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Abstract

We study a setting in which a company not only has a fleet of capacitated
vehicles and drivers available to make deliveries but may also use the services of
occasional drivers (ODs) who are willing to make deliveries using their vehicles
in return for a small compensation. Under such a business model, a.k.a crowd
shipping, the company seeks to make all the deliveries at the minimum total cost,
i.e., the cost associated with their vehicles and drivers plus the compensation
paid to the ODs.

We consider a stochastic and dynamic last-mile delivery environment in
which customer delivery orders, as well as ODs willing to make deliveries, arrive
randomly throughout the day and present themselves for deliveries made within
fixed time windows.

We present a novel deep reinforcement learning (DRL) approach to the prob-
lem that can deal with large real-life problem instances, where we formulate the
action selection problem as a mixed-integer optimization program.

The DRL approach is compared against other approaches to optimization
under uncertainty, namely, sample-average approximation (SAA) and distribu-
tionally robust optimization (DRO). The results show the effectiveness of the
DRL approach by examining out-of-sample performance and that it is suitable
to process large samples of uncertain data.

Keywords: Last-mile delivery, Crowd shipping, Deep reinforcement learning,
Data-driven Optimization, Integer Optimization

1. Introduction

Last-mile delivery is defined as the movement of goods from a transportation
depot to the final delivery destination, which is typically a personal residence.
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The worldwide growth of e-commerce caused the increase of importance and
competitive value of the last-mile delivery and prompted many companies to
seek creative and innovative solutions. Among those, there is the crowd sourcing
of some orders to third-party couriers, or occasional drivers (ODs).

Crowd shipped delivery has been adopted as a shortcut to last-mile growth.
It has been implemented under different business models depending on how
the occasional drivers are engaged and managed. A survey in ARC Advisory
Group (2021) indicates that while only 9% of retailers are using crowd sourced
providers now, one in four retailers plans to start using them in the next 12
months. It has been implemented as an enabler to same-day delivery for the
last mile as can be seen in recent implementations of large companies as in
Walmart (2021), Doordash (2021) and JD-Dada (2021).

The advantages of crowd shipping are numerous and are not only related
to economic issues, due to the compensation for the ODs being potentially less
than the cost associated with delivering using their own capacitated vehicles. If
relying on the idea of individuals sharing their potentially under-utilized prop-
erty, sharing vehicles can lead to a reduction in polluting emissions, energy
consumption, noise and traffic congestion.

The application of crowd shipping alluded to above gives rise to new variants
of the routing problem. It has been addressed as an extension of the classical
vehicle routing problem (VRP) or traveling salesman problem, modeled under
different deterministic, stochastic and dynamic optimization approaches.

In this paper, we consider a setting in which a company not only has a fleet
of capacitated vehicles and drivers available to make deliveries, but may also
use the services of ODs who are willing to make deliveries using their vehicles
in return for a small compensation. Under such business model, a.k.a. crowd
shipping, the company seeks to make all the deliveries at a minimum total cost,
i.e., the cost associated with its vehicles and drivers plus the compensation
paid to the ODs. Our setup is suitable for a same-day delivery scheme where
time windows are fixed, predefined periods during the day, and customers with
online orders and available occasional drivers can enlist themselves to these time
windows.

We adopt a data-driven dynamic and stochastic approach where the exis-
tence of online customers orders to be delivered, as well as the availability of
occasional drivers to deliver them are random and define scenarios on which
decisions have to be made.

This problem is complex because decisions, regarding the dispatch of vehicles
or occasional drivers, have to be made fast and the space to search for decisions
is potentially too large. We then propose a deep reinforcement learning (DRL)
method where we model the problem as a sequence of states connected by
actions, driven by decisions, and transitions. The DRL method uses a neural
network (NN) as approximation architecture for the problem value function.
Our approach is data-driven and we assume there are scenarios available as
historical data that is used to train the NN.

Another key feature of our DRL approach is how we search the action (deci-
sion) space. Most reinforcement learning (RL) studies on stochastic VRPs face



the challenge imposed by the combinatorial nature of state and action spaces
by restricting the action space and aggregating the state space based on expert
knowledge. Here, we formulate the action selection problem for each state using
a recourse in a two-stage decision model where the first-stage decision is for-
mulated as a mixed-integer optimization program. At the first stage, only the
order in which all customers will be delivered is established. The second-stage
decision is made every time a scenario is revealed, and before any dispatch of
fleet vehicles or ODs. The second-stage decision comprises routes defined by
the recourse, where the routes follow the first-stage decision ordering but skip
customers that have no online orders or customers outsourced for available ODs.
Each time the vehicle capacity or the time window limit is reached, a return
path to the depot is created and another route restarts from the depot if needed.

The main contributions of the approach above and results of this work are:

e We propose a novel data-driven stochastic and dynamic approach for
crowd shipping last-mile delivery, advancing the state-of-the-art in this
topic. Different from most stochastic crowd shipping routing studies in the
literature, uncertainty is only related to customer events (i.e. customers
with delivery orders or with ODs available to outsource their orders), and
this reduces complexity of the solution methods involved.

e We experiment with a method that integrates machine learning and op-
timization techniques. By doing this we can extend a recourse model
coming from stochastic optimization to a RL application and introduce
optimization techniques to search the RL action space.

e We provide computational evidence on the capability of the proposed
model, w.r.t. a more realistic assumption of correlated scenarios, to obtain
solutions that can improve those provided using more simplified assump-
tions. In particular, we compare the DRL algorithm results with the ones
provided by a distributionally robust optimization approach to the same
problem, where we search the optimal solution considering a worst case
joint probability distribution for the scenarios, and with the ones provided
by a sample-average approximation method.

In what follows, in Section 2, we review relevant approaches to solve variants
of the problem, and that can be used to contextualize our approach. In Section
3, we formally present our problem and the model we have defined. Section 4
introduces the DRL method developed. Next, in Section 5, we present and dis-
cuss the computational results. Finally, in Section 6, we present the conclusion
of the work done.

2. Literature review

In the following sections we survey relevant literature for the proposed ap-
proach. It includes not only the publications related to models for the crowd
shipping of the last-mile delivery, but also approaches for the problems where
the customers are uncertain and applications of RL methods to VRPs.



2.1. Crowd Shipping Routing

A seminal work on last-mile delivery with crowd shipping is presented in
Archetti et al. (2016). The authors study a deterministic approach where the
customers’ locations and the ODs’ parameters are input data. The model pro-
posed is a combination of an assignment problem, where ODs are assigned to
customers, with a capacitated VRP where routes are defined for vehicles pass-
ing through customers not served by ODs. The pricing mechanism, meaning
how compensation fees are defined, constitutes a critical part of the model and
is discussed in more detail by the authors. The authors develop a multi-start
heuristic to handle instances with more than 25 customers.

The work in Archetti et al. (2016) was later extended by other authors
considering time windows with multiple and split deliveries ( Macrina et al.
(2017)), transshipment points ( Macrina et al. (2020)), and the situation where
occasional drivers on bikes or on foot are coordinated with a delivery truck from
which they relay (Kafle et al. (2017) and Huang and Ardiansyah (2019) ) . All
the above mentioned papers consider deterministic versions of the problem.

Differently, in Arslan et al. (2019), the authors develop a dynamic solu-
tion alternative, where the solution is adjusted every time new information is
available. They consider a service platform that automatically creates matches
between parcel delivery tasks and ODs. The matching of tasks, drivers, and
dedicated vehicles in real-time gives rise to a new variant of the dynamic pickup
and delivery problem.

The authors in Dayarian and Savelsbergh (2020) introduce a stochastic and
dynamic routing problem in which the demand arrives over time, as also does
part of the delivery capacity, in the form of in-store customers willing to make
deliveries. They develop two rolling horizon dispatching approaches to the prob-
lem: one that considers only the state of the system when making decisions, and
one that also incorporates probabilistic information about future online orders
and in-store customer arrivals. Random events are considered independent in
their approach.

In Dahle et al. (2017), the authors consider stochastic ODs and define routes
for the company vehicles and the ODs based on their destination. They consider
time windows for when the ODs appear and use a two-stage model to define only
partial routes in the first stage. The stochastic solution is based on a scenario
approach, and they assume a uniform distribution of scenarios. Results are
reported on instances with up to 20 customers and three ODs.

In Archetti et al. (2021) the authors investigate an online vehicle routing
problem with ODs in which customer requests are either known in advance
with respect to the planning of the distribution, or they arrive online during the
distribution process. Each request and OD is associated with a time window
and penalties are incurred when ODs violate time windows as well as when a
request is not served.

In Gdowska et al. (2018), the authors consider that customers can be offered
or not to potential ODs and that there is a known probability of them being
accepted. They develop a heuristic to identify which customers will be offered to



VRP

Paper Uncertainty Customers ODs extension
Constant OD parameters
Archetti et al. (2016) Deterministic fixed set as input -
Time windows,
Macrina et al. (2017) Deterministic - - multiple and split deliveries
Macrina et al. (2020) Deterministic - - Transshipment points
Kafle et al. (2017) and
Huang and Ardiansyah (2019) Deterministic - - Delivery truck relay
Deterministic and
Arslan et al. (2019) Dynamic on line on line Pickup and delivery
Stochastic and
Dynamic
Dayarian and Savelsbergh (2020) Events are independent on line on line -
Stochastic Constant OD parameters
Dahle et al. (2017) Scenario based fixed set as input Time windows
Deterministic and
Archetti et al. (2021) Dynamic on line on line Time windows
Stochastic and
Dynamic Constant
Gdowska et al. (2018) Events are independent  fixed set Random
Stochastic with
Recourse Random
Events are correlated No OD parameters
Silva et al. (2021) Worst case Distribution ~ Random as input -
Stochastic with
Recourse Random
Events are correlated No OD parameters
This work Empirical Distribution Random as input -

Table 1: Main contributions of crowd shipping routing literature

ODs and what will be the exact expected value of the associated solution by sce-
nario enumeration. The probabilities of acceptance are considered independent.
Computational experiments are conducted on randomly generated instances of
15 customers.

In Silva et al. (2021) the authors study a stochastic last-mile delivery with
the option of crowd shipping. Here the authors do not consider that uncertain
events are independent, and related to customer information only. ODs de-
tailed parameters are not needed to solve the problem. The uncertainty model
defined is similar to the one presented in this work, but they assume that the
joint probability distribution is difficult to estimate and model it as a data-
driven distributionally robust optimization approach to the capacitated vehicle
routing problem, where they find an optimal solution for the worst case joint
distribution.

For clarity, Table 1 highlights the contributions of each of the previous works,
already introducing characteristics of our work for comparison purposes. We
defer to Section 3 the details of the approach and contributions of our work.

2.2. Routing with customer uncertainty

One of the first works addressing routing with customer uncertainty was in-
troduced in Jaillet (1988). The author defines a routing problem where only a
random subset of customers needs to be visited, following an order previously de-
termined. It is named the Probabilistic Traveling Salesman Problem. Assuming
that the probability distribution is known, equal to all customers and indepen-
dent, the authors derive closed-form expressions for computing efficiently the
expected length of any given tour.



In Bertsimas (1992), the authors extend the previous work by considering
a probabilistic variant of the classical VRP. In their approach, demands and
customer presence are stochastic. They introduce a recourse strategy where
absent customers are skipped in the second stage. A major contribution of this
work is that the recourse strategy has a potential to perform very closely to
a re-optimization strategy, where routes are optimally calculated every time a
scenario is released.

Integer L-Shaped branch-and-cut algorithms were proposed in Laporte et al.
(1994) and in Gendreau et al. (1995) to solve the two previous models. There
the original problem formulation is decomposed into master and subproblems.
The authors could solve instances with up to 9 uncertain customers.

A specialized branch-and-bound algorithm is presented in Amar et al. (2017)
for the probabilistic travelling salesman problem They adapt existing algorithms
for the deterministic traveling salesman problem using the closed expected value
evaluation expression defined in Jaillet (1988) and present numerical results for
instances up to 18 customers. The same authors present in Amar et al. (2018)
another branch-and-bound approach, this time using parallelization techniques,
solving instances up to 30 customers.

The authors in Lagos et al. (2017) present an approximation algorithm for
the VRP with probabilistic customers. They propose a two-stage stochastic
set-partitioning formulation where vehicles are dispatched after observing the
subset of customers requiring service; a customer not requiring service is skipped
from its planned route at execution, as in Jaillet (1988). For a time limit of six
hours, instances up to 40 customers were solved.

A heuristic approach using a VRP set-partitioning formulation with stochas-
tic demand is presented in Novoa et al. (2007). A finite set of feasible routes
used as columns to solve the problem is obtained heuristically and an extended
recourse strategy is introduced. A planned first-stage route may “fail” when the
realized demand at a particular customer exceeds the remaining vehicle capacity.
Computational experiments are performed using an instance of 75 customers.

The works presented so far assume that uncertain variables are independent.
Nevertheless, the correlations among individual events can contain crucial in-
formation. The underlying correlations are often difficult to predict or analyze,
which makes the planning problem complicated. This is even more challenging
when it considers the large sample size required to characterize joint distribu-
tion, since they are potentially high-dimensional.

As an alternative to the independent probability assumption of previous
works, the authors in Dinh et al. (2018) and Ghosal and Wiesemann (2018)
present a VRP with stochastic demands where there is no recourse, and chance-
constrained formulations are used to limit unfeasibility of constraints. The au-
thors propose the use of a sophisticated branch-price-and-cut algorithm. They
are examples of modeling using concepts from distributionally robust optimiza-
tion (DRO), where it is assumed that probability distributions are not com-
pletely known and the problem is formulated considering a worst-case probabil-
ity distribution.

In this work we also assume that uncertain events are correlated, but as



discussed in Section 3, we present a novel approach to solve the problem based
on DRL techniques.

2.8. Reinforcement learning for routing

Most works solving VRPs with a RL approach interpret it as a Markov De-
cision Process. The optimal solution can be viewed as a sequence of actions
deciding which customer to visit according to the state revealed. They draw
on the concept of policy-gradient or of value-function approximation (VFA).
Policy-gradient methods do not maintain a value function, but directly search
for an optimal policy. Typically, the policy is parametrized. VFAs approxi-
mate the value of post-decision states using simulations. The values are stored
in approximation architectures, usually either functions or lookup tables. The
challenge is that VRPs can have large combinatorial actions spaces. The result-
ing high-dimensional action space is impractical for solution approaches that
approximate the value of state-action pairs as they typically enumerate all pos-
sible actions. Therefore, researchers have avoided searching the entire action
space and restricted it instead.

The authors in Bello et al. (2016) present one of the first studies involving
RL methods to solve routing problems. They study the deterministic traveling
salesman problem (TSP) and train a specialized recurrent neural network, called
pointer network, that, given a set of city coordinates, predicts a distribution over
different city permutations.

Motivated by the work in Bello et al. (2016), the authors in Nazari et al.
(2018) generalize their framework to include a wider range of combinatorial
optimization problems such as the VRP. They propose an alternate approach in
which the policy model consists of a recurrent neural network (RNN) decoder
coupled with an attention mechanism and apply a policy-gradient approach.

An alternative to the approach of reducing the action space with VFA is
presented in the work of Delarue et al. (2020). They develop a framework for
value-function-based DRL with a combinatorial action space, in which the ac-
tion selection problem is explicitly formulated as a mixed-integer optimization
problem. They focus on the Capacitated Vehicle Routing Problem, where a
single capacity-limited vehicle must be assigned one or more routes to satisfy
customer demands while minimizing total travel distance. They use neural net-
works with ReLU activations, leveraging techniques developed in Anderson et al.
(2020) to obtain a strong milp reformulation of the action selection problem.

As presented in Section 4, in this work we leverage the idea of Delarue et al.
(2020) for the deterministic VRP, extending it to our stochastic problem.

With business models shifting to same-day delivery, routing problems have
become increasingly stochastic and dynamic. A problem class called stochastic
dynamic vehicle routing problem (SDVRP) arises and poses new challenges as
they require anticipatory real-time routing actions and static solutions are no
longer adequate. Recent works have shown that RL appears to be a good
solution method for dynamic combinatorial optimization as the SDVRP.

Among the papers using RL with NNs applied to dynamic routing problems,
Chen et al. (2019b) introduce an actor-critic framework, a policy-based RL



method, for the problem of making pick-ups at customers who make dynamic
requests for service. They learn a policy for a single vehicle and then apply this
policy to all vehicles.

In Chen et al. (2019a), the authors present among the first papers to im-
plement deep Q-learning techniques for same-day delivery and dynamic routing
problems in general. They consider same-day delivery with a heterogeneous
fleet of vehicles and drones. They reduce the state space to a set of selected fea-
tures. The action space also is defined in a way to make it possible to enumerate
alternative actions at the decision points.

A survey by Hildebrandt et al. (2021) highlights the potential of RL methods
applied to VRPs. Among others, they suggest hybrid approaches that combine
piece-wise linear neural network VFAs and strong solvers to search the vast
action space under evaluation of future uncertainty. In this work we exploit this
suggestion and present a novel policy iteration algorithm as an alternative to
previous approaches to handle a SDVRP, as detailed in Section 4.

3. Stochastic crowd shipping last-mile delivery

A typical setting for our problem, but not restricted to it, is a same-day de-
livery service in which a store serves both as the location for in-store customers
and as the depot from where online customer orders are dispatched. In-store
customers, who are willing to drop off packages for online customers on their
route back home, are potentially offered the service. In return, these in-store
customers are offered a small compensation to reimburse their travel costs par-
tially. As the participants are usually free to use any means of transportation
to perform the delivery, we refer to them using ODs.

The store provides delivery services throughout fixed time windows during
the day. Before each time window, and respecting a process defined by the
store, a scenario is revealed with the available, online customer orders and the
customers with available ODs. Based on the scenario revealed, the store decides
the routes for its fleet of vehicles and which customer orders will be outsourced to
ODs. This decision, in turn, defines the cost associated with that time window.
The objective is to minimize the total costs in the long run.

The decision is taken in a two-stage approach, using a recourse model based
on the work presented in Bertsimas (1992) under the framework of stochastic
optimization. An a priori first-stage decision is made during the store planning
process, meaning that we define a solution to our problem offline, and before any
delivery is initiated. Only the order in which all customers will be delivered is
established. The second-stage decision is made every time a scenario is revealed,
and before any dispatch of fleet vehicles or ODs. The second-stage decision
defines routes that follow the first-stage decision ordering but skips customers
that have no online orders and customers outsourced for available ODs. Each
time vehicle capacity or the time window limit is reached, a return path to the
depot is created and another route restarts from the depot if needed.

The recourse model adopted brings two main advantages to our DRL method
presented later in Section 4. First, it extremely reduces the action space since,



in fact, only one decision, defined by the recourse, is possible at each decision
point of our model. We recall that RL algorithms typically require an action
space that is small enough to enumerate or is continuous. We also note that a
very large action space remains to be searched during the first-stage decision,
representing possible permutations of customers’ delivery ordering. Second, it
presents a solution that is potentially very close to the decision adopted in a
reoptimization strategy, where an optimal solution is calculated each time a
scenario is revealed. The authors in Bertsimas (1992) show that, for their setup
where random events associated with customers are assumed independent, both
solutions are close, on average. For our case, where random events are not
necessarily independent, we will use computational experiments in Section 5 to
verify this assumption.

We define two variants for our recourse model, depending on how the ODs
are offered the service. In variant 1, if the OD enlists himself/herself to deliver
a customer order at the compensation defined, his/her service is immediately
accepted even if it is not optimal for the specific scenario being presented. This
can be the store’s choice because it simplifies the process involved but requires
extra care taken in the definition of the OD’s compensation. In variant 2, the
store only offers the service to the OD if it is optimal for the scenario being
revealed.

A vital modeling decision of our approach is that uncertainty is customer-
related. We can express not only uncertainty related to a customer with no
orders but also uncertainty related to the availability of ODs. It is different
from the current crowd shipping last-mile delivery models, where uncertainty is
related to the OD (e.g. Dahle et al. (2019); Dayarian and Savelsbergh (2020)).
It is suitable for planning purposes and has the advantage that we can reduce
the complexity of the problem to be solved by not having to introduce explicit
OD’s constraints, such as their quantity, capacity and routes, in the problem
formulation.

We define a compensation fee to be paid to the OD for each customer.
In our model, it pays for only a small detour around each customer. It is
equivalent to the idea that the customer will only be crowd shipped if there
is an OD with a destination very near him/her. Naturally, there will be a
direct relationship between the compensation paid and the availability of ODs.
It is compatible with the case where a delivery company would utilize crowd
shipping with an emphasis on reducing environmental impacts, like traffic and
gas emissions, and not on transforming it into an opportunity for professional
services. This compensation strategy is adequate to mitigate the impact of non
optimal decisions of variant 1 of our recourse model.

Our approach is also data-driven. For the sake of the scope of this paper,
we assume there is a set of historical scenarios available and this set is large
enough to train the NN. We notice that in real life that can be not the case.
For those cases a data augmentation technique could be applied in order to add
newly created synthetic data from existing data (see Shorten and Khoshgoftaar
(2019)). In particular, one natural solution to our problem is to exploit the time
correlation between the historical data available. Machine learning generative



methods (e.g. see conditional generative adversarial networks in Koochali et al.
(2021)) can be used to learn the time correlation between scenarios and to
artificially generate the additional scenarios needed. We leave this additional
algorithm step to another study.

In what follows, we detail the formulation of our problem. Let G = (V, A)
be a directed graph, where V' = {0,..., N} is the set of vertices and A =
{(,7)|i,j € V} is the set of arcs. Set V consists of a depot (vertex 0) and a
subset C' = {1,..., N} of customers’ represented by their locations. We assume
|C| > 3 to facilitate our formulations.

A non-negative cost ¢;; and a duration in time d;; are associated with each
arc (i,7) € A. We assume that the graph is symmetric, i.e. ¢;; = ¢j;; dij = djs,
and that cost and times satisfy triangular inequalities. We also assume that
the vehicles to be used as the company fleet are identical and can serve up to
() customers and that all customers to be delivered in a time window must be
delivered within a time limit of D. There is a fixed number of K time windows
during a day.

The binary vector £ = (£1,...,&n)T defines a scenario. The vector compo-
nent & = 1,4 € {1,..., N} iff customer ¢ has an online delivery order available
and & = 1,7 € {N+1,...,2N} iff customer (i-N) has an OD available. If
& =0,i€{l,...,N}, customer ¢ will be skipped by the routes defined by the
recourse. If & =1 and &,y =1,7 € {1,..., N}, customer ¢ delivery order will
be considered to be delivered by an OD based on the rules defined for variant 1
and 2 of the recourse model. If & =1 and §n = 0,4 € {1,..., N}, customer
1 delivery order will be served by the fleet of vehicles under routes defined by
the recourse. A compensation fee f; is defined for customer i outsourcing. The
support of the joint distribution, Z, includes all possible combinations of the sce-
nario’s components. We index scenarios using indicator w € W = {1,...,|=]|}.

Figure 1 exemplifies decisions made and scenarios presented for just 1 time
window for a small store setting with only 6 possible customers. We assume
here the store has 2 vehicles with a capacity of 3 customer orders each. For this
example, we assume there is no need for time delivery constraints. In Figure
la, circles represent the location of each of the 6 customers in a plane. The
depot location is represented by the black circle. There, red arrows represents
the first stage decision that defines the order in which the customers will be
served after the dispatch of vehicles at each time window. This decision is
defined by the sequence of customers 1,2,3,4,5 and 6. Figure 1b represents the
2 vehicle routes in blue and black arrows, defined for the time window after
the scenario is revealed. For this time window we define the scenario vector as
(1,1,1,1,1,0,1,0,0,0,0,0), meaning that all customers except customer 6 have on
line orders to be delivered, and there are ODs available only for customer 1. We
assume the decision for the on line order of customer 1 is for it be delivered by
an OD. That means that the first vehicle route is defined serving customers 2, 3
and 4 in sequence, and returning to the depot afterwards due to vehicle capacity.
The second vehicle route is defined serving only customer 5 and returning to the
depot afterwards. Customer 1 is skipped by the vehicles because the respective
on line order is delivered by an OD. Customer 6 is skipped because there is no
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Figure 1: Store delivery small example

on line order associated. Note that the cost associated with this time window
includes not only the cost of the 2 vehicle routes but also the compensation fee
paid to the Customer 1 OD.

We model our problem as a Markov decision process (MDP). A MDP mod-
els a stochastic and dynamic problem as a sequence of decision points, that
is represented by a sequence states connected by actions, defined by policies,
rewards and transitions and running through episodes. For our case, a decision
point k € {1,..., K} is defined at the beginning of each time window of a day.
We recall that decision point is a time at which a decision (recourse action) is
made. Overall, at each decision point an action is taken (decision defined by
our recourse). This action is taken based on the state that is revealed (scenario
presenting what are customers orders and ODs available). The action taken
depends also on the first stage decision, z, and, together with the state revealed,
incurs in a reward (cost of vehicles routes defined by the recourse plus ODs
payment for that time window). A transition then occurs to another decision
point (another time window) : this transition is random and defined by a new
state (new scenario). The group of K decision points occurs during a day and
defines an episode. The sum of all rewards during a episode is defined as total
return and is a function of the z. In what follows we give additional details to
define the MDP model:

States &% : A state comprises all information needed to select an action and
for our problem that is represented by the scenario €% that presents itself right
before decision point k.

Actions a* : Actions a* implements the recourse model at each decision
point and defines routes and ODs allocation. More broadly, it implements our e-

k
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soft policy 7 € II that is defined by the first-stage decision z = (21,...,2n5)7 €
ZN | where z; € {1,...,N} is the order of delivery of customer i and by the
recourse model.

Reward function R*(¢¥,2): The reward function evaluates the immediate
impact of an action on the objective value. Since each action is a recourse under
the defined policy, the reward function is dependent on z and £*. The reward
function is defined by the cost of routes plus the ODs payment defined by the
recourse. The reward function depends on the recourse model adopted and is
detailed in Section 4.

Transitions: Transitions between states are given by exogenous information
and related to the time correlation between scenarios. Transitions are defined
by the sequence of scenarios available as historical data. We use this sequence
of scenarios to perform the Monte Carlo simulation of the Value Function for
the MDP model.

Episodes: An episode for our setup problem is a day at the store, composed
by K time windows and K decision points. A total return TR = Zle RF(€F 2)
is defined for each episode.

Value function V: The key idea of RL is the use of value functions to
organize and structure the search for good policies. In our problem, each policy
7 has an expected or mean total return once z is given. The value function V', as
a function of z, expresses the expected total return by applying z. If you know
the value of each z, then it would be trivial to solve the problem by selecting
the ordering of customers z with lowest value.

Objective: A solution to our problem is a policy 7 that assigns an ordering
of customers z and implements a recourse strategy. The optimal solution is a
policy 7* that assigns an ordering of customers z* and minimizes the expected
total return and can be expressed by

K
#" = g (V(:) = E[) R(E", ) (MVF)

4. Deep reinforcement learning for stochastic last-mile delivery with
crowd shipping

We implement an on-policy and e-greedy policy iteration algorithm for value-
based reinforcement learning with combinatorial actions. We leverage the strat-
egy developed in Delarue et al. (2020) where the authors model the value func-
tion as a small NN with a fully-connected hidden layer and rectified linear unit
(ReLU) activations. Although it would be natural to use a more complex NN
structure since it would lead to a better approximation of the DRL Value func-
tion, the authors show that the non-linearity introduced even by a simple NN
is sufficient to produce interesting results at the end. We follow here the same
design strategy. Other than that, reducing the capacity of the model reduces
the likelihood of the model over-fitting the training data set. The capacity of
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Figure 2: Fully connected neural network with 1 hidden layer and a linear output

a neural network model is defined by both it’s structure in terms of nodes and
layers and the parameters in terms of its weights. The NN is formulated as
a mixed-integer program, as in Anderson et al. (2020), and combined to the
combinatorial structure of the action space, the customers delivery ordering, for
policy improvement. This, together with the recourse model introduced in our
formulation greatly simplifies the complexity of the policy iteration algorithm
while maintaining the possibility of searching the entire first-stage decision ac-
tion space.

Given a randomly chosen starter e-soft policy 7, where the first-stage deci-
sion can vary with probability e, we repeatedly improve it. In the k-th policy
evaluation step, using the Monte Carlo method, we repeatedly apply the cur-
rent e-soft policy m_1 for episodes and average sample total returns after of
each episode. The episodes are defined using scenarios provided by historical
data. We use the accumulated data generated using the Monte Carlo method
to train the NN and incrementally approximate the value function V. We train
this NN to minimize the mean-squared error (MSE) on the cumulative cost data
gathered among all iterations of our algorithm.

Figure 2 defines the architecture we implement for our NN. The NN has as
input the vector z, representing the ordering of customers’ deliveries; a single
hidden layer, with P hidden nodes, each with a ReLU activation and one linear
output. Let wP? € RY designate the vector of weights, and b” € R the bias term,
for the p-th hidden node. Define w°**** ¢ RP and b°**P** ¢ R analogously for
the output layer.

The k-th policy improvement step involves solving the optimization prob-
lem related to (MVF). It’s solution establishes the first-stage decision to our
problem, which minimizes the expected total return expressed by the current ap-
proximation of the value function. The minimization problem related to (MVF)
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is formulated as (see Anderson et al. (2020))

P
minngutp“typ + poutput (1)
p=1
s.t.y? > wPz + bP Vi<p<P
(2)
yP <wPz+ b + MP (1 — sP) V1i<p<P
3)
y? < MY sP Vi<p<P

g <Y wl(z - LE(1—s))

iel
—l—(bp—l—waUf)sp V1<p<P IC supp(wP)
il
(5)
i+ =1 Vi jeC, it

Tij + Tjp — Ti < 1

(6)
(7)

JEV, j#i
2€ RN, yP € R, s* €{0,1}, 2; € {0,1}Vi,j € C,i # j (9)

where the data are:

wP € RY designates the vector of weights, and b? € R the bias term, as
defined for the p-th hidden node of our neural network.

In the same way, w°"?** ¢ RP and v°“P"* € R are defined as for the
output layer of our neural network.

For any vector of weights w, supp(w) indicates the set of indices ¢ such
that w; # 0

Components L and U? are defined as

0 if w? > 0. N+1, ifw? > 0.
P _ ) 7 = P __ ) 7 =
L = { N+1, if w? < 0. and U;” = { 0, if wP < 0.

The formulation’s Big-Ms are set as MY = r[nax]N wPz + 0P = wPUP + bP
z€[1,N
and M? = min wPz + bP = wPLP + bP.
z€[1,N]N

the variables are:
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e We define the N initial decision variables z;, 1 < z; < N. Variable z;
represents the position in sequence in which customer ¢ will be delivered.

e We define a continuous variable y? that models the output of the hidden
node p.

e The binary variable sP indicates whether the pre-activation function is
positive or negative (i.e. whether the neural network ReLU is active or
not).

e We also introduce variables z;; to define the delivery order: z;; = 1 if
customer ¢ precedes customer j and 0 otherwise.

Objective function (1) minimizes the output of the neural network, representing
the output of the value function, and constraints are:

e Constraints (2) to (4) represent a “big-M ” linearization of the non-linear
output of the ReLLU neural network functions. The relationship established
by variables s? is enforced by the “big-M ” constraints (3) and (4).

e The exponentially many constraints of type (5) were defined in Anderson
et al. (2020) to strengthen the formulation.

e Constraints (6) to (7) define the feasible region of all possible ordering of
customers.

e Constraint (8) translates the ordering between customers defined by vari-
ables x;; to the equivalent postion in sequence defined by variables z;.

To be able to solve large instances and still have good solutions, we define a
time limit of 1800 s to solve problem (MVF) at each policy improvement step
and use the best solution provided until then. We apply warm start, callbacks
to introduce lazy constraints and heuristics and use only the needed half of x;;
variables, where 7 < j.

We warm start not only in an attempt to accelerate resolution but also
to guarantee one incumbent solution. We leverage the study of heuristic ap-
proaches for the probabilistic traveling salesman problem in Weiler et al. (2015).
In particular, we adapt the Almost Nearest Neighbor Heuristic to our case. As-
suming independent marginals, we attempt to find a solution with a maximum
lower bound. The ordering of customers is defined by appending the customer
with the lowest change of expected length from the last inserted customer to
the tour. For a given set T of customers already inserted in a tour, inserting
customer j with minimum cost is computed as

T |T|
jglc%{lT' ( m;)( mj)ci,; . Mk,
=1 k=i+1

where m;, ¢ € C' is the customer ¢ marginal probability to not be included in a
route as defined in the Appendix A for the DRO approach.
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Constraints (5) are introduced as cutting planes by lazy constraints callbacks
using a linear-time separation routine as described in Anderson et al. (2020).
Heuristics callbacks introduce simple heuristics by setting variables x;; as bina-
ries and following the same customer order given by the sort of the z relaxed
solution.

Algorithm 1 summarizes the steps undertaken in our policy iteration algo-
rithm. The reward function, R(.), used in algorithm 1 varies if we are using

Algorithm 1 Policy iteration algorithm

Initialize:
e>0
T < an arbitrary e-soft policy my with zg
VD <  Initialize empty dataset
Repeat for each policy iteration
Repeat for each episode using scenarios:
Generate an episode following 7: €%,a®, RY, ..., 771, a7—1, RT
TR+ 0
Loop for each step of episode, k=T —1,T —2,...,0:
TR+ TR+ RF!
Append TR to Returns(z)
VD(z) « average(Returns(z))
Use VD to incrementally train the NN and approximate value function V
2* < argmin V (z) using V function MIP formulation
Define e-soft policy m with z*

variant 1 or 2 of the recourse model. Algorithm 2 defines how the reward func-
tion is calculated for variant 1 of the recourse model. For variant 1 each ordering
position is scanned to verify its customer status defined by the scenario £. The
action taken is dependent on this status and special care has to be taken to
account for the vehicle capacity and the route time duration limit.

We define two forms of reward calculation for variant 2. Here, we want an
optimal allocation of ODs. To perform this exactly we formulate this as an
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Algorithm 2 Reward function for variant 1 of recourse model

Initialize:
laststop = 0 ;depot
cost = 0 ;cost of vehicles route
cap = 0 ;accumulated capacity of a vehicle
time = 0 ;accumulated time duration of a vehicle route

for i =1 to N ; scan by delivery ordering positions
if £[z71[i]] == 1 and &[N + 27 1[i]] == 0 ; customer order and no OD
if time + d[laststop, z~[i]] + d[z7'][i], depot] < D
cost+ = c|laststop, 2~ [i]]
time+ = d[laststop, z~1]i]]
laststop = 2~ 1[i]
cap+ =1
ifi==N
cost+ = c[laststop, depot]
elseif cap == Q
cost+ = c[laststop, depot]
laststop = depot
cap =10
time =0
else
if i == N # assume 2*time from depot to 7 < D always
cost+ = c[laststop, depot] + c[depot, z7[i]] + c[z71][i], depot]
else
cost+ = c[laststop, depot] + c|depot, z~1[i]]
time = d[depot, 2~ 1[i]]
laststop = 2~ 1[i]]
cap=1
elseif £[z71[i]] == 1 and &[N + z71[i]] == 1 ; customer order and OD
cost+ = flz71]i]]
ifi == N and cap # 0
cost+ = c[laststop, depot]
elseif : == N and cap # 0
cost+ = c[laststop, depot]
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optimization problem. The Formulation for this problem is given as

min E Cijzij+ E fzwl

,JEV, i#] ieC
JEV,i#] JEV,i#]
Z$i0—2$0i =0 (11)
ieC eC
v+ w; < 1 VieC (12)
v +w; > & VieC (13)
w; < &i4n VieC (16)

Z Yji — Z Yij = V4 VieC (17)
JEV,i#j JEV,i#£j
Z y0j = Z Uj (18)
JjeC jeC
Yio =0 VieC (19)
Yij < Quij Vi,jeV,i#] (20)

Z tij — Z t]'i = Z dijxij VieC (21)
JEV,i#j JEV,i#j JEV,i#j
t()i 2 dOiin VZ S C (22)
tij < (D —djo)zs; Vi,jeV,i#] (23)
ZZ‘UZO ViEC,S:{j|Zj<Zi}
JjeS

(24)
ijigvi VZ€C,S:{]|ZJ<2’1]}
JES
(25)

w; € {0,1}v; € {0,1} Vi e C (27)

where first-stage decision z and scenario £ are data input to the problem and
we define variables:

e 1;; =1 if customer i is served by a vehicle right before j, 0 otherwise,
e w; =1 if customer i is served by an OD, 0 otherwise,

e v; =1 if customer ¢ is served by vehicle, 0 otherwise,

y;; as the accumulated capacity loaded between customer i and j and t;;
as the accumulated time spent between customer ¢ and j.

18



The objective is to minimize total cost of routes plus OD payments, and
constraints are:

e Constraints (10) and (11) are route flow conservation and should be con-
sidered every time a customer is included in a route, v; = 1.

e Constraints (12) define that customer i is served by vehicle, or an OD or
none.

e Constraints (13) define that customer i is served by a vehicle or OD if

& =1

e Constraints (14) and (15) define that customer i is not served by an OD
neither a vehicle if & = 0.

e Constraints (16) define that customer 7 is served by an OD only if an OD
is available.

e Constraints (17) to (20) define the capacity restrictions.
e Constraints (21) to (23) define the time duration restrictions.

e Constraints (24) and (25) guarantee that the order of first-stage decision
z is respected.

As an alternative we provide an heuristic for variant 2 calculation where the
condition to reduce cost by OD allocation is verified only locally. By Algorithm
3, customers are allocated to ODs only if the cost of paying the OD is less than
bypassing until the next available customer using a vehicle route.

5. Experiments and Computational Results

The objective of our experiments is three-fold: we want to analyze the qual-
ity of the solution provided by the DRL algorithm. For that we compare to
results provided by a reoptimization approach, a sample-average approximation
approach and a worst-case optimization approach on small instances. We also
compare results from the different recourse variants and compare results of large
instances to feasible upper bounds. Additionally, we want to analyze the sensi-
tivity of the algorithm’s solution to key parameters configuration. Finally, we
want to analyze time performance of the DRL algorithm we have implemented,
and with that the capacity to solve large instances.

To pursue this objective, we present in the sections below the instances
setting and the implemented benchmark algorithms for the different approaches.

All algorithms are coded in Python, using Keras and Tensorflow, and inte-
grated with Julia (Lubin and Dunning, 2013) using JuMP package and Cplex
12.9. The base code used to run the experiments can be found in https:
//github.com/marcostilva/Lastmile_DRL

We present key parameters and additional architectural features defined for
the DRL algorithm and used in the experiment:
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Algorithm 3 Reward function for variant 2 of recourse model

Initialize:
laststop = 0 ;depot
cost = 0 ;cost of vehicles route
cap = 0 ;accumulated capacity of a vehicle
time = 0 ;accumulated time duration of a vehicle route
continue = true ; define when to stop algorithm
bypass = false ; should bypass OD available

1=0
while continue
i+=1
if [z71[i]] == 1 and (&[N + z71[i]] == 0 or bypass)

bypass = false
if time + d[laststop, 271 [i]] + d[z7'][i], depot] < timelimit
cost+ = c[laststop, z~[i]]; time+ = d[laststop, 2~ [i]]
laststop = 2~ [i]; cap+ =1

ifi==N
cost+ = c[z7[i], depot]; continue = false
elseif cap ==
cost+ = c[laststop, depot]; laststop = depot; cap = 0; time = 0
else
if i == N# assume 2*time from depot to ¢ < timelimit always

cost+ = c|laststop, depot] + c[depot, z7[i]] + c[z71][i], depot]
continue = false
else
cost+ = c|laststop, depot] + c[depot, z~[i]]
time = d[depot, 2~ 1[i]]; laststop = 27 1[i]]; cap = 1
elseif £[z71[i]] == 1 and £[z71[i] + N] ==
# find next customer available
j=i+1
while j < N and £[z71[j]] == 0)
j+=1
if j < N and f[z71[i]] < c[laststop, 2 [i]] + c[z[i], 27 [4]]
cost+ = flz71[i]]
i=j—1
elseif j > N and f[27'[i]] < c[laststop, 27 [i]] + c[z71[i], depot]
continue = false
cost+ = flz71[i]]
if cap #0
cost+ = c[laststop, depot]
elseif j < N and f[271[i]] > c[laststop, z71[i]] + c[z71]i], 271 [4]]
bypass = true; 1— =1
elseif j > N and f[z71[i]] < c[laststop, z71[i]] + c[z71][i], depot]
bypass = true; i— =1
else
ifi == N and cap # 0
cost+ = c[laststop, depot]
ifi==N 20
continue = false




e We define key parameters with default values: number of nodes of hidden
layer of the NN as 16, number of policy iterations as 15 and number of
training episodes as 300000. For some of the experiments, when specified,
we change default values to analyze the sensitivity of the DRL method to
these changes.

e Exploration and exploitation during training is performed by setting e-soft
policies. We set the probability of exploring ¢ = 0.6 and exploiting 1 — €
and decay € over the policy iterations.

e For weight updates, we use a learning rate that exponentially decays from
0.01 with the base 0.96 and the decay rate 1/6000.

e We pass through the entire episodes dataset 100 times (epochs) with a
batch size of 100.

5.1. Instances

We generate random test instances having |C| + 1 vertices (depot and |C|
customers) for different values of |C| € {10, 15, 18, 30, 40, 50, 70, 150, 300}. Five
instances for each number of customers are generated. All results presented by
the number of customers are an average of all of their respective instances.

Customers’ locations for each instance are assigned randomly from a grid of
100*100 possible locations. We assume that travel time (in seconds) and cost (in
monetary value) are deterministic and proportional to the euclidean distances
between customers. We do that to simplify instance data generation only and
it is not a requirement for our algorithm.

The compensation fee f; for each customer 7 is set to a fixed small value, to
avoid zero compensation fees, plus a value proportional to the minimal detour
considering all pairs of customers r, j € C,i # j # r and given by f; = jnrlie%cj’iJr
Ciyr — Cjp-

Customers’ orders and OD availability occur randomly around the day and
present themselves for each time window as scenarios. We assume there is a set
of scenarios available as data and that is sufficient to train the NN. We artificially
generate these scenarios for our test instances based on two probability vectors
that define marginal probabilities for customers’ orders (m;) and OD availability
for each customer (0;). To assure scenario consistency, the OD availability
is only assigned when the respective customer is also assigned to a delivery
order. To introduce correlation between scenarios we force customers to have a
maximum of 1 delivery order per day. We generate 800000 scenarios that are
used to train the NN plus 1500 scenarios that are used to simulate the solutions
provided by the algorithms (out-of-sample performance). Note that we validate
the solutions provided by the different algorithms, through simulation , using
scenarios different from the ones used for training our neural network. This way
we can identify potential overfitting raised during training. Note also that the
use of large data sets to train our neural network is a good tool to mitigate
overfitting.
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Algorithm Code Description

DRLV1 The DRL method with recourse variant 1
DRLV2E The DRL method with recourse variant 2 exact formulation
DRLV2H The DRL method with recourse variant 2 heuristic
SAA The sample-average approximation method with recourse variant 1
DROA DRO algorithm with recourse variant 1
REOPT Optimal routes calculation for each scenario (on line decision). OD paid if available

Table 2: Algorithms

We assume that the pairs (o;, f;) generated are coherent, in the sense that
the compensation fee influences the probability of an OD accepting to outsource.

The values m; and o; are assigned randomly for each instance in a range
smaller than 0.3.

Fach episode is composed of a delivery day with 4 time windows of 2 hours
each, and therefore, 4 scenarios.

The professional fleet vehicle capacity is set to Q = {%J and the time limit
of a route is given by the time windows of 2 hours.

5.2. Benchmark algorithms

We present in Table 2 a general description of the different algorithms we
run our instances with.

Besides implementing algorithms DRLV1, DRLV2FE and DRLV2H for the
methods presented in Section 4, we implement algorithms SAA, DROA and
RFEOPT to run the same instances.

A common approach to solve a stochastic problem is to extract a sample of
the uncertain parameters and model the expected performance using the sample
average. Optimizing the sample average yields the sample-average approxima-
tion (SAA) algorithm of stochastic programming ( Kleywegt et al. (2002)). For
a given random sample of size m episodes from the available historical data, the
SAA estimate of the performance of a given delivery order, z, is given by

where we index each scenario £ by the episode ¢ and stage k. We have set
m = 50 to run our experiments.

The SAA approach is justified by the fact that if the sample is drawn i.i.d,
then Vj,(z) is an unbiased estimate of V(z) and by the strong law of large num-
bers it will converge almost surely to V(z). The SAA approach aims to optimize
the true performance V' (z) by optimizing the SAA estimate of performance:

min V, ()
z€Z

The solution value of SAA is the in-sample performance, i.e., the average
performance over the sample of uncertain m episodes. What is more important
is the performance of the solution provided out-of- sample, i.e., under the true
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distribution of episodes. We formulate SAA as a MILP optimization problem
and it is tractable for only small values of the sample size.

Algorithm DROA is a DRO implementation approach. DRO has emerged
from within the optimization community as an approach that explicitly accounts
for the fact that one is never able to exactly specify a probability distribution
in practice. DRO weakens the requirement to specify a single probability dis-
tribution for the uncertain parameters. Instead, a set of possible probability
distributions is defined and the problem is optimized for the worst-case distri-
bution within this set. The DROA algorithm implemented is presented in detail
in Silva et al. (2021). It implements an exact two-stage distributionally robust
optimization approach with the variant 1 recourse. It searches an optimal first-
stage solution for the worst-case scenario distribution, where the set of feasible
scenario probability distributions is defined by the marginal distributions of the
scenarios that we calculate from the historical data availabe for each problem
instance. We impose a time limit of 4 hours to run DROA. In case the time
limit is reached, we use the best solution provided so far by the algorithm. We
run DROA for the smaller instances only. For completeness, we provide more
information on the algorithm in the Appendix A.

Algorithm REOPT solves a MILP formulation implementing the reopti-
mization strategy, where an optimal route is calculated for each scenario (there
is no first-stage solution). It is equivalent to implementing on line solutions. We
run REOPT for the smaller instances only.

5.8. Solution Quality

To assess the performance of the solutions provided by the different algo-
rithms, we simulate these solutions through various episodes using the scenarios
created for this purpose, providing an out-of-sample estimate. We compare
the algorithms total cost output of this simulation. To have good solutions
from SAA, DROA, and REOPT algorithms we run this comparison only for
instances where |C| € {10, 15,18,30,40}. We run DRLV2E out-of-sample sim-
ulation with the solution from DRLV2H for instances where |C| > 30.

Table 3 reports, for the subset of instances, the average percentage gap
between total cost values when compared to the REOPT algorithm total cost.

Overall, we observe that all algorithms provide total costs within a range
of 20% of the REOPT total cost for the simulation proposed. The cost gap
increases for larger |C|. That is in part explained by the parameters configura-
tion used to define solutions as will be better analyzed in Section 5.4. Here we
advance that the solution quality of the DRL approach is directly related to the
number of episodes used for training, and as the number of customers increases
so does the need to increase the number of training episodes.

DRLV2FE provides a simulated total cost that is always smaller than DRLV' 1.
That is explained because of the extra freedom that recourse variant 2 has in
DRLV2FE to accept or not the OD. It comes as a bit of surprise, though, given
the method adopted to calculate the OD’s compensation fee to mitigate sub-
optimization. On the other hand, DRLV2H is not able to improve total costs
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over DRLV1 exactly because of the method adopted to calculate compensation
fees. We note that could not be the case if, for instance, the compensation fees
were increased. To experiment that we run the same instances, but increasing
the OD’s compensation fee by a factor of 6 for the same OD’s marginal prob-
ability. Table 4 presents the results. There is an average of 2.2% decrease on
savings compared to DRLV1 total costs when adopting recourse variant 2 with
heuristic (DRLV2E).

We also present in Table 5 the average percentage of ODs not accepted to
outsource a customer, among those available. We can see that, although the
compensation fee strategy implemented to mitigate sub-optimization, there is
room for improvement by adopting the exact variant 2 approach.

DROA, although an exact approach, is not able to improve results given by
DRLV1. There is a caveat here: by the design of our experiment training and
out-of-sample simulation scenarios are all drawn from the same distribution.
Since DROA is the best solution for a worst-case probability distribution, the
better results of DRLV1 would have been expected if the DRLV'1 algorithm had
been able to correctly learn the scenario probability distribution. By the results
shown in Section 5.4, we see that the quality of DRLV'1 results are related
to the number of scenarios used for training. We then experiment comparing
DROA results to DRLV'1 for different number of training scenarios. Table 6
presents solution quality for different number of training scenarios. We see that
DROA provides better results for small number of scenarios. This suggests
that the strength of our algorithm DRLV'1 is in the fact it can process large
number of scenarios and, by doing this, provide good quality solutions even for
large instances. Our problem is suitable for DRLV1 because of the recourse
model adopted that is very fast to solve at each stage of the MDP process.
Additionally, it is adequate to provide a large number of scenarios. The scenarios
can be generated artificially by exploiting the time correlation between scenarios,
for instance. We note that the DROA approach would be more suitable in
the case the scenarios probability distribution were only partially known and,
for instance, only a small number of scenarios were available during planning
(definition of delivery order) phase. The DROA approach reduces the variance
in the resulting simulations.

The SAA results in Table 3 presents higher variance when compared to
other algorithms. In other words these results show that with a small sample
size the SAA approach is susceptible to over-fitting, motivating the question
of whether an alternative methodology can produce designs that exhibit better
out-of-sample performance when provided with the same data.

To verify the quality of the solution of larger instances, we first estimate an
upper bound by running the out-of-sample simulation with a random generated
customer ordering as input. Table 7 presents the results as a percentage gap be-
tween the upper-bound cost (UPPERBOUND) and DRLV1 cost. There is an
average improvement of 19,45% by running DRLV'1 solutions when compared
to UPPERBOUND.
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|C| DRLV1* DRLV2E* DRLV2H* DROA* SAA*

10 5.4 5.2 5.4 5.4 10.5
15 6.5 6.1 6.5 6.1 8.4
18 8.2 6.8 8.2 10.7 15.1
30 11.5 9.3 11.5 15.6 17.3
40 15.3 12.7 15.3 19.7 14.3

Table 3: Solution Quality
* results presented as percentage gap when compared to REOPT.
Result = 100 x AV G((algorithm — REOPT)/REOPT)

IC[ DRLV2H

10 -2.7
15 -3.5
18 -1.6
30 -1.3
40 -2.0

Table 4: Solution Quality for increased compensation fees
* results presented as percentage gap when compared to DRLV'1.
Result = 100 * AVG((DRLV2H — DRLV1)/DRLV1)

IC]  DRLV2E
10 4.7
15 5.3
18 3.8
30 75
40 8.3

Table 5: Percentage of ODs not accepted for DRLV2E

Scenarios DRLV1 DROA

10000 36.5 11.5
30000 24.6 11.5
300000 9.3 11.5
500000 8.1 11.5
800000 8.1 11.5

Table 6: Solution Quality for different number of training scenarios
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ICl Gap (%)*

50 -15.7
70 -12.8
150 -26.5
300 -22.8

Table 7: DRLV'1 Solution Quality for larger instances
* results presented as percentage gap when compared to UPPERBOUND.
Result = 100 * AVG((DRLV1 —UPPERBOUND)/DRLV1)

5.4. Sensitivity to parameters configuration

In this section, we analyze the effect of changing the number of policy it-
erations, the number of training scenarios, and the number of the NN hidden
layer nodes on the solution quality, presented as the percentage average gap be-
tween the total cost output of the simulation running recourse variant 1 with the
DRLV1 first-stage solution, to the REOPT total cost output of the simulation.
We change each of the parameters independently while maintaining the other
parameters as default. This is reported in Figures 3a, 3b and 3c, respectively.

By Figures 3a and 3b, we note that decreasing the number of training sce-
narios can be compensated by increasing the number of policy iterations to
maintain solution quality and vice versa. It would be a matter of identifying
which combination of both provides best time performance. Since the policy
evaluation phase of our algorithm is very fast, due to the simple recourse, we
have opted to increase the number of training scenarios as default.

In Figure 3c we analyze the effects of increasing NN size on the solution
quality. We experience the same effect as with the other experiments. Overall,
the number of nodes is a determinant of the solution quality.

5.5. Algorithms performance

In Table 8 we present the time performance of algorithms DRLV1 and
DROA. Tt reports the average total time to find offline the first-stage solu-
tion, by |C|. We run DROA only for instances where |C| < 18 because after
that only a small percentage of instances are solved under the time limit. We see
that different from DRLV1, DROA has time performance that is exponential
in the number of customers, |C|. DROA only performs better than DRLV1 for
small instances. On the other hand, the time spent by DRLV1 can be altered
by adjusting the solution quality using parameters number of policy iterations,
number of training episodes, and number of NN nodes. DRLV'1 scales well for
the number of customers and can be used to solve large instances. Since both
algorithms run offline, they can be used for dynamic decisions when the scenar-
ios are revealed. From Table 8 we infer also that DRLV'1 should be preferred
when there are enough historical scenarios to train the NN.

26



Average gap with REOPT

Average gap with REOPT

Average gap with REPOT

14

12

@

IS

&)

40

35

15

10

16

14

12

10

5 10 15 30 40

Number of terations

(a) Effect of number of policy iterations

10000 30000 300000 500000 200000

MNumber of scenarios

(b) Effect of number of training scenarios

8 16 24 32

Number of nodes

(c) Effect of number of NN hidden layer nodes

Figure 3: Sensitivity to key parameters
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IC] DRLVI DROA
10 874.26 21.6

15 1528.00  3247.81
18 1746.32  18526.76

30 3010.11 -
40  3411.87 -
50  4892.66 -
70  8914.00 -

150  22650.06 -
300 51457.79 -

Table 8: Time performance in seconds

6. Conclusion

We present a novel solution approach for the stochastic and dynamic crowd
shipping last-mile delivery problem and solve it approximately using a DRL
method. In our approach, it is possible to capture uncertainty related to cus-
tomers’ online orders and occasional drivers’ availability. The integration of
machine learning and operations research optimization techniques have worked
as an appropriate alternative to handle the large state and action space.

Computational results demonstrate that the method is capable of making
appropriate decisions throughout the day resulting in total costs that approxi-
mate a reoptimization approach, where optimal routes are calculated every time
a scenario is revealed.

Overall, we compare different implemented algorithms’ solutions and per-
formance. We analyze different recourse strategies for the DRL method and
compare to exact approach solutions, not only the reoptimization approach,
but also a worst-case distribution approach where we assume only partial infor-
mation of the scenario probability distribution is known.

We foresee directions for future research. The challenge of solving larger
instances can motivate future development of algorithmic methods using a more
sophisticated DRL approach, for instance. Many steps of the algorithms can be
performed in parallel mode. Action-value learning algorithms, instead of a value-
based function approximation approach as we have implemented can be studied.
Generative machine learning methods can be studied to satisfy the need for a
large amount of sampled scenario data. Different neural network architectures,
that better capture the sequence dependence nature of the problem, can be used
to better approximate the DRL method value function.
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Appendix A. Distributionally robust optimization approach to last-
mile delivery with crowdshipping

In the DROA approach, after defining a set P of feasible probability distri-
butions that is assumed to include the true distribution, the objective function
is reformulated with respect to the worst-case expected cost over the choice
of a distribution in this set. This leads to solving the Distributionally Robust
Optimization Problem

Izlélél I%lea}g( EIP[R(Za g)]a

where R(z,§) is a reward function in z, first-stage solution, that depends on the
vector of random parameters £, and Ep is the expectation taken with respect
to the random vector £ given that it follows the probability distribution P. The
set P is called the ambiguity set.

Since an ambiguity set only characterizes certain properties of the unknown
true probability distribution, its estimation requires fewer data and can often
be done using historical records, being suitable for data-driven approaches.

In the DROA approach we simplify the definition of the scenario vector,
when compared to the DRL approach, to reduce complexity of the DROA
algorithm. Here, vector & = (£1,...,&y) defines an uncertain scenario, & = 1
iff i € C is skipped, 0 otherwise. A customer is skipped, meaning it will not
be part of any vehicle route, if there is no online order for that customer or
if there is an OD available to deliver his/her order. The support of the joint
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distribution, Z, includes all possible combinations of the scenario’s components.
We index scenarios using indicator w € W. For each scenario with customer 7
being skipped there is a marginal probability, m;, and a compensation fee, f;,
associated. We compute the marginal probability m; from the set of available
historical data. As a remark, note that f; is the compensation fee paid to the
OD, weighted by the probability of the customer being outsourced. We assume
that the uncertain components are not independent and the joint distribution
is unknown.
We define our ambiguity set as

P ={P|P{¢ € Z} = 1; marginals m; for §& =1, i € C},

Using the definition of the ambiguity set we dualize the inner maximization
problem of the DROA formulation and arrive to the following reformulation

min s — iU
mip > mi
icC
s.t. 5 — fo’ui > R(z,w) Ywe W
i€C
s20,u; 20 VieC

where s, u;, i € C are dual variables introduced in the reformulation.

We define the first and second stage formulations, including the reward func-
tion R(z,£). The first stage is defined solely by a ordering for serving the cus-
tomers. The following variables are used:

e First-stage main variable
z;j = 1 iff customer i is served before customer j.

e First-stage auxiliary variables

1

%; ;. = 1 Iff customer r is served in between customers ¢ and j
s
22 ;- = 1 iff customer r is served before customers ¢ and j

3 ;- = Liff customer r is served after customers ¢ and j

s

The second stage is defined in a way that we can calculate the cost of a route
given the ordering of the first stage and the scenario to be considered. We define
the following sets of main and auxiliary second-stage variables, where now we
include the depot in the ordering as it will be always the first and last to be
served in each route:

e Main variables

Yuw,i,j = 1 iff, for scenario {", depot or customer j is served right after
depot or customer i. This means that all customers r in between i
and j are outsourced in this scenario.
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Vw,i,; = 1 iff, for scenario £, vehicle capacity, @, is reached at cus-
tomer ¢ and j is the next not skipped customer. This means that
before customer 7, in scenario £, there are k@) — 1 customers, where
ke {l,..., {%J} and that all customers r in between ¢ and j are
outsourced in this scenario.

e Auxiliary variables

y}mt = 1 iff, for scenario £ and given a ordering of customers, there are
t customers before ¢, t € {0,...,|C|—1}. It indicates the position of
a customer for each scenario.

The reward function sums up the cost of each arc transpassed considering
all routes plus the cost of the outsourced customers. We have already stated
that each variable y,, ;,; = 1 defines an arc that is transpassed and each variable
Uy,i,j = 1 defines a detour to the depot. This way we define the reward function
as

R(z,w) =Y il + Y Cigbuwig+ D (0 + oy = €ij)vui,
e i,jEV i,j€C
i i#]

With all variables and reward function defined we formulate the DROA
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approach as

min s+ E miu;

ieC
s.t. s+ wl > fill+ D cigywis+ P (Ci0+ oy — Cij)Vwi
ieC ieC i,jeV i,j€C

zij+ 255 =1

Zij + 2jr + 2p; <2
Z-gl,j,r > Zir + Zr,j — 1
Z-?,j,r > Zri+ 25 — 1

3
z > zipr+2zjr—1

1,5, 7 =
Yuw,ig 21— &0 + 1= +zi+ > (&¢20 0+ 205, +285,) —|C|
reC

Y0 21— + > (E¥25 +2,5) —IC| + 1

jec
Yu,i0 21— &+ Y (EF 25 +24) — [C| +1

jec
Vuw,ij = Yw,i,j T Z Z/}ﬂ,i,kal -1

te]
ke{1,...,[7J}

D Wy =16

t€{0,....|C| -1}

Styh e <D (1—8)z

t€{0,...,|C|—-1} jeEC
D YuwirS1

ieC

S Z 0, Uq S 0

zil’j’r, zzjyr, z?’j’r €1[0,1], zi,; € {0,1}

1
Yaw,itr Yw,irgr Yw,0,is s Yuw,i,05 Vaw,ij € [0,1]

where the constraints and variables are valid Vw € W, Vi, j,r € C, i # j # 7,
and V¢ € {0,...,|C| — 1}, when not stated otherwise.
To solve the above formulation we propose a branch-price-and-cut algorithm.
Algorithm 4 summarizes the main steps undertaken to perform the branch-
price-and-cut algorithm. The directives of the implementation of the algorithm
are:

e A customized branching rule based on the incremental ordering of the
sequence of the visit of the customers. This branching rule permits that we
fix many binary variables simultaneously to their lower or upper bounds at
a node while producing feasible regions of equitable sizes after branching.

e A symmetry breaking strategy to limit the number of branchings. This is a
way to eliminate partial orderings of customers that will not contribute to
arriving at an optimal solution and therefore gain greater computational
efficiency by eliminating nodes of our branching tree.
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At each node solve a relaxed restricted version of the formulation. The
restricted version is composed of a finite number of scenarios.

Initial tests indicate that the node relaxation is weak and may consume
significant time. On the other hand, the independent marginal distribution
version of the formulation provides a lower bound that is easy to calculate
at each node. We then use this alternative as a lower bound to prune
the nodes before proceeding with the calculation of the relaxed restricted
version of our problem.

Each node is solved to optimality and is pruned by its lower bound.

Each node’s integer solution is validated against new scenarios. A sepa-
ration subproblem with a column and row generation approach is used to
separate invalid integer solutions.

New scenarios inserted re-initiate the process of solving the node relaxed
problem.

Valid integer solutions are tested against the incumbent solution and the
correspondent node is pruned afterwards.

Fractional solutions are branched.

The algorithm runs until no more nodes are available to test or when a
time limit is reached
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Algorithm 4 Branch-price-and-cut (BPC') algorithm

Input > Q, set C, vectors ¢, f,m

Initialize

//Nodes list < root node, Incumbent solution < Heuristic, Lower bound <

—00
while There are still nodes to be branched in the Nodes list do
Node Select > Select node based on search criteria
Initialize scenarios > Add scenarios from parents node
Prune > by Independent lower bound
while There are still scenarios to be added do
Solve
Prune > by Node solution-lower bound
Scenario Separation subproblem > If integer
end while
Update if new Incumbent solution > Prune if better value

Branch node

Prune > by symmetry

Update Nodes List
end while
Return optimal solution - order of customers to visit and expected cost
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