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Abstract

We evaluate the configuration exponents of various ensembles of Hamiltonian paths drawn on random 
planar bicubic maps. These exponents are estimated from the extrapolations of exact enumeration results for 
finite sizes and compared with their theoretical predictions based on the Knizhnik, Polyakov and Zamolod-
chikov (KPZ) relations, as applied to their regular counterpart on the honeycomb lattice. We show that a 
naive use of these relations does not reproduce the measured exponents but that a simple modification in 
their application may possibly correct the observed discrepancy. We show that a similar modification is 
required to reproduce via the KPZ formulas some exactly known exponents for the problem of unweighted 
fully packed loops on random planar bicubic maps.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The aim of this paper is to evaluate a number of exponents characterizing the asymptotic 
enumeration of various configurations of Hamiltonian paths on random planar bicubic maps. 
Recall that a planar map is a connected graph drawn on the two-dimensional (2D) sphere (or 
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Fig. 1. Representation of a (rooted) Hamiltonian cycle on a planar bicubic map as a system of non-crossing arches linking 
black and white vertices whose color alternate along a straight line.

equivalently on the plane) without edge crossings, and considered up to continuous deformations. 
A map is characterized by its vertices and edges, inherited from the underlying graph structure, 
and by its faces which result from the embedding and all have the topology of the disk. The 
map is called bicubic if (i) it is cubic, i.e., all its vertices have degree 3 (i.e., have 3 incident 
half-edges) and (ii) these vertices are colored in black and white so that any two adjacent vertices 
have different colors. A Hamiltonian path is a self-avoiding path along the edges of the map 
which visits all the vertices of the map. If the path is closed, it is called a Hamiltonian cycle.

The problem of Hamiltonian cycles on random bicubic maps was first considered in [1] where 
it was conjectured that its scaling limit corresponds to 2D quantum gravity coupled to a confor-
mal field theory (CFT) with central charge c = −1. In particular, the number zN of configurations 
of planar bicubic maps with 2N vertices endowed with a Hamiltonian cycle and a marked visited 
edge, called the root edge, was predicted in [1] to behave, at large N , as

zN ∼ const.
μ2N

N2−γ
(1)

with an exponential growth rate estimated numerically as Log(μ2) ∼ 2.313 and with the some-
what nontrivial exponent

γ = −1 + √
13

6
. (2)

By cutting the Hamiltonian cycle at the level of its root edge and stretching it into a straight line, 
a configuration may be drawn in the plane as a simple infinite line with 2N alternating black and 
white vertices, completed by non-crossing arches linking each black vertex to a white one, either 
above or below the infinite line, see Fig. 1 for an example. Despite this simple representation, no 
exact expression for zN or its asymptotic equivalent is known so far and the results of [1] remain 
mathematically a conjecture.

In the present paper, we address the question of evaluating a number of other exponents, 
similar to γ and characterizing more involved Hamiltonian path configurations with possible 
valency and/or occupation defects. In our study, we will be led to consider a generalization of the 
Hamiltonian cycle problem to the so-called FPL(n) model on bicubic maps, where FPL stands 
for Fully Packed Loops. Configurations of the FPL(n) model now consist of an arbitrary number 
of loops which are closed paths drawn along the edges of the underlying bicubic map, so that 
loops are both self- and mutually avoiding and each vertex of the map is visited by a loop. Each 
loop receives the weight n, with n a real number between 0 and 2. Three values of n are of 
particular interest: the case n = 2 describes unweighted oriented loops, the case n = 1 that of 
unweighted loops, while taking the limit n → 0 allows us to recover the original Hamiltonian 
cycle problem with a single loop.
2
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A strategy to explore the asymptotics of Hamiltonian cycles, or more generally that of the 
FPL(n) model on random bicubic maps consists in using the general connection which links 2D 
conformal field theories in random geometry to their classical (Euclidean) counterpart via the 
so-called KPZ formulas [2]. These formulas act as a translation tool giving global configuration 
exponents for the random map problem from the value of the associated critical correlation ex-
ponents (also called classical dimensions) in the corresponding regular lattice problem. Note that 
this “KPZ strategy” was carried out successfully in [3] and [4] (see also [5]) to identify various 
configuration exponents for meanders, a related combinatorial problem with now two intertwined 
fully packed loops drawn on random tetravalent planar maps.

The regular infinite bicubic map is nothing but the honeycomb lattice. The FPL(n) model on 
the honeycomb lattice was considered in [6,7] and many exact results were obtained by various 
approaches such as Bethe Ansatz techniques [8] or more heuristic Coulomb Gas (CG) methods 
[9], see also [10]. We can therefore deduce from these results a number of KPZ-induced con-
figuration exponents for the random map problem. In the case n = 0, we can then compare the 
predicted values for these exponents with their numerical estimates obtained from the extrapola-
tion of exact enumeration results for finite N , as was done with success in [1] for the exponent 
γ above. As it will appear, the “naive” KPZ approach, based on a direct application of the KPZ 
formulas, does not lead to satisfactory results for n = 0. Still it seems that the observed mismatch 
with numerical estimates might be corrected if, before applying the KPZ formulas, we slightly 
modify the expression of the critical correlation exponents by a simple extra “normalization” 
procedure involving a single parameter α. As we shall see, a similar α-corrected KPZ procedure 
is required in the case n = 1 when comparing KPZ-induced configuration exponents to exactly 
known results for specific observables.

The paper is organized as follows: Section 2 presents a number of known results for the 
FPL(n) model on the honeycomb lattice: after recalling its Coulomb Gas description in Sec-
tion 2.1, we give the expression for various critical exponents corresponding to vortex-antivortex 
correlations in Section 2.2. Specific examples of these correlations and their meaning in terms 
of loops are discussed in Section 2.3. We then turn in Section 3 to the coupling of the FPL(n)

model to gravity. After discussing in Section 3.1 the specificity of bicubic maps in connection 
with foldable triangulations, we recall in Section 3.2 the general KPZ relations for the coupling 
to gravity of a 2D conformal theory. We also discuss in Section 3.3 the expected limits of both 
the standard O(n) model and the FPL(n) model in terms of Schramm-Loewner Evolution (SLE) 
and Liouville quantum gravity (LQG). We then use in Section 4 an equivalence between the 
FPL(1) model on bicubic maps and a particular instance of the 6-vertex model on tetravalent 
maps to obtain, in the case n = 1, the configuration exponents for a family of vortex-antivortex 
correlations. We note that, quite surprisingly, the direct application of the KPZ formulas does 
not reproduce these results but that the observed discrepancy is easily cured in this case if we 
allow for a slight modification of the classical dimensions before applying the KPZ formulas. 
Our main results are presented in Sections 5 and 6: Section 5 deals with the exact numerical enu-
meration of configurations of Hamiltonian paths on bicubic maps with finite sizes and possible 
defects. After discussing in Section 5.1 our enumeration methods, we present in Section 5.2 our 
enumeration results for various ensembles of configurations with maximal sizes ranging from 
N = 16 up to N = 28. These results are then used in Sections 5.3 and 5.4 respectively to es-
timate the asymptotic exponential growth rate and the configuration exponent for each of the 
configuration ensembles at hand. The comparison with the KPZ predictions is then discussed in 
3
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Fig. 2. Left: an edge 3-coloring configuration of a portion of honeycomb lattice with colors A, B and C. Right: the 
associated configuration of fully packed oriented loops. The B- and C-colored edges form the oriented loops, while the 
A-edges correspond to the unvisited edges. For each representation, we indicated the variation of the 2D height variable 
X when crossing an edge.

Section 6. Again we observe a mismatch with the numerical estimates and we present a tentative 
α-corrected KPZ procedure which seems to resolve this discrepancy. We gather a few remarks 
in Section 7. In particular, we explore the possible meaning of the parameter α. Appendix A
discusses configuration exponents for Hamiltonian paths drawn on (non-necessarily bicolorable) 
planar cubic maps and shows the validity of the naive KPZ approach in this case. Appendix B
presents the complete list of our exact enumeration results for the various Hamiltonian path con-
figurations on bicubic maps that we have studied.

2. Coulomb Gas description of the FPL(n) model on the honeycomb lattice

2.1. General theory

Following [9], we start with the description of the FPL(2) model on the honeycomb lattice 
which, as discussed above, corresponds to configurations of fully packed oriented loops. As 
displayed in Fig. 2, a configuration can be alternatively described as a 3-coloring of the edges 
of the lattice by colors A, B and C, so that the three edges incident to any vertex be of different 
colors. It is indeed easily seen that, for such a 3-coloring, the B- and C-colored edges form 
closed loops of alternating B- and C-edges visiting all the vertices of the lattice, while the A-
edges correspond to the unvisited edges. Orienting the visited edges from their black to their 
white incident vertex for B-edges, and from their white to their black incident vertex for C-
edges induces a well-defined orientation for each loop. Changing the orientation of a loop simply 
corresponds to interchanging the B- and C-edges along it.

We may finally transform the FPL(2) configurations into a “height-model” by assigning to 
each hexagonal face a two-dimensional height X ∈R2 whose variation �X between neighboring 
faces depends on the nature of their separating edge, with the dictionary of Fig. 2. In the 3-
coloring language, we have �X = A (resp. B , C) if the crossed edge is of color A (resp. B , 
C) and traversed with the incident black vertex on the left. Making a complete turn around any 
vertex of the honeycomb lattice implies the constraint A + B + C = 0 so that X is indeed two-
dimensional.
4
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Fig. 3. The two-dimensional vectors A, B , C and b2 and a portion of the R lattice.

Following [9], we make the following symmetric choice of vectors, see Fig. 3:

A :=
(

1√
3
,0

)
, B :=

(
− 1

2
√

3
,

1

2

)
, C :=

(
− 1

2
√

3
,−1

2

)
, (3)

so that |A| = |B| = |C| = 1/
√

3 and A ·B = B ·C = C ·A = −1/6. The height variable X takes 
its values within the triangular lattice T := ZB +ZC, with mesh size 1/

√
3. We also define the 

“repeat lattice” as the sub-lattice of T given by

R := Z (A − B) +Z (A − C) (4)

which is a triangular lattice of mesh size 1 (see Fig. 3). It is such that two pieces of lattice 
whose values of the 2D height differ globally by an element of R describe the same coloring 
arrangement, hence the same loop configuration environment.

In [9], it is claimed that the model may then be described at large scale by a coarse-grained 
variable �(x) = 〈X〉 suitably averaged in the vicinity of the point x of the underlying lattice, 
where � is governed by the free field action

ACG = π g

∫
d2x (∇�)2 (5)

with g = 1 (with our choice of normalization for A, B, C). The variable � is defined modulo R, 
i.e., is an element of R2/R via the equivalence relation in R2:

� ≡ �′ ⇐⇒ � − �′ ∈ R . (6)

Since the loops follow the B- and C-colored edges, the color A on the one hand and the colors 
B and C on the other hand play very different roles in the description of loop observables. It is 
then convenient to introduce the vector

b2 := B − C = (0,1) , (7)

so that |b2| = 1 and b2 · A = 0, and to work in the orthogonal basis (A, b2), see Fig. 3. We thus 
write

� = ψ1A + ψ2b2 . (8)

For a fixed n (0 ≤ n ≤ 2), the wanted weight n per loop in the FPL(n) model is obtained by 
introducing local weights accounting for the left or right nature of the turns of the (oriented) 
loops at each vertex. At large scales, this new weight results into a modified Coulomb Gas action 
(see [9,10] for details)

ACG =
∫

d2x

{
π g

(
1

(∇ψ1)
2 + (∇ψ2)

2
)

+ 1
i e0 ψ2 R+ : e4iπψ2 :

}
(9)
3 2

5
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where R is the (local) scalar curvature of the underlying lattice,1 and with now

g = 1 − e0 = 1 − 1

π
arccos

(n

2

)
. (10)

The last term in the action is the most relevant perturbation which allows one to fix g by de-
manding that it be marginal [10]. At this stage, it is important to note that the action is such 
that the two components ψ1 and ψ2 of the field � are decoupled. The component ψ1 along A is 
governed by a simple free field action, while the component ψ2 along b2 is governed by a usual 
one-dimensional CG action, similar to that obtained from the SOS reformulation of a dense O(n)

model (i.e., without the constraint that each vertex is visited by a loop). Still, a coupling between 
the two directions A and b2 arises when we deal with the operator spectrum of the FPL(n) model, 
as the defect configurations must be consistent with the condition (6). Finally, the central charge 
of the FPL(n) model on the honeycomb lattice is given by

cfpl(n) = 1 + cdense(n) = 2 − 6
(1 − g)2

g
(11)

where, in the middle expression, the first term 1 is the central charge for the free scalar field ψ1
and the second term is the usual central charge

cdense(n) = 1 − 6
(1 − g)2

g
(12)

of a dense O(n) model (as obtained for instance from its one-dimensional CG description [11]). 
For n = 0 (g = 1

2 ), this yields a total central charge cfpl(0) = 1 − 2 = −1.

2.2. Exponents for vortex-antivortex correlations

The operator spectrum of the FPL(n) model on the honeycomb lattice is discussed in details 
in [9]. Of particular interest are the so-called vortex operators characterized, in the CG language, 
by their 2D magnetic charge M ∈ R. An operator with magnetic charge M corresponds to the 
insertion of a dislocation at a given lattice vertex, i.e., a topological defect δX = M in the 2D 
height when going counterclockwise around that vertex. Several defects must be introduced si-
multaneously so that the total magnetic charge is zero (this guarantees that the 2D height remains 
well defined at infinity) to keep a finite free energy cost. For instance, the vortex-antivortex corre-
lation corresponds to inserting a vortex of charge M and one of charge −M at two fixed vertices 
distant by r in the honeycomb lattice. For

M = j (A − B) + k(A − C) ∈ R, j, k ∈ Z , (13)

the change �F of free energy induced by the introduction of the M/ − M defect is expected to 
behave at large r as e−�F ∼ r−4hM with exponent [9]

hM = g

4

(
j2 + k2 + j k

)
− (1 − g)2

4g

(
1 − δj,k

)
. (14)

Using instead coordinates in the orthogonal basis (A, b2), i.e., writing M = 3
2 (j + k)A + 1

2 (k −
j)b2, we may recast the above result into

1 For instance, if the model is defined on a cylinder by taking periodic conditions in one direction, the scalar curvature 
is concentrated at both ends of the cylinder.
6
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Fig. 4. Schematic representation of a pair of defects with magnetic charges ±M for M = 2A+B in the case of arbitrary 
n. This corresponds to fully packed loop configurations containing an open oriented path starting at a black vertex and 
ending at a white one. If these vertices are at distance r apart from each other on the honeycomb lattice, the change �F

of free energy due to the defects is expected to behave as e−�F ∼ r−4hM .

hM = g

12
φ2

1 + g

4

(
1 − δφ2,0

)(
φ2

2 −
(

1 − g−1
)2

)
for M = φ1A + φ2b2 , (15)

where the coordinates φ1 and φ2 are now integers or half-integers satisfying φ1 ∈ 3
2Z, φ2 ∈

1
2Z and φ1 + φ2 ∈ Z. Note that, as a consequence of the decoupled form (9) of the action, the 
expression above for hM is naturally split into two terms: a first contribution depending on the 
coordinate φ1 along A only and a second contribution involving the coordinate φ2 along b2 only.

2.3. Examples

Let us illustrate the result (15) in the case n = 0 and for a few values of the magnetic charge 
M . For n = 0 (g = 1

2 ), Equation (15) reduces to

hM (n = 0) = 1

24
φ2

1 + 1

8

(
1 − δφ2,0

)(
φ2

2 − 1
)

. (16)

The case M = B + 2A = 3
2A + 1

2b2. A vortex with magnetic charge B + 2A corresponds to 
a black vertex surrounded by two A’s and one B which, in the loop language, corresponds to a 
black vertex from which a path originates (see Fig. 4). The corresponding antivortex, of charge 
−B − 2A corresponds to the end of this path at a further apart white vertex. For n → 0, this 
vortex-antivortex correlation therefore enumerates configurations with a single open path which 
is fully packed, i.e., visits all the vertices of the lattice, and with prescribed (black) starting and 
(white) ending points at distance r from each other. From (16), we have

hB+2A(n = 0) = 1

24

(
3

2

)2

+ 1

8

((
1

2

)2

− 1

)
= 0 , (17)

meaning that the free energy cost induced by having remote endpoints for the path tends to a 
constant for large r . A possible explanation for this result is that, for n → 0, the length of the 
Hamiltonian path joining the defects is independent of r and depends only on the size of the 
underlying lattice.
7
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Fig. 5. Schematic representation of a pair of defects with magnetic charges ±M for M = A+ 2B in the case of arbitrary 
n. This corresponds to fully packed loop configurations with two open oriented paths starting at a black vertex and 
meeting again at a (black or white) vertex at distance r apart.

Fig. 6. Schematic representation of a pair of defects with magnetic charges ±M for M = 3A. This corresponds to fully 
packed loop configurations with two unvisited vertices, one of each color, at given distant r from each other.

The case M = A+ 2B = b2. A vortex with magnetic charge A+ 2B corresponds to two paths 
originating from the same black vertex (see Fig. 5), and ending at the white vertex2 where we put 
the antivortex −A − 2B . By changing the orientation of one of the paths, the concatenation of 
the two paths forms a well-oriented loop: the vortex-antivortex correlation therefore enumerates 
fully packed loop configurations for which two prescribed vertices on the honeycomb lattice at 
distance r from each other belong to the same loop. For n → 0, this is always the case since the 
configuration is made of a single cycle. This is consistent with the value

hA+2B(n = 0) = 1

8

(
(1)2 − 1

)
= 0 . (18)

The case M = 3A. This corresponds to having a black and a white vertex at distance r apart 
which are not visited by a loop. For n → 0, we then have a unique fully packed loop visiting all 
vertices but two (see Fig. 6). We find

h3A(n = 0) = 1

24
(3)2 = 3

8
, (19)

2 We may also put the antivortex at a black vertex, now with magnetic charge A + 2C so that the total charge is 
A + 2B + A + 2C = 0.
8
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meaning that the number of configurations decays as r−3/2 at large r . Since h3A < 1, such a 
defect corresponds to a relevant perturbation. This agrees with the fact that the fully packed loop 
fixed point (here for n = 0) is unstable with respect to the creation of “empty” vertices: giving 
these vertices a finite chemical potential drifts the model toward a new fixed point, that of the 
dense O(n) model, with central charge cdense(n) as in (12) [11].

3. Coupling to gravity

3.1. A word on bicubic maps

The vertices of the honeycomb lattice all have degree 3. As such, the honeycomb lattice may 
be viewed as the regular lattice associated with random cubic maps. However, as opposed to the 
honeycomb lattice, an arbitrary cubic map is not vertex bicolorable in general. The existence 
of a bicoloring of the vertices in black and white was crucial when defining the 2D height X
coding for a fully packed (oriented) loop configuration. Without this coloring, it is not possi-
ble to distinguish between the two sides of an unvisited edge: this forces us to set A = 0 and 
B = −C accordingly, leading to a height X which is one-dimensional only. A similar reduction 
of the dimension from 2 to 1 occurs on the honeycomb lattice itself if we allow for the presence 
of unvisited vertices with a finite chemical potential, as it imposes 3A = 0. The corresponding 
“densely packed” O(n) model is much simpler than the FPL(n) model and corresponds to a con-
formal theory of central charge cdense(n) as in (12), with g as in (10), which can be described at 
large scales by standard one-dimensional CG techniques [11]. The FPL(n) model, when defined 
on arbitrary random cubic maps, is therefore expected to be described by a conformal theory of 
reduced central charge c = cdense(n) coupled to gravity. For n = 0, this yields c = −2, a result 
which can directly be verified by an exact enumeration of the configurations (see Appendix A).

To get a non-trivial FPL(n) model with the augmented central charge cfpl(n) of (11), we 
therefore need to impose that the vertices of the random cubic map be bicolored, namely that 
the random map be bicubic. Planar bicubic maps are dual to planar Eulerian triangulations, i.e., 
maps whose all faces are triangles, colored in black and white so that no two adjacent faces 
have the same color. A necessary and sufficient condition for such a coloring to exist is that each 
vertex of the triangulation has even degree, which is also the condition for the map to be drawable 
without lifting the pen, starting and ending at the same vertex. This explains the denomination 
Eulerian. More interestingly, Eulerian triangulations are exactly those triangulations which, when 
made of equilateral triangles of fixed size (say, with all edge lengths equal to 1/

√
3) can be 

embedded into the plane, keeping each triangle equilateral [5]. Any such embedding corresponds 
to what can be called a two-dimensional folded state of the triangulation and, in this sense, planar 
Eulerian triangulations are exactly those planar triangulations which are foldable in the plane (see 
Fig. 7).

Consider now the FPL(2) model on random planar bicubic maps: as before, it is equivalent to a 
3-coloring of the edges of the map in colors A, B and C so that each (trivalent) vertex is incident 
to edges of different colors. We can again define up to global translation a 2D height variable 
X on each face of the map, according to the rules of Fig. 2, and with A, B and C as in Fig. 3. 
Moreover, each 3-coloring corresponds to a specific folded state of the dual Eulerian triangulation 
and the 2D variable X, attached to the faces of the bicubic map, hence to the vertices of the 
triangulation, can be interpreted as the (two-dimensional) position of the associated triangulation 
vertex in the folded state [5], see Fig. 7.
9
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Fig. 7. An example of bicubic map (black thick lines) with 3-colored edges and the dual Eulerian triangulation (blue thin 
lines), with the topology of an octahedron (upper right). The 3-coloring encodes a folded state of this octahedron in the 
plane as shown (lower right): the 2D height X associated with the 3-coloring is nothing but the position in the plane of 
the vertices of the octahedron after folding.

As in Section 2.2, we will consider configurations with magnetic defects M corresponding 
to unvisited vertices (e.g., for M = 3A), or vertices from which several lines emerge (e.g., for 
M = 2A + B or M = A + 2B). An important difference between the random and regular cases 
is that we will not impose that the vertices carrying a defect be trivalent. We will for instance 
consider univalent unvisited vertices (defect M = ±A) or open paths with univalent endpoints 
(defect M = ±B or ±C), and more generally m-valent defects with arbitrary positive integers 
m. As a consequence, the set of magnetic charges M is no longer restricted to the lattice R but 
is extended to the larger set T = ZB +ZC. Writing as before M = φ1A + φ2b2, i.e. working in 
the (A, b2) basis, we may now take φ1 ∈ 1

2Z (instead of 3
2Z), φ2 ∈ 1

2Z with still the constraint 
that φ1 + φ2 ∈Z.

3.2. The KPZ relations

The continuum description of the coupling of 2D quantum gravity to critical matter theories 
involves incorporating fluctuations of the underlying metric ĝ, which is deformed by a multi-
plicative local conformal factor eγLϕL , in terms of a scalar field ϕL governed by the Liouville 
action [12,13]. For the coupling to gravity of a conformal field theory with central charge c, the 
parameter γL is fixed to the value

γL = γL(c) = 1√
6

(√
25 − c − √

1 − c
)

∈ (0,2] for c ∈ (−∞,1] , (20)

by requiring that the (regularized) Liouville random measure d2x : eγLϕL(x): is conformally in-
variant. The matter is now subject to the fluctuations of the metric, and in particular matter 
fields acquire a multiplicative gravitational dressing of the form eαMϕL for a suitable value of the 
“charge” αM.

Correlation functions of dressed matter fields are also summed over fluctuations of the metric, 
hence positions of the fields are also integrated over in the process. However, correlators still 
depend on invariants of the random surfaces generated by the fluctuations of the metric, such 
10
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as the area, given by A = ∫
d2x

√|ĝ| : eγLϕL(x): and the Einstein action, reduced to the Euler 
characteristic χ = 1

4π

∫
d2x

√|ĝ|R = 2 −2G by the Gauss-Bonnet formula, where R is the scalar 
curvature and G is the genus of the fluctuating surface.

In particular, the coupling of a CFT with central charge c to 2D quantum gravity on surfaces 
of fixed genus G and area A results in a new micro-canonical partition function behaving for 
large A as ZA,G ∼ const. μA A(γ (c)−2)χ/2−1 in terms of the “string susceptibility exponent” γ =
1 − 4/γ 2

L [2,12,13], namely

γ = γ (c) = 1

12

(
c − 1 − √

(1 − c)(25 − c)
)

. (21)

The parameter μ = e� is related to the critical cosmological constant �, the chemical potential 
for the area term in the action. Note that for planar (genus zero) surfaces, this gives

ZA,0 ∼ const. μA Aγ(c)−3 . (22)

Likewise, dressed matter conformal primary fields �h,c with classical dimension (or confor-
mal weight) h acquire a gravitational anomalous dimension [2]

�(h, c) =
√

1 − c + 24h − √
1 − c√

25 − c − √
1 − c

, (23)

such that non-trivial gravitational p-point correlators on random surfaces (of fixed genus) obey 
the KPZ scaling:

〈
∏
i

�hi ,c〉A ∼ const. A
∑

i {1−�(hi ,c)} . (24)

To make contact with our combinatorial problem, we wish to evaluate the large N scaling 
behavior of various loop models on random planar (bi)cubic maps with 2N vertices. We therefore 
set G = 0. We interpret 2N = A as a measure of the area (i.e., total number of triangles) of 
the corresponding discretized dual (triangulated) random surface. In the case of Hamiltonian 
cycles (see Fig. 1), our object of interest has a marked root edge (or vertex) where we open the 
loop. The choices of this marking correspond to an overall factor of 2N = A and we expect 
therefore a scaling behavior for the partition function of rooted Hamiltonian cycles of the form 
zN = A ZA,0 ∼ const. μA Aγ(c)−2. As indicated above, the bicubic nature of the graph ensures 
that the flat space matter degrees of freedom (the colors A, B, C) still describe the gravitational 
version of the model, which keeps the same central charge c in (21), with c = cfpl(n) as in (11). 
For n = 0, we have seen that cfpl(0) = −1 and we recover the asymptotics (1) with the exponent 
γ = γ (−1) given by (2).

In the following we will compute a number of 2 or 3-point correlators in the discrete model 
and estimate numerically the corresponding scaling behavior (i.e., both the values of μ and of 
the configuration exponents), which we will compare to the theoretical prediction (24), easily 
rewritten in the present case as

ZA,0 〈
∏
i

�hi ,c〉A ∼ const. μA A
∑

i {1−�(hi ,c)}+γ (c)−3 . (25)

As an illustration of the method, we describe in detail in Appendix A the exact computation 
of the scaling behavior of Hamiltonian cycles on cubic (not necessarily bicolorable) maps, and 
check the agreement with KPZ scaling at c = cdense(0) = −2.
11
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3.3. Scaling limits

It is widely believed that the scaling limit of the critical O(n) model in two dimensions is 
described by the celebrated Schramm-Loewner evolution SLEκ [14], and, more precisely, its 
collection of critical loops by the so-called conformal loop ensemble CLEκ [15]. This confor-
mally invariant random process depends on a single parameter κ ≥ 0, which in the O(n) model 
case is κ = 4/g, with n = −2 cos(πg), and g ∈ [1/2, 1), κ ∈ (4, 8] for the dense critical phase, 
and g ∈ [1, 3/2], κ ∈ [8/3, 4] for the dilute critical phase [15–18]. (We restrict ourselves here to 
n ≥ 0, thus κ ∈ [8/3, 8], the range for which CLEκ is defined.) SLEκ paths, which are always non 
self-crossing, are simple, i.e., non-intersecting when κ ∈ [8/3, 4], and non-simple when κ ∈ (4, 8]
[19]. The associated SLEκ central charge is then

c = csle(κ) := 1

4
(6 − κ)

(
6 − 16

κ

)
∈ [−2,1] for κ ∈ [8/3,8] . (26)

This scaling limit has been rigorously established in several cases: the contour lines of the 
discrete Gaussian free field, for which n = 2, g = 1, κ = 4 [20]; critical site percolation on 
the honeycomb lattice [21], for which n = 1, g = 2/3, κ = 6; the critical Ising model and its 
associated Fortuin-Kasteleyn random cluster model on the square lattice [22,23] for which, re-
spectively, n = 1, g = 4/3, κ = 3 and n = √

2, g = 3/4, κ = 16/3.
The fully-packed FPL(n) model stays in the same universality class as the corresponding 

dense O(n) model, even though its central charge is shifted by one unit as in (11) (12). One reason 
is that the so-called watermelon exponents for an even number of paths are the same in FPL(n)

and O(n) models [7–9], and in particular the 2-leg exponent which gives the Hausdorff dimension 
of the paths. One is thus led to conjecture that the scaling limit of the fully-packed FPL(n) model 
on the honeycomb lattice is described by space-filling SLEκ [24], with κ corresponding to the 
dense O(n) model phase,

κ = 4π

arccos(−n/2)
∈ (4,8] for n ∈ [0,2) . (27)

In the FPL(n = 0) case, one has g = 1/2, κ = 8, so its scaling limit should be given by SLE8 (or 
CLE8), which is a Peano curve, that is space-filling.

Random planar maps, as weighted by the partition functions of critical statistical models, are 
widely believed to have for scaling limits Liouville quantum gravity (LQG) coupled to the CFT 
describing these models, or, equivalently, to the corresponding SLE processes. Let us now recall 
two distinct results associated with the KPZ perspective [2].

The first KPZ relation (23) can be rewritten with the help of the Liouville parameter (20) as 
the simple quadratic formula,

h(�) = γ 2
L

4
�2 +

(
1 − γ 2

L

4

)
� . (28)

Its rigorous proof [25–28] rests on the sole assumption that the Liouville field ϕL and (any) 
random fractal curve (possibly described by a CFT) are independently sampled.

The second KPZ result (21) for γ (c) [2], or equivalently (20) for γL(c), gives the precise 
coupling between the LQG and CFT or SLE parameters. By substituting the SLE central charge 
c = csle(κ) of (26), one indeed obtains the simple expressions

γ = 1 − sup{4/κ, κ/4}, γL = inf{√κ,
√

16/κ} . (29)
12
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Fig. 8. The two types of vertex environments for the 6V model on a tetravalent map and the corresponding weights.

This has been rigorously established in the probabilistic approach by coupling the Gaussian 
free field in Liouville quantum gravity with SLE martingales [29,30]. In the scaling limit, ran-
dom cluster models on random planar maps can then be shown to converge (in the so-called 
peanosphere topology of the mating of trees perspective) to LQG-SLE [31].

This matching property (29) of γ , γL and κ applies to the scaling limit of the critical, dense 
or dilute, O(n) model on a random planar map, as well as to the fully-packed FPL(n) model 
on random cubic maps. However, on bicubic maps, the correspondence (29) no longer holds, 
and one then has a mismatch [32], with c = csle(κ) of (26) replaced in (20), (21) and (23) by 
c = cfpl(n) = 1 + csle(κ), with κ still given by (27). Note that the constraint c ≤ 1 in the KPZ 
relations restricts the loop fugacity of the FPL(n) model on a bicubic map to the range n ∈ [0, 1]
with κ ∈ [6, 8], while the complementary range n ∈ (1, 2) with κ ∈ (4, 6) is likely to correspond 
to random tree statistics.

A coupling between LQG and space-filling SLE with such mismatched parameters has yet to 
be described rigorously. We can simply predict here that for n ∈ [0, 1] the scaling limit of the 
FPL(n) model on a bicubic planar map will be given by space-filling SLEκ , with κ ∈ [6, 8] as in 
(27), on a γL-LQG sphere with Liouville parameter

γL = 1√
12

(√
3

(
κ + 16

κ

)
+ 22 −

√
3

(
κ + 16

κ

)
− 26

)
, (30)

in agreement with conjectures proposed in [32].

For the FPL(n = 0) model in the bicubic case, we have γL = 1√
3

(√
13 − 1

)
, as opposed to 

γL = √
2 in the cubic case, whereas for the bicubic FPL(n = 1) model, to which the next section 

is devoted, we have γL = 2, instead of γL = √
8/3 in the cubic case.

4. Exponents for the FPL(1) model on bicubic maps

As we shall now see, a direct test of the KPZ formulas for the FPL(n) model on bicubic maps 
can be performed in the case n = 1, whose central charge, given by (11) with g = 2/3, is equal 
to c = cfpl(1) = 1. Indeed, as shown in [33], the FPL(1) model defined on planar bicubic maps 
is equivalent to a particular instance of the 6-vertex (6V) model on tetravalent planar maps.

We recall that the 6V model on tetravalent planar maps consists in orienting each edge of the 
map by an arrow, with the so-called ice rule that each vertex of the map is incident to exactly 
two (half-) edges carrying an incoming arrow and two (half-) edges carrying an outgoing arrow, 
see Fig. 8. On a random tetravalent lattice, we may then distinguish between two vertex envi-
ronments: for type (i) vertices, the two incoming arrows follow each other when turning around 
the vertex while for type (ii) vertices, they are separated by one outgoing arrow (see Fig. 8). 
Given some fixed λ ∈ [0, 1] we attach a weight 2 cos(πλ) to type (ii) vertices and 1 to type (i). In 
13
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Fig. 9. In a bicubic map endowed with an unoriented fully packed loop configuration, we consider the pairs of black 
and white vertices linked by an unvisited edge (a). After orienting all incident edges away from the white vertex and 
towards the black one (b), we squeeze the unvisited edge so as to produce a tetravalent vertex of type (i) as shown in 
(c). Doing that for all pairs leads to a 6V configuration on a tetravalent map, where all the vertices are of type (i). The 
construction is clearly reversible. The 6V configuration may itself be transformed into a particular oriented fully packed 
loop configuration on the tetravalent map by untying the type (i) vertices as shown in (d).

Fig. 10. Schematic picture of the topology of oriented 6V loops in a watermelon configuration. We have here � = 4 paths, 
one of which is distinguished (white arrow).

particular, for λ = 1
2 , the configurations of arrows with a non-zero weight are those where all the 

vertices are of type (i). These latter configurations are in bijection with those of the FPL(1) model 
on bicubic maps through the following correspondence: recall that n = 1 corresponds to the case 
of fully packed unoriented loops without any attached weight. For any such configuration, let us 
orient each edge of the underlying bicubic map from its white extremity to its black one. Note 
that this orientation is a property of the bicubic map only and is independent of its loop content. 
Now we may squeeze each unvisited edge by collapsing its two (black and white) extremities 
into a single, uncolored vertex of degree 4 (see Fig. 9). By doing so, we build a tetravalent map 
with oriented edges (corresponding to all the edges originally visited by the loops) and such that 
each vertex is of type (i). The correspondence is one-to-one since we can put back the unvisited 
edge by splitting each type (i) vertex into a black and a white connected vertex by pulling the two 
incident incoming edges on one side (defining the black vertex) and the two incident outgoing 
edges on the other side (defining the white vertex), and finally remove all the arrows.

The 6V model on tetravalent planar maps with an arbitrary λ ∈ [0, 1] was studied in detail by 
random matrix techniques [34,35] where, as expected, it was shown to correspond to a c = 1 CFT 
coupled to gravity. The arrow configurations of the 6V model may themselves be transformed 
into fully packed oriented loop configurations on the underlying tetravalent maps by “untying” 
the vertices (see Fig. 9-(d) in the case of a type (i) vertex). Note that these oriented loops are 
different from the (unoriented) loops of the associated FPL(1) model (these latter loops would 
correspond instead to paths along which 6V arrow orientations alternate). In the 6V loop lan-
guage, one may then consider the watermelon configurations, with two defects: a source from 
which � oriented lines emerge and a sink at which they all end, see Fig. 10. The corresponding 
configuration exponent �� was computed exactly with the result [35, Eq. (4.26) with λ = 1/2]:
14
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Fig. 11. Correspondence between a source of � lines in the 6V model and an unvisited black vertex of degree � �
2 � in the 

FPL(1) model. The associated magnetic charge M accounting for the 2D height defect is equal to �2 A for even � and to 
�−1

2 A − B for odd �.

�� = �

8
. (31)

Let us now try to recover this result from the general KPZ formulas (21) and (25) in the orig-
inal FPL(1) language. In this language, the source (respectively sink) defect corresponds to an 
unvisited black (respectively white) vertex as shown in Fig. 11. More precisely, for even �, the 
unvisited black vertex has degree �/2 and thus corresponds to a defect with magnetic charge 
M = �

2A. For odd �, the unvisited black vertex is connected to (� − 1)/2 regular white trivalent 
vertices and to a final white bivalent vertex so that the total magnetic charge of the defect is now 
M = �−1

2 A − B = �
2A − 1

2b2. For n = 1 (g = 2
3 ), Equation (15) becomes

hM (n = 1) = 1

18
φ2

1 + 1

6

(
1 − δφ2,0

)(
φ2

2 − 1

4

)
. (32)

In particular, we get

h �
2 A(n = 1) = 1

18

(
�

2

)2

= �2

72
for � even ,

h �
2 A− 1

2 b2
(n = 1) = 1

18

(
�

2

)2

+ 1

6

((
−1

2

)2

− 1

4

)
= �2

72
for � odd ,

(33)

hence a result h� = �2

72 , independently of the parity of �.
For c = 1, the KPZ relation (23) simplifies into �(h, 1) = √

h. Applying this relation leads us 
to predict a configuration exponent for the watermelon configuration equal to:

�(h�,1) = �

6
√

2
. (34)

This value disagrees with the exact value (31), meaning that the direct application of the KPZ 
formula does not yield the correct result.

There is however a simple procedure allowing us to cure the observed discrepancy: let us 
define

h
(α)
M := α

g

12
φ2

1 + g

4

(
1 − δφ2,0

)(
φ2

2 −
(

1 − g−1
)2

)
for M = φ1A + φ2b2 , (35)

which mimics the expression (15) for hM by introducing an extra normalization factor α in front 
of the first term (i.e., that depending on the component φ1 in the direction A) with no modification 
of the second term (i.e., that depending on the component φ2 in the direction b2). We observe 
immediately that
15
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h
(α)
�
2 A

(n = 1) = α

18

(
�

2

)2

= α �2

72
for � even ,

h
(α)
�
2 A− 1

2 b2
(n = 1) = α

18

(
�

2

)2

+ 1

6

((
−1

2

)2

− 1

4

)
= α �2

72
for � odd ,

(36)

leading again to the same value h(α)
� = α �2

72 for both parities. In particular, choosing α = 9/8
leads to

�(h
(9/8)

� ,1) =
√

h
(9/8)

� = �

8
= �� . (37)

Otherwise stated, the KPZ relation leads to the correct result provided that we change the ex-
ponent hM into the modified exponent h(α)

M with α = 9/8, where the modification hM → h
(α)
M

affects only the part of hM depending on the component of M along A in the (A, b2) basis, with 
no modification of the part of hM depending on the component of M along b2. In other words, 
the compactification radius of the φ1 component must be renormalized multiplicatively.

This new recipe might seem ad hoc but let us make a few comments about it. In the action (9), 
we decided to attach the same “stiffness” g to both directions ψ1 and ψ2 of the field � (the 1/3
factor is only there to correct the fact that A and b2 have different norms). This isotropic choice 
is natural for n = 2, which describes the pure 3-coloring problem where all colors play the same 
role but one might question its validity for n < 2. A crucial step which led to the expression 
(14), or equivalently (15) for the dimension hM was then the ability to determine the value (10)
for this isotropic stiffness g. As discussed in [9], one way to fix this value is to demand that the 
“electric” operator with smallest charge in the action (9) (the : e4iπψ2 : term) be marginal. Strictly 
speaking however, since this criterion involves only the second coordinate ψ2, it only fixes the 
stiffness in the ψ2 direction, leaving that in the ψ1 direction to some undetermined value g′ since, 
as already mentioned, the two directions ψ1 and ψ2 are totally independent. On the honeycomb 
lattice, it seems that g′ = g is the correct choice since the values hM (15) obtained by [9] match 
with those obtained by Bethe Ansatz methods [8]. It may however occur that, when coupled to 
gravity, the effective stiffness g′ takes a different value with a ratio α := g′/g �= 1 due to metric 
fluctuations. If so, this would precisely modify hM into h(α)

M within the KPZ formula. Verifying 
this hypothesis would require to be able to couple the CG formalism to the fluctuating Liouville 
field ϕL within a unified quantum field theory for the three fields ψ1, ψ2 and ϕL and to repeat the 
KPZ arguments in this formalism. Still, we present in Section 7 a tentative interpretation of the 
selected value α = 9/8 for n = 1.

5. Numerics for n = 0

5.1. Enumeration methods

We wish to perform the exact enumeration of Hamiltonian path configurations on planar bicu-
bic maps with a finite number 2N of vertices and with possible magnetic defects. To this end, we 
use the arch representation displayed in Fig. 1 or suitable modifications thereof to account for the 
desired defects. In all cases, the Hamiltonian path is deformed into a straight line with alternat-
ing black and white vertices and we must complete it with non-crossing arches above or below 
the line connecting vertices of distinct colors. We used two different “orthogonal” enumeration 
approaches which we describe now.
16
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Fig. 12. Illustration of the transfer matrix method. The arch configuration is built from left to right: each intermediate 
state (here along a blue dashed line) is coded by two positive integers nu and nd . The passage from one intermediate 
state to the next corresponds to the action of T◦ (as shown here) or T• alternatively along the line.

The transfer matrix method The first approach is a transfer matrix method where we build 
the arch configurations from left to right along the straight line of alternating black and white 
vertices. A configuration is described by the sequence of colors of those arches which have 
been open but not yet closed: each arch inherits the color of the vertex it originates from, see 
Fig. 12. We read the upper arch sequence from bottom to top and, if it is made of p arches 
with colors a1, . . . , ap (with ai = 1 for black and 0 for white), we code it via the integer nu =
2p + ∑p

i=1 ai2(i−1). Similarly, the lower arch sequence read from top to bottom gives a positive 
integer nd , so that the intermediate state may be written as |nu, nd〉. In this setting, the empty 
configuration corresponds to the state |1, 1〉 and the number of configuration zN may be written as

zN = 〈1,1|(T◦T•)N |1,1〉 (38)

with the two elementary transfer matrices T• and T◦ defined via

〈n′
u, n

′
d |T•|nu,nd〉 = δn′

u,2nu+1δn′
d ,nd

+ δn′
u,nu

δn′
d ,2nd+1 + δn′

u,
nu
2

δn′
d ,nd

+ δn′
u,nu

δn′
d ,

nd
2

〈n′
u, n

′
d |T◦|nu,nd〉 = δn′

u,2nu
δn′

d ,nd
+ δn′

u,nu
δn′

d ,2nd
+ δ

n′
u,

nu−1
2

δn′
d ,nd

+ δn′
u,nu

δ
n′

d ,
nd−1

2
.

(39)

This expression allows us to enumerate zN up to N = 28 (see Table 2) and this approach can be 
adapted to situations with (magnetic) defects.

The up-down factorization method This second approach is closer in spirit to that of [1] and 
is based on a two-step construction process of Hamiltonian cycles, see Fig. 13. The first step 
consists in assigning an up or down orientation to each of the 2N vertices drawn along the 
straight line. The second step consists in connecting all the up (resp. down) vertices by bicolored 
(i.e., with endpoints of different colors) arches drawn above (resp. below) the infinite line. The 
interest of the method is the following: once the vertex orientations have been fixed, the system of 
“up” arches and that of “down” arches are totally independent and the counting of Hamiltonian 
cycles is therefore entirely factorized. Moreover, the method is very flexible and it is more easily 
adaptable to the case with defects than its transfer matrix counterpart.

More precisely, the 2N vertices are numbered by integers v from 1 to 2N according to their 
position along the straight line, say from left to right. The color col(v) of the vertex v is nothing 
but its parity col(v) = v mod 2 (with the convention that col = 0 for white and col = 1 for black), 
see Fig. 13.
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Fig. 13. Illustration of the up-down factorization method, here for 2N = 10 vertices. We first split the vertex sequence into 
complementary sequences Vup = (2, 3, 5, 6, 8, 9) of up-oriented vertices and Vdown = (1, 4, 7, 10), with associated color 
sequences Cup = (0, 1, 1, 0, 0, 1) and Cdown = (1, 0, 1, 0). There are a(Cup) = 2 configurations of unisided bicolored 
arches as shown. We also have a(Cdown) = 2 so that there are 2 × 2 = 4 arch systems compatible with this choice of 
vertex orientations.

In order to fix the up or down orientations of the 2N vertices, we split the sequence 
(1, 2, . . . , 2N) into two increasing subsequences Vup and Vdown. We then read along the line 
the colors of the up vertices Cup = Col(Vup) (with, formally, Col the operator acting on a se-
quence V = (vi)i and returning the sequence C = Col(V ) := (col(vi))i ) and do the same for 
Cdown = Col(Vdown). The number of bicolored arch systems compatible with the choice of ori-
entation (Vup, Vdown) is factorized into a(Cup)a(Cdown) where a(C) is defined as the number of 
bicolored arch systems on one side of the line (up and down are clearly equivalent) compatible 
with the color sequence C (see Fig. 13).

To get the total number of Hamiltonian cycles zN , we have to sum over all possible partitions 
(Vup, Vdown), hence:

zN =
∑
Vup

a(Col(Vup))a(Col(Vdown)) . (40)

Non-zero contributions to this sum correspond to admissible sequences Vup with equal numbers 
of black and white vertices, which automatically implies the same property for Vdown.

Denote by k the number of (white/black) vertex pairs in Vup. As we have to choose k black 
vertices among N and k white vertices among N , the number of admissible partitions to deal 
with is

N∑
k=0

(
N

k

)2

=
(

2N

N

)
∼ 4N

√
πN

. (41)

The computer time therefore increases exponentially with N , which in practice rapidly limits the 
accessible values of N . One may try to accelerate the program, for instance by using a “mem-
oization technique” which consists in storing the values of a(C) whenever we encounter the 
sequence C for the first time so that we do not have to compute it again at a later occurrence 
of C. But we are then limited by memory size, since the method requires the storage of O(4N)

correspondences (C, a(C)).
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5.2. Enumeration results

Let us describe the various configuration ensembles that we have enumerated. In all the defi-
nitions below, it is understood that an arch always connects a black and a white vertex and that 
the straight line is implicitly oriented from left to right.

Hamiltonian cycles Our first combinatorial quantity is the number zN of Hamiltonian cycles 
on planar bicubic maps, as defined earlier, with 2N vertices and with an extra marked visited 
(root) edge. In the arch language, we may write pictorially

zN := (42)

with an infinite line carrying 2N alternating black and white vertices, and with a total of N non-
crossing arches. We have obtained the first values of zN independently by the transfer matrix and 
by the up-down factorization methods, allowing for a cross-check of the results. We find:

(zN)N≥1 = (2,8,40,228,1424, . . .) . (43)

The complete list up to N = 28 is given in Table 2 of Appendix B. It confirms and extends the 
results of [1] (limited to N ≤ 20), see also the sequence A116456 in OEIS [36].

Hamiltonian open paths with trivalent endpoints The second quantity that we considered is the 
number yN of Hamiltonian open paths on planar bicubic maps with 2N +2 vertices (in particular, 
the endpoints of the path are trivalent). As already seen in the regular lattice case, the endpoints 
of the path correspond to defects with opposite magnetic charges ±M, with M = 2A + B =
3
2A + 1

2b2. In the arch language, we may write pictorially

yN := (44)

with a now a line segment of 2N +2 alternating black and white vertices and a total of N +2 non-
crossing arches. In the planar representation of the map, we fixed as external face that containing 
the corner between the two unvisited edges at the black endpoint (marked here by a dashed 
segment – this de facto allows us to extend the line segment into an infinite half-line). The arches 
are now allowed to wind around the line segment by passing to the right of the white endpoint. 
We obtained the first values of yN independently by the transfer matrix and by the up-down 
factorization methods:

(yN)N≥0 = (1,6,40,286,2152, . . .) . (45)

The complete list up to N = 16 is given in Table 3 of Appendix B.

Hamiltonian open paths with univalent endpoints The third quantity of interest is the number 
xN of Hamiltonian open paths on planar bicolored maps with 2N trivalent vertices and 2 univa-
lent ones. There the path necessarily starts and ends at the two univalent vertices which moreover 
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correspond to defects with opposite magnetic charges ±M with now M = B = − 1
2A + 1

2b2. In 
the arch language, we have pictorially

xN := (46)

with a line segment of 2N + 2 alternating black and white vertices and a total of N non-crossing 
arches connecting all vertices except the two extremal ones. In the planar representation of the 
map, we took as external face that containing the corner at the univalent black vertex so that the 
arches are allowed to wind around the line segment by passing to the right of the white univalent 
vertex. We obtained the first values of xN independently by the transfer matrix and by the up-
down factorization methods:

(xN)N≥0 = (1,4,24,168,1280, . . .) . (47)

The complete list up to N = 17 is given in Table 4 of Appendix B.

The following ensembles correspond to “vacancy defects”, i.e. configurations having two or 
three unvisited vertices.

Hamiltonian cycles with two unvisited univalent vertices The fourth quantity which we studied 
is the number 2wN of cycles on planar bicolored maps with 2N trivalent vertices and 2 univalent 
ones, such that the cycle visits all the trivalent vertices but, since it is a cycle, cannot visit the 
univalent ones (which are then necessarily of different colors). This situation corresponds to 
having two defects with opposite magnetic charges ±M with M = A. In the arch language, we 
have pictorially

wN := 1

2
× (48)

with an infinite line carrying 2N alternating white and black vertices, a black univalent vertex 
grafted above the first (white) vertex of the line and a white univalent vertex grafted above or 
below one of the black vertices of the line. The configuration now has a total of N − 1 non-
crossing arches. In the planar representation of the map, we took as external face that containing 
the corner at the univalent black vertex. The factor 1

2 is because we factored out the trivial sym-
metry consisting in flipping up or down the univalent white vertex. The first values of wN were 
obtained independently by the transfer matrix method and by the up-down factorization method, 
with result:

(wN)N≥1 = (1,4,22,140,972, . . .) . (49)

The complete list up to N = 18 is given in Table 5 of Appendix B.

Hamiltonian cycles with two unvisited bivalent vertices Our fifth quantity is the number vN of 
cycles on planar bicolored maps with 2N trivalent vertices and 2 bivalent ones (which are then 
necessarily of different colors), where we require that the cycle visits all the trivalent vertices but 
not the bivalent ones. This situation corresponds to having two defects with opposite magnetic 
charges ±M with M = 2A. In the arch language, we have pictorially
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vN := (50)

with an infinite line carrying 2N alternating white and black vertices, a black bivalent vertex 
linked (from above) to two (white) vertices of the line among which we choose the first white 
vertex along the line, and a white bivalent vertex linked to two black vertices of the line. The 
configuration has N − 2 additional non-crossing arches. The two edges incident to the bivalent 
black vertex are distinguished as e1 and e2 and, in the planar representation of the map, we take 
as external face that containing the corner between edges e1 and e2 clockwise. The first values 
of vN were obtained by the up-down factorization method, with result:

(vN)N≥2 = (1,10,84,682,5534, . . .) . (51)

The complete list up to N = 21 is given in Table 6 of Appendix B.

Hamiltonian cycles with two univalent one bivalent unvisited vertices The last quantity which 
we considered is the number 4uN of cycles on planar bicolored maps with 2N trivalent vertices, 
1 bivalent black one and 2 univalent white ones, such that the cycle visits all the trivalent vertices 
but not the bivalent or univalent ones. This situation corresponds to having three defects with 
respective magnetic charges 2A, −A and −A. In the arch language, we have pictorially

uN := 1

4
× (52)

with an infinite line carrying 2N alternating white and black vertices, a black bivalent vertex 
linked (from above) to two (white) vertices of the line among which we choose the first white 
vertex along the line, and two white univalent vertices grafted to black vertices along the line. 
The configuration has N −2 additional non-crossing arches. Again, the two edges incident to the 
bivalent black vertex are distinguished as e1 and e2 and, in the planar representation of the map, 
we take as external face that containing the corner between edges e1 and e2 clockwise. The factor 
1
4 is because we factored out the trivial symmetry consisting in flipping up or down the univalent 
white vertices. The first values of uN were obtained by the up-down factorization method, with 
result:

(uN)N≥2 = (1,10,90,798,7094, . . .) . (53)

The complete list up to N = 17 is given in Table 7 of Appendix B.

5.3. Exponential growth rate

All the quantities tN = zN , yN, xN, wN, vN, uN which we introduced so far are expected to 
have the asymptotic behavior

tN ∼ const.
μ2N

Nβt
, (54)

with the same exponential growth rate μ and sub-leading corrections characterized by an expo-
nent βt specific to each quantity and whose value should be predicted from the KPZ formulas. In 
order to evaluate μ and βt , we construct from the sequence tN the following two sequences
21
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Fig. 14. Estimate of μ2 from the sequences ã(k) for k = 3, 5, 7 and the sequences ā(k) for k = 1, 2, 3 as defined via (58)
and (59) with aN = zN+1/zN .

aN := tN+1

tN
, bN := N2 Log

tN+2tN

(tN+1)2 , (55)

which are such that

aN →
N→∞ μ2 , bN →

N→∞ βt . (56)

To improve our estimates, we have recourse to two series acceleration methods, used for accel-
erating the rate of convergence of our sequences above. Both are expressed via the iterated finite 
difference operators �k , k ∈N∗, defined by

(�f )N := fN+1 − fN ,

(�2f )N := (�(�f ))N = fN+2 − 2fN+1 + fN , . . .
(57)

The first method considers the sequences

ã
(k)
N := 1

k!
(
�kâ(k)

)
N

with â
(k)
N := NkaN (58)

and similarly defined sequences b̃(k). The convergence of these sequences to μ2 and βt is faster 
for increasing k even though, in practice, since we know tN for the first values of N only, we 
cannot go to k larger that 7 or so.

The second method is the so-called Aitken-�2 method which considers sequences defined 
recursively via

ā
(k)
N := ā

(k−1)
N − k + 1

k

(
�ā(k−1)

)
N

(
�ā(k−1)

)
N−1(

�2ā(k−1)
)
N−1

with ā
(0)
N := aN (59)

and similarly defined sequences b̄(k). Again, the convergence of these sequences is faster for 
increasing k (in practice we use k = 1, 2 and 3).

Estimate of μ from the sequence zN . Fig. 14 shows our estimates for μ2 obtained from our 
data zN for the numbers of Hamiltonian cycles. More precisely, it displays the sequences ã(k)

for k = 3, 5, 7 and ā(k) for k = 1, 2, 3 using the sequence aN = zN+1/zN as original input. We 
estimate from these data

μ2 = 10.113 ± 0.001 , (60)
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Fig. 15. Estimate of μ2 from the sequences ã(3)(t) as defined via (58) for aN = tN+1/tN and tN = zN ,yN , . . . , uN .

Fig. 16. Estimate of βy from the sequences b̃(k) for k = 4, 5, 6 and the sequences b̄(k) for k = 2, 3 with bN =
N2 Log(yN+2yN/(yN+1)2).

so that Log(μ2) = 2.3138 ± 0.0001, in agreement with [1].

Estimate of μ from other observables. We then compared this value of μ with that obtained 
from the other sequences yN, xN, . . . , uN corresponding to the enumerations of the various 
Hamiltonian path configurations with defects introduced in the previous section. Fig. 15 shows 
the values of μ2 obtained from the sequences ã(3)(t) obtained via (58) for aN = tN+1/tN with 
tN = yN, xN, . . . , uN and compare them with that obtained previously for tN = zN . As expected, 
all estimates converge to the same value of μ, which is a non-trivial test of the consistency of our 
data for the various sequences.

5.4. Exponents

Let us now present our numerical estimates for the various exponents βz, βy , βx , βw , βv and 
βu as defined by (54) with tN = zN , yN , xN , wN , vN and uN respectively. Fig. 16 shows for 
instance the estimate βy = 1.90 ± 0.01 deduced from the sequences b̃(k) for k = 4, 5, 6 and b̄(k)

for k = 2, 3 with bN = N2 Log(yN+2yN/(yN+1)
2) as input. Repeating this analysis with our 

numerical data for the various sequences leads to
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βz = 2.77 ± 0.01 , βy = 1.90 ± 0.01 , βx = 1.19 ± 0.01 ,

βw = 1.99 ± 0.01 , βv = 2.38 ± 0.03 , βu = 1.32 ± 0.02 .
(61)

Here the announced values correspond to the stable digits in (b̃(k))
N

(k)
max

for the largest accessible 

value of N(k)
max at a given k, i.e., those digits which do not vary when going from N(k)

max − 1
to N(k)

max nor by increasing k by 1. This implicitly assumes that we have already reached the 
asymptotic regime for N ∼ N

(k)
max . From our data, this condition is not satisfied for βv and its 

value announced above is probably slightly underestimated. We will come back to this point in 
the next section. As for the indicated error ranges, they are estimated from the observed amplitude 
for the variation of the first digit which is not yet stabilized.

6. Comparison with KPZ predictions

We now wish to compare the numerical exponents above to their values predicted by the KPZ 
equivalence. Since we expect that c = cfpl(0) = −1 for n = 0 (g = 1

2 ), we have, from (21), the 
exponent

γ := γ (−1) = −1 + √
13

6
= −0.76759 . . . (62)

and, from (23), the gravitational anomalous dimensions

�M := �(hM ,−1) =
√

1 + 12hM − 1√
13 − 1

, (63)

with, from (15) at n = 0 (g = 1
2 ),

hM = 1

24
φ2

1 + 1

8

(
1 − δφ2,0

)
(φ2

2 − 1) for M = φ1A + φ2b2 . (64)

From the general formulas (22) and (25) and the identity h−M = hM , hence �−M = �M , we 
may write

βz = 2 − γ , βy = 1 + 2� 3
2 A+ 1

2 b2
− γ , βx = 1 + 2�− 1

2 A+ 1
2 b2

− γ ,

βw = 1 + 2�A − γ , βv = 1 + 2�2A − γ , βu = �2A + 2�A − γ .
(65)

As in [1], our estimated value βz = 2.77 ± 0.01 above is in perfect agreement with the an-
nounced value 2 − γ = 2.76759 . . . and we thus confirm the prediction (2) of [1].

Before going to the precise values of the other exponents, we note that we have from (65) the 
consistency relation

2βu − βv = 2βw + γ − 3 . (66)

Assuming now that γ is indeed determined by (62), this relation provides a cross check between, 
on the one hand, our numerical estimates for βu and βv and, on the other hand, the estimate for 
2βu − βv inherited from the estimate (61) for βw . As displayed in Fig. 17, these three estimates 
are indeed consistent with each other. As mentioned above, we are however not fully confident 
with our estimated range of βv . The relation (66) may then be used to determine the value of 
βv from those of βu and βw . If we do so, this leads us to reevaluate the estimate for βv as 
βv = 2.42 ± 0.06, see Fig. 17.
24



P. Di Francesco, B. Duplantier, O. Golinelli et al. Nuclear Physics B 987 (2023) 116084
Fig. 17. Consistency between the estimated value of βv (domain (i) between the two vertical blue lines), that of βu

(domain (ii) between the two horizontal red lines) and that of the combination 2βu − βv (domain (iii) between the two 
diagonal lines) as obtained from the relation (66) and the estimated range (61) for βw . The three domains do indeed 
share a common sector in the (βv, βu) plane. In the absence of a direct estimate (i) for βu , we would predict from 
the intersection of domains (ii) and (iii) only a somewhat larger domain βv = 2.42 ± 0.06 (dashed brown lines). The ◦
symbol indicates the prediction of the naive KPZ formulas while the × symbol indicates that of the (4/3)-corrected KPZ 
formulas, see text.

Table 1
Comparison of the numerical estimates for the various configuration exponents and their values 
predicted by the naive and by the (4/3)-corrected KPZ formulas. (∗) As explained in the text 
and in Fig. 17, a more reliable estimate is βv = 2.42 ± 0.06.

numerics naive KPZ (α = 1) (4/3)-corrected KPZ

βz 2.77 ± 0.01 1
6

(
13 + √

13
)

= 2.76759 . . . 1
6

(
13 + √

13
)

= 2.76759 . . .

βy 1.90 ± 0.01 1
6

(
7 + √

13
)

= 1.76759 . . . 1 +
√

22

2
(√

13−1
) = 1.90008 . . .

βx 1.19 ± 0.01 1 1 +
√

6

6
(√

13−1
) = 1.15668 . . .

βw 1.99 ± 0.01 1 +
√

6√
13−1

= 1.94010 . . . 1 + 2
√

15
3(

√
13−1)

= 1.99096 . . .

βv 2.38 ± 0.03(∗) 1 + 2
√

3√
13−1

= 2.32951 . . . 1 + 2
√

33
3(

√
13−1)

= 2.46983 . . .

βu 1.32 ± 0.02
√

3+√
6−1√

13−1
= 1.22106 . . . 2

√
15+√

33−3

3
(√

13−1
) = 1.34207 . . .

Let us now come to the prediction for the exponents βy, βx, . . . βu themselves. As displayed 
in Table 1, we find without any doubt that the “naive” prediction (63)-(65) above does not match
with our numerical results. However, a reasonable agreement may again be recovered if, as done 
in Section 4 for n = 1, we perform a modification of �M into

�M := �(h
(α)
M ,−1) =

√
1 + 12h

(α)
M − 1√

13 − 1
, (67)

with h(α)
M defined as in (35), now for n = 0, that is

h
(α)
M = α

φ2
1 + 1 (

1 − δφ2,0
)
(φ2

2 − 1) for M = φ1A + φ2b2 (68)

24 8

25
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Fig. 18. Comparison between the numerical estimates (dashed horizontal lines) of the various exponents and their “α-
corrected” KPZ prediction (continuous lines) for α between 1 and 2. For βv , we indicated in brown the revised extended 
range found in Fig. 17. A reasonable matching is obtained for α ∼ 4/3.

and for a suitable choice of α. Fig. 18 displays the value of the “α-corrected” KPZ prediction 
for the various exponents for a varying value of α between 1 and 2. We see that, while the value 
α = 1 (naive KPZ prediction) is clearly ruled out, a reasonable agreement may be obtained if we 
take α ∼ 4/3. The “(4/3)-corrected” KPZ predictions are listed in Table 1 for a direct comparison 
with numerics.

7. Discussion

We have seen at the end of Section 4 that for the FPL(1) model, the presence of a normal-
ization factor α = 9/8 proved necessary in the Coulomb gas formula (35) for h(α)

M , in order to 
recover from the (inverse) KPZ formula the quantum gravity exponents �� of [35] given by (37). 
Similarly, the numerical study of Sections 5 and 6 showed that various numerical critical expo-
nents associated with FPL(0) on random bicubic maps could be consistently obtained by KPZ via 
the introduction of a similar factor α ∼ 4/3 in (35). We shall here try to give a possible meaning 
to these observed values.

We may rewrite (35) as

h
(α)
M := g′

12
φ2

1 + g

4

(
1 − δφ2,0

)(
φ2

2 −
(

1 − g−1
)2

)
for M = φ1A + φ2b2 , (69)

by distinguishing two coupling constants,

g′ := αg, g = 1 − e0 = 1

π
arccos

(
−n

2

)
. (70)

This corresponds to decoupling the scales of the two fields ψ1 and ψ2 in the Coulomb gas action 
(9), and replacing there the Gaussian term by 1

3g′(∇ψ1)
2 + g(∇ψ2)

2. It is noteworthy that the 
Ansatz,
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Fig. 19. Illustration of the different loop models on the honeycomb lattice and their connections. We have 1
2 ≤ g ≤ 1, 

1 ≤ g̃ ≤ 3
2 and 2

3 ≤ g′ ≤ 1. For n = 0, we have g = 1
2 (κ = 8), g̃ = 3

2 (κ̃ = 8
3 )), g′ = 2

3 (κ ′ = 6), hence n′ = 1. For n = 1, 
we have g = 2

3 (κ = 6), g̃ = 4
3 (κ̃ = 3) g′ = 3

4 (κ ′ = 16/3), hence n′ = √
2. Top line from left to right, (n = 0, n′ = 1)

case: Hamiltonian walk, dense walk, SAW, SAW as the external perimeter of a percolation cluster.

α = 1

1 − e2
0

, (71)

reproduces α = 9/8 for n = 1 and α = 4/3 for n = 0. In turn, it yields the coupling constant of 
the ψ1 Gaussian free field,

g′ := 1

1 + e0
. (72)

To the constrained FPL(n) model on the honeycomb lattice corresponds an unconstrained O(n)

model [7–9], whose (stable) dense critical phase has the same CG coupling constant g = 1 − e0, 
with 1/2 ≤ g ≤ 1 for n = −2 cos(πg) ∈ [0, 2], and a central charge

c(g) := 1 − 6
(1 − g)2

g
, (73)

such that −2 ≤ c(g) ≤ 1, see Fig. 19. The associated (unstable) dilute critical phase of the same 
O(n) model has coupling constant g̃ := 1 + e0 = 2 − g, with 1 ≤ g̃ ≤ 3/2 [11], such that n =
−2 cos(πg̃), but with a different central charge, c(g̃) = 1 − 6(1 − g̃)2/g̃, such that 0 ≤ c(g̃) ≤ 1.

The coupling constant g′ of Equation (72) then appears to be the dual value of g̃,

g′ = 1

g̃
= 1

2 − g
. (74)

Because of its range, 2/3 ≤ g′ ≤ 1, this CG coupling constant g′ corresponds to the dense phase 
of another O(n′) model, such that n′ = −2 cos(πg′), but with the same central charge as that 
of the dilute critical O(n) model since, as easily checked, we have c(g′) = c(g̃). The geomet-
rical interpretation of this duality is as follows [37,16,17]. In the scaling limit, the loops of the 
dense O(n′) model are non-simple random paths of Hausdorff dimension D′ = 1 + (2g′)−1 [11]; 
their external perimeters are simple critical lines of the dilute critical O(n) model, of Hausdorff 
dimension D̃ = 1 + (2g̃)−1. These Hausdorff dimensions thus satisfy the (super-)universal du-
ality relation (D′ − 1)(D̃ − 1) = 1/4 [37], which can be directly obtained in the case of critical 
percolation [38].
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This Coulomb gas g ↔ 1/g “electro-magnetic” duality directly leads to the κ ↔ 16/κ duality 
of Schramm-Loewner evolution SLEκ [37,16,17]. The CG coupling constant spans the range 
g ∈ [1/2, 3/2] for the (dense and dilute) critical O(n) model (for n ≥ 0), and the SLE parameter 
the range κ = 4/g ∈ [8/3, 8] for its scaling limit, the conformal loop ensemble CLEκ . When 
κ ∈ (4, 8], SLEκ paths are non-simple [19], and their outer boundaries have been proven to be 
dual simple SLE16/κ paths, with 16/κ ∈ [2, 4) [39,40].

To the fully-packed FPL(n = 1) model considered in Section 4 above corresponds an un-
constrained dense O(n = 1) model with CG coupling constant g = 2/3 and central charge 
cdense(n =1) = 0, describing in particular critical percolation. The associated dilute phase has 
g̃ = 4/3, which is associated with the critical Ising model of central charge c = 1/2. By duality, 
we find a second dense O(n′=√

2) model with coupling constant g′ = 3/4, which also describes 
the Fortuin-Kasteleyn (FK) clusters of the critical Q = 2 Potts model. In terms of SLEκ , critical 
percolation corresponds to κ = 4/g = 6 [21], the critical Ising model to κ̃ := 4/g̃ = 3 [22], while 
Q = 2 FK clusters generate dual SLE16/3 random paths.

For the FPL(n =0) model describing Hamiltonian cycles and paths as studied in Sections 5
and 6, the corresponding unconstrained dense O(n =0) model is that of dense polymers with 
g = 1/2, cdense(n =0) = −2; the dilute phase is then naturally that of critical self-avoiding walks 
(SAW), i.e., dilute polymers with g̃ = 3/2 and c = 0. By duality, the associated final dense 
O(n′ =1) model is that of percolation with g′ = 2/3 and c = 0. In terms of SLEκ , one here 
goes from κ = 8 to κ̃ = 8/3 to κ ′ = 6, and it may be worth noting that in addition to critical 
percolation clusters [38,41], planar Brownian loops also have the scaling limit of self-avoiding 
loops as external frontiers [42–44].

To conclude this discussion, while formulas (69) (70) and the Ansatz (71) (72) (74) seem 
appealing, and lead to connections between various critical statistical models that show up when 
using KPZ relations between fully-packed models on the honeycomb lattice and on random bicu-
bic maps, it remains difficult at this stage to theoretically explain such apparent “transmutations” 
between models. Finally, let us remark that the observation that the usual KPZ relation (23)
or (28) fails for a family of exponents of the fully-packed models may be linked to a lack 
of independence between some (constrained) configurations of the space-filling random paths 
and the random Liouville measure. Statistical independence is indeed crucial to the proof of 
that relation [25,26]. The apparent enhancement of the effective coupling constant from g to 
g′ = 1/(2 − g) ≥ g, for the extra Gaussian free field brought in by the full-packing condition, 
may reflect such a lack of independence.
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Appendix A. Hamiltonian paths on random cubic maps

We discuss here briefly the problem of Hamiltonian path configurations defined on cubic
planar maps. In practice, all the definitions given in Section 5.2 remain unchanged except that 
we suppress the black/white colors of the vertices and consequently forget about any bicol-
oration constraint whatsoever. In this way, we define new numbers z◦

N, y◦
N, . . . , u◦

N which are 
the analogs for cubic maps of the numbers zN, yN, . . . , uN . Note that all the maps which we 
consider have by construction an even number of trivalent vertices3 so that the meaning of N is 
unchanged (e.g., there are 2N trivalent vertices in configurations enumerated by z◦

N ). We again 
define the exponential growth rate μ◦ and the configuration exponents β◦

t via the large N behav-
iors

t◦N ∼ const.
(μ◦)2N

Nβ◦
t

(75)

for the various quantities at hand. It is a simple exercise to obtain the exact expression

z◦
N =

N∑
k=0

(
2N

2k

)
CatkCatN−k = CatNCatN+1 , (76)

where CatN = (2N
N

)
/(N + 1) is the N th Catalan number. We similarly get

y◦
N = 22N CatN+2 , x◦

N = 22N CatN , w◦
N = (2N − 1)CatN−1CatN ,

v◦
N = 1

2
(N − 1)CatNCatN+1 , u◦

N = 1

4
(2N − 1)(2N − 2)CatN−1CatN .

(77)

From these exact expressions, we immediately obtain that all these sequences have the same 
exponential growth rate (μ◦)2 = 16, while the configuration exponents read:

β◦
z = 3 , β◦

y = β◦
x = 3

2
, β◦

w = β◦
v = 2 β◦

u = 1 . (78)

These values match with the predictions

β◦
z = 2 − γ ◦ , β◦

y = 1 + 2�◦
3
2 A+ 1

2 b2
− γ ◦ , β◦

x = 1 + 2�◦
− 1

2 A+ 1
2 b2

− γ ◦ ,

β◦
w = 1 + 2�◦

A − γ ◦ , β◦
v = 1 + 2�◦

2A − γ ◦ , β◦
u = �◦

2A + 2�◦
A − γ ◦ ,

(79)

upon taking �◦
3
2 A+ 1

2 b2
= �◦

− 1
2 A+ 1

2 b2
= −1/4, �◦

A = �◦
2A = 0 and γ ◦ = −1. The latter value is 

that predicted by the KPZ formula (21) since, as discussed in Section 3.1 c = −2 is the expected 
central charge when the FPL(0) model is defined on cubic planar maps, and γ (−2) = −1. As for 
the dressed dimensions �◦, their values do not depend on the component along the A direction, 
which is compatible with the fact that we must set A = 0: we are therefore left in practice with 
the two independent exponents �◦

1
2 b2

= −1/4 and �◦
0 = 0, corresponding respectively to the 1-

and 2-leg watermelon exponents [45]. From the KPZ formula (23) which, at c = −2, reduces 
to

3 The number V3 of trivalent vertices is even for all cubic maps with, possibly, an arbitrary number V2 of bivalent 
defects and an even number V1 of univalent ones since 3V3 = 2E − 2V2 − V1 where E is the number of edges.
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�(h,−2) =
√

1 + 8h − 1

2
(80)

we identify

�◦
1
2 b2

= �(h◦
1
2 b2

,−2) and �◦
0 = �(h◦

0,−2) (81)

with the classical dimensions h◦
1
2 b2

= −3/32 and h◦
0 = 0 [45]. These values are two instances 

with φ2 = 1/2 and 0 respectively of the general formula (64), which when A = 0, translates 
into

h◦
φ2b2

= 1

8

(
1 − δφ2,0

)
(φ2

2 − 1) . (82)

To conclude, the obtained configuration exponents for the FPL(0) model defined on cubic planar 
maps are exactly those predicted by the KPZ formulas. This confirms that the discrepancies with 
KPZ found in this paper for bicubic maps are due to the existence of the extra dimension (along 
A) in the problem.

Appendix B. Enumeration results

Table 2
The number zN of Hamiltonian cycles on planar bicubic maps with 
2N vertices, and a marked visited edge.

N zN N zN

1 2 15 1103650297320
2 8 16 9450760284100
3 40 17 81696139565864
4 228 18 712188311673280
5 1424 19 6255662512111248
6 9520 20 55324571848957688
7 67064 21 492328039660580784
8 492292 22 4406003100524940624
9 3735112 23 39635193868649858744
10 29114128 24 358245485706959890508
11 232077344 25 3252243000921333423544
12 1885195276 26 29644552626822516031040
13 15562235264 27 271230872346635464906816
14 130263211680 28 2490299924154166673782584

Table 3
The number yN of open Hamiltonian paths on 
planar bicubic with 2N + 2 vertices.

N yN N yN

0 1 9 80576316
1 6 10 698497236
2 40 11 6125241762
3 286 12 54248935624
4 2152 13 484629868212
5 16830 14 4362375489180
6 135632 15 39532218657398
7 1119494 16 360393965832256
8 9421536
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Table 4
The number xN of open Hamiltonian paths on 
planar bicolored maps with 2 univalent vertices 
and 2N trivalent ones.

N xN N xN

0 1 9 56959872

1 4 10 512093760

2 24 11 4652471904

3 168 12 42641120752

4 1280 13 393739429376

5 10288 14 3659068137088

6 85776 15 34193890019424

7 734448 16 321103772899152

8 6416912 17 3028414925849920

Table 5
Table of wN where 2wN is the number of cycles 
visiting all the trivalent vertices on planar bicol-
ored maps with 2 (unvisited) univalent vertices 
and 2N trivalent ones.

N wN N wN

1 1 10 29734848

2 4 11 251955792

3 22 12 2165922244

4 140 13 18848640980

5 972 14 165764482320

6 7160 15 1471222986648

7 55068 16 13162929589308

8 437692 17 118606870664836

9 3570100 18 1075505940036672

Table 6
The number vN of cycles visiting all the trivalent ver-
tices on planar bicolored maps with 2 (unvisited) biva-
lent vertices and 2N trivalent ones. The bivalent ver-
tices have necessarily different colors and the edges 
incident to the black one are distinguished.

N vN N vN

2 1 12 1996703248

3 10 13 17470889224

4 84 14 154096032108

5 682 15 1369014000682

6 5534 16 12242457072892

7 45330 17 110131946780584

8 375868 18 996123282195032

9 3155704 19 9054534704495656

10 26808852 20 82678808925578480

11 230230658 21 758122496862199740
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Table 7
Table of uN where 4uN is the number of cycles 
visiting all the trivalent vertices on planar bicol-
ored maps with 1 (unvisited) bivalent black ver-
tex with distinguished incident edges, 2 (unvis-
ited) univalent vertices and 2N trivalent ones.

N uN N uN

2 1 10 47714564
3 10 11 439727448
4 90 12 4075738256
5 798 13 37971881232
6 7094 14 355404743524
7 63508 15 3340333168292
8 573056 16 31512818722844
9 5210640 17 298306803039300
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