Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia - Archive ouverte HAL
Article Dans Une Revue Environmental Modelling and Software Année : 2022

Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia

Résumé

We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to increase the calibration data although spatial dependence is not modeled. The approach relies on Generalized Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen aims at preserving key features of the meteorological variables along with inter-variable dependencies. We illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as alternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale variables.
Fichier principal
Vignette du fichier
S1364815222001542.pdf (7.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03821758 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Nesrine Farhani, Julie Carreau, Zeineb Kassouk, Bernard Mougenot, Michel Le Page, et al.. Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia. Environmental Modelling and Software, 2022, 155, pp.105448. ⟨10.1016/j.envsoft.2022.105448⟩. ⟨hal-03821758⟩
215 Consultations
24 Téléchargements

Altmetric

Partager

More