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Abstract
In order to reduce the size of compiled forms in knowledge compilation, we propose a new ap-
proach based on a splitting of the main representation into a nucleus representation and satellite
representations. Nucleus representation is the projection of the original representation onto the
“main” variables and satellite representations define the other variables according to the nucleus. We
propose a language and a method, aimed at OBDD/OMDD representations, to compile into this
split form. Our experimental study shows major size reductions on configuration- and diagnosis-
oriented benchmarks.
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1 Introduction

Knowledge compilation aims at translating (off line) a problem expressed in some language
into a target language in which operations which are important for the application targeted can
be performed efficiently [4, 8]. Decision diagrams for instance (OBDDs [3], OMDDs [17, 12],
ordered MDDGs [23, 18]) have shown to be a good target language for many problems
expressed as constraint satisfaction problem or as CNF, and in particular for product
configuration problems [26, 1, 13].

The size of the compiled form being a main criterion in knowledge compilation, its
reduction is a major issue in the field. This is magnified by the fact that many information
redundancies can be observed. Indeed, caching and the detection of isomorphic nodes allow
the detection of equivalent sub-graphs, but not of all redundant information. This last
aspect is why, in this paper, we propose a method for reducing the size of the compiled form,
up to an additional (but polynomial) computational cost for the handling of queries and
transformations. Because targetting interactive configuration problems, we focus our work on
OBDD/OMDD [3, 28, 17, 12] representation languages, and show that the method proposed
allows a quickest compilation of the original problem, leads to a much smaller compiled form
and above all to an important saving in time when the compiled form is exploited.
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This article is structured as follows. The next section introduces necessary background
and notations. The “satellite system” approach we propose is developed in Section 3. We then
evaluate the succinctness of this language from an experimental point of view in Section 4.
We relate in Section 5 the theoretical concept on which our approach is based to the notion
of “definability”, as it has been studied in propositional logic.

2 Background and notations

2.1 Representation languages

Consider a finite set X of variables, each variable x ranging over a finite domain Dx. For any
set X ⊆ X , #—x denotes an assignment to the variables from X. DX is the set of all assignments
of X (the Cartesian product of the domains of the variables in X). The concatenation of two
assignments #—x and #—y of disjoint subsets X and Y is an assignment to X ∪ Y denoted #—x · #—y .

We consider functions f of variables from a subset Scope(f) ⊆ X to a set V. We write
Df to denote the domain of f , i.e. Df = DScope(f). For any Z ⊆ Scope(f), f #—z denotes the
restriction (or semantic conditioning) of f by #—z , that is, the function on Scope(f) \ Z such
that for any #—x ∈ DScope(f)\Z , f #—z ( #—x ) = f( #—z · #—x ). Slightly abusing notations, if X and Y

are two disjoint sets of variables, f is a function such that Scope(f) = X, and #—x · #—y is an
assignment of a super set X ∪ Y of X, then we write f( #—x · #—y ) for f( #—x ).

A representation language over X w.r.t a valuation set V is a set of data structures
equipped with an interpretation function that associates with each data structure a mapping
from DX to V. This mapping is called the semantics of the data structure, and the data
structure is a representation of the mapping.

▶ Definition 1 (representation language; inspired by [11]). A representation language L over
X w.r.t V, is a 4-tuple ⟨CL,ScopeL, f

L, ||L⟩, where:
CL is a set of data structures ϕ (also referred to as L representations or “formulæ”),
ScopeL : CL → 2X is a scope function associating with each L representation the subset of
X it depends on,
fL is an interpretation function associating with each L representation ϕ a mapping fL

ϕ

from the set of all assignments over ScopeL(ϕ) to V,
||L is a size function from CL to N that provides the size |ϕ|L of any L representation ϕ.

Two formulæ ϕ and ψ (possibly from different languages) are equivalent iff they have the
same scope and semantics; this is denoted ϕ ≡ ψ.

In the following, X is a set of discrete variables and V = {⊤,⊥}. Given two functions f
and g, the assignments x⃗ of X such that f( #—x ) = ⊤ are said to be “models” (or “solutions”)
of f and g is said to be a consequence of f (denoted f |= g) if any model #—x of ϕ can be
extended to a model of ψ: f( #—x ) = ⊤ implies ∃ #—y ∈ DScope(g)\Scope(f) such that g( #—x . #—y ) = ⊤.
Given two L representations ϕ and ψ, x⃗ is a model (or “solution”) of ϕ iff it is a model of fL

ϕ,
x⃗ is then said to be consistent with f . ψ is said to be a consequence of ϕ (denoted ϕ |= ψ) iff
any model of ϕ can be extended to a model of ψ (i.e. fL

ϕ |= fL
ψ).

For any function f from (a subset of) X to V and any partition (Y,Z) of Scope(f), ∃Z.f
is the function on Y which maps y⃗ to ⊤ iff there exist a z⃗ such that f(y⃗.z⃗) = ⊤. ∃Z.f is the
projection of f on X \ Z. Finally, f ∧ g denotes the conjunction of f and g: (f ∧ g)(x⃗) = ⊤
iff f(x⃗) = ⊤ and g(x⃗) = ⊤; and f ∨ g denotes their disjunction: (f ∨ g)(x⃗) = ⊤ iff f(x⃗) = ⊤
or g(x⃗) = ⊤.
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2.2 CSPs
A CSP formula is a set ϕ = {f1, . . . , f|ϕ|} of functions fi (also called “constraints”) mapping
assignments of subsets of X to {⊤,⊥}. For any #—x in DScope(fi), fi( #—x ) = ⊤ means that #—x

satisfies the constraint. A model (a solution) of the CSP is an assignment of X satisfying all
the constraints – ϕ is a representation of the function fCSP (ϕ) =

∧
fi∈ϕ fi. No assumption

is made on the way constraints are represented – it is simply assumed that fi( #—x ) can be
computed quickly (generally, in linear or constant time).

2.3 Propositional Logic, CNFs
Given a set of Boolean variables X , a literal over X is either a variable of X or the negation of
a variable of X . Well formed logical formulae are defined as usual using the logical connectors
¬, ∨, ∧. For any well formed formula ϕ, fPROPϕ obeys the classical semantic. For instance a
clause is a disjunction cli = l1∨· · ·∨ l|cli| of literals; Scope(cli) is the set of variables on which
the literals of cli bear; the semantics of cli is the Boolean function fClausecli

from DScope(cli)
to {⊤,⊥} defined by fPROPcli

( #—x ) = ⊤ iff #—x maps value ⊤ to at least one positive literal of ϕ
or value ⊥ to at least one negative literal of ϕ. Likewise, a CNF over X is a conjunction
ϕ = cl1 ∧ · · · ∧ cl|ϕ| of clauses; then Scope(ϕ) =

⋃
cli∈ϕ Scope(cli) and ϕ is a representation

of the function fCNF (ϕ) =
∧
cli∈ϕ f

Clause
cli

– it is satisfied iff all the clauses of ϕ are satisfied.

2.4 Decision diagrams
A decision diagram (DD) is a directed acyclic graph with a single root node denoted root(ϕ)
and two leaf nodes labelled with ⊤ and ⊥ respectively. Non-leaf nodes can be of two kinds,
“AND” nodes and decision nodes.

Decision nodes are labelled with variables of X ; if v is a decision node labelled with
x ∈ X , then v has as many children w as there are values in Dx, and the edges (v, w)
are univocally labelled with the values in Dx. We write a = label(v, w) to indicate that
edge (v, w) is labelled with value a. For every a ∈ Dx, next(v, a) will denote the child of
v selected by value a, i.e. next(v, a) = w iff edge (v, w) is labelled with value a. next(v)
denotes the set of children of v.
The paths of the DD are often assumed to satisfy the read-once property: no path from
the root to the ⊤ leaf node contains a given variable label more than once.
“AND” nodes are labelled with ∧. An AND node v can have any number of children, and
if w is one of them then the edge (v, w) is not labelled;

The scope of a decision diagram is naturally defined as the set of variables that label its
decision nodes.

The interpretation function of decision diagrams is defined as follows. Let v be the root
node of ϕ. If ϕ contains only one node (v is aleaf), it is necessarily labelled with a constant
c ∈ {⊤,⊥}; then fDDϕ ( #—x ) = c. If v is an AND node, then fDDϕ ( #—x ) =

∧
v′∈next(v) f

DD
ϕ(v′)(

#—x ).
If v is a decision node with label xi, then fDDϕ ( #—x ) = fDDnext(v,a)(

#—x ) where a is the value
assigned to xi by #—x .

A decision diagram is in reduced form iff all isomorphic subgraphs are merged. The
reduction of a decision diagram can always be performed in linear time. We assume in the
following that the decision diagrams are in reduced form. Several valuable categories of
decision diagrams have been identified:

CP 2022
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x1

x2

x2

x3

x3

x4

x4

x5 ⊤

Figure 1 An OBDD equivalent to the logical formula ϕ =
[
(x1∧x3)∨(¬x1∧((x2∧x3)∨(¬x2∧

¬x3∧¬x4)))
]
∧¬x5; dashed edges are implicitly labelled with value 0, plain edges with value 1.

A MDDG is a decision diagram the AND nodes of which are decomposable, meaning that
if w and w′ are two distinct children of AND node v, then the two sets of variables that
appear in the two decision diagrams rooted at w and w′ respectively must be disjoint.
Let < be total order on X . A DD is ordered by < iff for any pair (v, v′) of decision
nodes in ϕ, if v′ can be reached from v, then label(v) < label(v′) (on a path, the nodes
are encountered according to <) – as a consequence the DD does not contain any AND
node. Such graphs are called Ordered Multivalued Decision Diagrams (OMDD). They
constitute a generalization of well-known Ordered Binary Decision Diagrams (OBDD),
and allow Boolean functions of discrete variables, instead of Boolean variables only.

In the “logical” definition of OMDDs given above, there are two sink nodes labelled
with ⊤ and ⊥, and every node has an outgoing edge for every value of the domain of the
variable that labels the node; but when implementing OMDDs, and when drawing them, it
is sufficient to implement / draw only the paths that lead to ⊤ – every “dead-end” then
corresponds to a path to ⊥; the sink node labelled ⊥ is implicit. We adopt this convention
for OMDDs throughout. This means that for every node v, if next(v) ̸= ∅ then v has ⊤
as one of its descendants; if there is no node next(v, a) for a value a in the domain of the
variable labeling v, this is equivalent to having next(v, a) = ⊥.

▶ Example 2. Figure 1 depicts an OBDD over X = {x1, x2, x3, x4, x5} that is equivalent to
the following formula of propositional logic:

ϕ =
[
(x1∧x3)∨(¬x1∧((x2∧x3)∨(¬x2∧¬x3∧¬x4)))

]
∧¬x5

2.5 Operations
In the following, we will use several basic operations on formulae. Let ϕ and ψ be two
representations in a language L.

CD: The conditioning of ϕ by the assignment z = a of variable z computes a L representation
of f(x⃗) = fL

ϕ(x⃗.a)
FO: the forgetting of a set of variables X ⊆ X in ϕ computes a L representation of ∃x⃗.fLϕ∧

BC: the conjunction of two L representations ϕ and ψ computes a L representation of the
function fLϕ ∧ fLψ∨

BC: the disjunction of two L representations ϕ and ψ computes a L representation of the
function fLϕ ∨ fLψ

GIC: A value a ∈ Dx is Globally Inversely Consistent for some L representation ϕ if there
exist at least an assignment x⃗ for which the value of x is a and fϕ(x⃗) = ⊤. Ensuring
Global Inverse Consistency of a formula consists in computing, for each variable, the set
of all its globally inversely consistent values.
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Operations CD and GIC are particularly useful in the domain of interactive product
configuration, where ϕ represent a configurable product (each model is a feasible product):
at each step, the user chooses a variable and the system then computes the set of its
globally consistent values. The user then chooses one of these values and the corresponding
conditioning is performed.

These two operations can be performed in linear time on decision diagrams – hence
their attractiveness as a target language for compilation. Moreover, the forgetting, bounded
conjunction and bounded disjunction are tractable when considering OMDD (O(|ϕ|) for the
former, O(|ϕ| × |ψ|) for the latter two).

2.6 Compilation of CSP/CNF into OMDD/OBDDs
Knowledge compilation aims at translating a formula ϕ expressed in some language into
a language in which operations which are important for the application targeted can be
performed efficiently – of course, there is no free lunch: there may exist some instances for
which this process in not tractable.

In this paper, we consider the compilation of Constraint Satisfaction Problems (resp.
CNF) into Ordered Multivalued (resp. Boolean) Decision Diagrams. Several compilers exist
in this context, that preserve the set of models of the original representation; that is, if ϕ is
the CSP representation of a problem, and ψ the Decision Diagram representation computed,
any model of ϕ is a model of ψ and reciprocally.

Existing compilers are either top-down compilers or bottom-up compilers. Roughly, top-
down compilers [18, 7, 27, 20, 24] perform a backtrack search of the models, adding the (set
of) models reached to the current compiled form. These compilers make use of a SAT or
CSP solver.

On the other hand, bottom-up compilers [28, 10, 5] start by separately compiling the
constraints of the CSP representation, using a common order of the variables; the conjunction
of these compiled constraints is then computed, using the Apply∧ algorithm [3]. Each bounded
conjunction is realized in polytime – the resulting form can be smaller than the former one,
but it may also grow (polynomially) at each step. There is thus a risk of explosion when the
number of conjunctions is not limited.

3 Nucleus-Satellites System of OMDD

The overall approach that we propose in this paper consists in reducing the size of one OMDD
ϕ by extracting the information about some variable y. This information is represented in
another formula ϕy, and y is deleted from ϕ (ϕ becomes ∃yϕ). This can induce a direct and
moderate gain on the depth of the OMDD, and an indirect and bigger gain in the width of
the structure. In many cases, repeated applications of this process can significantly reduce
the size of the overall structure, if the information about the variables deleted from the
original OMDD depends on a limited number of variables (in which case, ϕy will be small).
ϕy is called a satellite and the reduced OMDD is a nucleus of the formula. This is illustrated
on Figure 2.

Formally, we propose a new language, which we call Nucleus-Satellites System of OMDDs:

3.1 Definition
▶ Definition 3. A Nucleus-Satellites System (NSS) of OMDDs is a triple Φ = (ϕn, Yϕ,
{(y, ϕy) | y ∈ Yϕ}) where Yϕ is a set of variables, ϕn and the ϕy’s are OMDDs on subsets of
X , such that:

CP 2022
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Figure 2 From an OMDD ϕ to a Nucleus-Satellites System.

1. ϕn does not involve any of the y’s in Yϕ and each y ∈ Yϕ appears only in ϕy (∀y ∈ Yϕ,
y /∈ Scope(ϕn) and ∀y′ ̸= y ∈ Yϕ, y′ /∈ Scope(ϕy);

2. ϕn and the ϕy’s obey the same order on X \ {y} and y labels the root of ϕy;
3. for any model x⃗ of ϕn, there exists an assignment y⃗ of the y’s such that x⃗.y⃗ is a model of

each ϕy.

ϕn is called the nucleus of the system, and the ϕy’s are its satellites.
A satellite system represents the conjunction of all its element, i.e. for any x⃗ ∈ DX\Yϕ

and any y⃗ = y⃗1. . . . .y⃗m ∈ DYϕ
:

fNSSϕ (x⃗.y⃗) = fOMDD
ϕn

(x⃗) ∧ fOMDD
ϕ1

(x⃗.y⃗1) ∧ · · · ∧ fOMDD
ϕm

(x⃗.y⃗m)
Scope(Φ) = Scope(ϕn) ∪ (

⋃
y∈Yϕ

Scope(ϕy))
size(Φ) = size(ϕ) + Σyi∈Yϕ

size(ϕyi
).

A satellite system can be viewed as a tree of OMDDs [9] of depth 1 where each edge
ϕyi

uniquely defines the value of a variable yi (not present in the nucleus nor in the other
satellites).

Given some input L representation ϕ, we want to compute a Nucleus-Satellites System
Φ = (ϕn, Yϕ, {(y, ϕy) | y ∈ Yϕ}) that is much smaller than ϕ but equivalent to it: that is, we
want that fLϕ ≡ fNSSΦ . As we shall see shortly:

Yϕ will be a set of variables such that ∃Yϕ.ϕ is easy to compute;
ϕn ≡ ∃Yϕ.ϕ;
for each y ∈ Yϕ, ϕy retains enough information about y in order to be able to answer
some queries of interest.

Because ϕ and the ϕy’s are OMDDs, the fact that the nucleus ϕn and each satellite ϕy
obey the same variable ordering (condition 2 in Definition 3) guarantees that the conjunction
of these two OMDDs can be performed in quadratic time – this will be important for the
online exploitation of the data structure.

In the next section, we describe a method for computing an NSS that is equivalent to,
and hopefully much smaller than, an initial OMDD.

3.2 Computing a satellite system
We first show how it is possible to easily recognise, in an OMDD ϕ, some variables that will
turn out to be easily forget from ϕ, and are therefore good candidates to be in the satellites.

▶ Definition 4. A node v in an OMDD ϕ is passive iff it has at most one child different
from ⊥. Variable y is passive in ϕ iff each node labelled with y is passive.
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Algorithm 1 Satellisation.

Input: OMDD ϕ;
Output: satellite system equivalent to ϕ
1. Yϕ = ∅; XN = ∅;
2. for all y ∈ X :

a. if y is passive in ϕ: add y to Yϕ;
b. else: add y to XN ;

3. for all y ∈ Yϕ:
a. compute weak definition ϕy of y in ϕ

b. compute a representation of ∃y.ϕ
c. ϕ← ∃y.ϕ

4. return((ϕ, Yϕ, {(y, ϕy) | y ∈ Yϕ}))

In other words, node v labelled by y is passive iff for every pair a, b ∈ Dy, if next(v, a) ̸= ⊥
and next(v, b) ̸= ⊥, then next(v, a) = next(v, b). For instance, x3 and x4 are passive in the
OMDD of Figure 1.

The set of passive variables in a given OMDD ϕ can be computed with a single traversal
of ϕ (simply checking, for each variable y whether all the nodes labelled by y have at most
one child different from ⊥).

▶ Proposition 5. If y is a passive variable of an OMDD ϕ, an OMDD ψ that represents
∃y.fϕ can be computed in linear time and size(ψ) ≤ size(ϕ).

Proof. Let us apply the classical algorithm processing the forgetting of one variable. When
forgetting a node labelled by some y, this algorithm performs the disjunction (by a pass of
the Apply∨ algorithm on all the children of this node, except on the ⊥ node).

By definition if y is passive each node v labelled by y has at most two children: ⊥ and
another node u. So there is no need to perform the apply∨ stage and node v is directly
replaced by node u (all the edges pointing at v now point at u).

So, ϕ can be transformed into a representation of ∃y.fϕ by replacing every node m labelled
with y, by its unique child different from ⊥. ◀

So we have a way to identify variables that can be easily forgotten in an OMDD of interest.
Our next step is to provide a way to retain enough information about such a variable y , in
another, hopefully small, OMDD, in order to be able to reason about y.

▶ Definition 6. Given a formula ϕ of some representation language L over X , and some
variable y ∈ Scope(ϕ), a L formula ϕy over some subset Z ⊆ X \ {y} weakly defines 1 y in ϕ

iff fL
ϕ = (∃y.fL

ϕ) ∧ fL
ϕy

.

We are now ready to describe the computation of the Nucleus-Satellites System that
correspond to some input formula ϕ. It is formalized in Algorithm 1. The set of passive
variables of the input OMDD ϕ is computed at step 2. Then, at step 3, for every passive
variable y, a weak definition ϕy for y in ϕ is computed with Algorithm 2, described below; y
is then forgotten in ϕ.

1 As we shall see in section 5, this notion is close to the notion of definability as it has been studied in
propositional logic.

CP 2022
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Note that at the end of Algorithm 1 the main OMDD ϕ only bears on the variables in
X \ Yϕ, since all variables in Yϕ have been forgotten in ϕ. The succession of forgetting at
step 3b of this algorithm never increases the size of the nucleus (Proposition 5), and can
significantly reduce the size of ϕ: the height of ϕ is lowered by 1 every time a variable is
forgotten; and the recovery of a reduced form (the fusion of isomorphic nodes) that follows
can lower its breadth.

After Algorithm 1 has been executed on some OMDD , the “satellite” variables – i.e.
those in Yϕ – do not appear in the nucleus anymore. Moreover, it can easily be checked that
if y, y′ are two satellite variables, then y′ does not appear in ϕy: either y′ is below y in the
variable ordering (and will thus not appear in the satellite) or the value of y is independent
of that of y′ (because y′ is passive): it will never appear in the y satellite.

We now turn to the computation of the satellites. The main idea is that when a small set
Z of variables defines some y in ϕ, ϕy should be small. Importantly the size of ϕy is bounded
by |Dy| · size(ϕ), because, as we shall see below, ϕy is a disjunction of |Dy| formulas, each of
which being no larger than ϕ.

The main loop of Algorithm 2, at step 2, iterates over all values a ∈ Dy: it computes
the part of a weak definition of y in ϕ that pertains to value a. For every value a ∈ Dy, ϕ
is simplified so as to retain just enough information to decide when an instantiation of the
variables in ϕn is consistent with y = a. A fresh copy of ϕ is made at step 2a. Non-sink nodes
below y-nodes are bypassed at step 2b, since they do not influence the consistency of value a
for y. Then the ancestors of y nodes, and that are not relevant w.r.t. y and a, are bypassed
at step 2c; they are called undecisive, see definition 7 below, their parents are redirected to
one of their children (function redirect); finally y nodes are bypassed at steps 2d and 2e.

▶ Definition 7. Given an OMDD ϕ over X , given y ∈ X and a ∈ Dy, we say that a node v
of ϕ is undecisive w.r.t. variable y ∈ X and a ∈ Dy in ϕ if v is not labelled with y and:
1. |next(v)| = 1; or
2. for all w ∈ next(v), w is labelled with y and next(w, a) ̸= ⊥; or
3. for all w ∈ next(v), w is labelled with y and next(w, a) = ⊥.

▶ Example 8. Figure 3 describes the computation of a satellite system for the OBDD of
Figure 1, with Yϕ = {x3, x4}. Figure 3a describes in details step 2 for y = x4, a = 1: at
step 2b, the plain edge x4 x5 is redirected to ⊤ ; at step 2c, there are 3 passive nodes :
the two nodes labelled x3, and the one labelled x2 on the bottom path, they are bypassed ;
finally, at steps 2e and 2d, we bypass variable x4, keeping only the paths that go through
an edge where x4 = 1. Note that x5 is passive too: the “bottom” variable of an OMDD is
always passive, according to our definition. However, in practice, all variables do not have to
be “sent into orbit”, passive variables disappear from the satellites anyway.

▶ Proposition 9. Given some OMDD ϕ over X , y ∈ X passive in ϕ, let ψy be the OMDD
returned by Algorithm 2 when called with ϕ, y.Then fϕ = (∃y.fϕ) ∧ fψy

.

The proof of the proposition is based on the following lemma. Its proof is in the appendix,
and shows that equation (I) below is an invariant of the main loop in Algorithm 2.

▶ Lemma 10. Given OMDD ϕ, y passive in ϕ, a ∈ Dy, if ψa is the OMDD computed at
steps 2a to 2e in Algorithm 2 then

ϕ ∧ (y = a) |= ψa and ψa ∧ (y = a) ∧ ∃y.ϕ |= ϕ (I)
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Algorithm 2 Computation of a weak definition.

Input : OMDD ϕ; y passive in ϕ and s.t. every path from root to ⊤ has a y-node;
Output : OMDD ψ s.t. ϕ ∧ (y = a) |= ψ and ψ ∧ (y = a) ∧ ∃y.ϕ |= ϕ.
1. ϕy ← ⊥;
2. for every a ∈ Dy do:

a. ψa ← a fresh copy of ϕ; // nodes below y = a edges are bypassed
b. for every node v labelled with y, if next(v, a) ̸= ⊥: next(v, a)← ⊤;
c. while there is some undecisive node w.r.t. y, a in ψa do:
//nodes not “relevan” w.r.t. which models are possible when y = a are bypassed;

i. v ← a node of ψa undecisive w.r.t. y, a;
ii. w ← some node ∈ next(v);
iii. redirect(v, w);

//y nodes are bypassed, keeping only information pertaining to value a
d. for every node v labelled with y s.t. next(v, a) = ⊤: redirect(v,⊤);
e. for every node v labelled with y s.t. next(v, a) = ⊥: redirect(v,⊥);
f. delete from ψa every node that is not accessible from the root anymore;
g. ϕy ← ϕy ∨ (y = a ∧ ψa); //compute disjunction of diagrams computed for all y values

3. return ϕy.
Uses function redirect(v, w): for every u, b such that next(u, b) = v: next(u, b)← w.

Proof of the proposition. Let ψy =
∨
a∈Dy

(y = a∧ψa). We must prove that ϕ |= ψy and
that ψy∧(∃y.ϕ) |= ϕ. Consider some assignment x⃗ of X , and let a be the value assigned to y
in x⃗. We know, from lemma 10, that ϕ∧(y = a) |= ψa and ψa∧(y = a)∧∃y.ϕ |= ϕ.

Suppose first that fϕ(x⃗) =⊤: ϕ∧(y = a) |= ψa, fψa(x⃗) =⊤, thus fψy (x⃗) =⊤. For the
converse, suppose that fψy

(x⃗) = f∃y.ϕ(x⃗) =⊤. Then fy=a′(x⃗) =⊥ for every a′ ∈Dy with
a′ ̸= a, thus it must be the case that fψa

(x⃗) =⊤, hence, because of equation (I), fϕ(x⃗) =⊤. ◀

In practice, making a fresh copy of the main OMDD ϕ at step 2a of Algorithm 2 is
not efficient (nodes are created in the unique tables that will be destroyed immediately).
Our implementation, used for the experiments described in Section 4, starts from an empty
OMDD for ϕa, performs a bottom-up traversal of ϕ, starting at the y nodes, and adds decisive
nodes (the ones that are not undecisive) to ϕa as they are encountered. Decisive nodes are
recognised with some colouring scheme applied during this bottom-up traversal of ϕ.

3.3 Conditioning and maintaining GIC of an NSS of OMDDs
The application we target, interactive product configuration, mainly relies on two operations,
the conditioning of one variable by the user and the maintaining of the global inverse
consistency (GIC): if ϕ represents the current set of possible products, and if value a is chosen
by the user for some currently unassigned variable y, then some representation of ϕ∧ (y = a)
must be computed that satisfies global inverse consistency (so that the user cannot choose,
for the next assignment, a value that cannot lead to a feasible product). In the case of partial
conditioning, the set of admissible values for y is restricted to, say, {a1, . . . , ak}, and some
representation of ϕ ∧ (y = a1 ∨ . . . ∨ y = ak) must be computed and GIC restored.

By definition the GIC property holds for OMDDs. When constructing an OMDD, or when
applying some transformation on it (

∧
BC, CD, etc), GIC is ensured during the reduction

phase, by suppressing inconsistent values from the domains of their respective variables.

CP 2022
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2b: x5 bypassed on the x4 = 1 path

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2c: x3 nodes are undecisive ⇒ bypassed

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2c: x2 on the x1 = 1 branch is undecisive

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2d,2e: x4 nodes are bypassed,
keeping only paths with x4 = 1

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

(a) Step by step exec. of step 2 for x4 = 1.

After 2f:
for x4 = 1: for x4 = 0:

x1
x2

⊤ ⊤

⇒ satellite for x4:

x4

x1

x2 ⊤

After 2f:
for x3 = 1: for x3 = 0:
x1 x2

⊤ x1 x2 ⊤

⇒ satellite for x3:

x3

x1 x2

⊤

x1 x2

Nucleaus, after forgetting x4, then x3,
then reducing:

x1 x2 x5 ⊤

(b) Satellites for x3, x4 and nucleus.

Figure 3 Execution of Algorithm 2 on the OBDD of figure 1, with Yϕ = {x3, x4}.

A satellite system (ϕ, Yϕ, {(y, ϕy)|y ∈ Yϕ}) returned by Algorithm 1 has the GIC property,
because it is logically equivalent to the input OMDD, which has the GIC property, and no
new value has been introduced for any variable during satellisation.

Now, consider a satellite system that satisfies GIC, and a variable y on which a conditioning
(possibly partial) must be performed :

if y ∈ Yϕ: conditioning is first performed on the satellite ϕy; then a new nucleus must be
computed which is a representation of ϕn ∧ ϕy.
if y /∈ Yϕ: conditioning is only performed on the nucleus ϕn.

In both cases, the nucleus has been modified, so GIC may then be lost for the satellite
variables; in order to restore it, one can perform a “blank” computation of ϕy ∧ ϕn for each
ϕy (where ϕn is now the conditioned nucleus), without returning a new OMDD but just to
check which values of y are not “GIC” anymore, in order to remove them from ϕy.

Now, recall that the computation of the conjunction of two OMDDs takes time at most
quadratic in their size [3, 8]. As a consequence, the worst-time complexity of the conditioning
of a satellite system is not linear in its size but quadratic. However, if the satellisation
significantly reduces the size of the nucleus and leads to small satellites, then the effective
time taken to perform conditioning is reduced too. Furthermore, recall that the size of a
nucleus is necessarily smaller than the one of the OMDD equivalent to the full NSS. So the
conjunction of a nucleus and a satellite leads to a new nucleus, and the maximal space taken
by the conjunction of the original nucleus and the satellite cannot be higher than the one of
the OMDD obtained if no satellisation were to be performed. This is because the nucleus is
identical to the original OMDD except for the nodes corresponding to the satellites variables,
that are passive in the original OMDD and can be forgotten by just by-passing them; the
satellites are also obtained by bypassing irrelevant nodes.
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Table 1 Configuration benchmarks – size (number of nodes) of the OMDD, nucleus-satellites
system of OMDD and MDDG representation of the configuration instances. Column “Biggest”
provide the maximal size reached during compilation process.

CSP OMDD nucleus-satellites system of OMDD MDDG
final biggest time Nucleus Satellites sum biggest time size

Small 321 328 0.05s 13 58 71 73 0.04s 22
Medium 829 941 0.6s 81 118 199 299 0.5s 64
Big 13,916 14,312 10s 1,475 220 1,695 1,723 8s 2,552
Master 41,190 42,343 13s 2,495 397 2,892 4,601 10s 4,129
Megane 146,295 150,506 18s 1,576 753 2,329 5,002 4s 10,922

4 Experimental results

In order to evaluate the efficiency of the approach, we have implemented a bottom-up OMDD
compiler and an NSS bottom-up compiler which computes directly a nucleus-satellites system
from a CSP given as input. The passive variables are detected on the fly, as early as possible
during the compilation process, that is to say, as soon as they do not appear in any remaining
uncompiled constraint. This method reduces the size of the maximal memory needed (recall
that in a bottom-up approach, the size of the current data structure may increase and
decrease with the addition of new constraints) – and as a side effect, the compilation time.
This method leads to the same final NSS as the naive one (building the full OMDD first and
satellizing the passive variables in a second step). Only the compilation time and maximal
memory occupation may differ.

The following experiments are based on two families of benchmarks, configuration bench-
marks2, one the one hand, and diagnosis benchmarks3, on the other hand. More precisely,
we have compiled each instance (i) as an NSS and (ii) as an OMDD, and we have measured
the sizes in terms of number of nodes, as this number is representative of the size of the
diagram. We also measured the CPU time used by each compilation. Each instance has also
be given to the CN2MDDG top-down compiler [18, 21] as a base line for the evaluation in
terms of size spatial evaluation of the compiled form. Compilation times with CN2MDDG
seem irrelevant here (different programming language C++ vs Java, valued vs non valued
compilation, different programmers...) The experiments were performed on an Intel(R)
Core(TM) i5-8265U CPU 1.60GHz 1.80 GHz, with 32Go of RAM.

4.1 Product configuration benchmarks

Product configuration benchmarks are CSPs representing real products (car) provided by
the french car manufacturer Renault.

Table 1 gives the results on configuration instances: it shows a good spatial efficiency of
nucleus-satellites systems. The bigger the problem gets, the more efficient they seem to be
compared to OMDD. For example the size is divided by 5 on smaller instances and by 50 on
bigger ones. This reduction in size makes it competitive with the MDDG language and even
smaller on some benchmarks.

2 https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
3 http://www.cril.univ-artois.fr/KC/benchmarks/cnf/circuit.tgz
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Table 2 Diagnosis benchmarks – size (number of nodes) of the OMDD, nucleus-satellites system
of OMDD and MDDG representation of the configuration instances. Column “biggest” provides the
maximal size reached during compilation process.

CNF OMDD nucleus-satellites system of OMDD MDDG
final biggest time nucleus satellites sum biggest time size

s344 197,284 293,972 59s 3,838 1,620 5,458 168,611 33s 215
s400 23,014 70,830 13s 1,340 2,341 3,681 40,235 9s 429
s444 20,485 27,081 5s 1,969 1,885 3,854 17,666 3s 325
s420 35,900 1,040,643 155s 5,697 1,653 7,350 348,317 78s 316
c499 2,117,382 2,117,382 101s 62,746 56,749 119,495 167,674 52s 23,424,571
s938 Memory out >3,000,000 3,668 6,617 10,285 237,570 182s 669

4.2 Diagnosis benchmarks
As to diagnosis benchmarks (see Table 2), the NSS approach leads to a huge gain in time and
space (one order of magnitude) with respect to the pure OMDD approach. Moreover, the
NSS compiler makes it possible to compile a benchmark that cannot be compiled under the
OMDD form (out of memory) – it should be noticed that the NSS representation obtained
on this instance is much smaller (several orders of magnitude) than the OMDD built when
the OMDD compiler ran out of memory.

4.3 Exploitation of the compiled form
Finally, since the goal of compilation is to be able to perform some operations on the compiled
form, the present section compares the performances of OMDD and nucleus-satellites systems
on a protocol of product configuration [2]. Namely, the compiled form is submitted to
a sequence of succession of variable conditioning, each followed by a GIC closure. Each
conditioning represents a choice made by a user on the product : at each step, the user
chooses whichever variable and assigns a value to this variable. For each variable, the GIC
closure then suppresses every non-consistent value of its domain. Since this kind of operation
is done online by a user, a quick answer is necessary.

For the experiment4, at every step, variables were chosen randomly among variables
that still have at least 2 consistent values. Time differences between various sequences of
user choices where very small. We experimented with the configuration protocol on all car
instances, and obtained similar results in terms of comparison between OMDDs and NSSs.
The results reported in Figure 4 for the “big” instance show that despite the necessity of
additional computations induced by nucleus-satellites representation when processing a CD
operation, there is a global gain in CPU time. The reduction in size obtained by the use of
an NSS largely compensates the additional processing.

Note that our compiler can handle partial conditioning. We ran experiments on this
point, and did not notice sizeable difference in the response time.

5 Related work

The idea of extracting, from some initial formula ϕ, information about a particular y has
been studied in propositional logic with the notions of functional dependency [14, 15, 16]
and definability [22]. Definability has recently been used by [19] to facilitate model counting
in propositional logic.

4 We did not experiment the configuration protocol with MDDGs since CN2MDDG is not a solver.
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Figure 4 Processing time (in ms) at each iteration (conditioning + GIC closure) during a product
configuration protocol (on 1000 tries) with the instance “big”, compiled as an OMDD (in yellow) or
as an nucleus-satellites system (in blue).

▶ Definition 11 ([22]). Let ϕ be a formula of propositional logic, Z ⊆ X , y ∈ X \ Z, then ϕ

(explicitly) defines5 y in terms of Z if and only if there is a formula ψ of propositional logic
with Scope(ψ) ⊆ Z such that ϕ |= ψ ↔ y. ψ is then called a definition of y on Z in ϕ.

The following result shows that definability in the sense of [22] is a sufficient condition to
build a Nucleus-Satellites System.

▶ Proposition 12. If ϕ is a propositional formula on X , and if ψ is a definition of y on Z

in ϕ, then ϕ ≡ ∃y.ϕ ∧ (y ↔ ψ).

Proof. It is well-known that ϕ |= ∃V.ϕ for any set of variables V , thus ϕ |= ∃y.ϕ. And
ϕ |= y ↔ ψ by definition of a “definition”. Suppose now that m |= ∃y.ϕ ∧ y ↔ ψ. Let
m′ be the interpretation identical to m except that m′ |= ¬y if and only if m |= y. Since
m |= y ↔ ψ, m |= y if and only if m |= ψ, if and only if m′ |= ψ since m and m′ give the same
interpretation to all variables that appear in ψ. Thus m′ |= ¬y iff m′ |= ψ, or, equivalently,
m′ |= ¬y ↔ ψ, or, equivalently, m′ |= ¬(y ↔ ψ). But by assumption ϕ |= y ↔ ψ, thus
m′ |= ¬ϕ. But, since m |= ∃y.ϕ, it must be the case that m |= ϕ or m′ |= ϕ. Thus m |= ϕ. ◀

However, definability, as studied in propositional logic, is not guaranteed; whereas it is
always possible to extract enough information about a variable from a given formula in order
to “satellize” it. The next example illustrates this.

▶ Example 13. Consider the propositional logic formula ϕ of Example 2:

ϕ =
[
(x1 ∧ x3) ∨ (¬x1 ∧ ((x2 ∧ x3) ∨ (¬x2 ∧ ¬x3 ∧ ¬x4)))

]
∧ ¬x5

Considering the OBDD of Figure 1 equivalent to ϕ, it is easy to check that x4 is not definable
in the sense of [22] in ϕ: when x1 = false and x2 = true, x4 can be true but can also be false.

On the other hand, consider the formulas ϕy = (x4 → (x1 ∨ x2)) ∧ (¬x4 → ⊤) and
ψ =

[
(x1 ∧x3)∨ (¬x1 ∧ ((x2 ∧x3)∨ (¬x2 ∧¬x3)))

]
∧¬x5. It is easy to check that ϕ ≡ ϕy ∧ψ.

[29] propose a similar approach, called macro extraction and expansion, for optimising
the size of BDDs used for symbolic model checking. Their experimental results also indicate
important gains when using this optimisation.

5 [22] also introduce a notion of implicit definability, but they prove that, because of the projective Beth’s
theorem, both notions are equivalent in proposition logic.
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6 Conclusion

This paper has proposed a method that allows to detect, on an OMDD, a set of variables
that can be defined apart in several satellites, according to another common set of variables
called the nucleus. We experimentally observe that it can lead to huge reductions of size and
allows the compilation of benchmarks that could not be compiled as classical OMDDs.

Nucleus-satellites systems have to be studied further. First, satellites could also define
a variable only partially (for example define and forget only passive nodes of a variable,
and keep active nodes in the nucleus; the satellite would only be used when the variable
is missing on path). A satellite could also represent a group of variables. With additional
online computing, satellites could use variables defined in an other satellite to define a new
variable, and create a satellite of “higher degree”.

Finally, the approach can directly apply to any sub-languages of the d-DNNF family
for which the operation of bounded conjunction is tractable under some conditions, e.g.
structured d-DNNFs [25] or Sentential Decision Diagrams [6] – this is possible when (i) the
order is computed on the basis on the original CSP and (ii) the operations targeted (here, the
conditioning) do not modify the constraint graph. The question of the efficiency of satellite
system based on other languages – and in particular of satellite systems of MDDG – is less
easy to address; the question of the on line conditioning indeed becomes more tricky, although
such structures can be easily defined and satellisation algorithms could be developed (the
definition remain quasi unchanged and the notion of passive variable still applies).
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A Appendix: Proof of the main lemma

▶ Lemma 10. Given OMDD ϕ, y passive in ϕ, a ∈Dy, if ψa is the OMDD computed at
steps 2a to 2e in Algorithm 2 then

ϕ∧(y = a) |= ψa and ψa∧(y = a)∧∃y.ϕ |= ϕ (I)

We will show that equation (I) is an invariant of the loop main loop of the algorithm, at
step 2. For x⃗ ∈DX , variable z and b ∈Dz, we write x⃗[z] = b when x⃗ assigns value b to z.

CP 2022

http://arxiv.org/abs/0704.1394
https://doi.org/10.1007/3-540-48683-6_29


23:16 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Step 2a: That (I) holds just after ψ has been created is trivial, since at that point ψ = ϕ.

For the remainder of the proof, we define three predicates, for OMDD ψ and x⃗ ∈DX
(w.r.t. some fixed OMDD ϕ):
I1(ψ,x⃗) is true iff x⃗[y] ̸= a or fϕ(x⃗) =⊥ or fψ(x⃗) =⊤;
I2(ψ,x⃗) is true iff x⃗[y] ̸= a or fψ(x⃗) =⊥ or ∃y.fϕ(x⃗) =⊥ or fϕ(x⃗) =⊤.
I3(ψ,x⃗) is true iff x⃗[y] ̸= a or ∃y.fϕ(x⃗) =⊥ or ∃y.fψ(x⃗) =⊤.
We will prove that after every transformation that happen at steps 2b, 2c, 2d or 2e, ψ is
such that for every x⃗ ∈DX , I1(ψ,x⃗), I2(ψ,x⃗) and I3(ψ,x⃗) hold; and that I1(ψ,x⃗) and I2(ψ,x⃗)
still hold after steps 2d and 2e.

In the remainder of the proof, x⃗ ∈DX denotes a model such that x⃗[y] = a. We write that
x⃗ “passes through” some node v in some OMDD ψ if the path in that diagram from the
root to either ⊤ or ⊥ that corresponds to the assignments in x⃗ contains v.

Step 2b: Let ψ denote the OMDD that is obtained after step 2a is executed: for every
node v such that label(v) = y and nextϕ(v,a) ̸=⊥, nextψ(v,a) =⊤.

y
v wb

aX ⊤

Suppose that x⃗ passes through such a node v in ϕ. (Otherwise, trivially fψ(x⃗) = fϕ(x⃗)).
Note that x⃗ passes through v in ψ too, since the transformation applied here does not change
the OMDD above y nodes).
I1(ψ,x⃗): by construction, fψ(x⃗) =⊤. (Recall that we assume that x⃗[y] = a.)
I2(ψ,x⃗): if ∃y.fϕ(x⃗) =⊤, there must be some b ∈Dy such that fϕ(x⃗′) =⊤, where x⃗′ is
obtained by replacing with b the value, a, assigned to y in x⃗. But y is passive in ϕ, and
nextϕ(v,a) ̸=⊥, nextϕ(v,b) ̸=⊥, so nextϕ(v,a) = next(v,b) so necessarily fϕ(x⃗) =⊤.
I3(ψ,x⃗): that ∃y.fψ(x⃗) =⊤ follows from the fact that fψ(x⃗) =⊤.

We now turn to the transformations that take place at steps 2c. ψ will denote the current
OMDD that is being built before such a transformation takes place, and ψ′ will denote the
OMDD just after the transformation has been applied. At every iteration of step 2c, an
undecisive node v of ψ is picked, a child w ∈ next(v) is picked, and for every parent u of v in
ψ labelled with variable z, for every b ∈Dz such that nextψ(u,b) = v, nextψ′(u,b) = w. We
must prove that for every x⃗ ∈DX that passes through u and v (and thus such that x⃗[z] = b),
if I1(ψ,x⃗), I2(ψ,x⃗) and I3(ψ,x⃗) hold, then I1(ψ′,x⃗), I2(ψ′,x⃗) and I3(ψ′,x⃗) hold too.

Step 2c, undecisive node of type 1: label(v) ̸= y, and |next(v)|= 1.

z
u v

b
X

w
y

v′
x⃗

⊥

⊤
b

a

I1(ψ′,x⃗): if fϕ(x⃗) =⊤, since I1(ψ,x⃗) holds it must be the case that fψ(x⃗) =⊤, so the path
in ψ from w to a leaf that corresponds to x⃗ ends at ⊤, and this path is unchanged in ψ′; so
fψ′(x⃗) =⊤.
I2(ψ′,x⃗): suppose that fψ′(x⃗) =⊤; then the path in ψ′ from w to a leaf that corresponds
to x⃗ ends at ⊤, passing through à node v′ labelled by y. Suppose too that ∃y.fϕ(x⃗) =⊤;
then, since I3(ψ,x⃗) is true, ∃y.fψ(x⃗) =⊤: there is some x⃗′ identical to x⃗ except possibly that
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x⃗′[y] = b for some other b ∈Dy, such that fψ(x⃗′) =⊤. Since y is passive, and Step 2 has
been executed, it implies that nextψ(v′,a) =⊤, and that fψ(x⃗) =⊤. But then, since I2(ψ,x⃗)
holds, it must be the case that fϕ(x⃗) =⊤.
I3(ψ′,x⃗): suppose that ∃y.fϕ(x⃗) =⊤; it implies that ∃y.fψ(x⃗) =⊤, because I3(ψ,x⃗) holds;
but then ∃y.fψ′(x⃗) =⊤ must also be true because ψ′ creates a simple “shortcut” for x⃗.

Step 2c, undecisive node of type 2: v is a node of ψ, whose children, except ⊥ if it is a
child of v, are all y-nodes that are consistent with y = a.

zu

v

b
X

y
w

y ⊥

⊤

a

a

Note that fψ′(x⃗) =⊤.
I1(ψ′,x⃗): fψ′(x⃗) =⊤ is true by construction.
I2(ψ′,x⃗) Suppose that ∃y.fϕ(x⃗) =⊤. Since I3(ψ,x⃗) holds, t cannot be the case that

nextψ(v,a) =⊥ because ∃y.fψ(x⃗) =⊤, so nextψ(v,a) is one of the y node consistent
with y = a, hence fψ(x⃗) =⊤. As a consequence, since I2(ψ,x⃗) holds, fϕ(x⃗) =⊤.

I3(ψ′,x⃗) That ∃y.fψ′(x⃗) =⊤ is a simple consequence of the fact that fψ′(x⃗) =⊤.

Step 2c, undecisive node of type 3: Let v be a node of ψ such that for all w ∈ next(v), w
is labelled with y and next(w,a) =⊥.

zu

z′
v

b
X

y
w

y ⊥a
a

Note that fψ(x⃗) = fψ′(x⃗) =⊥.
I1(ψ′,x⃗): since I1(ψ,x⃗) holds and fψ(x⃗) =⊥, it must be the case that fϕ(x⃗) =⊥.
I2(ψ′,x⃗): holds because fψ′(x⃗) =⊥.
I3(ψ′,x⃗): Let z′ be the variable at v. If nextψ(v,x⃗[z′]) =⊥, then ∃y.fψ(x⃗) =⊥, thus, since
I3(ψ,x⃗), ∃y.fϕ(x⃗) =⊥. Otherwise, nextψ(v,x⃗[z′]) is a y node, and we assume that the input
OMDD is “normalized”, so every node has at least one successor different from ⊥, so w has
a successor ̸=⊥; thus ∃y.fψ′(x⃗) =⊤.

Step 2d: Let v be a node of ψ labelled with y such that next(v,a) =⊤. Let u be a parent
of v in ψ labelled with variable z, let b ∈Dz such that nextψ(u,b) = v, then nextψ′(u,b) =⊤.

u

y
v

b
X

⊤

a

Suppose that x⃗ passes through u and v in ψ (otherwise, trivially fψ(x⃗) = fψ′(x⃗)), so that
x⃗ directly goes from u to ⊤ in ψ′. Note that fψ(x⃗) = fψ′(x⃗) =⊤.
I1(ψ′,x⃗): holds because fψ′(x⃗) =⊤.
I2(ψ′,x⃗): since I2(ψ,x⃗) holds and fψ(x⃗) =⊤, ∃y.fϕ(x⃗) =⊥ or fϕ(x⃗) =⊤.
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Step 2e: Let v be a node of ψ labelled with y such that next(v,a) =⊥. Let u be a parent
of v in ψ labelled with variable z, let b ∈Dz such that nextψ(u,b) = v, then nextψ′(u,b) =⊥.

u

y
v

b
X

⊥

a

Suppose that x⃗ passes through u and v in ψ (otherwise, trivially fψ(x⃗) = fψ′(x⃗)). Note
that fψ(x⃗) = fψ′(x⃗) =⊥.

I1(ψ′,x⃗): since I1(ψ,x⃗) holds and fψ(x⃗) =⊥, it must be the case that fϕ(x⃗) =⊥.
I2(ψ′,x⃗): true because fψ′(x⃗) =⊥.
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