building the statistical model, spatial covariates are selected to 
account for differences in the distribution of the meteorological vari
ables at each of the station. In particular, a special covariate is used for 
the wind to account for the presence of the windbreak (see details in §
3.1). Ben Salem is selected as the reference station as it complies best with 
the meteorological standards according to the WMO guidelines (OMM, 
2010). Therefore, only the simulations of surrogate series corresponding 
to Ben Salem station are used in the evaluation and comparison of 
MetGen. 

2.3. Meteorological reanalyses (ERA5) 

Reanalyses combine forecast models and observations through data 
assimilation schemes thereby providing a multivariate, spatially com
plete and coherent record, without gaps, of atmospheric, land and 
oceanic climate variables (Dee et al., 2011; Hersbach et al., 2020). In 
particular, ERA5 reanalyses are available for a long period in the past, 
from 1950 till now (Hersbach et al., 2020). Despite being available at 
hourly resolution, the ERA5 spatial resolution is low (horizontal reso
lution of 31 km (Hersbach et al., 2020)) and thus local-scale variability 
might not sufficiently be accounted for (Hooker et al., 2018). Besides the 
mismatch in spatial resolution, several limitations affected the quality of 
previous reanalyses such as ERA-Interim which were improved with 
respect to most aspects for ERA5 (Hersbach et al., 2020). 

The three gauged stations from the Merguellil plain lie in the same 
ERA5 grid cell whose center is shown in Fig. 1. ERA5 reanalyses were 

Fig. 2. Observation period and lengths of the gaps for each meteorological variables at the three gauged stations in the Merguellil plain.  

Fig. 3. Annual (top row) and diurnal (bottom row) cycles for each observed meteorological variable at the three gauged stations in the Merguellil plain.  
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extracted at this grid cell and were combined to obtain the six large-scale 
meteorological variables listed in Table 2. In most cases, the large-scale 
variables correspond to raw reanalysis products. There are two excep
tions. The first one concerns the wind speed that was derived by taking 
the Euclidean norm of the 10 m vertical and horizontal wind compo
nents. The second exception concerns the relative humidity that was 
derived based on 2 m temperature and 2 m dewpoint temperature ERA5 
products, according to the procedures defined in (Allen et al., 2005). 

The six large-scale variables from Table 2 serve as covariates in the 
statistical methods described in section 3 to obtain surrogate meteoro
logical series for the Merguellil plain. Among these, the first four are the 
large-scale counterpart of the meteorological variables needed for the 
surface water stress application. To evaluate the quality of the reanalysis 
products, these four large-scale variables are used without further pro
cessing as one of the candidate surrogate meteorological series. It is 
expected that the statistical methods should be able to correct de
partures in terms of distributional properties of the large-scale variables. 
Therefore, other large-scale data, whether reanalyses or remote sensed, 
could be used instead of ERA5. 

3. Statistical methods 

3.1. MetGen: a regional multi-variable sub-daily GLM-based SWG 

We focus on MetGen implementation for the surface water stress 
application in central Tunisia. The workflow sequence, summarized in 
Fig. 4, is the main contribution of this work and can be adapted in 
principle to any study area and to any other meteorological variables. 
MetGen is regional in the sense that the observations from several 
gauged stations can be used in the calibration to increase the sample 
size. As discussed in § 2.2, any spatial variability in terms of distribution 
is captured through dedicated covariates. Once calibrated, MetGen 
simulates series at all the gauged stations. However, for our surface 
water stress application, a single series, representative of the region, is 
needed. To this end, we make use of the series corresponding to Ben 
Salem as it is our reference station, see § 2.2. 

3.1.1. Multi-variable modeling: conditioning variables 
The first step to implement MetGen consists in modeling the inter- 

variable dependencies by means of conditioning variables (see Fig. 4). 
This follows the proposal of RGlimclim (Chandler, 2015) by which a 
multivariate distribution can be decomposed with the product rule into 
conditional univariate distributions. To determine the order of the 
decomposition in the product rule and to reduce the number of condi
tioning variables, we rely on the dependence graph shown in Fig. 5. It 
has been adapted from the one made in the HydEF project (https://www 
.imperial.ac.uk/media/imperial-college/research-centres-and 
-groups/environmental-and-water-resource-engineering/UCL15Fe 
b2012.pdf) to apply RGlimclim in the UK. More precisely, the multi
variate distribution of the four meteorological variables needed for the 
surface water stress application boils down to modeling four conditional 

univariate distributions (one for each meteorological variable) and 
including in the covariates the appropriate conditioning variables: 

P(WS|x) (1)  

P(AirT|WS, x) (2)  

P(Rh|AirT,WS, x) (3)  

P(Gr|AirT, x). (4)  

where x are additional covariates to be described in § 3.1.3. The choice 
of the conditional distribution model, the selection of covariates and the 
calibration can be performed separately for each meteorological vari
able. The simulation of the multi-variable surrogate series proceeds 
following the order dictated by the dependence graph in Fig. 5: wind 
speed is simulated first, then air temperature is simulated including 
among the covariates the series simulated for wind speed, relative hu
midity is simulated afterwards with the previously simulated series for 
air temperature and wind speed included in the covariates and finally, 
global radiation is simulated conditionally on the series simulated for air 
temperature. 

3.1.2. Conditional univariate distribution models: generalized linear models 
(GLMs) 

In the second step of MetGen, potential conditional univariate dis
tribution models, which are from the Generalized Linear Model (GLM) 
family, for each meteorological variable must be defined (see Fig. 4). At 
present, three possible choices of probability distributions for the GLMs 
are available in MetGen: the gaussian distribution with constant (ho
moscedastic) or non-constant variance (heteroscedastic) and the gamma 
distribution. In the GLMs, the parameters of the probability distributions 
may vary according to covariates. In MetGen, we made the following 
choices to link the covariates to the probability distribution parameters. 
Let xμ and xσ be two covariate vectors, let βμ, and βσ be regression co
efficient vectors of the same length as xμ and xσ respectively and let μ0, 
σ0 > 0 and ν0 > 0 be three constants. Then, the parameters of the con
ditional distributions are provided as follows for each of the three 
possible choices: 

homoscedastic gaussian :

⎧
⎨

⎩

μ(xμ) = x′

μβμ + μ0 Location param.

σ0 Scale param.

(5)  

heteroscedastic gaussian :

⎧
⎨

⎩

μ(xμ)= x′

μβμ +μ0 Location param.

σ(xσ)= exp
(
x′

σβσ +σ0
)

Scale param.

(6)  

gamma :

⎧
⎨

⎩

μ(xμ) = exp
(

x′

μβμ + μ0

)
Location param.

ν0 Shape param.
(7) 

Each of these models may be fitted by maximizing the log-likelihood 
(with the glm function in the base package of R for (5) and (7) and with 
the package lmvar for (6)). 

Some preprocessing is performed on the raw observed series before 
model fitting. First, time steps for which global radiation is assumed to 
be zero (i.e., during the night) are determined based on the time of the 
sunrise and of the sunset at the coordinates of the station and for the 
given day of the year (see R package insol). Model fitting and simu
lation for global radiation is performed only on identified diurnal time 
steps. Second, preliminary transformations are defined for three mete
orological variables (WS, Rh and GR) so as to remove range constraints 
and make them more likely to be suitably modeled by the gaussian 
distribution, see Table 3. For each meteorological variable, either two 
(the homo- or heteroscedastic gaussian, see (5)–(6)) or three choices of 

Table 2 
Large-scale meteorological variables deduced from ERA5 reanalyses at the grid 
cell encompassing the three gauged station from the Merguellil plain. The sec
ond column indicates when the large-scale variable is considered as the large- 
scale counterpart of one of the meteorological variable needed in the surface 
water stress application.  

Large-scale meteo. var. counterpart for 

wind speed - 10 m (derived) WS 
air temperature - 2 m (raw) AirT 
relative humidity - 2 m (derived) Rh 
surface solar radiation downwards (raw) GR 

total cloud cover (raw)  
mean sea level pressure (raw)   
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probability distributions (including also the gamma, see (7), for WS and 
GR that take only positive values) with a preliminary transformation 
when necessary are considered as potential models for each meteoro
logical variable, see the complete list in Table 3. 

3.1.3. Mandatory and optional covariates 
This corresponds to steps 3 and 4 in Fig. 4. Mandatory covariates, 

which are always included in the models defined in (5)-(7), are set as 
follows. For the location parameter μ(xμ), either of the gaussian distri
butions in (5)-(6) or of the gamma distribution in (7), xμ includes the 
conditioning variables and the large-scale variables listed in the column 
2 and 3 respectively of Table 4. To limit model complexity, the 
mandatory covariates included in xσ for the scale parameter of the 
heteroscedastic gaussian distribution, σ(xσ) in (6), only include the 
large-scale variables, listed in the 3rd column of Table 4. 

In addition to these mandatory covariates, other covariates may be 
optionally included in xμ to model systematic temporal variability 
(annual and diurnal cycles) and to account for temporal persistence 
(memory effects). Let Yt,s be the meteorological variable of interest 
(either wind speed, air temperature, relative humidity or global radia
tion), at time step t and at site s ∈ {1, …, S}. The following optional 
covariates are considered:  

● pairs of cosines and sines with annual oscillations: 

Fig. 4. MetGen implementation steps.  

Fig. 5. Inter-variable dependency graph yielding the conditional univariate 
distributions in (1)-(4) which allows to model the dependencies among the four 
meteolorogical variables in MetGen. 

Table 3 
Potential conditional distribution models, with a preliminary transformation if 
necessary, considered for each meteorological variable. Φ←(⋅) indicates the 
quantile function of the standard Normal distribution and 1360.4 W/m2 is the 
solar constant.  

Meteo. 
var. 

Range 
constraint 

Transformation Prob. distr. Model 

WS WS > 0 ln(exp(WS) − 1) Homo. gaussian 
(5) 

ℳWS
1 

ln(exp(WS) − 1) Hetero. gaussian 
(6) 

ℳWS
2 

× Gamma (7) ℳWS
3 

AirT × × Homo. gaussian 
(5) 

ℳAirT
1  

Hetero. gaussian 
(6) 

ℳAirT
2 

Rh 0 < Rh < 1 Φ←(Rh) Homo. gaussian 
(5) 

ℳRh
1  

Hetero. gaussian 
(6) 

ℳRh
2 

GR 0 < GR <
1360.4 

Φ←(GR/1360.4) Homo. gaussian 
(5) 

ℳGR
1 

Φ←(GR/1360.4) Hetero. gaussian 
(6) 

ℳGR
2 

× Gamma (7) ℳGR
3  

Table 4 
Mandatory covariates used in MetGen for each meteorological variable needed 
in the surface water stress application: conditioning variables to introduce inter- 
variable dependencies based on the dependence graph from Fig. 5 and large- 
scale variables obtained from ERA5 reanalyses (see Table 2).  

Meteo. 
var. 

conditioning 
var. 

large-scale variables 

WS × 10 m wind speed & mean sea level pressure 
AirT WS 2 m temperature 
Rh AirT, WS relative humidity 
GR AirT surface solar radiation downwards & total cloud 

cover  
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Annual cycle covariates : cos
(

2πd
kd

)

sin
(

2πd
kd

)

(8)  

with 1 ≤ d ≤ 366, the day of the year associated to time step t and kd ∈

(365, 183, 91, 30);  

● pairs of cosines and sines with diurnal oscillations: 

Diurnal cycle covariates : cos
(

2πh
kh

)

sin
(

2πh
kh

)

(9)  

with 1 ≤ h ≤ 24, the hour of the day associated to time step t and kh ∈

(24, 12, 6).  

● lagged values of the meteorological variable: 

Var.lagk : Yt− k,s k ≥ 1 (10)    

● lagged values of the spatial average of the meteorological variable: 

SA.lagk :
1
S
∑S

s=1
Yt− k,s k ≥ 1 (11)    

● lagged values of b-moving averages, with b > 1: 

MAb.lagk :
1
b

∑b

j=1
Yt− j+1− k,s k ≥ 1 (12)    

● lagged values of spatial b-moving averages, with b > 1: 

SMAb.lagk :
1

bS
∑b

j=1

∑S

s=1
Yt− j+1− k,s k ≥ 1. (13) 

Optional covariates that convey information on the spatial vari
ability can also be considered. Besides the conventional x- and y-co
ordinates along with elevation, we include a special binary covariate to 
account for the presence of the windbreak at Chebika station (0 indicates 
no windbreak while 1 indicates the presence of a windbreak). This bi
nary covariate allows the intercept term in x′

μβμ + μ0 (see (5)–(7)) to take 
on a different value according to whether there is a windbreak or not. 

3.1.4. Selection of the conditional distribution model and of optional 
covariates 

This is the last step to implement MetGen, step 5 in Fig. 4. For each 
meteorological variable, a conditional distribution model, see Table 3, 
must be selected and additional optional covariates may be included in 
the covariate set. Statistical tests that are conventionally used to perform 
model and covariate selection, e.g., based on p-values or likelihood ra
tios, rely on the assumption that observations are conditionally inde
pendent which is likely not the case in our application. To circumvent 
this issue, model and covariate selection are performed with a 
calibration-validation scheme in which the data is split into a calibration 
period, used for model fitting, and a validation period, used to assess 
model performance. The performance criteria are detailed in Table 5. 

The first stage consists of selecting the conditional distribution model 
for a given meteorological variable. All the potential models, see 
Table 3, with the covariate set restricted to the mandatory covariates, 

see Table 4, are fitted on the calibration period. The choice of condi
tional distribution model yielding the best performance computed on 
the validation period is retained for the subsequent stages. In the 
following stages, the conditional distribution model is thus fixed and 
optional covariates, among those in (8)-(13) along with spatial cova
riates, are added to the covariate set gradually. The model with the 
larger covariate set is fitted on the calibration period. The optional 
covariates are retained when the performance criteria computed on the 
validation period are improved. 

The strategy adopted for performance assessment is based on the 
minimization of (14), the mean squared error of quantile-quantile plots 
(qq-plots) that assesses how well the distribution is reproduced, as long 
as no lacks of fit are detected from the plots (see the visual criteria in 
Table 5). An example of addition of optional covariates that arose was 
when a lack of auto-correlation in the surrogate series was noticed that 
led to the inclusion of memory effects, see (10)–(13). Another example is 
the presence of the windbreak at Chebika station that generates differ
ences in the diurnal and annual cycles, see Fig. 3a and Fig. 3e and led to 
the design and the inclusion of a special binary covariate indicating the 
presence of the windbreak as explained in § 3.1.3. 

3.2. Sub-daily bias correction techniques 

3.2.1. A univariate and a multivariate bias correction techniques 
Initial bias correction techniques such as the quantile-matching 

method (D é qu é, 2007) are univariate, i.e., they seek to transform a 
single series (representing a single meteorological variable at a single 
location). The quantile-matching method relies on a transformation that 
combines the cumulative distribution functions (CDFs) of the high res
olution and the low resolution series estimated over a calibration period. 
This transformation ensures that the CDF of the corrected series matches 
the high resolution series’ CDF accurately over the calibration period. 
Michelangeli et al. (2009) built on the quantile-matching method to 
propose a transformation, called CDF-t, that incorporates additionally 
the CDF of the low resolution series over the study (or validation) 
period. More recent bias correction methods are multivariate, i.e., they 
correct jointly multiple series (either from several locations or for 
several meteorological variables or both) seeking to reproduce, in 
addition to univariate distributional properties, the dependence struc
tures present in the series (Cannon, 2018; Vrac and Friederichs, 2015). 
One such recent multivariate bias correction method is the N-dimen
sional probability density function transform (MBCn) proposed by 
(Cannon, 2018). The MBCn method looks iteratively for linear combi
nations of the variables and performs bias correction with a univariate 
bias correction method such as quantile-matching or CDF-t on the linear 
combinations rather than on each variable separately. These two bias 
correction techniques, CDF-t and MBCn are described next. 

As previously, let Yt,s be the meteorological variable of interest 
(either wind speed, air temperature, relative humidity or global radia
tion), at time step t and at given site s. Let Xt,m be its large-scale coun
terpart provided by the ERA5 reanalyses, as listed in the first four rows 
of Table 2, at the same time step t and at the grid cell m that contains the 
site s. In other words, Yt,s is the high resolution meteorological variable 
from the gauged station and Xt,m is its large-scale version obtained from 
the reanalyses. Let us assume that there is a period used for calibration 
for which both Yt,s and Xt,m are available and a period used for validation 
for which only Xt,m is available. CDF-t estimates Yt,s, a single meteoro
logical variable at a single site, over the validation period as: 

ŷt,s = F̃
←
Xm
(FXm (F

←
Ys
(F̃Xm (xt,m)))) (15)  

where xt,m is the value of the large-scale variable Xt,m that actually 
occurred on time t of the validation period, FZ and F←

Z denote respec
tively the empirical cumulative distribution function of the random 
variable Z and its inverse, the quantile function, and FZ (F̃Z) indicates the 
empirical distribution function estimated over the calibration 

Table 5 
Performance criteria for the selection of a conditional distribution model and of 
optional covariates. y(i),s and ŷ(i),s with i = 1, …, n are resp. the sorted obser
vations and sorted surrogates of a given meteorological variable at site s.  

Main criterion:
∑

s

∑n
i=1(y(i),s − ŷ(i),s)

2 (14) 

Visual criteria: annual and diurnal cycles plots 
temporal auto-correlation plots 
inter-variable dependence plots  
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(validation) period (see (Michelangeli et al., 2009) for more details). 
In contrast to CDF-t which needs to be applied separately to each 

variable meteorological variable, MBCn works directly with all the 
meteorological variables for which bias correction needs to be per
formed. Let Yt,s be the vector of four meteorological variables at site s 
and time step t. Similarly, let Xt,m (X̃t,m) be the 4-dimensional vector of 
large-scale meteorological variables at the grid cell containing the 
gauged-station for the calibration (validation) period. MBCn relies on 
random orthogonal matrices R. A univariate bias correction technique 
(in the implementation of MBCn, the quantile delta mapping is used, see 
(Cannon, 2012) for detailed explanations) is applied separately by 
working on each element of the rotated vectors Xt,mR, X̃t,mR and Yt,sR. 
Then the bias corrected large-scale variable vectors are rotated back. 
These steps are summarized as follows, with T(⋅) denoting the univariate 
bias correction operator applied elementwise: 

Xt,m ← T
(
Xt,mR

)
R− 1 (16)  

X̃t,m ← T
(
X̃t,mR

)
R− 1. (17) 

This procedure is iterated with new random matrices R until the 
multivariate distribution of Xt,m matches the one of Yt,s. Then X̃t,m con
tains the bias corrected series in the validation period. 

3.2.2. Working with anomalies at a single station 
As our goal for the surface water stress application is to obtain a 

single surrogate series for each of the four meteorological variables that 
is representative of a homogeneous area, the two bias correction tech
niques are applied to the observation series at a single station, namely 
Ben Salem which is the reference station (see § 2.2). In other words, the 
large-scale variables obtained from ERA5 reanalyses are corrected, 
either with CDF-t or with MBCn, to fill the gaps and extend in time the 
observation series at Ben Salem. CDF-t, being a univariate approach, is 
applied separately for each meteorological variable while MBCn is 
applied to all four meteorological variables at once. 

The following procedure is adopted to apply the two bias correction 
techniques at the sub-daily resolution. A conventional way to deal with 
the presence of annual cycles is to split the year into seasons and to apply 
bias correction separately on each season, see for instance (Ayar et al., 
2016). However, the four meteorological variables used in the energy 
balance model (WS, AirT, Rh, GR) also display clear diurnal cycles, see 
Fig. 3. As this strategy (splitting the year into seasons) is not straight
forward to extend to deal with diurnal cycles, we propose instead to 
work on anomalies of diurnal cycles with the diurnal cycle that is 
allowed to change with the season. More precisely, diurnal cycles are 
computed for three seasons: summer (June to August), winter 
(November to March) and inter-season (the remaining months). 
Observed (large-scale) anomalies are computed by subtracting the 
observed (large-scale) diurnal cycles from the observation (large-scale) 
series. Working with anomalies allows to remove systematic fluctuations 
from the meteorological variables and to focus on random fluctuations 

around the diurnal cycles. Bias corrected meteorological series are ob
tained by adding the observed diurnal cycles for each season to the bias 
corrected anomalies. 

4. Evaluation and comparison 

4.1. Cross-validation scheme 

A cross-validation scheme is used to evaluate the statistical methods 
described in section 3 in terms of their ability to extend in time the 
original series, i.e., to simulate on periods for which no observations are 
available. Indeed, cross-validation is convenient for small data sets and 
is frequently used to evaluate out-of-sample performance (Bruce et al., 
2020; Filzmoser et al., 2009). The cross-validation scheme is made of 
three temporal partitions of the observations at all the stations, CV1, 
CV2 and CV3, as presented in Fig. 6a. In each partition, the observation 
period (from 2011 to 2016) is split into a calibration period made of four 
years used for model fitting and a validation period consisting of two 
years for model evaluation and comparison. The statistical models thus 
simulate out-of-sample surrogate series over the 2 year validation set of 
each partition. To account for the stochastic aspect of MetGen, the series 
are replicated 50 times, i.e., for each time step, 50 values are drawn from 
the conditional models. The replications are limited to 50 to keep the 
computation times reasonable while still permitting to explore the un
certainty captured by the models. Out-of-sample surrogate series are 
generated over the complete observation period by putting together the 
validation periods of the three partitions. 

For each partition of the cross-validation scheme, the conditional 
distribution model and optional covariates must be selected for MetGen, 
as described in § 3.1.4. To this end, the calibration set of the partition, 
which has four years, is split into a smaller calibration period of three 
years and a validation period of one year, see Fig. 6b. The selected 
conditional distribution model with the selected optional covariate set 
and the mandatory covariates is then calibrated anew over the whole 
calibration set (four years) of the partition. Note that different selections 
of model and of optional covariates may occur for each of the three 
partitions of the cross-validation scheme. 

The selections of conditional distribution models and optional 
covariates for each of the three partitions (CV1, CV2 and CV3) are as 
indicated in Table 6. For all the partitions, the conditional distribution 
model selected for all four meteorological variables is the hetero
scedastic gaussian distribution, plus a preliminary transformation when 
needed (models ℳWS

2 , ℳAirT
2 , ℳRh

2 and ℳGR
2 from Table 3). In addition 

to the mandatory covariates from Table 4, the optional covariates 
included in the final set of covariates are listed in Table 6. For a given 
meteorological variable, different covariate sets may be selected for 
each partition of the cross-validation scheme as the selection was per
formed separately for each partition. Nevertheless, the covariate sets are 
very similar in most cases. For the wind speed, for example, the special 
binary covariate indicating the presence of a windbreak at one of the 

Fig. 6. Performance evaluation and comparison. A second calibration/validation split within the calibration period of each partition of the cross-validation scheme is 
introduced to perform model and covariate selection for MetGen. 

N. Farhani et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 155 (2022) 105448

9

station was deemed necessary for all partitions. No other covariate 
conveying spatial information was retained. Besides, no optional cova
riates related to seasonal or diurnal cycle for the relative humidity and 
no optional covariates related to memory effects for the global radiation 
were included for any partition as the improvement in performance was 
not significant. Some interactions among the covariates were tested but 
none of them brought significant performance improvements in our 
application so that none were retained. 

4.2. Cross-validation evaluation 

In what follows, we report the evaluation and comparison of the 
three statistical models, the SWG MetGen and the two bias correction 
techniques CDF-t and MBCn (see § 3), based on the surrogate meteoro
logical series simulated with the cross-validation scheme described in §
4.1. Recall that, for MetGen, the surrogate series is replicated 50 times 

and that only the series related to the Ben Salem station is kept in this 
evaluation. In addition to the surrogate series from the statistical 
models, the un-processed large-scale variables obtained from the ERA5 
reanalyses, see Table 2, are included in the comparison. 

4.2.1. Annual and diurnal cycles 
Fig. 7 presents the annual (top row) and diurnal (bottom row) cycles 

for each of the four meteorological variables. Annual cycles are 
computed by averaging values in each month over the observation 
period. Similarly, diurnal cycles are obtained as hourly averages. 

The cycles of the un-processed large-scale variables (yellow di
amonds in Fig. 7) accurately reproduce the observations’ cycles (blue 
dots in Fig. 7) for most meteorological variables. This is the case for air 
temperature (Fig. 7f and Fig. 7b), relative humidity (Fig. 7g and Fig. 7c) 
and global radiation (Fig. 7h and Fig. 7d). However, the wind speed 
cycles are under-estimated in the un-processed large-scale variables 
series: the afternoon peak present in the diurnal cycle (Fig. 7e) is too low 
(about 3 m/s instead of about 4.5 m/s in the observation cycle) and the 
annual cycle values (Fig. 7a) are consistently below the observed ones. 
Despite relying on this information through its covariates, MetGen is 
able to correct fairly well the under-estimation shown in the un- 
processed large-scale series and to reproduce much more accurately 
annual and diurnal cycles of the wind speed variable. The series pro
duced by the bias correction techniques are bias corrected anomalies to 
which observed diurnal cycles are added (see § 3.2). Since the root- 
mean-squared errors (not reported) of the bias corrected anomalies 
are low, it follows that the cycles of the corresponding series are well 
reproduced. 

4.2.2. Goodness-of-fit of the whole distribution and of extreme values 
Quantile-quantile plots (qq-plots) are used instead of scatter plots to 

assess whether the distribution of the observation series is well repro
duced by the surrogate series. Indeed, all the statistical methods 
considered to generate surrogate series aim at providing a correction of 
the distributional properties of the large-scale variables rather than 
reproducing the chronology of the observed series. Similarly as in (14), 
let y(i) and ŷ(i), with i = 1, …, n, be respectively the sorted observations 
and the sorted surrogates of a given meteorological variable for one of 

Table 6 
Model and covariate selection results for MetGen: for each meteorological 
variable conditional distribution models selected (see Table 3) and optional 
covariates (see (8)–(13)). For WS, the special binary covariate indicating the 
presence of a windbreak is included for each partition.  

Partition Meteo. var. 
& model 

Annual 
oscill. (days) 

Diurnal 
oscill. (hours) 

Memory effects lagk 
= longest lag 

CV1 WS: ℳWS
2 30, 365 12, 24 ×

AirT: ℳAirT
2 183 24, 12 ×

Rh: ℳRh
2 

× × ×

GR: ℳGR
2 365, 183 24, 12 ×

CV2 WS: ℳWS
2 30, 365 12, 24 ×

AirT: ℳAirT
2 183, 365 6, 12, 24 SA.lag3, MA.lag8, 

SMA.lag8, Var.lag3 
Rh: ℳRh

2 
× × SA.lag3, MA.lag3, 

SMA.lag7, Var.lag1 
GR: ℳGR

2 × 24, 12 ×

CV3 WS: ℳWS
2 30 12, 24 ×

AirT: ℳAirT
2 183 24, 12 SA.lag3, MA.lag3, 

SMA.lag1, Var.lag3 
Rh: ℳRh

2 
× × ×

GR: ℳGR
2 × 24, 12 ×

Fig. 7. Annual (top row) and diurnal (bottom row) cycles for each meteorological variable at the Ben Salem station. Comparison between observed (in blue) and 
surrogate series (see color legend). Note that the surrogate series from the two bias correction techniques (CDF-t and MBCn) are the sum of the observed diurnal cycles 
plus the corrected anomalies hence the good adequation with the observed cycles (see § 3.2). 
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the approach (either one of the three statistical methods or the un- 
processed large-scale variables) corresponding to the Ben Salem sta
tion. Root Mean-Squared Errors (RMSEs) of the qq-plots relative to the 
standard deviation of the observations are defined as follows: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1 (y(i) − ŷ(i))

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n
i=1

(

y(i) − 1
n

∑n
i=1 y(i)

)2
√ . (18) 

The relative RMSE is near zero when the qq-plot is well aligned on 
the first bisector which means that the distribution of the observations is 
well reproduced by the surrogates. It is below (above) one when the 
RMSE is smaller (greater) than the standard deviation, i.e., when the 
surrogate series is better (worse) than the empirical average at repro
ducing the observations. 

The relative RMSEs for each meteorological variable and for each 
type of surrogate series are reported in Table 7. For MetGen, the median 
of the relative RMSEs of the 50 replications is reported. The relative 
RMSE is computed either on all the quantiles (indicated as 0–100%) or 
the 1% highest quantiles to focus on how extreme values are repro
duced. On the complete distribution (i.e., 0–100%), all three statistical 
methods performed quite well (relative RMSEs are all rather close to 
zero). The multivariate bias correction technique, MBCn, performed best 
in general although often not by much. The un-processed large-scale 
variables always have the poorest performance (relative RMSEs are 
higher) especially for the wind speed. This indicates that all three sta
tistical methods improved upon the distributional properties of the un- 
processed large-scale variables. Nevertheless, their performance is 
rather decent as the relative RMSEs are always lower than one. On the 
extreme values (i.e., the 1% highest quantiles), the relative RMSEs give a 
very different picture. MetGen outperforms the two bias correction 
techniques for the wind speed and the air temperature. The un-processed 
large-scale variables relative RMSEs may be quite high, higher than one 
in three instances and sometime by a rather large factor. The extreme 
values of the relative humidity variable were the most difficult to 
reproduce in all surrogate series and is the only case in which all sta
tistical methods do worst than the un-processed large-scale variables. 
This might be caused by the upper bound on the values taken by the 
relative humidity. 

4.2.3. Inter-variable dependencies 
Accurately reproducing inter-variable dependencies is particularly 

important since surface water stress is generally triggered by a combi
nation of meteorological factors. In this evaluation, inter-variable 
dependence is summarized by Kendall’s τ, a non-parametric correla
tion coefficient based on ranks, that is suitable for non-gaussian distri
butions (as opposed to the Pearson correlation coefficient) (Joe, 1997). 
Positive values of Kendall’s τ indicate that both variables tend to in
crease or decrease simultaneously while negative values indicate that 

they tend to vary in an opposite manner. A value near zero signals a lack 
of dependence. The comparison of correlation coefficients is carried out 
for each of the three seasons considered for the sub-daily bias correction 
techniques (see § 3.2): summer (June to August), winter (November to 
March) and inter-season (the remaining months). 

In Fig. 8, the correlation coefficients computed from the observations 
are on the x-axis while those derived from the surrogate series are on the 
y-axis. There is an overall relatively good alignment along the first 
bisector (the red line) showing that the inter-variable dependence 
strength is rather well preserved using the different surrogate series and 
for all three seasons. Nevertheless, Kendall’s τ coefficients computed 
from the large-scale variables series tend to be less tightly aligned, 
especially when the wind speed (WS) variable is involved. For example, 
the correlation coefficient in winter (Fig. 8c) between the wind speed 
(WS) and the air temperature (AirT) in the observation series is about 
0.2 whereas it is about 0.1 for the un-processed large-scale variable 
series. The correlation is always improved with the bias corrected series 
and, in most cases, with the MetGen series. A relatively strong negative 
dependence between the air temperature (AirT) and the relative hu
midity (Rh) is preserved in the different surrogate series and in the three 
seasons, especially in summer as it reaches − 0.65 (Fig. 8a). 

4.3. Gap-filling exercise 

MetGen can run in gap-filling mode. As the simulation proceeds step 
by step, when observations are found missing, surrogate values are 
simulated by MetGen and the covariates introducing memory effects 
(see (10)–(13)) are updated based on the simulated values. Simulations 
of MetGen in gap-filling mode can be repeated to account for the un
certainty. The two bias correction techniques may also be used to 
perform gap-filling. However, in contrast to MetGen, the surrogate se
ries are produced in the same way as for a validation period. A gap- 
filling exercise is carried out visually by inspecting the chronological 
plots of the surrogate series over one day, December 26th, 2014, for 
which the observed values of all four meteorological variables from the 
Ben Salem station were removed artificially. 

Fig. 9 presents the observed series (in blue) at the Ben Salem station 
over the day selected for the gap-filling exercise. The surrogate series of 
MetGen produced in gap-filling mode (50 replications), of the two bias 
correction techniques and of the un-processed large-scale variable are 
superimposed (see color legend). In Fig. 9, we observe that, the simu
lated values from the three statistical methods reproduce rather well the 
original values observed at the Ben Salem station. The 50 simulations 
from MetGen are generally centered around the large-scale series and, 
most importantly, their spread covers the observed series. We also note 
that MetGen is able to rectify values that are too low (e.g., the wind 
speed in Fig. 9a) or too high (e.g., the relative humidity in Fig. 9c) that 
are present in the un-processed large-scale variable series. 

5. Surface water stress application 

5.1. SPARSE: a dual-source energy balance model 

Surface water stress may be deduced from evapotranspiration (ET) 
using energy balance models. At satellite overpass time, energy balance 
models compute instantaneous latent heat flux (LE), expressed in W/m2, 
as the residual term of the land surface energy balance equation 
(Hoedjes et al., 2008; Norman et al., 1995; Timmermans et al., 2007). In 
this application of surface water stress estimation, we use the 
dual-source model Soil Plant Atmosphere and Remote Evapotranspira
tion (SPARSE) (Boulet et al., 2015) which is based on the same rationale 
as TSEB (Two-Source Energy Balance model) (Norman et al., 1995). 
SPARSE derives from the remotely sensed surface temperature (Tsurf) 
separate estimates of the instantaneous fluxes of the soil (subscript s) 
and vegetation (subscript v) components of the energy budget at the 
satellite overpass time. SPARSE can be run under the two following 

Table 7 
Goodness-of-fit of the whole distribution and of extreme values. The relative 
RMSEs, see (18), are computed for all the quantiles (0–100%) and for the 1% 
highest quantiles. For MetGen, the median of the relative RMSE of the 50 rep
lications is provided. The best performance (lowest value) for each meteoro
logical variable is indicated in italic font and values above one are indicated in 
bold font.  

Quantiles Meteo. var. MetGen un-proc. CDFt MBCn 

0–100% WS 0.12 0.4 0.08 0.07 
AirT 0.03 0.12 0.02 0.02 
GR 0.08 0.11 0.02 0.02 
Rh 0.05 0.13 0.04 0.03 

1% highest WS 0.71 2.3 1.34 0.97 
AirT 0.16 0.3 0.41 0.28 
GR 0.94 3.88 0.44 0.8 
Rh 2.23 1.14 1.23 1.28  
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modes:  

● A prescribed mode which simulates evaporation and transpiration 
rates for known stress levels (for instance, the two extremes of the 
water status spectrum: fully stressed or maximum moisture, i.e., 

potential conditions). The prescribed mode provides an estimate of 
the potential latent flux for the soil and the vegetation (LEspot and 
LEvpot respectively). 

● A retrieval mode which simulates actual evaporation and transpi
ration: the respective stress levels (between non evaporating/ 

Fig. 8. Inter-variable dependencies: comparison of Kendall’s τ according to seasons (summer, winter, inter-season) for each pair of meteorological variables from the 
observation series on the x-axis and from the surrogate series (see color legend) on the y-axis. 

Fig. 9. Gap-filling exercise: chronological plots over one day (December 26th, 2014) of the four meteorological variables observed at the Ben Salem station. 
Superimposed are the surrogate series (50 replications) of MetGen ran in gap-filling mode along with the surrogate series of the two bias correction techniques (CDF-t 
and MBCn) ran in validation mode and the un-processed large-scale variable series (see color legend). 
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transpiring and potential rates) correspond to two unknown which 
are solved from the single piece of information (Tsurf) (Boulet et al., 
2015). 

The surface water stress index (SI) is derived from the actual and 
potential evapotranspiration rates simulated from the retrieval and the 
prescribed mode respectively at the time of the satellite overpass. SI can 
be defined so as to describe the water status of a single component: 
either of the soil or of the vegetation (using LEs or LEv). In this appli
cation, we used rather the definition of SI to describe the water status of 
the soil-vegetation composite: 

SI = 1 −
LEv + LEs

LEvpot + LEspot
. (19) 

The stress index values obtained directly with (19) may contain 
negative values due to enhanced turbulence in unstable conditions. As 
negative values cannot theoretically occur, stress index values below 
− 0.5 are replaced by zeros. Besides SI, daily evapotranspiration (ETd) is 
computed from an extrapolation algorithm in order to reconstruct its 
sub-daily variations by assuming the self preservation of the evaporative 
fraction (Delogu et al., 2012). SPARSE is only ran when remote sensing 
data are available (i.e., on clear-sky days). The implementation of 
SPARSE in the Matlab environment is freely available online (http://tull 
y.ups-tlse.fr/gilles.boulet/sparse). 

5.2. Remote sensing data (MODIS) 

In addition to meteorological information (air temperature, relative 
air humidity, global radiation and wind speed), SPARSE uses as inputs 
satellite data (Normalized Difference Vegetation Index (NDVI), albedo 
and surface temperature) that provide a description of the initial con
ditions and of the characteristics of the surface cover. To this end, we 
relied on remotely sensed data from the latest collection 6 of MODIS 
(http://earthexplorer.usgs.gov) that are available from the year 2000. 
More precisely, we used the temporal 16-day composite series of MODIS 
NDVI (MOD13A2), daily Land Surface Temperature (LST), surface 
emissivity and viewing angle from (MOD11A1) and 8-day of albedo 
series (MCD43A3) having a spatial resolution of 500 m. These data are 
acquired for the observation period available at the Ben Salem station 
(2012–2016) at the resolution of the MODIS sensor (1 km). We extracted 
a sub-image covering the whole Merguellil plain, see Fig. 1. In addition, 
we performed a temporal interpolation of albedo and NDVI data to have 
daily information at the time of the satellite overpass. Last, NDVI in
formation is used to compute remotely sensed leaf area index. 

5.3. Evaluation of the surrogate series in terms of SI and ETd estimates 

We compare various estimates of instantaneous surface water stress 
index SI and of daily evapotranspiration ETd by constraining SPARSE, on 
one hand, with the aforementioned MODIS data and, on the other hand, 
with different choices of meteorological information. Our ground truth 
is the estimates of SI and ETd obtained when the observed meteoro
logical series at Ben Salem station are used. Other estimates of SI and 
ETd are obtained when these observed meteorological series are 
replaced by the surrogate meteorological series produced with the cross- 
validation scheme (see § 4.1) for the three statistical methods (MetGen, 
CDF-t and MBCn) and by the un-processed large-scale variable series. 
Out of the 50 replications of MetGen, we designed two surrogate series 
corresponding to meteorological conditions leading to lower or higher 
surface water stress. The low stress conditions consist of high humidity 
levels set to the 97.5% quantile of Rh and low levels of WS, AirT and GR 
set to 2.5% quantiles. The quantile levels are reversed to obtain the high 
stress conditions. 

In Fig. 10, the comparison between the various estimates of SI and 
ETd is first carried out in terms of distribution with qq-plots. On the x- 
axis, ETd (Fig. 10a) and SI (Fig. 10b) are the ground truth estimates (i.e., 
when the observed meteorological series at Ben Salem station are used 
to constrain SPARSE). On the y-axis of both panels of Fig. 10, the esti
mates are obtained by replacing the observed meteorological series with 
one of the surrogate meteorological series. The distribution of ETd, see 
Fig. 10a, is overall well reproduced by all the estimates computed with 
the surrogate meteorological series. The low and high stress condition 
surrogate series from MetGen form a sort of confidence band around the 
first bisector. 

More pronounced differences are observed in the comparison of the 
qq-plots of SI in Fig. 10b. As explained in § 5.1, a truncation of SI esti
mates is performed to reduce the importance of negative values which 
are theoretically not realistic. This creates an atom, i.e., a concentration 
of values, at zero in the distribution of SI estimates which explains the 
shape of the qq-plot close to zero. The atom is especially important when 
the un-processed large-scale variable series are used as meteorological 
information to obtain the SI estimates (the atom makes a horizontal line 
of zero values starting at 0 in the yellow curve of the qq-plot in Fig. 10b). 
The atom is also present for the high stress condition series from MetGen 
and the two bias corrected series (the plotting symbols are covered 
partially). The SI estimates from the un-processed large-scale variables 
are globally too low (the yellow curve of the qq-plot is well under the 
first bisector). The SI estimates deduced with the surrogate series from 
the two bias correction techniques (CDF-t and MBCn) display a much 
milder under-estimation that concerns mostly the lower values, 

Fig. 10. Qq-plots of the outputs of the SPARSE energy balance model, see § 5.1, when constrained by the meteorological information from the observed series on the 
x-axis and from the surrogate series obtained with the cross-validation scheme (see § 4.1) on the y-axis (see color legend). For MetGen, a low and high stress 
condition series are computed out of the 50 replicated surrogate series. 
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indicative of high stress levels. The SI estimates computed with the low 
and high stress condition series from MetGen can be thought of as 
forming a sort of confidence band for the lower index values. However, 
their behavior for the higher SI values is much harder to interpret and 
would require further investigation. 

In order to translate differences in distribution as visualized by dis
crepancies from the first bisector in the qq-plot from Fig. 10b into a more 
hydrologically interpretable analysis, we propose a comparison based 
on the probability that the SI estimate exceeds a given threshold, so- 
called exceedance probability. In Fig. 11, threshold values are repre
sented on the x-axis while the exceedance probabilities are on the y-axis, 
both ranging from 0 to 1. Black dots represent the exceedance proba
bilities computed from the ground truth SI estimates along with an 
empirical 95% confidence band in gray based on binomial proportion 
confidence intervals: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(1 − p)

n

√

× 1.96, (20)  

where p is the probability to have a SI estimate value that exceeds the 
threshold and n is the number of the available time steps. The exceed
ance probabilities computed from the other SI estimates (when relying 
on the surrogate series for the meteorological information constraining 
the SPARSE model) are as indicated in the color legend in Fig. 11. With 
the SI estimates obtained when using the un-processed large-scale var
iable series, the exceedance probability (yellow diamonds in Fig. 11) 
falls below the gray confidence band for almost all threshold values. This 
is coherent with the under-estimation detected from the qq-plot in 
Fig. 11. With the SI estimates obtained when using the surrogate series 
from the two bias correction techniques, the exceedance probability also 
tend to fall slightly below the confidence band but only for the lower 
thresholds. The SI estimates based on the low and high stress condition 
series from MetGen form a band that overlaps the empirical confidence 
band for most threshold values except the larger ones. 

A final analysis is carried out to illustrate the fluctuations of the SI 
estimates chronologically over a short period. Fig. 12 presents an extract 
of the SI estimates during one month, May 2016. The estimates are 
derived at the satellite overpass times during this month with the 
different choices of meteorological information (either the observed 
series or one of the surrogate series) used to constrain the SPARSE en
ergy balance model. For MetGen, the high stress condition series was 
used as it follows more closely the ground truth estimates. In Fig. 12, we 
observe that the SI estimates derived with the surrogate series generated 
by the bias correction techniques or the un-processed large-scale vari
ables tend to over- or under-estimate the ground truth estimates. 

6. Discussion 

We proposed an adaptation of the GLM-based SWG developed in 
(Chandler, 2015), called MetGen, to the sub-daily resolution. Indeed, 
sub-daily resolution is necessary when meteorological observations are 
used as inputs in energy balance models to estimate surface water stress 
in order to ensure a precise timing with satellite overpass time. By 
decomposing the joint distribution into a product of conditional uni
variate distributions, MetGen can model any number of meteorological 
variables simultaneously. GLMs are a flexible family to model the con
ditional distributions of meteorological variables from which surrogate 
series can be simulated stochastically thereby allowing to take into ac
count uncertainty. Although the inter-station dependence is not 
modeled, MetGen can exploit the observations of several gauged sta
tions as long as spatial variability can be modeled through covariates. 
This allows to increase the sample size similarly as in the regional 
approach frequently used in hydrology. In addition, for the surface 
water stress application, surrogate series at a single station are needed 
hence inter-site dependence is not an issue. The framework of MetGen, 
available freely as an R library (https://CRAN.R-project.org/packa 
ge=MetGen), can be useful in many cases since consistent gap-filling 
and the extension in time of a multi-variable sub-daily observation se
ries is a frequent issue (Er-Raki et al., 2010; Leauthaud et al., 2017). 

Since observations at successive time-steps and at neighboring 
gauged stations during the same time-steps are likely to be dependent, 
standard model selection procedure that relies, for instance, on the 
bayesian information criterion (Schwarz, 1978) and covariate selection 
that relies on p-values of the coefficients cannot be used for MetGen. For 
this reason, we put forward a model selection procedure that relies 
entirely on out-of-sample data through a calibration-validation scheme. 
Model selection proceeds iteratively, by first selecting the type of con
ditional distribution model using the mandatory covariates only. At the 
successive stages, optional covariates may be introduced to improve 
goodness-of-fit criteria computed on the validation set. In addition to the 
mean-squared error from the qq-plot, we included several visual criteria 
that help to assess additional important features that may not be re
flected in the mean-squared error. One notable example of such primary 
features are the annual and diurnal cycles that lead to the design and the 
inclusion of the special covariate used to account for the presence of a 
windbreak at one of the stations. This covariate proved essential in order 
to reproduce correctly the different shapes of the annual and diurnal 
cycles of the wind speed at each station. This shows that the MetGen 
framework can handle a certain level of spatial variability among the 
stations used for calibration. 

Fig. 11. Exceedance probabilities for increasing threshold values computed 
from the SI estimates as computed by the SPARSE energy balance model when 
constrained with the observed meteorological series (in blue) along with a 95% 
empirical confidence band (in gray) and when constrained with the surrogate 
series (see the color legend). For MetGen, a low and high stress condition series 
are computed out of the 50 replicated surrogate series. 

Fig. 12. Chronological fluctuations of SI estimates at the satellite overpass 
times during May 2016 with the different choices of meteorological information 
(either the observed series or one of the surrogate series) used to constrain the 
SPARSE energy balance model (see color legend). For MetGen, a high stress 
condition series is computed out of the 50 replicated surrogate series. 
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Our analyses showed that relying directly on the un-processed large- 
variables obtained from ERA5 reanalyses (Hersbach et al., 2020) as 
surrogate series may lead to some considerable biases. This is especially 
true for the wind speed variable as can be seen in the comparison of the 
annual and diurnal cycles and in the relative RMSE of the qq-plots. Bias 
correction techniques are devised to correct this kind of systematic de
partures in terms of distribution of the large-scale variables. Although 
based on a completely different kind of statistical approaches than 
SWGs, bias correction techniques can easily be adapted to the task of 
gap-filling and temporal extension for which MetGen is designed. These 
techniques are more straightforward to apply since no model selection is 
needed. Nevertheless, in contrast to MetGen, they are not stochastic (a 
single replication of the surrogate series is produced). In the gap-filling 
exercise, from the replicated surrogate series simulated by MetGen, 
confidence bands could be obtained by computing a low and a high 
quantiles (such as 2.5% and 97.5% for a 95% confidence level) for each 
time step. In addition, despite the development of multivariate ap
proaches, the bias correction techniques are not devised explicitly to 
exploit meteorological data from neighboring gauged stations lying in 
the same ERA5 grid cell. In MetGen, we made the choice to include, 
among the mandatory covariates in the GLMs, the large-scale variables 
in order to allow the simulated series to be guided by the non-stationary 
behavior present in these covariates, e.g., to follow trends and cycles. 
Owing to the inclusion of these large-scale covariates, MetGen may also 
be thought of as performing, in some sense, a form of bias correction 
(Fodor et al., 2013; Chen et al., 2010). 

The mechanisms that allow the SWG MetGen and the bias correction 
techniques to reproduce seasonal and diurnal behavior are very 
different. The surrogate series produced by the two bias correction 
techniques are constructed by adding the observations’ diurnal cycles, 
computed separately for three seasons, to the bias corrected anomalies. 
The fact that the cycles, annual and diurnal, computed from these sur
rogate series are very similar to the observations’ cycles for all meteo
rological variables essentially means that the bias corrected anomalies 
are almost zero-mean. The construction of these surrogate series also 
explains why inter-variable correlations can suitably vary from one 
season to another. This explains also likely why there are no large dif
ferences between the univariate and the multivariate bias correction 
techniques as there is probably not much residual inter-variable de
pendencies left in the anomalies (in most cases, the plot symbols of CDF- 
t are hidden by those of MBCn). In contrast, the surrogate series simu
lated by MetGen are able to mimic seasonal and diurnal behavior by 
exploiting the information in the covariates included in the GLMs. Even 
when no covariates dedicated to the cycles are included, such as for the 
relative humidity variable, information on seasonal and diurnal 
behavior can be drawn from other covariates such as the large-scale 
variables. In particular, the reproduction of the annual and diurnal cy
cles and of the seasonal variation of the inter-variable correlations of the 
surrogate series simulated by MetGen is only due to the information 
present in the covariates. This mechanism is, in our opinion, more 
flexible as, for instance, it allows the starting and ending dates of each 
season to vary seamlessly from year to year instead of resorting to a 
specialized model (Carey-Smith et al., 2014). 

In our analyses, one of the main differences among the surrogate 
meteorological series concerns the wind speed variable. This can be 
explained by the fact that the wind is the most turbulent of the meteo
rological variables being modeled. The turbulence yields more frequent 
and important random fluctuations that are challenging for the statis
tical models. As MetGen relies on stochastic regression, it can better 
cope with the wind speed fluctuations than the bias correction tech
niques. These differences in the wind speed surrogate series might be 
related to the differences in the resulting surface water stress index es
timates. Indeed, the SPARSE energy balance model is particularly sen
sitive to wind speed, especially high wind speed values that can lead to 
low SI estimates. These lower SI values are particularly important as 
they are indicative of incipient water stress. When the low and high 

stress condition series derived from the replicated series of MetGen are 
used as inputs to the SPARSE model, a form of confidence band is ob
tained that seems particularly reliable for the lower SI values. More work 
on the influence of each meteorological variable on the SI estimates is 
required to improve these low and high stress condition series in order to 
yield proper confidence bands. Besides, the daily evapotranspiration 
estimates, ETd, are not very sensitive to which meteorological variables 
are used as inputs in the SPARSE model. This lack of sensitivity may be 
explained by the fact that an extrapolation scheme, that might act as a 
form of filter of the differences, is applied to obtain daily values from 
instantaneous ones. However, the sensitivity of the SPARSE model 
should be explored further. 

7. Conclusion 

The framework of MetGen provides a solution to the task of 
obtaining a representative sub-daily multi-variable meteorological se
ries which mimic the observation series but in which gaps are filled and 
whose simulation period can extend the observation period. It relies on 
GLMs to model the conditional distributions with large-scale variables 
used as covariates. These large-scale variables, derived from ERA5 
reanalyses in our application, are useful to provide a temporal dynamic 
of the weather. They may present, in some cases, important biases that 
can be reduced thanks to the GLMs and the introduction of other 
covariates. MetGen was compared to two bias correction techniques 
applied on the anomalies of seasonal diurnal cycles. In contrast to the 
bias correction techniques, MetGen can exploit the observations series 
from nearby gauged-stations having a relatively similar climatic 
behavior and can generate several replications of the same series to 
allow uncertainty assessment. Nevertheless, MetGen requires a careful 
selection of the conditional distribution models and of the covariate sets 
and the simulation can be slow while the bias correction techniques are 
more straightforward to implement and fast to run. 

The analyses performed in this work provide a two-pronged evalu
ation of the surrogate series generated by MetGen and the two bias 
correction techniques. Firstly, the evaluation is carried out in terms of 
the ability to reproduce several statistical properties of the meteoro
logical variables and secondly, in terms of surface water stress estima
tion when the series serve as inputs in the SPARSE energy balance 
model. Although the performance of the two bias correction techniques 
was similar for some criteria to MetGen, the evaluation in terms of the 
surface water stress application tends to indicate that the surrogate se
ries generated by MetGen may be used to deduce reliable confidence 
intervals, especially for the lower SI values that are important for early 
drought detection. 

Perspectives for this work include the study of the sensitivity of 
MetGen to the choice of the dependence graph that serves to simplify 
the decomposition of the multivariate distribution into a product of 
conditional univariate distributions. In addition, the introduction of a 
mechanism to explicitly model spatial dependence would certainly be a 
useful development (see (Verdin et al., 2018)). Also, it would be inter
esting to evaluate MetGen in diverse climatic conditions (e.g., a coastal 
area) and for other meteorological variables (e.g., precipitation). The 
two main challenges for MetGen implementation are to find represen
tative enough large-scale variables and to perform a thorough selection 
of the GLMs and of the optional covariates. Last, more thorough analyses 
pertaining to agricultural drought monitoring should be performed. 
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