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TIEN-TAI NGUYEN

ABSTRACT. In this paper, we consider an incompressible viscous fluid in an
infinitely deep ocean, being bounded above by a free moving boundary. The
governing equations are the gravity-driven incompressible Navier-Stokes equa-
tions with variable density and no surface tension is taken into account on the
free surface. After using the Lagrangian transformation, we write the main
equations in a perturbed form in a fixed domain. In the first part, we describe
a spectral analysis of the linearized equations around a hydrostatic equilib-
rium (po(z3),0, Po(x3)) for a smooth increasing density profile pg. Precisely,
we prove that there exist infinitely many normal modes to the linearized equa-
tions by following the operator method initiated by Lafitte and Nguyén [20].
In the second part, we study the nonlinear Rayleigh-Taylor instability around
the above profile by constructing a wide class of initial data for the nonlinear
perturbation problem departing from the equilibrium, based on the finding
of infinitely many normal modes. Our nonlinear result extends the previous
framework of Guo and Strauss [6] and also of Grenier [10].
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1. INTRODUCTION

The Rayleigh—-Taylor (RT) instability, studied first by Lord Rayleigh in [25] and
then Taylor [20] is well known as a gravity-driven instability in two semi-infinite in-
viscid and incompressible fluids when the heavy one is on top of the light one. It has
attracted much attention due to both its physical and mathematical importance.
Two applications worth mentioning are implosion of inertial confinement fusion
capsules [22] and core-collapse of supernovae [24]. For a detailed physical compre-
hension of the linear RT instability, we refer to three survey papers [18, 30, 31].
Mathematically speaking, the nonlinear study of classical RT instability is proven
by Desjardins and Grenier [4]. For the inviscid and incompressible fluid with a
smooth density profile, the classical RT instability was investigated by Lafitte [19],
by Guo and Hwang [5] and by Helffer and Lafitte [14].

Concerning the viscous linear RT instability, one of the first studies can be seen
in the book of Chandrasekhar [3, Chapter X]. He considers two uniform viscous fluid
separated by a horizontal boundary and generalize the classical result of Rayleigh
and Taylor. We refer the readers to mathematical viscous linear/nonlinear RT
studies for two (in-)compressible channel flows in [7], [29] and [12]. For the incom-
pressible fluid in the whole space R3, with a smooth density profile, we mention
the results of Jiang et. al [13] and of Lafitte and Nguyén [20], respectively.

Let T = R/Z be the usual 1D torus and T? = 27L;T x 27LyT (L1, Ly > 0).
The aim of this paper is to study nonlinear RT instability of the viscous surface
wave in an infinitely deep ocean. The domain of the fluid is

Qt) = {z = (x1,22,23) € T? x R, x5 < n(t,x1,x2)} (1.1)

and €(t) is bounded above by the free surface I'(t) = {x5 = n(t,z1,z2)}, where
7 is an unknown of the problem. In Eulerian coordinate, the fluid dynamics are
governed by the incompressible Navier—Stokes equations (2.1) in the presence of a
gravity force field —ges(g > 0), and the effect of surface tension is neglected on
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the free surface. The movement of Q(¢) and I'(¢) raises numerous mathematical
difficulties. Let R_ = (—00,0), we use the unknown function n and the Lagrangian
coordinate transformation to transform the free boundary problem into the equiv-
alent problem, (2.9) in a fixed domain Q = T? x R_, of which the fixed upper
boundary is I' = T2 x {z3 = 0}.

Let ' = d/dx3, we then consider two smooth functions py and Py depending only
on x3. Hence (po(x3),0, Po(z3)) is a steady state solution of Eq. (2.9), provided
that P = —gpo. Since we are interested in the RT instability, we assume that

CP(R-)3p, =0 such that supppy = [—a,0], with a > 0. (1.2)
We denote by
0 < p— = po(z3) for all 23 < —a, pp(0) = p4. (1.3)

This means that a layer of finite depth models the heavier fluid before the perturba-
tion. We write Eq. (2.9) in the perturbed form, Eq. (2.11) and obtain the linearized
equations (2.13). We study the linear instability by seeking normal mode solutions
eMV (x) of Eq. (2.13). It turns out that the investigation of normal modes relies
on the finding of bounded solutions of a fourth-order ordinary differential equation
on R_, which is

N (K pod — (pod')') + Mu(e™W) — 2k2¢" + k') = gk® o, (1.4)

which wave number is k and A € C (ReX > 0) is called a characteristic value of the
linearized problem (see [3, Chapter X]). The boundary conditions at 3 = 0 are

u(k2(0) + ¢(0)) = 0, (15)
=" (0) + (BA\uk? + X2p1 )¢’ (0) + gk*py¢(0) = 0
and we physically have that ¢ decays at —oo, i.e.
lim ¢(z3) = 0. (1.6)

r3—>—00

Our first result is to show that there exists an infinite sequence of normal modes
to the linearized equations (2.13) by following the operator method introduced by
Lafitte and Nguyén [20]. The key ingredients are the followings:

(1) seck the exact solutions on (—00, —a),

(2) deduce the boundary conditions for (1.4) on (—a, 0) from the outer solutions
and (1.5),

(3) write a variational formulation on H?((—a,0)) for (1.4) on (—a,0),

(4) use the spectral theory for a self-adjoint and compact operator for a Sturm-
Liouville problem on H?((—a, 0)).

The spectral analysis allows us to study fully nonlinear perturbation equations
(2.11). To prove the nonlinear instability, we follow the procedure:

Step 1. establish some a priori energy estimates to the nonlinear equations,

Step 2. formulate a linear combination of normal modes to the linearized equations
(2.13) to set its value at initial time ¢ = 0 of size 0 < § « 1 as an initial
datum to the nonlinear perturbation equations,

Step 3. obtain the difference between the local exact solution and the approximate
solution in Step 2 and exploit some energy estimates for the difference,

Step 4. deduce the bound in time of the difference functions and prove the nonlinear
instability.
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Our nonlinear study is inspired by the abstract frameworks of Guo and Strauss
[6] and of Grenier [10]. In the spirit of these above frameworks, only the maximal
normal mode was used in Step 2 to set its value at ¢ = 0 of size 0 < § < 1 to be
an initial datum to derive a solution of the nonlinear equations. Let us emphasize
that, our nonlinear results show that a wide class of initial data (related to a
linear combination of normal modes) to the nonlinear problem departing from the
equilibrium is formulated in Step 2 and it gives rise to the nonlinear instability. The
nonlinear result in this work is in the same spirit as in [23], where the author studies
the nonlinear viscous RT instability in a slab domain 27 LT x (—1,1) (L > 0), with
Navier-slip boundary conditions.

We organize this paper as follows. In Section 2, from the formulation in Euler-
ian coordinates of the governing equations (2.1), we derive the formulation in La-
grangian coordinates, see (2.9). We introduce our two theorems, Theorem 2.1
describing the spectral analysis of the linearized equations and Theorem 2.2 prov-
ing the nonlinear instability. Section 3 is devoted to the proof of Theorem 2.1. In
Section 4, we construct the a priori energy estimates to the nonlinear equations.
In the last part, Section 5, we prove Theorem 2.2.

We employ the Einstein convention of summing over repeated indices. Through-
out the paper C' > 0 will denote universal constants that depend on the physical
parameters of the problem, pu, g, k,a and p4. Such constants are allowed to change
from line to line. We will employ the notation a < b (a 2 b) to mean that a < Cb
(a = Cb) for a universal constant C' > 0.
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The author wishes to thank Prof. David Lannes for his suggestion on this prob-
lem and Prof. Jeffrey Rauch for his advice on the nonlinear study. The author
is deeply grateful to the supervision of Prof. Olivier Lafitte and Prof. Jean-Marc
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2. THE GOVERNING EQUATIONS AND MAIN RESULTS

2.1. Formulation in Eulerian coordinates. We are concerned with the viscous
RT of the nonhomogeneous incompressible Navier-Stokes equations without any
effects of surface tension, that read as

0,5 + div(5a) = 0 in Q(t),
0r(pu) + div(pu ® 1) + Vp = pAd — gpes  in Q(t),
divii = 0 in Q(t), (2.1)
(pId — puS@)n = parmn on I'(t),
Oyn = iz — U101M — U02M on T'(¢).

The unknowns p := p(t,z), @ := a(t,z) and p := p(t,x) denote the density, the
velocity and the pressure of the fluid, respectively, while u > 0 is the viscosity
coefficient and g > 0 is the gravitational constant. S& = Vi + Va! is the stress
tensor. The outward normal vector to the boundary I'(¢), n is given by

n— (—01n, —0am, 1)T
V1 + [0 + [02n)?

(2.2)
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The given constant p,¢,, is the atmospheric pressure. For a more physical descrip-
tion of the equations (2.1) and the boundary conditions in (2.1), we refer to [21,
Sect. 1.8].

To complete the statement of the problem, we must specify the initial conditions.
We suppose that the initial surface T'(0) is given by the graph of the function
1(0) = 1o, which yields the open set ©(0) on which we specify the initial data for
the velocity, u(0) = ug : Q(0) — R3. We assume that the initial surface function
satisfies the "zero-average” condition

fw =0 (2.3)

and 7(0), u(0) satisfy certain compatibility conditions, which we will present later
(see Proposition 4.1). Note that, for sufficiently regular solutions to the problem,
the condition (2.3) holds for all ¢ > 0, that is

J n(t) =0 forallt=0. (2.4)
T2

It is a consequence of

if n= aWZJ ﬂ-n:J diva = 0.
dt Jp2 T r(t) Q)

2.2. Formulation in Lagrangian coordinates. The movement of the free bound-
ary I'(t) and the domain €(¢) raises numerous mathematical difficulties. To handle
that, following Beale [2], we use the unknown function 1. So that we can transform
the free boundary problem (2.1) into a new problem in a fixed domain. We define
(see Appendix A)

6 := Poisson extension of 7 into T? x {3 < 0} (2.5)
and the following coordinate transformation:

WERES (331,.132,333) — ($1,$2,$3 + 9(1),.1317.’,1?2,1‘3)) = Q(tvx) = (y17y2a 313) € Q(t)

(2.6)
If 5 is sufficiently small (in an appropriate Sobolev norm), then the mapping © is
a diffeomorphism. From the definition of © (2.6), we first compute

1 0 0
vVe=| 0 1 0
010 020 1+ 539

Following [2] again, we denote by

A=010, B=20s0, J=1+030, K=J1 (2.7)
and
1 0 —AK
A=((Vve)y )" =10 1 -BK | (2.8)
00 K

We write the differential operators V 4,div 4, A 4 with their actions given by

3
(Val)i= ), Aijoif, divaX = > Ay Xi, Aaf=divaVaf.

j=1 1<i,j<3

We write
N = (=d1n, —dam,1)T
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for the non-unit normal vector to I'(t), and we also write the stress tensor S 4u as
(SAU)ij = Aikakuj + Ajkakui.

We now define the density p, the velocity v and the pressure p on the domain 2 by
the composition

(P, u, p)(t, ) = (p, @, P) (L, O(t, 7).
We transform (2.1) into the following system in the new coordinates

Op — K0:003p + diva(pu) =0 in Q,
p(Oru — Ko003u + u -V au) + Vap — pdivaSau = —gpes  in Q,
divqu =0 in Q, (2.9)
om=u-N onT,
(pId — uS pu)N = pagmN on I

2.3. Equilibrium state and and main results. We now rewrite (2.9) in a per-
turbed formulation around the steady-state solution

(p(ta l‘),u(t,.’ﬂ),p(t,.’]?), n(tvxh» = (po(l’g), 0, Po(.’lfg),O),

satisfying that Pj = —gpo and adding the condition Py(0) = pasm. We define a
special density and pressure perturbation by

C=p—po—pof, q=p—Fo+gpob. (2.10)

We still call the perturbations of the velocity and of the characterization of surface
as (u,n) respectively. The equations for the perturbation U = (¢, u, ¢,n) write

0iC + phug = QX(U) in Q,
po0iu + Vq — pAu + gles = Q*(U) in Q,
divu = @3(U) in Q, (2.11)
om —uz = QXU) on I,

((¢ — gpsn)ld — pSu)es = Q°(U) ~ onT.
The nonlinear terms Q*(U) (1 < i < 5) (for short Q') are given by
Q' = phus — po0i0 + K00(sC + pp + pof + psh),
—diva((po + pof + C)u)
Q* = —(C + pof)dru — (¢ + po + p0) K 01003u — (V.ap — Vg — gCes)
—(C+ po + pp0)u -V au — u(Au — div 4 (S4u)), (2.12)
Q3 = divu — div 4w,
Q4 = —u101M — U027,
Q% = (g —gpin)Id- (e3 — N) — uSues + u(Ssu)N.

We refer to Appendix B for the precise expression of Q*(1 < i < 5) as a polynomial
of U A, B, J, K.

The linearized equations are

0+¢ + ppuz =0 in Q,
poliu + Vq — pAu + gles = 0, in €,
divu =0 in €, (2.13)
ot = ug3 on T,

((g — gp+m)Id — uSu)es =0 on T
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As in [3, Chapter XI], we seek normal modes U(t,z) = e*V (z) of (2.13), which

are

(C7U7Q)(t7$) = eAt(wv U, T)(‘T)7 n(tvxh) = eAtV(xh)'

We deduce the following system on (w, v,r,v),

Aw + phuz =0 in Q,
Apov + Vr — pAv + gwesz =0 in Q,
divo =0 in Q,
AV = v3 onT,

((r — gpsv)Id — u(Vo + Vol))e3 =0 on T.
That implies

1, 1
W= TP, V= XUIS‘F
and
N pov + AVr — AuAv — gphuges = 0 in Q,
divo =0 in Q,

(A = gpyvs)Id — Au(Vo + Vol))es =0 onT.
Let k = (k1, ko) € LT'Z x Ly '7Z\{0}, we further assume that

vi(x) = sin(k1z1 + kawo)(k, x3),
vo(x) = sin(k1z1 + kawe)(k, z3),
v3(x) = cos(kixy + koxa2)o(k, x3),

r(x) = cos(kyx1 + koxo)7m(k, z3).
Denote by k = |k| = v/k} + k2, we deduce from (2.17) that
Npoth — Moy + Au(k?p —¢”) =0  inR_,
Apop — Nkom + Au(k2p — ") =0 in R_,

Npoo + M’ 4+ Au(k?p — ¢") = gpho in R_,
k1 + kap +¢' =0 inR_,

At x3 = 0, we have the boundary conditions

u(k16(0) — 4'(0)) = 0,
p(k26(0) — ¢'(0)) = 0,
A(0) — gp+¢(0) — 2Aue’(0) =

We also need the decaying condition at —oo

lim (4, ¢, ¢, m)(x3) = 0.

xs3

Note that, due to (2.19)17274

7= g (ot + (k¢ — ") R

Hence, from (2.22) and (2.19),, we get a fourth-order ODE for ¢, (1.4), i.e

N (K2 pod — (pod)') + (¢ — 2k2¢" + k*¢) = gk p

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The boundary conditions at z3 = 0 deduced from (2.19),, (2.20) and (2.22) are

(1.5), i.e

p(k*¢(0) +¢"(0)) =0,  —Aug" (0) + (BA\uk® + A2p4 )¢’ (0) + gk p4 (0) =
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and from (2.21), we have that ¢ decays at —o0, (1.6), i.e.
lim ¢(x3) = 0.
Tr3—>—00

The finding of normal modes of the form (2.14) to Eq. (2.13) relies on the investi-
gation of the characteristic values A € C (ReA > 0) such that (1.4)-(1.5)-(1.6) has
a nontrivial solution ¢ living at least in H*(R_).

We first show that all characteristic values A are real. Since our goal is to
study the instability, we only consider positive A in what follows. Let Ly be the

characteristic length such that Ly' = HZ—EH L= (R_), we further obtain the uniform
upper bound , /L% of .

Lemma 2.1. For any k > 0,

e all characteristic values A are always real,

e all characteristic values \ satisfy that X <, /£-.
0

Proof of Lemma 2.1 is given in the beginning of Section 3. In view of Lemma
2.1, we look for functions ¢ being real and we only consider the vector spaces of
real-valued functions in what follows in the linear analysis.

We state our first theorem solving the ODE (1.4)—(1.5)—(1.6) .

Theorem 2.1. Let pg satisfy (1.2)—(1.3), there exists an infinite sequence (An, on)n>1
with Ay, € (04/£-) and ¢, € H*(R_) satisfying (1.4)-(1.5)-(1.6).

Let us discuss about the strategy for proving Theorem 2.1, which is in the same
spirit as [20]. We first look for a solution ¢ € H*(R_).

On (—o0, —a), the ODE (1.4) is an ODE with constant coefficients, for which
we can find explicit solutions in Proposition 3.1 decaying to 0 at —oo. Hence, we
transform the problem for the normal modes on R_ into an ODE problem stated
on a compact interval (—a,0) with appropriate boundary conditions deduced from
the outer solutions. They are described by (1.5) stated above and (3.7) (to be seen
in Lemma 3.1).

In order to solve a fourth-order ODE (1.4) with the boundary conditions (3.7)
and (1.5), the crucial step is to construct a continuous and coercive bilinear form
B rx on H?((—a,0)) (see (3.9) in Proposition 3.2), such that the finding of a
solution ¢ € H*((—a,0)) of Eq. (1.4)-(1.5)-(3.7) is equivalent to finding a weak
solution ¢ € H2((—a,0)) to the variational problem

0
ABa k2 (P, w) = ngJ pppwdzrs  for all w e H*((—a,0)) (2.23)

and thus improving the regularity of that weak solution ¢.

As By is a coercive form on H?((—a,0)), we have that /%, k(") is a
norm on H?((—a,0)). Let (H?*((—a,0))) be the dual space of the functional
space H?((—a,0)), associated with the norm »/%, k. (-,+). In view of Riesz’s rep-
resentation theorem, we obtain an abstract operator Y, \ from H?((—a,0)) to
(H?((—a,0)))’, such that

Bawa(0,0) = Yap0,0) forall ¥, 0 H*((—a,0)). (2.24)

Hence, from (2.23) and (2.24), we have that the existence of a solution ¢ € H*((—a, 0))
of Eq. (1.4)-(1.5)-(3.7) is reduced to the finding of a weak solution ¢ € H%((—a, 0))
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of
)\Ya7k,)\¢ = gk2p6¢ in (H2((_a7 0)))/ (225>

Restricting to g € C°((—a,0)) in (2.24), we find the precise expression of Yy x »
(see Proposition 3.3(1)), i.e. for all ¥ € H2((—a,0)),

Yara® = AE2po0 — (po?')’) + p(0® — 2629" + k*9)  in D'((—a,0)).
Furthermore, a classical bootstrap argument (see Proposition 3.3(2)) shows that

we are able to define the inverse operator Y, k  of Yo, from L?((—a,0)) to a

subspace of H*((—a,0)) requiring all elements satisfy (3.7)-(1.5). Note that, be-
cause ¢ belongs to H*((—a,0)), these boundary conditions (involving the deriva-
tives ¢”, ¢"” of ¢ at x3 = —a and at x3 = 0) are well defined. Composing the above
operator Y, k ,, with the continuous injection from H*((—a,0)) to L*((—a,0)) (see

Proposition 3.4), we obtain that Ya)k’ , is a compact and self-adjoint operator from
L?((—a,0)) to itself.
We introduce M the operator of multiplication by +/pj in L?((—a,0)). Note
from (2.25) that, we thus find v satisfying
)\
gk
Indeed, if v satisfies (2.26), Ya_,c1 \Mu will satisfy (2.25).

= MY} M. (2.26)

We show that the operator MY, - !\ M is compact and self-adjoint from L?((—a, 0))
to itself (see Proposition 3.5), which enables to use the spectral theory of self-adjoint
and compact operators to obtain that

the discrete spectrum of the operator MY ¥, )\M is an infinite sequence of
eigenvalues (denoted by {fyn()\ E)}ns1).

Let vy, 1, ) be an elgenfunctlon of MY k. A./\/l associated with the eigenvalue 7, (A, k)
and let ¢, 1 x =Y )\Mvn,k,A € H4(( a,0)), we obtain

YN ) Yok adnkn = M2Gn b, = Pobnkr, - (2.27)

From (2.25) and (2.27), we see that the problem of finding characteristic values
of (1.4) amounts to solving all the equations
A
gk?’
In Proposition 3.6, for each n, we will show the existence and uniqueness of a solu-
tion A, to (2.28) owing first to the differentiability in X of v, (A, k) (see Lemma 3.3),
which is an extension of Kato’s perturbation theory of the spectrum of operators
(see [15]), and to the fact that A — v, (A, k) is decreasing in A (see Lemma 3.4),
through the derivative d%\(ﬁ) which exists also thanks to a similar argument

(M) = (2.28)

(see [15]). Furthermore, we have that {\,},>1 is a decreasing sequence towards 0.

For each A,, we have that ¢, 1, = Yajkl,AnM”n»kJ\n € H*((—a,0)) satisfies
Eq. (1.4) with the boundary conditions (3.7)-(1.5) thanks to Proposition 3.3(2)
again. Hence, ¢, z, is glued with the decaying solutions of (1.4) in the outer
region (—o0, —a) by the boundary conditions at 3 = —a to become a solution of

(1.4)-(1.5)-(1.6) in H*(R_) associated with A = \,,. Theorem 2.1 is proven.

Once Eq. (1.4)-(1.5)-(1.6) is solved, we go back to the linearized equations (2.13).
For a fixed k € LT'Z x Ly'Z\{0}, we obtain a sequence of real solutions to the
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linearized equations (2.13) (see Proposition 3.7), which are

MY (k) = (N (K, 2), w5k, ), ¢ (k, @), 5 (k, 25)) T

Note from Lemma 2.1 that

0<A:= sup MEIES (2.29)
keL]'Zx Ly 'Z\{0} Lo

we show that A is the maximal growth rate of the linearized equations, see Propo-
sition 3.9.

We move to solve the nonlinear instability.

The local well-posedness of (2.11) in our functional framework (see Proposition
4.1) can be established similarly as in [3, Theorem 6.3] for the incompressible viscous

surface wave problem, which is used in [29] for the incompressible viscous surface-
internal wave problem and [28] for the incompressible viscous fluid with magnetic
field. We refer to [8, 29, 28] for the construction of local solutions to (2.11) with

some specific compatibility conditions.

We derive the a priori energy estimate (4.6) to the nonlinear equations in Propo-
sition 4.2.

Thanks to (2.29), we define the non-empty set
Sy = {k € LT'Z x L7 Z\{0} : Ay (k) > %}
We further fix a kg € Sp. Hence, there is a unique N = N(kg) € N* such that
A = Ai(ko) > Aa(ko) > -+ > An(ko) > % > Ant1(ko) > ... (2.30)

Let M € N* be arbitrary. In view of getting infinitely many characteristic values of
the linearized problem, we consider a linear combination of normal modes

ch (koY (ko, ) (2.31)

to be an approximate solution to the nonlinear equations (2.11), with constants c;
being chosen such that

at least one of ¢; (1 < j < N) is non-zero (2.32)
and let jp, :=min{j: 1 < j < N,c; # 0},
\cjmwujm > Y lelluslz. (233
JZJm+1

In order to prove the nonlinear instability, we would like to use UM (0, x) as the
initial data for the nonlinear equations (2.11). However, to ensure the local existence
of solutions, the initial data for the nonlinear equations (2.11) must satisfy the
compatibility conditions (4.4) (see again Proposition 4.1), which are not satisfied
by the normal modes Vj(k,z) (j = 1). Thanks to an abstract argument from [I1,

Section 5C], which was also used in [29, 28], we modify U (0, z) in Proposition 5.1
as follows: there exist §p > 0 such that the family of initial data
UM () = sUM(0,z) + 62USM (x) (2.34)

for § € (0, dp) satisfies the compatibility conditions (4.4). Eq. (2.11) with the initial
data USM (z) (2.34) has a unique local strong solution UM (¢, 2) on [0, Tnax)-
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Hence, we observe that U?(t) = U%M(t) — §UM(t) solves (2.11) with the initial
data U4(0) = 6202 and the same nonlinear terms Q¥ (1 < i < 5) (see Eq. (5.2)).
For t small enough, we deduce the following bound in time (see Proposition 5.2),

1% ut) B2 + In* (O )

N

3 A 2At\3
S8 legle™ +max(0,M = N) | max - ejlef™)?,
J=jm

That relies on some energy estimates of Eq. (5.2) and the bound in time of a
suitable Sobolev norm of U%M(t) (see Proposition 5.3), which we obtain thanks

to the a priori energy estimate established in Proposition 4.2. Combining those
estimates, we obtain the following nonlinear result.

Theorem 2.2. Assume that py satisfies (1.2)-(1.3). Let M € N* be arbitrary, there
exist positive constants dg,eq sufficiently small and another constant mg > 0 such
that for any 6 € (0,0¢), the nonlinear equations (2.11) with the initial data (2.34),
i.e.

M
8 Y ¢iVi(z) + 82U (),
j=1
satisfying (2.32)-(2.33) admits a unique local strong solution UM such that
HUJ’M(Té)HL?(Q) = moeo, (2.35)

where T° € (0, Thax) is given by (52].]\1].7“ |cj|e’\J'T(S = €.

3. THE LINEAR ANALYSIS

We begin with the proof of Lemma 2.1.

Proof of Lemma 2.1. Multiplying by ¢ on both sides of (1.4) and then integrating
by parts, we obtain that

A2<JR_(k2po|¢|2 + pold'[*)dz — po‘w‘:@)

0
—0o0

+ /\H(JR (|¢//|2 + 2k2|¢/|2 + k4|¢|2)dx3 + (qb///gi q,),,a/ B 2]{:2@15'5)‘ )

—gk* | pilofdas
R_
Using (1.5) and (1.6), we get

([ 02mlof? + pol6'Phdzs — pr 00T ©)) + 3 [ (072 + 20%16/ 2+ K10 )y
R_ R_
+ (3K + A2p1 ) (0)8(0) + gk?p|6(0)[* + Ak (0)6(0) — 2Muk?' (0)(0)

= gk? JR_ polo|*des.

This yields

)\2J (E%polé|? + pold’|*)dxs + AMJ (10" + 2k2|¢' |2 + k*|p|*)dx3
R_ R_

£ N 073(0) + 7 (0)0(0) + 98204 [60) = g [ pjofd.
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Using the integration by parts and (1.5) again, we have

22 f (K p0l6f + pold/|?)das + Au j (16" + K2 + 42| ) s
R_ _

(3.1)
— _gkp,|6(0) + gh? f pol[2dzs.
R_

Suppose that A = A; + i\a, then one deduces from (3.1) that

(A2~ 22) f (K pol]? + pold'*)des + wj (16" + K2 + 42| ) s

— gk SO + gk2f obl[2dzs
R_
(3.2)
and that

- 2)\1>\2J (E%polo|? + pold'|?)dxs = Awf (|¢" + K*¢| + 4K>|¢'|*)dx3. (3.3)
R_ R_

If Ay # 0, (3.3) leads us to

—2A1j (k2 pol 6% + pol¢/|?)dis = j (16" + K26 + 4k[¢/[2)dcs < 0,
R

that contradiction yields Ay = 0, i.e. X is real. Using (3.1) again, we further get
that

22 JR po(R2162 + |6/ 2)dzs < gk fR ohlé[2das.

It tells us that A is bounded by 4 /L%' This finishes the proof of Lemma 2.1. O

Note again that, thanks to Lemma 2.1, in what follows in this section, we only
use real-valued functions.

3.1. Solutions on the outer region (—w, —a) and reduction to an ODE on
the finite interval (—a,0).

Proposition 3.1. Let 7 = /k?> + Ap_/u. There are two linearly independent
solutions of (1.4) decaying to 0 at —o0 as w3 € (—0, —a], i.e.

o7 (x3) = ek and ¢y (v3) = €772, (3.4)
The space of solutions decaying to 0 at —oo are spanned by (7, P35 ).

Proof. On the interval (—oo, —a), Eq. (1.4) is an ODE with constant coefficients,
— M- (k¢ — ¢") = (o™ — 2k7¢" + k'9). (3.5)
We seek ¢ as ¢(x3) = "2, Hence,
“Mo_ (K% = 72) = p(r* — 2k*r% + k%),

which yields » = +k or r = +(k? + A\p_/u)'/?. Since ¢ tends to 0 at —co, we get
two independent solutions of (3.5),

¢1—(m3) _ ekzg and ¢2—(1,3) _ e(k2+)‘p’/”)1/2$3-
Hence, all bounded solutions of (3.5) are of the form
$(x3) = Ayehmsta) 4 goe-(rsta), (3.6)

Proposition 3.1 is proven. U
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Once it is proven that ¢(z3) outside (—a,0) is known precisely, we look for ¢
on (—a,0). That solution has to match with (3.6) well, i.e. there is a condition on
(0,0, 9", ¢") at 3 = —a. We will show that in the following lemma.

Lemma 3.1. The boundary conditions of (1.4) at x3 = —a, for ¢ € HY(R_), are

{kT(b(—a) — (k+7_)¢'(—a) + ¢"(—a) =0,

kr_(k +7_)p(—a) — (k* + kr— + 72)¢'(—a) + ¢"(—a) = 0. (3.7)

and at x3 =0, are (1.5).

Proof. For a solution ¢ of Eq. (1.4) on (—a,0), the boundary conditions at x3 = —a
are equivalent to the fact that ¢ belongs to the space of decaying solutions at oo.
On the one hand, it can be seen from (3.6) that

6(s) ! !
/
k _
¢ (x3) _ Al—ek(a:nga) + AQ—eL(wﬁa) T for z3 < —a.
¢”((E3) k2 TE
(b/”(xi”) k3 TE

On the other hand, direct computations show that the orthogonal complement of
the subspace of R* spanned by two vectors (1,k, k%, k%)T and (1,7_,72,73)7 is
spanned by

(kr_,—(k+7.),1,00" and (kr_(k+71_), —(kE* + k7_ +72),0,1)T.

The above arguments allow us to set (3.7) as boundary conditions of Eq. (1.4) at
T3 = —a. O

3.2. A bilinear form and a self-adjoint invertible operator.

Proposition 3.2. Let us denote by

kr_(k + 7—)0(—a)o(—a) — kt—9'(—a)o(—a) >
(3.8)

via,k:,)\(?x Q) =M < _ kT_’ﬂ(*a)Ql(*a) + (k + T—)ﬂ/(*a)gl(ia)

BV a0, ) = (0 (0)0(0) + 0(0)2/(0)) + £2£0(0)0(0).

and

0
B9, 0) = BVopn(0,0) + BV-asor(d0) + A f po(k200 + 9 )das
. o (3.9)
+ /JJ (0" 0" + 2k*9 o' + k*9g)dxs.

The bilinear form By k. is a continuous and coercive on H?((—a,0)).

Furthermore, let (H?((—a,0)))" be the dual space of H*((—a,0)) associated with
the norm A/ Ba k2 (, ), there exists a unique operator

Yo € L(H?((—a,0)), (H*((~a,0)))"),
that is also bijective, such that
Bak (0, 0) = Yapat, 0) (3.10)
for all 9,0 € H*((—a,0)).



14 TIEN-TAI NGUYEN

Before proving Proposition 3.2, we state our key lemma, whose proof is postponed
to Appendix D. This yields the coercivity of %,  » as it will appear in the proof
of Proposition 3.2.

Lemma 3.2. We have
2k (9 (0)9(0) — ' (—a)I(—a)),V satisfies the constraint
min 0
veH?((~a,0)) J (") + 2k2 () + k*9%)dxz = 1.

_ sinh(ka) + ka
3sinh(ka) — ka’

and

2k2 (9 (0)9(0) — ¥ (—a)d(—a)),V satisfies the constraint

max =1.

0
deH?((—a,0)) J ()% + 2k2 () + E*9%)dx3 = 1.

Proof of Proposition 5.2. Clearly, %,k x is a bilinear form on H?((—a,0)) since the
terms BV, ;2 (9, 0) and BVj i (V, 0) are well defined. We then establish the bound-
edness of %, x,x. The integral terms of %, . » are clearly < |9 g2 ((—a,0)ll0| 72 ((=a,0))-
About the two boundary value terms, it follows from the general Sobolev inequality
that

max(9%(0), 9*(~a)) < |91 % ((—a,0))
and that
max((9(0))*, (' (=a))*) < 19I5 (—a.0))-
Consequently, we get

[BV_ara(0,0) < (19(=a)| + [V (=a))(|e(=a)| + | (—a)])

(3.11)
S 9 z2((=as0y 0l 22 ((=a,0))-
and
A+1 , ,
|BVo k(7,0 < T(|19(0)| + [9°(0))(|e(0)] + [2'(0)])
il (3.12)
< T”'ﬂHH?((fa,O))HQHH"’((fa,O))-
In view of (3.11) and (3.12), we find that
A+1
| Bk (U, 0)] < TH19||H2((—a,0))HQHH2((—a,O))7 (3.13)

i.e. Bo,» is bounded.
We move to show the coercivity of %, 1 . We have that
0
B (0,9) = BVopa(9,9) + BV_q e a(9,9) + X | po(K*9% + (9)?)dx3

—a

+ MJO (") + 2k2 () + k*(9)?)dx3.
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We have
iBV,a’k,A(ﬂ,ﬂ) =kr_(k + T,)(ﬁ(—a))2 — 2kr_9(—a)¥ (—a) + (k + T,)(ﬁ'(—a))2

— (k7 (' (=a) + %ﬁ(—a)y
N k(r—(k+7_)% — k(k — 7_)?)
E+7_
> —2k%9(—a)¥' (—a).

(0(~a))? - 2k*0(~a)¥'(—a)

Therefore, we deduce that

0
i@a,k,A(ﬁ,ﬁ) > 2k2(9(0)9'(0) — 9(—a)¥ (—a)) + f (") + 2k2 () + k*9%)da3.
Notice from Lemma 3.2 that

1 2(sinh(ka) — ka
M a0, 0) = (sinh(ka)

) 0
3simh(ka) — ka f_ (9")7 + 2K(0')? + k' 9%)dws. (3.14)

The inequalities (3.13) and (3.14) tell us that B,k is a continuous and coer-
cive bilinear form on H?((—a,0)). It follows from Riesz’s representation theorem
that there is a unique operator Y, . » € L(H?((—a,0)), (H?((—a,0)))’), that is also
bijective, satisfying (3.10) for all ¥, 0 € H?((—a,0)). Proof of Proposition 3.2 is
complete. O

The next proposition is to devoted to studying the properties of Y i x.

Proposition 3.3. We have the following results.

(1) For all ¥ € H?((—a,0)),
Yasat = ME ot = (pot")') + Au(9D — 229" + k*0)

in D'((—a,0)).
(2) Let f € L*((—a,0)) be given, there exists a unique solution ¥ € H*((—a,0))

of

Yot = f in (H*((—a,0)))". (3.15)
Moreover, ¥ € H*((—a,0)) and satisfies the boundary conditions (3.7)-
(1.5).

Proof. Tt follows from Proposition 3.2 that there is a unique ¥ € H?((—a,0)) such
that

0 0
)\f po(k290 + ' ¢ )dxs + “J (0" 0" + 2k*9 o' + k*90)dxs = (Yo 120, 0) (3.16)

a

for all p € C((—a,0)). We respectively define (¢”)" and (9”)” in the distributional
sense as the first and second derivative of ¥ which is in L?*((—a,0)). Hence, Eq.
(3.16) is equivalent to

0 0
M po(k200 + 9 )das + w((87)", o) + uf (K200 + K 0)das = (Yo ynd, 0)

- (3.17)
for all o € C((—a,0)). Eq. (3.17) implies that

(") = 2k29" + k*9) + ME2pod — (po?)') = Yarnd in D'((—a,0)). (3.18)

The first assertion holds.
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Under the assumption f € L?((—a,0)), we improve the regularity of the weak
solution ¥ € H2((—a,0)) of (3.18). Indeed, we rewrite (3.18) as

0
p(0")"0) = | (Yard + 2uk>0" — pk*0 — Xk?pod + A(po?')') eds

—a

for all p € CF((—a,0)). Since (f + 2uk?9" — pk*9 — M\k?po? + X(po?’)’) belongs to
L?((—a,0)), it follows from (3.17) that (9")" € L*((—a,0)).

Let x1 € C((—a,0)) satisfy S(ia Xx1(y)dy = 1. Using the distribution theory, we
define ¥ € D’'((—a,0)) such that
(B, 0) =<(")" Co» (3.19)
for all o € C°((—a,0)), where
T3 0
laes) = | (o) —xaw) [ eto)ds)y

—a

for all —a < z3 < 0. We obtain

&y = (8,0 = —(")", (o)
Note that

(") o> = ("), ols) — f

—a

T3

0
W) | ¢ edsdyy =)0,

this yields (3, o) = —{(¢")", 0). Hence, we have that (¢")" + ¥ = constant. In
view of (9”)” € L?((—a,0)) and (3.19), we know that (¢")" € L?((—a,0)). Since o €
H?((—a,0)) and (9")’, (9")" € L*((—a,0)), it tells us that ¥ belongs to H*((—a, 0))
and we can take their traces up to order 3.

Indeed, for all

By exploiting (3.16), we then show that ¢ satisfies (3.7)-(1.5).
(3.16) that

o€ H?((—a,0)), we use the integration by parts to obtain from

0
)\J po(k*9o + 9o )dxs + ,uf (0" " + 2% o' + k*po)dxs

—a

_19//9/0 —2k2'l9/
a —a

0 0
0 _a) = J (Ya,x20)odxs.

It then follows from the definition of the bilinear form %, j » that

0
- )\P019/Q’_ + u(ﬂ”’g -

0
_)\poﬁ/g‘i +,u(19/”@7 — 2k

_ 19//@/
a

) = BVo(9, 0) + BV o (9, 0), (3.20)
for all o € H*((—a,0)). By collectmg all terms corresponding to o(—a) in (3.20),
we deduce that

Ap—' (—a) — p?" (—a) + 2uk*Y (—a) = pkr—(k + 7_)9(—a) — pkr_9'(—a).
This yields,
9" (—a) = (12 — k)Y (—a) + 2k*0 (—a) + kr_9' (—a) — k1_(k + 7_)9(—a)
= (k® + kr_ + 72)9 (—a) — k7_(k + 7_)9(—a).

We just proved that ¢ satisfies (3.7),. Similarly, ¢ also fulfils (3.7); and (1.5). This
ends the proof of Proposition 3.2. O

We have the following proposition on Ya_,k{ \-

Proposition 3.4. The operator Yafkl)\ : L?((—a,0)) — L?((—a,0)) is compact and
self-adjoint.
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Proof. It follows from Proposition 3.3 that Y, ; » admits an inverse operator Yaf_kl‘ N
from L%((—a,0)) to a subspace of H*((—a,0)) requiring all elements satisfy (1.5)-
(3.7), which is symmetric due to Proposition 3.2. We compose Yafkl’ y with the
continuous injection from H?*((—a,0)) to L?((—a,0)). Notice that the embedding
H?((—a,0)) — HY((—a,0)) for p > g = 0 is compact. Therefore, the operator
Y, .y is compact and self-adjoint from L?((—a,0)) to L*((—a,0)). Proposition 3.4

is shown. 0

3.3. A sequence of characteristic values. We continue considering A € (0, 4 /L%,]

and we study the operator S, i\ := /\/lYajkl’)\/\/l7 where M is the operator of mul-
tiplication by +/p}.

Proposition 3.5. The operator S, j  : L*((—a,0)) — L*((—a,0)) is compact and
self-adjoint.

Proof. Due to the assumptions on pg, the operator S;j » is well-defined from
L?((—a,a)) to itself. The operator Yajkl)\ is compact, so is S, k1. Moreover, be-
cause both the inverse Yajk{ , and M are self-adjoint, the self-adjointness of S, i\
follows. t

As a result of the spectral theory of compact and self-adjoint operators, the
point spectrum of Sy x is discrete, i.e. is a sequence {y,(X, k)}n>1 of eigenval-
ues of Sy, associated with normalized orthogonal eigenfunctions {w,},>1 in
L?((—a,0)). That means

")/n(A, k)wn = Sa,k,)\wn = MYajkl,)\Mw"‘
So that with ¢,, = afk{)\/\/lwn € H*((—a,0)), one has

’Yn()vk)ya,k,)\(bn = p6¢n (321)

and ¢, satisfies (3.7)-(1.5). Eq. (3.21) also tells us that v,(A, k) > 0 for all n.
Indeed, we obtain
0

0
wn<A,k>J‘ (sz@A¢n>¢ndx3::_[ P2 des.

—a

That implies
0
K PG 60) = | s (3:22)

Since By kA (n, Prn) > 0 and py > 0 on (—a,0), we know that v, (X, k) is positive
for all n. Hence, by reordering and using the spectral theory of compact and
self-adjoint operators again, we obtain that {y,(\, k)}n>1 is a positive sequence
decreasing towards 0 as n — 0.

For each n, in order to verify that ¢, is a solution of (1.4)-(3.7)-(1.5), we are
left to look for real values of \,, such that

An
n )\nyk = S5 3.23
Mo k) = (3.23)
To solve (3.23), we need the two following lemmas.
Lemma 3.3. For each n, v,(\, k) and ¢,, are differentiable in .
Proof. The proof of Lemma 3.3 is the same as [20, Lemma 3.2], we omit the details

here. O
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Lemma 3.4. For each n, y,(\, k) is strictly decreasing in .

Proof. Let z, = dd)\ , it follows from (3.21) that
1

d 1
2 _ AR _ / —(—— )\, n 3.24
k p0¢n (p0¢n) + a,k\%n ")/n()\a k) Pozn + X (')/n()\v k) )p0¢ ( )

on (—a,0). At x3 = —a, we have

zp(—a) = (k+ 1)z, (=a) + kT—zp(—a) = 57— ¢, (—a) — 2,” Pn(—a),
2"(—a) — (k% + kt_ + 72)2. (—a) + k1_(k + 7_)z,(—a)

- (3= + 5 )l = (= + 52 (-,

(3.25)
and at 3 = 0, we also have
27(0) + k22,(0) = 0,
A K s (3:26)
27 (0) = (3k? + 27527, (0) + &5 20 (0) = £27,(0) + 45255 6 (0).
Multiplying by ¢,, on both sides of (3.24), we obtain that
0 0
|| 020~ 0t o + | (Vasrza)ondas
- - 3.27
7')/71()\,]{/’) pO n¥n 3 d)\ "Yn(A k) pO n 3
Thanks to the integration by parts, we have
0 0 0
J (K*podn — (pod!,) ) pndzs = f po(K*¢7 + (¢,,)%)dxs — (pod),dn) (3.28)
—a —a n

and
0

0 0
f (Ya,k,AZTL)qbnde = f (YGJ%/\QJ)n)anxS + (M(ZZ/Qﬁn - ZZ% - 2k2ziz¢n) - )‘pOz;L(bn)
—a

—a —a

0
— (@120 = Oy, — 2026, 20) = Apudhzn )|

(3.29)
Owing to (3.28), (3.29) and (3.21), Eq. (3.27) becomes
0 0
|| o025+ @2 + (et — 2161, — 2K°20.00) — Az )|
- 0 0
— (n(0lzn — 612 — 24%6),20) = Mpodlyzn )| = (podlun)| (8:30)

d 1 o,
- a <'7n()\7 ]f)) J;a p0¢7de3'
Using (3.25), we obtain

— (12t 9n — 206, — 2K221,60) = Apozién ) (—a)
+ (1@ zn = Szt = K20, 20) = Apodh 2 ) (—a) + - (—a)bn(—a)

= (B2 ko) 0ut-a) — (2= 4 p )6l (-aon(a) (3.31)
A (a8 () + () + - G(~a)on(a)

= kp-(6u(~0)) + 3—(d),(~a) — kon(~a))*.
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Using (3.26) and (1.5), we also have

- (M(ZZ’% — 2 — 2k 2,0n) — /\pozmn) (0) + p+/,(0)$n (0)
2 (3.32)
+ (6 = 012t = 2K20],20) = Mpodhyza ) (0) = 522 (6, (0))2,

Combining (3.30), (3.31) and (3.32), we deduce that

0 0
% (ﬁ) L Podndrs = L po(K202 + (¢,)?)dxs + kp_(¢n(—a))?

2o (Gl (=) — k(=) + 2 (6,02
(3.33)

This yields that EmOWO) /\ 7 1 strictly increasing in A, i.e. v, (\, k) is strictly decreasing
in A\. This ends the proof of Lemma 3.4. O

Now we are in position to solve (3.23).

Proposition 3.6. For each n > 1, there exists a unique A\, > 0 solving (2.28). I
addition, A\, decreases towards 0 as n goes to 0.

Proof. Using (3.22), we know that

1 0 0
WJ p6¢%dx3 = J (Ya,k,)\¢n)¢ndm3 = %a,k,)\((ﬁna (bn)a

Keep in mind (3.9), we deduce that

1 0
mf o2 > A k2po¢2dx3+u k4¢ dzs,

that implies
1 pk*
— = A+
Lovn (A k) P+
Since 7y, (), k) is a decreasing function, we have that ( 5 is an increasing function.
Hence
> gk?. (3.34)

lim
/\—>\/7 ’7n

. i} 1 1 .
Meanwhile, we also have %(A,k) < G ER for all A < 5,/ It yields,

lim —~ — 3.35
D0 O k) (3.35)

Combining (3.34), (3.35) and the fact that ~,, is decreasing in A, we obtain a unique
An, solving (3.23).

We prove that the sequence (A,)n>1 is decreasing. Indeed, if A, < Aj41 for
some m > 1, we have
Y (Ams k) > Ym(Am1, k).
Meanwhile, we also have

’Ym(Am-i—ly k) > '-Ym+1()\m+1; k)

That implies
)\l A'm-}—l
gk? gk?
That contradiction tells us that (A,),>1 is a decreasing sequence.

= ’7m()‘ma k) > ’7m+1()‘m+1a k) =
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To conclude Proposition 3.6, we prove that lim, ., A, = 0. Indeed, suppose
that lim,, s A, = cg > 0, one has that \,, = ¢y for all n > 1. This yields

/\ Co
Yn(co, k) = Yn(An, k) = P > e
Letting n — o0, we obtain that 0 > kQ , which is a contradiction. Hence, lim,,—,q Ap
0. Proposition 3.6 is proven. O

3.4. Proof of Theorem 2.1 and normal modes to the linearized equations.
We are in position to prove Theorem 2.1.

Proof of Theorem 2.1. For each A, € (0, , /Lio) being found from Proposition 3.6,
let ¢, (x3) = Yikl’/\n./\/lwn(l‘?,) € H*((—a,0)), which is a solution of (1.4) on (—a,0)

ai

with the boundary conditions (3.7)-(1.5).

Keep in mind our computations in Subsection 3.1, we extend ¢, to R_ by
requiring ¢,, satisfies (3.6) for some constants A,, 1, Ay 2 as A = A,,. Those constants
Ap.1,Ap 2 are defined by

{¢n(_a) = An,l + An,2y

3.36
O (—a) = kA, 1+ Anan/k? + % (3:36)

Solving (3.36), we get that

4//€2 + Mgbn(—a) — ¢;l(—a) / (_ — ko ( )
Apq = a . A, = (3.37)
1 \Jk2 4 22—k e e

Therefore, the function ¢,, € H*(R_) is a solution of (1.4) satisfying (1.5) and (1.6)
as A = A, for each n = 1. Using a bootstrap argument, we have ¢, € H*(R_).
Proof of Theorem 2.1 is complete. O

Once we have solutions of (1.4)-(1.5)-(1.6), we go back to the linearized equations
(2.13).

Proposition 3.7. For eachk = (ki,ko) € L7*Zx L5 *Z\{0}, there exists an infinite
sequence of normal modes
ANV (k, 2) = UGk, ), (K, ), (K, ), 10 (K, 20)) (3.38)
to the linearized equations (2.13), such that
Co€ H® (), u, € (H®(Q))? and g, € H*(Q). (3.39)

Proof. For each solution A, € (0, /%) of (2.28), we have a solution ¢, in H*R_)

of (1.4) as A = A\, being found in Theorem 2.1. Furthermore, ¢, € H*(R_). We
find uniquely 7, € H*(R_) from (2.22) such that

(ks 2) = = 25 (hupod, + (K5, — 1))k, ).

To look for 9, we rewrite (2.19) as a second order ODE,

—/UJJZ + (AnpOwn + Mkzwn - kl'ﬂ—n) = 0.

Note from (2.20) and (2.21) that 1, satisfies that ¢/, (0) = k1¢,(0) and that
limg, o ¥n(x3) = 0. By the ODE theory on a bounded interval and the do-
main expansion technique, we obtain a unique solution v, € H*(R_), where the
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solution v, depends on the known functions ¢, and m,. We get ¢, in a similar
way. Hence, (¥n, ©n, dn, ) € (H®(R_))?* is a solution of (2.19)-(2.20).

Following (2.18), we then construct the functions

v1 ok, ) = sin(kyz1 + kaza)n (k, z3),
vo n(k, ) = sin(ki1z1 + kaz2)pn(k, z3),
v3n(k, ) = cos(ki121 + kaxa)dn(k, 23),
’I"n(k7 Ig) = COS(kll'l + kg:Cg)ﬂ'na(,Ig).
Keep in mind (2.16), let us define also
1
wn(k,z) = 7)\n(k) po(z3)vs n(k,z3) and vy, (k,zp) = T(k)vgm(k,xh,O).
Hence

(Cn(ta k7 Jf), Un(t, k7 l'), Q’n(t7 ka x)? T’n(t7 ka th)) = e)\n(k)t<wn7 U”? T”H Vn)(k? $)

is a real-valued solution of the linearized equations (2.13). We claim (3.39) by virtue
of (Yn, Pns Pn, Tn) € (HOO(R—))4' O

3.5. Maximal growth rate. We derive the following proposition on the largest
characteristic value Ay found in Theorem 2.1.

Proposition 3.8. Let us recall the bilinear form Bk x on H?((—a,0)) (3.9) and
(A1, ¢1) from Theorem 2.1. We have that
0 24
e 0. (3.40)
gk?  ger?((=a.0) M Bk, (0, 0)
and the extremal problem (3.40) is attained by ¢1 restricted on (—a,0) up to a
constant.

Furthermore, let us define the following bilinear form on H?(R_),

Bia(¢,0) = )\JR po(k200 + ¢'0")dxs + p L ((¢" + K2¢)(0" + k20) + 4k*¢'0)dx3

gk?py

LY

$(0)0(0).
Hence, we have
1 Sr_ pod?das
— = max —————.
gk?  ¢eH2(R-) MiBi o, (¢, 0)
The extremal problem (3.41) is attained by ¢1 up to a constant.

(3.41)

Proof of Proposition 3.8. We divide the proof into two parts, proving (3.40) and
(3.41), respectively.

Part 1. We show that (3.40) holds. For all A > 0, we solve the variational problem

0
aq ()‘7 k) = max (f p6¢2d$ﬁ'3‘¢ € H2((_a7 0))7 )‘%a,k,)\(qs7 gb) = 1) . (342)

Let us define the Lagrangian functional

0
L, 8) = L o625 — V(ABaon (6, ) — 1). (3.43)
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It follows from the Lagrange multiplier theorem that the extrema of the quotient

{*, pho*das
Ao k2, 0)
are necessarily obtained at the stationary points (vy, ¢,) of Zg, which satisfy
ABakA(Ds, 04) = 1 (3.44)
and .
f Poda0das — MN2B i (6, 0) = 0, (3.45)

for all @ € H?((—a,0)). Restricting § € C$°((—a,0)) and following the line of the
proof of Proposition 3.3, one deduces from (3.45) that ¢, has to satisfy
AV*Ya,k,)\QS* = P6¢* (346)

in a weak sense. We further get that ¢, € H*((—a,0)) and satisfies (3.44) and
the boundary conditions (3.7)-(1.5). Hence, all stationary points (v.,¢.) of Lz
satisfy that, Av, is an eigenvalue of the compact and self-adjoint operator S i\ =
MY ! M from L?((—a,0)) to itself, with

1
Mo ppbe = 3 Mo, € L*((~a,0))

being an associated eigenfunction. That implies

ar (A k) < Ay (k). (3.47)

Meanwhile, since the operator S, . is self-adjoint and positive, we thus obtain
that s N
kAP, @
" ( A, k;) NELRAT P

sup
$eL2((—a,0)) H¢>HL2(( a,0))

Hence, for all ¢ € L?((—a,0)) and for ¢ = Y, - ' Mo e H*((—a,0)), we have

<Ya,k,)\wa 1P> = <Sa,k,)\¢a ¢>a
which yields

Sa k20 9)°
Y1 (A B) Yok 00, 9) < <|¢|;M> < Sak2l72((—a0))-
L2((—a,0)

This yields

Pl72(
Y1 (A k) < sup {G/,'LLMW H*((—a,0)) and /\/l_lYa}k’,\w € L2((—a,0))}.
Owing to (3.10), we have that
S(ia povdzs 4 -1 2
n(\k) < su {mw € H*((~a,0)) and M~ 'Y, i e L ((—a,o))}.

We thus obtain

A (k) < an(A k) (3.48)
The two inequalities (3.47) and (3.48) tell us that aq(k,\) = A\~ ty1(k, \) for all
A > 0, from which we deduce aq(A1,k) = g% and the extremal problem (3.40) is
attained by the function ¢1\(_a70) up to a constant.

Part 2. We prove that (3.41) holds. We set

w00 = max (| rhoPdo\Bua(o.0) = 1),

beH2(R_
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and consider the Lagrangian functional

Lp(w,¢) = f phdis — w(Braldr &) — 1).

Thanks to Lagrange multiplier theorem again, the extrema of the quotient

SR_ P6¢2d333
ABjA (¢, 9)
are necessarily obtained at the stationary points (w.,®,) € Ry x H?(R_) of Lp,
which satisfy
ABp A (D,,D,) =1 (3.49)
and
f P8, 0dzs — Nwn B (®.,0) — 0 (3.50)

for all 0 € H*(R_).

We now improve the regularity of ®,. We respectively define (@) and (®7)” in
the distributional sense as the first and second derivative of ®” which is in L?(R_).
Hence, (3.50) will imply that

AJ po(K2®,0 + ®.0")dxs + pud (D))", 0) + “J (2k2®70 + 4k2D0" + k' D,0)dxs
R

1
AWy

f po®.0dxs
R_

(3.51)
for all # € C°(R-). We deduce from (3.51) that

1
p(®1)" — 2k2®) + k*®,) + Mk po®s — (po®,)') = )\—pf)q),, in D'(R_). (3.52)
Wi

Thanks to (3.51) again, we obtain (®7)” € L2(R_). Let b > 0 be fixed and arbitrary,
we have that ® € H2((—b,0)). Let x2 € CL((—b,0)) satisfy S(ib X2(y)dy = 1. Using
the distribution theory, we define ¥, € D’((—b,0)) such that
(B, 0) = {(®5)", Co.0) (3.53)
for all € C§°((—b,0)), where
Co,p(ws) = J

—-b

Z3

0
(000 = 2w | 0(s)as)a
for all —b < 23 < 0. We obtain

(, 0) = =5, 0") = —(®1)", Cor -
Note that

T3 0
(" Gy = (@20~ [ alo) [ 0 (s)asayy = (@2)".0)

this yields (X},0) = —{(®7)”,0). Hence, we have that (®7) + X, = constant.
In view of (®7)” € L?*((—b,0)) and (3.53), we know that (®7)" € L2((—b,0))).
Since @, € H*(R_) and (@), (®?)" € L*((—b,0)), it tells us that ® belongs to
H*((~b,0)).

Next, let us take 6 € C3°((—0, —b)) with b > a. Due to (1.2) and (1.3), one has

p(®1) — 2k2®" + k*®,) 4+ Mpy (2@, — @) =0 in D'((—o0, —b)).
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As ® is bounded at —oo0, we have
D, (z3) = are*® + age(k2+>‘p‘/“)

Since ®, is explicit, we see that ®, € H*((—o0, —b)). Consequently, ®, € H*(R_)
and @, decays to 0 at infinity.

By exploiting (3.50), we show that ®, satisfies (1.5). Indeed, for all # € H%(R_),
we use the integration by parts to obtain from (3.50) that

Y24,

0
)\J (K% po®, — (po®.))0dx3 + Apo®,0

+ “J () + K2®,)(0) + k20,) + 4k* D0 )dx3
) 0
+ k2®,0

0 0 0 2
+ u(@’*’e’ ) B ) ) + %@(0)9(0)

1 /
= ®,0dxs.
o, LL Po T3

By collecting all terms corresponding to 6'(0) and 6'(0) respectively, we obtain that
®7(0) + k2®,(0) = 0 and that

— "9
© *

+ 3K%®’ 0
[ee]

—0

gk’ py

A+ ®(0) = p@Y(0) + 3k>P/(0) + 3

This yields that ®, satisfies (1.5).
We have just shown that ®, € H*(R_) is a solution to

W@ — 220" + k*®,) + A(E2pe®, — (po®.)) ®, onR_  (3.54)

_

Aon Po

satisfying (1.5)-(1.6). Since supppf = [—a, 0], we see that ®, is a solution of
w(®W — 2k20" + E1®,) + A(k2po®s — (po®.)') =0 on (—mw, —a).

Then, ®, on (—o0,—a) is of the form (3.6). Mimicking the computations in the
proof of Lemma 3.1, we deduce @, on (—a,0) is a solution of

AW*Ya,k,)\((p*kfa,O)) = pé)(b*|(*a70) = M2(I)*|(fa,0)
with the boundary conditions (3.7)-(1.5). Set
- _ 1
=M 1Ya,k,)\(q)*‘(—a,0)) = VMQ*‘(—LL,O) € L2((_a70))7 (355)
it yields
M@ = MY, L MO = S, 419
That means Aw, is an eigenvalue of the compact and self-adjoint operator S, i

from L?((—a,0)) to itself, with ® € L?((—a,0)) (defined as in (3.55)) being an
associated eigenfunction. Hence, we get

Aaz (A k) < (A k). (3.56)

Let us recall the function ¢; from Theorem 2.1. One thus has
SR_ pE)(b%de

ABp (01, 01)
Note that from the proof of Theorem 2.1,

az(A k) = (3.57)

k(zs+a) K24+ 2= (25 4a)
¢1(x3) = A1e¥3 7Y 4 Age " as — o < T3 < —a.
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Let us write ¢1](_q,0) as the function ¢; being restricted on (—a,0). Hence, the
direct computations show that

Bia(¢1,01) = Bak A (D1l(=a,0)5 P1l(=a,0))5 (3.58)

and we keep in mind the assumption supppj = [—a,0]. Then, from (3.57) and
(3.58), we have

0
§_ ., Podides

as(\ k) = .
2(A k) ABa kN (D1](=a,0), P1l(=a0))

It then follows

0 ;.2
dzx 1
> Lo Phdides - (3.59)
MBakn (D1](—a0), P1l(—a0)) gk
Combining (3.56) and (3.59) gives us that as(A1, k) = g% and the extremal problem
(3.41) is attained by ¢1 up to a constant. We finish the proof of Proposition 3.8. 0

042(>\17 k)

Recall the definition of A from (2.29), we prove that A is the maximal growth
rate of the linearized equations (2.13) in the following sense:

Proposition 3.9. For allt = 0, the following inequalities hold

t
ICO I ) + lu®) @) + [0u(®)]72 +f0 [u(s) |71 s

< (IO F @) + 120u(0)[72(0) + [u(0)1 71 (@))€,

(3.60)

and

t
IO ooy + 10O ey + [ 100(5) oy

< (IO /2y + 100u(0) 22 + [u(0) 71 (0))e*™.

(3.61)

The proof of Proposition 3.9 relies on the two lemmas below.

Lemma 3.5. There holds

1d , o N ,
5@(Jﬂpo\3tUI Lgpo\w,l +Lgp+lu3| )+§ |Sowl?=0. (3.62)

Proof. We differentiate (2.13), in time, multiply the resulting equation by d;u and
then use (2.13), to obtain

f po02u - Opu + f Vo - Opu — uf Adiu - Opu — j gpousdiug = 0.
Q Q Q Q

That is equivalent to

1d
5%([ poldeul? —J 906|U3|2) +J vaﬂ]'atu—uf Adwu-dyu=0.  (3.63)

We use the integration by parts over €2 to have

J Voiq - Opu — uJ- Adwu - Opu = J (Orqld — puSdu)es - Cyu — J Orqdivosu
Q Q r Q

- f ISoul?
2 Ja
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Thanks to (2.13)3 , 5, we obtain

Voiq- 0w — i | Adyu - Qpu = f gp+Omoyus + HJ ISO;ul?
Q r 2 Ja

@ ) (3.64)
= J gp+U3atU3 + EJ \S&tu|2

r Q

Substituting (3.64) into (3.63), we conclude (3.62). O
Lemma 3.6. There holds
1

| sl < [ apeluaf? + 82 | poluf+ 58 [ wisl (369)

Q r Q Q

Proof. Let k = (ky, ko) € LT'Z x L7'7Z be fixed and f be the horizontal Fourier
transform of f, i.e.

flk,xs) = f flzn,z3)e” " day,.
T
We write
() (ka SU) = _i'l/)(ka {E3), ﬂQ(kv x) = _i@(kv 1'3)’ ﬁ3(ka SU) = ¢(k7 .’Eg).
Notice that for k = 0,

$(0,0) = Lug _ L divu — 0.

Hence, together with Parseval’s theorem, we have

1
2 L 2
Lgﬂ+|u3| S WeLL, E B gp+|o(k,0)[". (3.66)
kel 'Zx Ly 17)\{0}

We may reduce to estimate (3.66) when v, ¢ and ¢ are real-valued and then continue
the estimate to the real and imaginary parts of ¢, ¢ and ¢
For each k € LT'Z x L;'7Z\{0}, we deduce from Proposition 3.8 that

/\2
[ oot acmm)ans < goetote. 07 + 38 [ o6+ 0 ) Oy

R_ R

+ Alﬂfm ((% + k¢)2 + 4(¢,/)2) (k, z3)ds.

It thus follows from the definition of A (2.29) that
2 2 A2 2 (¢)?
9po9”" (k, v3)dxs < gp+(9(k,0))" + A pol¢” + —5— ) (k,x3)dzs
R_ R_ k
" (3.67)
P ko) 14 ’)2>(k )d
Fhu | (5t Ro) #1607 O )y

for all ke LT'Z x L;'Z\{0}.
Meanwhile, for k # 0, notice that k1v + ko + ¢’ = 0. One thus has
(¢')? < (ka9 + ka)® + (k1o — kot)? = K2 (0% + ), (3.68)

and
2(¢')? = 2k3p? + 2k2p? + dk1kotpp < 2k3% + 2k30% + (k1o + katp)?. (3.69)
Furthermore, we obtain that

(0")? < (k19 + ka')? + (k1" — kat)’)? = B2 (') + (¢')%).
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This yields
1 2 1
(76" + ko) = o5 (6")2 + 206" + K26* < ()2 + (¢')2 = 20(k1¥)’ + ko) + k267,
so that

1 2
(50" + ko) < (k1o —¥)? + (koo — )% (3.70)
Then, in view of Fubini’s and Parseval’s theorem again, we find that due to (3.68),
1
2 2 2
fQP()|U| = 1L, L, 12 ) f po (¥ +90 + ¢%)(k, z3)dx3
kel'ZxL;'Z (3.71)
1 2, (@) '
> k,x3)d
2L Ly 2_1 JRf oo 2 ) )iy
kel Zx Ly ' 7\{0}
and that due to (3.69) and (3.70),
1
- Sul?
5 L plSul
M Z J ( 24 2kT9% + 2k50° + (ki + k2¢)2> i
- 3
47T2L1L2k LT'ZxL;'zZ k1¢ ¢) (k2¢_(p)
1% ¢” \2
> —— — .
Z WL, Z,I f ) (( 2 +k¢> +4(¢) )dx?’
keL7'Zx Ly 17\{0}
(3.72)
Combining (3.66), (3.67), (3.71) and (3.72), the inequality (3.65) follows, we end
the proof here. O

We are in position to prove Proposition 3.9.
Proof of Proposition 3.9. Owing to (3.62) and (3.65), we have that
t
| ol + || wista(s)Pds =+ | gotluat® = | ap-lua(o
Q 0 Ja Q r

1
<A [ poluP + 52 [ lsu)P
Q Q

(3.73)
where
i = | mieOF = [ abluaO)F + | aoilus(F.
Using Cauchy-Schwarz’s inequality, we have that
f ulSu(t)?2 = f 1[Su(0) 2 +2f J JSu(s) : Soyu(s)ds
Q Q Q (374)

JMSu JJMS@W |2ds+AJ f p|Su(s)|?ds

d 2 2 2
A .
at ), ol < AJ. poldrul” + f polul”. (3.75)
The three inequalities (3.73), (3.74) and (3.75) imply that

d 1 ’
o oluter + 5 [ wsue <+ 2n [ gt + [ [ sutoPas
Q Q 0 JQ
(3.76)

and that
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where
Y1
Y2 = N +J M|Su(0)|2.
Q

In view of Gronwall’s inequality, we obtain from (3.76) that

1 t
f polu(t)|® + ,J f plSu(s)|?ds < e%tf polu(0)2 + L2 (22 — 1), (3.77)
Q 2 0 JQ Q 2A
Hence,

1 1 t
i | ooloaP 45 [ uisu@F <t d [ poluP+a [ [ pisuePas
Ao 2 Ja Q 0 Jo

< (1 +24 j polu(0) )M
Q
(3.78)
Using the trace theorem, we have
y1+y2 < HU(O)Hip(Q) + HatU(O)H%z(Q)' (3.79)
Because of (3.77), (3.78) and (3.79), we observe

t
lu®)IZ2 () + ISu®)Z ) + 0L q) +L [Su(s)]1Z2(q)ds

(3.80)
< (I2vu(0) 72y + [u(0)7 (0))e*™.
In view of Korn’s inequality (see (C.5)), that implies
¢
lu@®)Z20y + [Va®)|720) + |0ut) |72 +fo [Vu(s)[ 220 ds (3.81)
< (J20u(0)[72(0) + [u(0)1 71 (@))€
Using (2.13), and (3.81) also, we get
¢
)12 N OIE +f u(s)|? ds
IOz @) < 1€O0) 7 (0 . lu(s) ] (o) (3.82)

< (I6O)1F1 () + 120u(0)[72() + [u(0)1 71 (@))€
The inequality (3.60) follows from (3.81) and (3.82).

To prove (3.61), we use the trace theorem to obtain that
t t
om0y + [ 10 ooy = P By + [ o) ey s

¢
< s o + [ sl
Together with (3.77), (3.79) and (3.81), we deduce that
¢
oen(®) sy + | 10em(6) ey s < (1000 e + [0 rsa)e™. (389
The resulting inequality tells us that
¢
(O ooy < IO ey + | 10em(s) ey

< (I0(O) Bz ey + 105u(0) 32 + [1(0) 201 ).

The inequality (3.61) follows from (3.83) and (3.84). Proposition 3.9 is proven. O

(3.84)
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4. A PRIORI ENERGY ESTIMATES

Let us recall the perturbation terms U = ((,u, ¢,n) from (2.10). We define the
full energy functional £¢(U(t)) > 0 such that

EFU@) = In(®) g2 (ry + Z ot Fra-arry + Z 10(C, w) ()| Fa-21(0
=0 =0 (4.1)

+ a5 @) + 10:a(®) 1@

and its corresponding dissipation D¢ ((u,q)(t)) > 0,

2
D} ((u, q)( 2 |otu(t)] 35 20y HatQHH2(Q + HQHH4 OF (4.2)

For notational convenience, we only write £;(¢) and Dy(¢) in this section.

The local existence of regular solution to (2.11) then follows from [3, Theorem
6.3], that we restate below.

Let us recall the definition of K from (2.7) and of A from (2.8) and define
M= KA, R = MM~ and D;u = d;u — Ru. We also define an orthogonal
projection onto the tangent space of the surface {3 = no(x1,22)} according to

v-No

|N 2 Mo for No = (=d1mo, 2mo0, 1) (4.3)

Ilgv =v —

Let us write

G*" =gpynN onT,

G = D,G*° + uS 4 (Ru)N + (uSqu — qld)ouN + pSs, auN on T.
Proposition 4.1. Suppose that there is a sufficiently small constant v, € (0,1)
such that (Co, uo, qo,M0) satisfying

HCOH%M(Q) + HUOH%M(Q) + H(JOH%IS‘(Q) + HWOH?qwz(p) < vt

Suppose also that the following compatibility conditions hold for j =0 and 1,

{divAoD{uo =0 in €, (4.4)

o (G?7(0) + pSa, DiugNo) =0 onT.
Then, there exist vo > 0 and Tymax > 0 such that if £¢(0) < vo, Eq. (2.11) with the

initial data (Co, w0, qo,Mo) satisfying the compatibility conditions (4.4) has a unique
solution (C,u,q,n) on the time interval [0, Tymax). Moreover, we have

gf(t) < (1 + Tmax)g.f(0)7
and n is such that the mapping O(-,t) defined by (2.6) is a C*-diffeomorphism for
each t € [0, Trax)-

With that regular solution (¢, u,q,n) of (2.11) on a finite time interval [0, Tyax),
we aim at showing the a priori energy estimates for the nonlinear equations (2.11).

Proposition 4.2. Let Cep,p be the optimal constant of the Sobolev embedding
H?(Q) — L*(Q).
Let &g be sufficiently small such that

p_
2C ¢y max(1, maxg_ pp(z3))’

0<do< (4.5)
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and (4.173) holds later. Hence, there are ¢ > 0 sufficiently small and another
Co > 0 such that for all 6 € (0,00) if supg<,<; E(5) < 0, we have

t
Sf(t) + J D?(s)ds
0 t t
<y (5*55]%(0) + sJ EF(s)ds +e7° f Ep(E7 + DF)(s)ds + 5*555:@)) (4.6)
0 0
t
T Coe™™ j (16 w)(3) ey + [1(3)2a e ).

Strategy of the proof. Respectively, we derive the a priori energy estimates for
the space-time derivatives of 77 in Propositions 4.3, 4.4, for the temporal derivatives
of u in Proposition 4.5, for the horizontal space-time derivatives of u in Proposition
4.6 and for the space-time derivatives of ¢ in Proposition 4.7. Then, we derive some
estimates thanks to the elliptic regularity theory (see Propositions 4.9, 4.10). In
view of these above estimates, we obtain (4.6) and complete the proof of Proposition
4.2.

In what follows, the constants C; (i > 1) are to indicate some constants, which
are referred later.

4.1. Energy estimates of the perturbation transport. We first derive the a
priori energy estimates for 7.

Proposition 4.3. The following inequalities hold

t

I(0) ey < Ca(20) + [ (El(6) By + &1 Tulo) Brsoy )

.Y (4.7)
+C J 5;’(8)618,
0
t
J0m(®) 32 ry < C2(£3(0) + j (£l 2un($) ey + e~ IV vu(s) 20 ds)
, (4.8)
+Cgf <€'J?c’(s)ds7
0
and
t
|02y < Cs (£30) + f (£l133m(5) 32y + 7 IV 3u(3)] 320 )
(4.9)

t
+Cs J E?(s)ds.
0

Proof. Let us prove (4.7). For any o € N?,|a| < 4, we have by (2.11),,

0,0%n = %us — (u10%01n + up0®dam) — Z (Pu 0 Porn + 0Pugd*Paan) .
0#B<a

=:R{

Using the integration by parts, we obtain

1d 1
—— | o%n|?, :*J druy + Oaus)|0” 2—|—J 0%usz — R{)0n.
5 719" z2 ) = 5 F( 1u1 + O2u2)[0%n| F( 3 — R{)0n
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So that, we have

1d,., o
iaua 77||2L2(r) < (H(71U1HL°0(F) + H(72UQHL°°(F))Ha 77“%2@) (4.10)
+ ([0%us|| 2 (ry + 1RT [ 20y 0% 22 (1)
We make use of the trace theorem to obtain that
|0jui| Loy S lulmsry < ullm@), (4.11)
that
l0%us]L2(ry S [10%u] (o) (4.12)
and that
[RY |2 ry < Z [0%ull 2y 0% Pnll 1 0y < 10l @l ey (4.13)

0#B<a

By summing over a € N2, |a| < 4, it follows from (4.10), (4.11), (4.12) and (4.13)
that

d
ﬁﬂﬁuiﬂ(r) < ||VUHH4(Q) H77HH4(F) + ”U|\H4(Q)H77|ﬁ14(r)

< [Vl g Il ey + EF-
Using Cauchy-Schwarz’s inequality and then integrating the resulting inequality
from 0 to ¢, we obtain (4.7).

We show (4.8). Let o€ N2, |a| < 2, we get
020%n = 0“0puz — (u10%010:m + u20“020sm)
— Y (0Pur0°Por0im + 0%uz0° P dy01m)

0#£B<
=:R¢
— > (@0 e Porn + 0P druge® P dam) .
0<f<a
0 —

Via the integration by parts, this yields
1d 1
5 el = 5 [ (@uur + 2aulovaump + [ (0°0ua — B — R 2un
r r
Using the trace theorem again, we have
L@+ admaemnpon < ol ol e
< l0su] 2oyl 222 o0y Ol 222 1y s
and
||6”‘(9tu3||L2(p) < \|6tu||H\a\+1(Q) (415)
We follow (4.13) to get that
1RSIy s ), 10%ul Loy l0 Pl i ey < lullas oyl @enllme ) (4.16)
0#B<a
and that
1RSIy s ), 10%0eul oy 0Pl oy < IVl 2y 0l a5 vy - (4.17)
0<B<a

Combining (4.15), (4.16) and (4.17), we deduce that

d
ﬁﬂaﬂﬂﬁp(r) < [Vl a0l a2y + 7
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Using Cauchy-Schwarz’s inequality and then integrating from 0 to ¢, we obtain
(4.8).

We have (4.9) by following the same strategy as for proving (4.8). The proof of
Proposition 4.3 is complete. (]

Proposition 4.4. There holds

¢
[ F0/2r) < Ca (5]%(0) + f (el () [Foszry + 54””@)”%{5(9))“)
.Y (4.18)
+ caf £3(s)ds.
0
Proof. To prove (4.18), we borrow the idea from [29, Lemma 3.9]. Let J =

1— 07 — 3. We apply J%2 to (2.11), and then multiply the resulting equa-
tion by J%2n. Hence, we find that

d 1
7”,7‘@{9/2@) = —7J (ulal\j9/2n|2 + uQQQ\jg/zmz)
dt 2 Jr

+JXJW%3—gﬂﬂmﬂ@n—kﬁ”mﬂ%mjw%
N

1
=3 L(ﬁﬂu + 02u2)| T 0

+ J (T Pug = [T, wn]ovn — [T, ua)0an) T 0.
r
Thanks to (C.6), we have the following estimates,

J;@uﬂjw%ﬂzsH@quw@wJW%m;ggsuumﬂ@wnﬁpm@y (4.19)

ng/zusjg/z’n S NTPus| 2y [Tl ey < 1T ul sy Il oy, (4.20)

and
L (T2, u10mT 0 < 1| 05us] oo oy 1T 720 L2y 1T L2y

+ 172 Loy 105 e () 1T 20| 22 oy
< HU\|H3(F) HWH?HQ/z(r) + HJ4UHH1(Q) H77HH3(F) HWHHQ/Z(F)-
(4.21)

In view of (4.19), (4.20) and (4.21), we get
d
i35 oy = koo oy s oy + 17wl oy (4 ks o)l s
dt @) ()
< [l s @0l gorz @y + 3

Using Cauchy-Schwarz’s inequality and then integrating from 0 to t, we obtain
(4.18). O

We provide some additional estimates on 7, which will be used later.

Lemma 4.1. We have
\oenll ey S Ef + €7, (4.22)
|0F0l a2 vy < Ef + €7 (4.23)
and
1020l 2y S 107wl ) (1 + Ef) + £F- (4.24)
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Proof. By (2.11),, we have that

loen| ey < luslermrey + 194 g7z S luslaa) + 194 are@y.  (4.25)

We use (C.1) and the trace theorem to estimate || Q4HH7/2(F) (see Q* in (2.12)) as

19 2y < Jul gz @yl (G1m, 2m) | g7y S s )0l o ry,
Substituting the resulting inequality into (4.25), we have (4.22).
Using (C.1) again, we have
HatQ4”H3/2(F) < HatahnHHW?(F)HUHHW?(F) + HatUHHS/z(F) HahnHH”Z(F)
S 0enl gz myllul zay + |1 oz 0y | Orull 2 () -
Together with (4.22), that implies
1070l a2 ry < |0vusl (o) + 106Q | pore(ry < Ef + €7
One thus has (4.23).
We continue using (2.11), to have that
1020 vy < 107wl ey 107 QY ey < 107 us| ooy +107 Q| e (ry. (4.26)
As a consequence of the product estimate (C.1) and Sobolev embedding, we obtain
HagQ4|‘H1/2(F) < \Ian\\Hl/z(r)H(am5277)\\H5/2<r) + HatUHHW(F) 10t (011, a277)||HS/2(F)
+ [l sz oy 107 (011, 02m) | g2
< 07 ul gy lnll ey + 10wl @) 10l gz oy
+ ”u||H3(Q)Ha?nHH3/2(F)~
We continue using (4.22) and (4.23) to observe
||6152Q4HH1/2(F) < HatQU”Hl(Q)Ef + 5,%- (4.27)

The inequality (4.24) follows from (4.26) and (4.27). Lemma 4.1 is proven. O

4.2. Temporal estimates for the perturbation velocity. If we use the nonlin-
ear equations in the perturbed form (2.11), there will be no control of the highest
temporal derivative of ¢ appearing in the nonlinear term Q2. Instead, we switch
our original nonlinear equations (2.9) to a new formulation using a geometric trans-
formation of the domain. The equations are

0t¢ + divg(pou) = F* in Q,
(po + pbf + C)0ru + V 4q — pdiv4S qu + gles = F? in Q,
div.au = 0 in Q, (4.28)
om=u-N on T,
(¢gId — uS4u)N = gpinN, on .

Here,

F' = K0,0(p06 + 05¢) — diva((ppf + Q)u),

F% = —(po + ppf + O)(—K0:003u + u -V qu) — gph(AKO, BKO, (1 — K)§)T.
(4.29)
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Applying the temporal differential operator 8! (I > 1) to (4.28), the resulting
equations are

0:(01¢) + diva(podiu) = F! in €,
(po + ph + C)0r(0lu) + V 40Lq — pdiv 4S 40tu + golCes = F! in ,
div 40ty = F3 in Q, (4.30)
0¢(0ln) = dlu - N+ F*! on T,
(OlqId — uS 40N = gpy OinN + F5 on .

The terms F7! with [ > 1 and 1 < j < 5 are given in Appendix B (see (B.7), (B.8),
(B.9) and (B.10)). We use the convention that F19 = F! F29 = F2 and F70 =0
for 3 < j < 5. We now derive the following proposition.

Proposition 4.5. Forl =0 and 1, we have

t
losu®) 22y + l0in()| 2 r +f |V otu(s) |72 a)ds
0 (4.31)

< G5 (&30) + f (0, ) By + f E(s)ds).

We also have

t
loFu®)72) + 10En )72 +f [Voiu(s)|72q)ds
0 (4.32)

< Co(£3(0) + JO 111, O)(5) 2y s + L £4(E5 + D) ()ds + E}(1)).

The proof of Proposition 4.5 relies on Lemmas 4.2, 4.3 and 4.4 below.

Lemma 4.2. Let J be defined as in (2.7). For any scalar function 9 € R and any
vector function o € R3, there holds

L(wm.JQZ Lﬁ(/\f-g) _ L J9divao. (4.33)

Proof. We have from the integration by parts that
L(vw) Jo— L T Ai0;00; = L 9(J Aiso;) — L 90,(JAy0)  (4.34)

Note that JA;30; = N - o, hence
| 904000 = | o0 (4.35)

Note also that
0j(JA;;) =0 foralll<i<3,

this implies

J V0;(JAij0i) = J VJA;;050; = J JIdiv 4 0. (4.36)
Substituting (4.35)79(4.36) into (4.34)?W€ obtain (4.3:?)7 i.e. Lemma 4.2. O
Lemma 4.3. There holds for all |l = 0,

li t La|? L|2 1 112
2 dt(L(pO + pof + Q) J|0pul” + L 9p-+0y| ) + QMJQ J|S 40bul
1
=5 |, oo+ i+ TP+ | IO~ gicebu + F'ela) (137)
Q Q

— J (gp+ OmFY + F>' - du).
T
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Ifl =1, one has
1d / Lul? 4 2 FiAl=1 |2 1 12
5(7( (po + pof + ) J|0pul” + gp+|é’ n* — gp0|@t us| ) + SH o JIS 40;ul
-5 at<<po+pae+<>J>|aiu|2+ | J(F”-aiuw&laiq)
Q Q
— J (gp+6£77F4’l + FoL. (ﬂu) + f gpoJFg’l_lﬁim
r Q

_J gp6 (A 03uy + B Ozug)dlug — f gJFH 10ly;,
Q Q
(4.38)

Proof. We multiply by Jolu on both sides of (4.30),, to have that

1 d / L, 12
§£(JQ(P0+P09+C)J|@U| )

1
=5 | atoo+ i+ Qi — | Vadla- dehu | pldivaSact) - o
Q Q

- L gJoLColus + L JE?L. oy,

(4.39)
Thanks to Lemma 4.2, one deduces
J VAllq - Jolu + J p(divgS 40tu) - Jolu
) (4.40)
= JF(MSAaﬁu — OlqId)N - &b + L J(divg0lu)olq — 3 L pJ|S 404
Substituting (4.40) into (4.39), we have
1d / o2\ L 112
531 (| 00+ O J1007) + 5 | itk
1 , .
— 5 | 2o+ i+ it + | Taivadiuil (4.41)

+ f (uSa0tu — ALqId)N - dlu — J gJoLolus + J JF?U. oy,
r Q Q

Using (4.30); 4 5, we obtain (4.37) from (4.41).
To prove (4.38), we use (4.30), at order [ — 1 to get that

- j 9T b = j g7div.a(podt u)dbus — J gTFM 1l
Q Q Q
= f 9pp04 tusdtus +J gpoJ F¥' 1 0lusg
Q Q

- f gpb (A0 dsuy + B d3ug)dlus — f gJFY =1 olyg
Q Q
(4.42)
Combining (4.42) and (4.37), we obtain (4.38). Lemma 4.3 is proven. O

Lemma 4.4. The following inequalities hold

1
2 (IFM 2 P ooy + (Y P o) S €2 (4.43)
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[(F"2, F2)| gy + [(F*2, F52)| ey < €765 + [Vorul iz + [V Pul 12(0)).

(4.44)
and
[(F2, TF%2) | p20) S EF, 10(JF>?) | 12(0) < Ep(Ep+[Vrul 2 (o) +V 7l 12 (6))-
(4.45)

Proof. For ¥ = Qor T', all quadratic terms | X1 Xz|| 2 (s or cubic ones | X1 X5 X3]|12(x)
appearing in F7! with 1 < j < 5 will be bounded by using Sobolev embedding,
Lemma A.1 and other inequalities in Appendix C. Precisely, we have

X1 Xo]z2(m) S [Xillpe ) [ Xollz2m) € [Xilm2m) |1 X2l L2 s
and
|1 X1 X2 X3] 225y < 1 X1 |2 () [ X2 oo () | X3l 223
< [ Xalze oy 1 X2l 22 () 1 X5l L2 (5)-

We only show the estimates of the term F2!(0 <1 < 2) (see (4.29) and (B.8)), the
estimates of others terms are proven in the same way.

For F? (see (4.29)), we have
(po + pof + Q) K 0,003u = (po + pof + C) (K — 1)0:003u + (po + pob + ¢)01003u.
Thanks to Lemma A.1 and (C.10), we obtain
I(po + P60 + C) K 0:003ul L2(0)
< (1400, Ollaz) (1 + [ K = U m2@) 100 2 ) |ull 71 (o)
< L+ [Cllmz@) + Il sz ) X+ Inllmse @) |0l gsre @) lul 2 @)
< &5

(4.46)

Note that
u-Vau =u-Vg_1qu+ u- Vu,
we use Lemma A.1 and (C.12) to get that
[(po + P60 + Q)+ Vaul 20
< l(po + pof + Q)u - Va—tau| 2y + [(po + pof + Qu - V| 20
< (U + [Cllaz ) + 0l mse ) (X + A = 1d| g2@) |ul g2 lul g @) (4.47)
S (L4 [Claz@) + Inl o)) (X + 0l s o)) [wll 20 [ul 210
< &7
Due to Lemma A.1 again and (C.10), (C.11), we have
I(AKO, BKO, (1 — K)0)|L2() S [(AK, BK, K = 1) m2(9)[0]L2(2)
< Inllzsrzoylnll z2r) (4.48)
< &7
It follows from (4.46), (4.47) and (4.48) that |[F?|L2(q) < €7
For F21 (see (B.8)), we obtain
| F2

r2@) S 10:F?| 20y + (1 + A = 1d| g2 (0) ) |00Al 11 @) | VUl 20
+ (1 + A = 1d| g2 0) V2 ul 2y |0eAl 1.0y + 1€] 720y |06 All 22 (0)

+ (0l =) + 10:0] 2 () |0ree] 12 ().
(4.49)
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According to Lemma A.1 and (C.12), it follows from (4.49) that
It

r2@) S 10:F?| 20y + 1+ [0l gz @) 10 mrore ooy |l 14 o)
+ <l s @10 gz ry + (10eC] 2 ) + [06m] mrsr2 ()| Orw] L2 ()
< 0:F? | 20) + EF-
(4.50)
We calculate each term of ¢, F2,
2((po + phf + OV K2,805u) = (po + phf + C) (0, K 2,805u + K 2005u + K 2,00,03u)
+ (024 + 0,0) K 80051,
which will be bounded as follows
10:((po + pof + Q) K :003u)|| L2 (q)
S (140, Ol a2 @) 10K [ 220 1040 712 0y 1] 1 (2
+ (L + (0, )l m2@) (1K = 1 g20) + 1)
x (|03ull 2 197 0] L2 () + 1060 12 () [ (w1, Gr0) | 1 (2))
+ (08, 0:C) | 2 0) (I — 1| 5202y + 1)[040| 2 02y v 11 () -
Using Lemma A.1 and (C.10), we deduce that
10:((po + P60 + () K 0:005u) | L2 (0)
< X+ IKlaz) + Il zse @) 0l vz @0l gsm o lul B @)
+ (L + Iz + [l sz @) (X + [0l gszry)

x (lull s @)l + lomlmongo | d)lmy) 00
+ (10l 2y + [0l 2 o)) (X + [0l 52 o)) e 0.2 [ 9en | 132
< &7
Next, we compute
0e((po + pob + Qu -V au)
= (po + pof + C)(Qru;Aijd5ur + wi0pAijOjuy + uiAij0rdur)
+ (P00 + Q) uiAiOjuy.
Hence, it follows from Lemma A.1 and (C.12) that
10:((po + pof + Qu - V au)| 22 (q)
< (L1100, Ol a2 @) A = 1d] g2 ) + Dlul ms @)l deul @)
+ (14108, Oz @) [l 3rs oy 06A] 20
+ (00, 0:Q) | 2(e) (I A = 1d] 2 (0) + Dlull 20y vl mr (o) (4.52)

< (L + <l ) + 10l msezmy) Ul gse @y + Dllwl s |0l g )
+ (1 + ¢l a2@) + ‘|77HH3/2(1"))HU”%{3(Q)H(}tn”Hl/Q(F)
+ ([0eCl 22y + 10emll grsr2 0y (Il sz oy + Dllwl 20 ] 21 (02)
<&
Using again Lemma A.1 and (C.10), (C.11), one has
|0:(AK®, BKS, (1 — K)0)| 12(0)
< I(AK, BK, K — 1) g2(0) |00 L2(0) + [0:(AK, BK, K — 1) 12(0)[|0] 112 ()
< [nllgse oyl 2y + 10 me oy 0] gse @)
< &7
(4.53)
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We deduce [0;F?|p2) S &EF from (4.50), (4.51), (4.52) and (4.53). So that,
| @ < &7

For F%2 (see again (4.29)), we use the product estimate (C.1) and Sobolev
embedding to obtain that

\ <07 F?| 20 + Al 20 (106A] 520) |V Orul 2y + 107All g @) IV Ul 72 (0))

+ 10 A] 2 (0 ([06A] 52 () I VUl 72(0) + [ Al 53 (0) IV Orul 1 (0))
+ 07 Al L2 o) Al 3 () |Vl 3 @) + 100A] 20 106 11 ()

+ 07 Al L2 V¢l 2y + 1(06C, 0:0) |2y 107wl 120

+ [(67¢, 070) |22 ) l0su] 2 (o)

We make use of Lemma A.1 and (C.12) to further get that

< 07 F?( 2y + [l s oy 00l prsre o0y [V vt 112 ()
+ ”77HH3/2(F)Hat277“H1/2(F) HUHH4(Q) + Hatnﬂis/a(r)ﬂuﬂm(n)
+ ||athH3/2(F) HUHHW?(F) HatuHHz(Q) + ”at277”L2(F)H77”H7/2(F) HU||H4(Q)
+ loenl sz oyl 0eC i) + 10200 20y €] 12 )
+ (10eCh 2y + |0enl oz o)) 107wl L2 (0)
+ ([07¢) 2y + 1070 L2 (o)) |Orull 22 ()
SFF?|p2q) + Er(Ef + Hat277HH1/2(F) + [Voru| g2 ()
Together with (4.23), we deduce from the resulting inequality that

Hence, in order to show that

we will prove that

(Q) < H&fFQHLz(Q) + Sf(gf + ||VatuHH2(Q)).

o) S Er(&r + IVorul g2y + HvatQUHL?(Q))’

107 F2 120y < EF(Ef + [Vl 12(q))-
We now estimate each term of 02 F2. Due to Sobolev embedding, one has that
\\52((,00 + 0t + Q) K 0:003u) | 2 (0
(L + 110, Ol 2 0)) (1K — 1HH2 @ +1)
H53UHH2(Q)H539HL2(Q) + Hata’zuﬂm(@) |\329||H2
<+ |07 03ull £2(2) 048] 2 (2 )
(L + 10, Ollm2 () 10K | 7202
x (1081 Vouuls e + na?eumm (o)
+ (1410, Ol ) 10 K 2 (0) 1060 1120y [l 172 ()
+ (040, 0:Q) [ zr2 ) ([ I = | 2y + 1)
< (102012l s ey + 104022 e |21 s )
+ (00, 0:Q) | zr2 () 106 K | L2 () 910 12 0y || 123 2
+ 1076, 02O 22 (1K — 12y + 1100 7126yl ull 212 ) -
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Thanks to Lemma A.1 and (C.10), this yields

107 ((po + pof + () K 0:005u)] 12
< (X + Il sz ey + 1€ 2 @) Ul g2 @y + 1)
<|U'H3(Q) |07 nll 2y + 0] 1 o |at277|H3/2(F)>
+ [V oZull L2yl Qenll o
+ (L + Il sz @y + 1€ a2 @) 10 252 (ry
x (12l ey lovul e )y + 1020l 2 oo
+ (1 + [0l gse @ + HCHH"’(Q))(”at277HH1/2(F) + Hatnﬂfqlmr))||5t77“H3/2(F) ] 23 ()
+ (0l gsr2ry + [0eCl 2 ) (Il 52y + 1)
x (Hatzn\\m(r) HUHH3(Q) + |\f7t77||H3/2(r) ”atu”Hl(Q))
+ (0l gsr2ry + [0eCl 2 @) 10en 12 o0y |06 32 || 23 ()
+ (HatQUHL"’(F) + HatQCHL2(Q))(H77”H5/2(F) + D 0enl grarz oy lul 3 ) -
(4.54)
Using (4.23) and (4.24), we thus have from (4.54) that

107 ((po + P60 + () K 0:005u)| 120
SE(Er + HV@?Ume + HanHLZ(F) + H(7t277HH1/2(1“) + \|5t77HH5/2(1“)) (4.55)
< E5(E&r + [ Vatul L2@))-

In a same way, we have

107 ((po + pof + Qu - V.au)|r2(q)

< (L+ 100, Ol ) (A = 1d] g2(q) + V(107 ul g1 [ull s @) + 00l 0)
+ (14108, O a2 @) (108 A] L2 | 0wl s (@) + 107 Al L2 (@ [l 122 ) [ 3 2
+ (040, 0:Q) | 20 (1A = 1d[ g2 () + V)| Geu] g1y w3 )
+ (026, 370 | 2@ (1A = 1d| 2@y + 1)““’“%{3(9)'

Thanks to Lemma A.1 and (C.12), we further get that

107 ((po + P60 + Ou - Vaw)| L2 (e
<1+ ”77HH3/2(F) + <2 ) (I 52y + 1)(Hat2uHH1(Q) |l frs ) + H&ull?;a(m)
+ (L + 9l gse @y + 1€1a2)
x (l0enl vz oy 0wl rrs @y + (1050 vz ey + 10l Frare (o) [l 220l 113
+ (100l zrs/2 0y + 110eC rr2(0)) (Il 520y + D[ Ovua] 112 @) [ull 112 (0)
+ (Ha?ﬂHLZ(F) + Ha?CHLQ(Q))(”nHHWZ(F) + 1)”“’”%{3(9)
< Ep(Er + 1070 vz ry + H5t77||2f15/2(r) + [ VoFul L2 ())-

Due to (4.23), we obtain

167 ((po + pof + Q- Vaw)| 2y < Ep(Ef + V7l 12(0))- (4.56)
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Furthermore, thanks to (4.23) again and Lemma A.1, (C.10), (C.11), one has
|0} (AK6, BKO, (1 — K)B)| 2 (0
< |07 (AK, BK, K — 1)| 120 |0] r2(02) + [ 0:(AK, BK, K — 1)| 12() 1040 112 ()
+[(AK, BK, K — 1)| 2(0) 076l 20
< (”athHHl/Q(F) + Hat’?Hf{s/z(r))HU”HW(F) + 0enl gar2 oy [ 0enl| 32 1y
+ nllgrsr2 oy 1070 2y
< E(Ep + 03] vz ey + Ham“?{s/zm)
< &
(4.57)
Consequently, there holds
|07 F?|| 20y < €7 (€ + [V OFul L2(0)
thanks to (4.55), (4.56) and (4.57).

We are left to prove (4.45). From the formula of F'*2 (see (B.9)), we use Sobolev
embedding and (C.12) to get

| 2]

r2@) < 107 Al L2 VUl g2y + [00A] 2 (0) | Voru| 2
< (192 vz ey + 10enlgssz o) |ull sy + 10l 2oy |0 1 (-
Owing to (4.22) and (4.23), we deduce that

1E22 220y < (1070l 2y + 1060 g2 o)) Ex + 10enl msrz oy (4.58)
<& '
Together with (C.8), this yields
| TF22] 20) < (1 + [T = U e @) [F2? 20 S EF- (4.59)

We continue using (C.8), Lemma A.1 and (4.58) to get
10 (TF?*2) | 1200 < 06| e F>2 | p2e0) + (1 + [T = 1 2o () 10:F>> | 12 ()
< 01050 2 E2 + |0 F32
< ol gz )EF + 10:F>2 | L2 ().

|L2(0)

(4.60)
By Sobolev embedding and (C.12), let us estimate that
10:F>2| 120y < |07 All L2 IV et 2y + 100 Al 20 IV 7 ] L2
+ |02 Al L2 | VUl 20

< (197 nl ey + 10172 () IV Ot 20y + 106l g2 (0 | VO] L2 ()

+ (10801 1720y + 106l o 0y 1050 1172 0y + 10enl o2 (o))t 213 2)-
(4.61)

Combining the resulting inequality (4.59) with all inequalities in Lemma 4.1, we
obtain

1002 12y < E7(Er + |Vorul ey + [Vl 12(0))- (4.62)

Combining (4.22), (4.60) and (4.62) gives us that
[0(TE??) L2 () S E¢(Er + Vo] a2y + [ VOFul r2(e))- (4.63)
The inequality (4.45) follows from (4.58), (4.59) and (4.63). O

We are in position to prove Proposition 4.5.
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Proof of Proposition 4.5. In view of (4.37) at order [ = 0, we have
1
5[0t + 0P + [ ooen?) + g [ [ eautsyzas
1
=5 ([ oo+ st O + | apslnte)?)] (164

0

J- J 2¢((po + pbf + O)J)|ul*( ds—i—J. J 2. u— gCus)ds

We first estimate the Lh.s of (4.31). Notice that
JISauliz(qy = [SulFa(qy + J (J —1)|Sul® + f J(Sau+ Su) : (Sau — Su).
Q Q
Since
Sau £ Su = (Aix £ 0ix) Oy + (Aj £ d5k) Oy,

we use (C.9) to obtain

f J(SAU + Su) : (SAU - Su) = 4[ (A2(81uz + &2u1)2 + BQ((}l’LLg + (73711)2)
Q Q

< (A, B) 2o VUl 220
<&}
Note also that ||/ —1||L=(q) < 1 (see (C.8)), we use Korn’s inequality (C.5) to have
JISaults (o) 2 1Vulia) — €7 (4.65)

Due to the assumption on ¢ (4.5) and Sobolev embedding, we then have

1
> —p_.  (4.66)

inf(po + 940 + ) > p- — Comy max(L,max pi ()| (0, Ol > 5

The Lh.s of (4.64) will be estimated as

| oo b0+ QP + [ gpeln@P 4| [ au(s)Pds
Q T 0 JQ (467)

t t
2 ) 2 + 1102 cry + j IV0(5) 2y s — j £3(s)ds

We now estimate the r.h.s of (4.64). By Gagliardo-Nirenberg’s inequality (see (C.2))
and Sobolev embedding, one has

[2¢((po + P60 + €))L=
< [(po + p60 + )0 |2 ) + 106010 + 0:C) || Lo ()
< (X0, ) a2 00 30y + (068, Q) | m2(0) (1 + [T — L2 (0)-
Together with Lemma A.1, (4.22) and (C.8), we observe
[0:((po + pob + )| L)

< (X + [nllgse ey + ISl az @) 0l gore oy + 10l gsre @y + 10 2@y (4.68)
<&y,

which yields
t t
j j 24((po + 0 + O))ul(s)ds < j £3(s)ds. (4.69)
0 JQ 0
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Furthermore, thanks to (C.8) and (4.43), we get

JQ J(F? - u—gCus) < (|J — 1 o) + DUF?| 2@ lulrz) + 1< 2y luslrz@))

< E 4 Clz2@ lusl 2oy -
(4.70)

Substituting (4.65), (4.67), (4.69) and (4.70) into (4.64), we deduce (4.31),_,,.
For [ = 1, we make use of (4.38) at order I = 1 to have that

%(L(po + 000 + C)J|0ul* (1) + Lgp+|(3t77(t)|2 - L gpg\ug(m?)

t
+ gjo IS .40¢u(s)]22 (g ds

1
= 5(f (po + pf + ¢)J|Opul? +f gp+|0m? —f gpéluSIQ)‘
Q N Q

t=0

1 t t
+s L (oo + 0+ ) ol (s + L L T(F2Y - yu + F*10,q)(s)ds

¢ ¢

— J J (gpromF ! + F5L . 0,u)(s)ds — J f 9po(Adsuy + Bdzusg)dius(s)ds
0Jr 0 Ja
t

—f f gJF10,us3(s)ds.
0Jo

(4.71)

By a similar argument as the proof of (4.67), we estimate the L.h.s of (4.71) as
| ot g+ el + [ apetomol - | aspluator

t
o f IS 4201u(5) 2y

t t
2 100®) gy + 10n(®) 2oy + j 19001(5) |2 2y — 13 (8) By — f £3(s)ds.

(4.72)
For the r.h.s of (4.71), we use (4.68) to obtain that

¢ ¢
f J 2i((po + phf + )1 |dul>(s)ds sj £3(s)ds. (4.73)
0Ja 0
Next, thanks to (C.9), we see that

¢ ¢ ¢
J J 9po(Adsuy + Bdszus)drus(s)ds < f E;H(A, B)|lg2()(s)ds < J S?(s)ds.
0 Ja 0

0
(4.74)
Let us use (C.8) and (4.43) to estimate that

¢ ¢
J J J(F2Y . 0pu+ F310,q — gF 03u)(s)ds — J J (gpr0mF ! + F51 . 0,u)(s)ds
0 Ja 0Jr

t
S L (1 = ey + DIE, F2LF2)(8) |2y + 1EH 21 ()12 )4 (s)ds

< L Ef(s)ds.
(4.75)
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Combining (4.72), (4.73) and (4.75), we obtain

t
e t) oo+ 10Oy + | 19000(6) oy
0 (4.76)

¢
< E7(0) + Hug(t)Hiz(Q) + L Ef(s)ds.
As a consequence of (4.76) and (4.31),_,, the inequality (4.31),_, follows.
For [ = 2, we use (4.38) at order [ = 2 to have that

1
5 ([ 0+ o+ 1080 + [ apelebnf — | astlowa(o))
Q T Q
t
+ %uf J J|S40%u(s)|*ds
0 JQ
1
= g(J (po + po0 + ) J |07 ul® + f gp+|0in|* — f gpél@ua?)’
Q r Q t=0
1 t t
+ 3 L Lz ¢ ((po + ppf + ¢)J)|02u(s)|*ds + L JQ J(F*2 . 02u + F3202q)(s)ds
t t
| [opeatnrra v o2 @uy s + || gmFtiotu(s)as
0o JI 0 JQ

t ¢
— J J 9P (Ad;03u1 + Bo;0sus)07us(s)ds — J J gJF 1 02us(s)ds.
0 Ja 0 Jo

(4.77)
We follow the previous arguments to observe that
t
lozu®) 22y + 10707 (r) +L [V zu(s) |7 () ds
¢
< EH0) + [0us ()72 + J EF (A, B) ()] 112y ds
0 (4.78)

t
+ L (1T = Lz + DIED F22 F2) (s)] 20y ds

t t
1@ PR emEs s + [ [ FRag s
0 0 JQ

Since 07¢ does not appear in £ or Dy, we use the integration in time to have
t
| [oreaeas - [ @arr2o - | @
0 Jo Q Q

_ J 20q()00 (JFS2) (s)ds.

0 Jo
Thanks to (4.45), we observe

t t
f f (P02 (s)ds < 5§(0)+5§(t)+f E2(E 4+ |V ovul g2 )+ VO2u] 12 () (5)ds.
0 JSC 0
(4.79)
It follows from (C.8), (4.43) and (4.44) that

t

(1] = tpe ) + DIE>2,F>LF ()2 ) + 1(F42, F22) ()] 20y (s)ds

S

t
< [ €s + 190l + Vel oey) o).
(4.80)
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Using (4.78), (4.79), (4.80) and (C.9), we deduce that
¢
l67u®) L2y + 67n@) L (1) +L [Voiu(s)|720)ds
¢
s SJ%(O) + [|Orus(t) H%mz) + 5?@) + L 5?(5f + Vol gz + [Vo7ul r2q))(s)ds.
We obtain (4.32) thanks to the resulting inequality and (4.31),_;. O

4.3. Horizontal estimates of the perturbation velocity. We continue deriving
the mixed horizontal space-time derivatives of u. Note that py only depends on x3.
Let B = (B1,32) € N? and let us apply the horizontal derivative 65 = 6161 652 to
(2.11), we obtain the following equations.

0:0,C + phOyus = 0y Q1 in Q,
P00+ VPl g — pAdu + gl Ces = AP Q> in Q,
divolu = o) Q3 in 0, (4.81)
atafﬁ - 6§u3 = 55 ot onT,
(8,€qu — uS&ﬁu)eg = gp+(?f7763 + (75 Q° on I

Proposition 4.6. The following inequalities hold

t
S (1l + | 195 ds)

BeN?,1<|B]<4

t t
< Cr(g70) + &° j (E7() + [ Vus(3)| 32 ) )ds + f £/(€} + D) (s)ds) (452
1
+ o= | ()l + (9] o).

and

t
S (1o + | 19O )

BeN?,1<|Bl<2

t t
< Cs (8?(0) + 53J (E7 () + | Vus(s) |35 )ds + J Ep(EF + D})(s)ds) (4.83)
0 0
t
+ o™ | ()l + (9] o).
To prove Proposition 4.6, we need the following lemma.
Lemma 4.5. The following inequalities hold
1Q 120y + 10:Q 22 (0) + 110:Q% | L2y + Q% 2 () + 10:Q% | 112 () (4.84)
+ 1% w5 ) + 1Q 2y + 197N asiz ey + 10:Q° [z ry < €3,

and
HQ2HH3(Q) + HatQQHHl(sz) + || QSHH‘l(Q) + ”atQ?me(sz)

5 5 (485)
1 72y + 10:Q° | 32 (ry < E(E + D).

Proof. For (4.84), we only present estimates for some terms of the l.h.s; precisely,

10: Q%1 () + 19 72 (ry + 193 52 (ry < €7,
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the estimates of the other terms in the Lh.s of (4.84) follow the same way. To get
10:Q% |1y < 5]%, we use (C.1) and (C.10), (C.11) to bound each term of Q3 (B.5).
Indeed, we have

10:((1 = K)O3us)| () S 0K | (o)l Osus| rz () + [ K — 1 ms o [0:03us] a1 (o)

< 0enl gsrzmyllusl ey + [0l m7e (o)l Grus | 22 )

< &3,
(4.86)
and
[0:(AK d3uy + BKOsuz)| g1 ()
< [0(AK, BK)| g1 |05u] a3 o) + [(AK, BK)| us(a)lld:dsul g (a) (487)

< ol garmyllul zage) + [0l z7e @) [0eu] g2
< &7
Hence, [0;Q%| g1 (0) < 5? follows from (4.86) and (4.87). We apply the product
estimate (C.1) and the trace theorem to have that
”Q4HH7/2(F) < HU1HH7/2(F) Hal77”H7/2(F) + HU2HH7/2(F) \‘5277HH7/2(1“)
< [ul za )| oz
<&
Moreover, using (C.1), (C.10), (C.11) again and the trace theorem, we show
1Q% ] sz (ry < 5?
From the expression of Q} (B.6), we have that
l01n(q — gpn — 2p(Orur — AK O3u1))| s (r)
< HaIUHHW?(F)(”(Qvnvalu1)|‘H5/2(F) + HAKHH5/2(F) |03u1 HH5/2(F))
< Il gz @y gl zs @) + luillme@) + 10l gse2 ey + 1AK | ms @) lutllge @)
S Inllrrz @y gl s @) + luillza) + 0l gsezey + 10l e vl @),

(4.88)
that
|02m(1ug + d2ur — AK d3uz — BK dzuy)| grss(ry
S 2l s ooy [l ez oy (1 + [(AK, BE)|[ a2 r)) (4.80)
S %2nllgsiz oy |l ez oy (1 + [(AK, BK)| 13(e))
S Inllamrz @y lul s @) (X + [0l e ),
and that
(1 = K)dsur + AKdzus| sz ry S [(K — 1, AK)| oz (r) | 0wl oy
< (K =1, AK) | s (o) |ul 73 () (4.90)

< Il gz @ [l me @)

Hence, the inequality |QF|ps2ry < €7 follows from the three above estimates
(4.88), (4.89) and (4.90).

Similarly, for (4.85), we show only
10:Q3 11 @) + Q% () S E7(Ef + Dyp).

The inequality | Q| ) < £fDy (see Q° in (B.5)) is proven by using (C.1) and
(C.10), (C.11),

193 agey < IAK, BK, K — 1)| (o) |10sull gra0) < [0l o2y | Ve 11 ) -
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Let us prove [0, Q%[ 1) < Ef(Ef + Dy) (see QF in (B.2)). In view of (C.1) and
Lemma A.1, we obtain that
10:((¢ + pp®)drur) [0y < 1(0eC, 20) | m (o | Gvwn | =0y + (€, 0) | s o) |07 wn | 2 ()
< (I0eCl e ) + 10em] vz oy 10eua || 3 )
+ (<l ms ) + 0l gse @) 107w | (o)
< Er(Er + Vo] ) + VO ur] 2 ())-
(4.91)

We further use (C.1) to have
[0+ ((po + pof + Q) Kuzdszur) a1 (o)
< (L+ 10, Ol s ) [0:(Kuzdsur) | g1y + [(06C, 0:0) | m1 (o) | Kuzdsur | g3 )
S (L+ 08, Ollas @) 10K | 11 () lusl s o) |03 | 73 @)
+ (140, O ms@) (1K =1 g3y + 1)
x ([|Orus| (o) O3ur | a3 () + [0e05ua || (o) us s @))
+ [(0:€, 20) | &1 02y (| KX — Ll sy + Dl sy [ 93ua | 73 (-
Thanks to Lemma A.1 and (C.10), we deduce

10:((po + P + ) Kuzdzur)| mr (o)
< (L+ [Clas @) + Il mse @) 10l g ) el g
+ (L + Il a3 @) + Il sz @) Unlamz @y + Do) g2 lulmie)  (4.92)
+ (10eCll e () + 10l vz (o)) I 7720y + 1)”’“”?{4(9)
< &F.
Since K? — 1 = —J72(2050 + (030)?), let us use (C.1) to obtain
|04 ((K? + A? + B* — 1)035u1 — 2AK 075uy — 2BK035u1) | 11 (a)
< (I(A%, B*, AK, BK) | ga(o) + [ K* — 1 g3 ()| 0w | 2 (o)
+[0i(A%, B%, K? — 1, AK, BK) | i1(0) | Vw1 3 0
< (€4, B)H%ﬂ(ﬂ) + [(AK, BK)| g3 () + 030z ) (1 + 030 m3 (0))) O || s ()
+ (I(A, B)| 13 () [ (0:A; 0:B) | 1 0y + 10030 10y (1 + 1030 130 ) [V P ua | 3 )
+ [0:(AK, BK) | 1) | V0] 12 (0)-
Owing to (C.9) and (C.11), we deduce
10:((K? + A% + B? — 1)035u1 — 2AK 035u1 — 2BK035u1)| i (o

< Il ey U+ [0l e ey |0vus | s @) + 10l vz oy (1 + |1l gz o)) V20| s @)
< Ep(&r + Va2 ) + [ Vur| )
(4.93)

We continue using (C.1), Lemma A.1 and (C.11) to get

|01 (AK (03 — 9p40)) | 11 ()
< [0:(AK) 51 () (g, 0) [ 720y + [AK | 3 (0) (106030 1. (0) + 10:0] 1 ()
< M0l gsre oy (lal zz ) + 0l gsz@y) + a7 @y (10l m2@) + 10 gz )

< Ep(Er + |0l 2 (0))-
(4.94)
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From the product estimate (C.1), we obtain also
|0:((K 3K (A% + B* + 1) — 01(AK) — 05(BK) — A1 K — B0;K)d3u1) | ()
< (IK0sK(A? + B* + 1) | ga(o) + IV(AK, BK)| g3(0)) | 0:03us | 1 (o
+ ([A01 K| 3y + | BO2K | 1r3(02)) 0603 | 1 ()
+ ([0:(K 03 K)(A* + B* + 1)) + |VOL(AK, BK)| (o)) | 03wt | 2 ()
+ ([0t AL K, 0, BO2K) | () + |(A0:01 K, By 02 K) HHI(Q))H&?,U]_HHS(SE). |
4.95

We will bound each term in the r.h.s of (4.99). Thanks to the product estimate
(C.1) again and (C.9), (C.10), we have

| KO3 K (A + B + 1) s o) < KK s o) (1 + (A4, B) |75 ())
< (1K =) + D03 K| ms (o) (1 + [ (A, B)lFs(q))

< (U Imlame )l goe @y (1 + (01372 )
<&
(4.96)
In a same way, we have
|AGL K| s () + [ BO2K | i3y < (A, B)|ms@) VK| #3 o)
< Inllererz oy |0l o2 oy (4.97)
< &3,
and
(0 Ao K, 0 BOo K )| () < (06 A, 0t B) | 1 (o) VK | 3 (o)
< ol gsrzoylnl gor ) (4.98)
< &7
Using also (4.22), we deduce
1(A0;01 K, Bo:02 K)|| g1 (o) < (A, B)| a3 10:VE | 1)
< Inllz7rz oyl 0enll sz (ry (4.99)
< &7,
and
IV(AK, BK)| g3y + VO (AK, BK)| () < [0l gorz @y + 100l gorz ) (4.100)

<&

Thanks to (C.1), (C.10) and (4.22) again, let us estimate the term |0 (K3 K)| g1 ()
as follows

104 (KK 10y < 10K 1 |03 K 113y + (1 + IE — 1] sr(0y) 10003 K | 110
S N0l sz oy lml o2y + (1 + [0l g7z @y |1 0en | o2y
<&
Owing to (C.9), this yields
[0:(K 05 K)(A? + B® + 1) | 1() S [0:(K03K)|[ 1) (1 + (A, B) 575 (63))
< gf(l + H77H§17/2(F)) (4.101)
<&
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The five inequalities above (4.96), (4.97), (4.98), (4.100) and (4.101) help us to
obtain from (4.99) that

|0:((K 03K (A® + B* + 1) — 01(AK) — 02(BK) — A0\ K — B2 K)3ua)| 111 ()

< Er(l0vur ] m20) + llurllme (o))

<&

(4.102)
Combining (4.91), (4.92), (4.93), (4.94) and (4.102), we conclude
10: Q3 m1 0y < Er(Er + [VOFurlr20) + [00d] 2(0) + VOt m2())
< 5f (5]0 + Df).

We are in position to show Proposition 4.6.

Proof of Proposition 4.6. For any 3 € N? such that 1 < |3| < 4, multiplying by 8511
on both sides of (4.81), and integrating over €, one has the identity

1d
p0|6£u|2 + J (V@fq - ,L&Aé’,’fu) . é’,’fu + J gp()(?}?gagu?, = f é’fu . GSQQ.
Q Q Q

2dt Jo
Using the integration by parts and (4‘81)3,5, one has
ld B, 12 1J 8,12
—— = S
57 | i+ 5 [ isaf
— | anicaua+ | S0l | gpdfnifun (@103
Q Q r

+f arqop @ —f oPu-0p Q0.
Q r
We estimate each integral in the r.h.s of (4.103). For the first integral, we use

Young’s inequality and (C.7) to get that

|, arboficotun < 1Clmecoy sl
- 4.104
< ¢y + e sl (4.104)
< 0 racay + uslreey) + € sl 32

For the third integral, it follows from the trace theorem and Young’s inequality that

J gp+6,€n85u3 S HafnnH—W(F) Hagui’»HHl/?(r)
r
< Inllgisi-ve oy lusl gisi+12 ry
< Inlla7e oy luslms @)
S 53HU3H%I5(Q) + 573”77“%17/2(r)~
Thanks to (C.7) again, we have
10220y S %Il Frora gy + €™ 2 M Z2 (-

Hence,

Lgmaﬁn@f% S (I3 ) + luslirs ) + e > 032 (ry- (4.105)
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For the fourth integral, we use Cauchy-Schwarz’s inequality and (4.85) to have
|| 008" < laluso)| Plus) < D1 + D). (@100)
Q

For the second and fifth integral, we split into two cases. For 8 € N2 such that
1 < |B| < 3, we use trace theorem and (4.85) to bound

[ oot~ [ au 000 < luliio] Qluscor + oy 1€ sy

< lulms @) 1Q% s ) + [l a1 Q% | ms(r
< g]%(gf + Df).
(4.107)
For 8 = (B, 32) € N? such that |3| = 4, we assume 3; > 1 and write

Bo=(B1—1,52) and By =(B1+1p). (4.108)
Thanks to (4.85) again, we estimate that

| dpuaie?] =] | aru- o @] <100 a1 Qs
2

4.109
< sy 192 s @) (4-109)

< &p(E7 + D).

Using the trace theorem also, we have
\fraffu 00Q° - \L opru- o Q| < 10 ul a2y 10 QL anisry

< lull gos i1z oy ”Q5HHI6_\+1/2(F) (4.110)
< Jullas @l QSHHW?(I‘)

Substituting (4.104), (4.105), (4.106), (4.107), (4.109), (4.110) into (4.103), we
obtain

d
4 L poldBul? + L HSOTU[ < (€2 + |Vus|Bpuey) + E5(E2 + D2)

dt (4.111)

+ 5727(Hu3”%,2(9) + |\77||2L2(r))-

By Korn’s inequality (C.5), one has
[ misoiul? = 195 ulto

Hence, we deduce from (4.111) that
d -
— | poldgul® + Vo ulGz ) < €X(EF + IVuslia) + e (luslZao) + InlFzr)
dt g,
+ Ef(é? + 'ch),
Integrating the resulting inequality in time, we obtain (4.82).
To prove (4.83), we compute from (4.81) that

pod200u + V0,00 g — pAG, 0w — gphdiuses = —gdl Qles + 0,00 Q% in Q,

diveyofu = 0,07 Q3 in 0,

(8t8£q1d — uS&ta}ﬁLu)eg = gp+85u363 + gp+8£Q4e3 + 85 Q° onT.

(4.112)
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For any 3 € N? with |3 = 1 or 2, multiplying by 6t6’£u on both sides of (4.112),
and integrating over €2, one has the identity
1d
2dt Jq
= J (—g0}, Q' 0:0, us + 0,0}, Q - 040y w).
Q

(mlowdful = gphlousl) + | (Vaidfa - naaiofu) - aidju
Q

Using the integration by parts, one has

1d
5%(J p0|6t6,€u|2 — f gp’0|6,€u3|2) + f ((%85qu — uS&té’fu)eg . 5t('7’fu
Q Q T
:j 8,02 gdliva;ou — %f S0P ul? +J (g0 Q10,00 us + 2,07 Q2 - 0,0%w)
Q Q Q

By (4.112), 5, we observe

1d J B, 12 f B 12 J AP RCANE. 8,12

—— polot0rul” + | gp+|0rus|” — | gpp|0yu + - | plSoo,u

2dt(90|th| F+|h£’>| Q0|hi’>|) 2Q|th|

=J(_gaﬁglatafu3+at6592-ata,fu)Jrf 010y qo0) Q° (4.113)
Q Q

- f (2167 Q% + gp. 0l Qles) - 0,00,
T

We now estimate each integral in the r.h.s of (4.113). For the first and third integral,
we use Cauchy-Schwarz’s inequality and (4.84), (4.85) to have

[ hau + [ 2ofa0 @ < losluecey 1@ s + vl ey |0 s
Q Q

(4.114)

With the same notations 84 (4.108), we use Cauchy-Schwarz’s inequality again and
(4.85) to bound the second integral as

U 6t6§u~8tﬁ,€Q2‘ - U oy - 00 Q% < 0wl ot 1y 100 Q% 1o g
Q Q

< |0l g2 o) 10: Q%) 1 (0)
< Sf(cf]zc + Djzc),
(4.115)

and to bound the fourth integral as

[ o 00107 = | [ dru- 00l | < 10 ey |0 QL
T T

< H(?,guHHer|—1/2(F) HatQ5||HV3_\+1/2(F)

< [ 0vul a0 102 Q° | rare ()
< &(EF +DY).

(4.116)
Thanks to the trace theorem and (4.84), we bound the fifth integral as
[ s @ < 100 usl-vnel0* Qe
r
< Nl 0vus | nsi-1/2 0y | Q| sz (ry (4.117)

< ovuslr @) 1Q% ey
<&}
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In view of (4.114), (4.115), (4.116) and (4.117), we get

d
%<J polérdyul* + f gp+ |0y us|* — J- 9P6|55U3|2> + J [Sewdyul® < E¢(€F + DF).
Q r Q Q

Integrating in time and using Korn’s inequality (C.5), we obtain
i
Jordu(®)a@ + | 1V2E ()0 ds
0

t
< EH0) + 100us O oy + | /(67 + DD

Combining the resulting inequality and (4.82), the inequality (4.83) follows. Proof
of Proposition 4.6 is complete. O

4.4. Estimates of the perturbation density. We continue deriving the energy
evolution of the space-time derivatives of (. We rewrite (2.9), as

0:¢ = K01003¢ — uj A0k — phouz — poQ° + O, (4.118)
where
O = pi K000 — q Adru; — Ar(ph0ur) — (A — 01) O (pous). (4.119)
We first present the estimate of Ql.
Lemma 4.6. There holds
1Q" |40 < Er(Er +Dy)- (4.120)

Proof. We use (C.1), (C.10) and Lemma A.1 to have that
lpo K000 a0y < (1 + 1K — 1 ga ) 10] a0yl 010l 14 )
< (X + Il gorz ) 10l z7rz ooy 10l vz 0y -
Combining (4.22) and the resulting inequality, we have
|p6 K000 a2y < EF- (4.121)
Using Lemma A.1 again and (C.1), (C.12), one has
| Ak (p60w) | a0y < (1 + A = 1d] g () |01 s @) 1wl 5 @)

< (L4 Il zorz @y Inl oz oy lullms ) (4.122)
< Er(E&r + [ Vullaae))

and
| (Auke =61 ) Ok (powr) | 1402y < [A=1d] a(e) ul 3 ) < E¢(Ep+ VUl pa(a)). (4.123)
Thanks to Gagliardo-Nireberg’s inequality also and (C.12), we obtain
lqAOku | ey S (1 + [A=1d| ga()) (lgllz2 @ VUl za@) + gz @) Vull g2 )
S Er(&r + ldl ey + [Vulga)),

(4.124)
Those above estimates, (4.121), (4.122), (4.123) and (4.124) imply
19 s ) < Er(Er + gl mao) + [Vulus) S Er(Er + Dy).
Lemma 4.6 is proven. O

We derive the following proposition.
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Proposition 4.7. The following inequality holds
i
1681310y < Co(£3(0) + &° f (1S () sy + lus () sy )s)

+C’9 7271 I(us, €)(s )||L2 Q)d5+J Sf(é'? +Dj2c)(8)ds>.
(4.125)

Proof. It can be seen from (2.11), that

1d
5@“@”%%9) = —J pousC +J Q¢ < (luzl 2y + HQ1HL2(Q))HC”L2(Q)
Q Q

Due to (4.84), we thus have

%”CH%Q(Q) < luslz2 (@) ¢l L2 () + €7-
This yields

I¢( )HL2(Q <5f J I(us, ¢ HL2 )ds+f Sf

<60+ [l + I + [ 6

(4.126)
For o € N3, 1 < |a| < 4, we have from (4.118) that
0:0°C = Ko“(0:005¢) + Y 0P Ko P(6,005¢) — 0% (ujA;jr0kC)
0#B<a
+ 0%(—phus — poQ* + Q)
= (K6:0050°C — u; Ajded®C) + Y. Ko%0,00°P0s( (4.127)
0#B<a
+ Y PK P (0005¢) — . 0% (ujAjr)0 P kg
0#£B<a 0#£B<a

+ 0% (—ppuz — po Q> + oh).
We deduce from (4.127) that

WCHLQ @ = f (K0:0030°C — uj A 01,0%C)0*¢ + f Kd°0,00° P 03¢0°¢

2 dt o

+ )] Jaﬁma*ﬁ(ateagq)aag— Jaﬂ wj A1) 0% P opCoC

04B<a v 0#£8<a
+ | o phua = @+ QMo
Q
(4.128)

We bound each integral in the r.h.s of (4.128). For the first integral, using the
integration by parts, one has

QJ (K 0:0050°C — uj A;,dp0°C)0%¢ = f (K 0:005]0°C|? — w; A0 |0°CI?)
Q Q
- f (Kb — u; Ajs) ¢
I

- L (@3(060) =y A0
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On TI', we have K0:0 — ujA;3 = 0 by the definition of A (2.8) and by (2.9),. This
yields

2 | (K28020°C — ;A 00°02°C = — [ (@3(K0) = (s Ay ))|oCP
Q Q
Due to Sobolev embedding and the product estimate (C.1), it can be seen that

wis(Ke) — au(uy Ao ?

< 03(K0) — 0k (ujAsi) |2 @) IS e 0
< (1K = as + DI sy + lulms@) (A = 1d] #s ) + D)IC] (o)
Owing to Lemma A.1 and (C.10), (C.12), we have

L(aa(m) = Ok A IO < (U Il o) (Il sz ey + Julis @) 1€ @)
< &7
(4.129)

For the second integral in the r.h.s of (4.128), we use Cauchy-Schwarz’s inequality,
(C.8) and Lemma A.1 to obtain

> L K070,00°P03¢0%¢ 5 (1 + | K — 1100|060 13 (0 03¢ ] 1130 IS | 114 ()
0#8<a

< 10 oz oy 1€ B g2y

In view of (4.22), one has

> f KoP0,00°7P05¢0°¢ < &3. (4.130)
0£p<a Y9

Next, for the third integral, we use Cauchy-Schwarz’s inequality and the product
estimate (C.1) to have

5 j 08 K 0*B(2,0050)0°C < VK | 2 2 |60005C s |l e
0#£8<a ’$?

< VK| a2@1060] 3@ [ -
Owing to (C.10), Lemma A.1, and (4.22) again, we deduce

> J 0P K0 P(0:005¢)0°C < |Inll vz ey |06l vz oy I I e

0+4B<a Vi (4.131)
< &

For the fourth integral, we continue using Cauchy-Schwarz’s inequality and (C.12)

also to observe

> L 0% (u;Ajr)0 P 0kC0C < (JA = 1d| agay + Dlul ) €] 710

0#B8<

(4.132)
< (L + [l oz oy lul () 1€ 31
< &}

Let us bound the fifth integral. Thanks to Young’s inequality, we have

L 0*(pous)0%C < 0%l 2@ luslrieiy < €%10%C72(q) + e luslFaq)
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By Young’s inequality again and (C.7), this yields

| 2 bun)on < 1€ ey + e by + 2 ualey)

(4.133)
< (1073 20y + lusllFrs ) + & uslF 2y
Thanks to (4.85) and (4.120), we have
aa _ Q3+@1 aa § Q3 + Ql
L (—po )0°C < (1% o) + 197 @) I¢] a0 (4.134)

< E7(&r + Dy).

We substitute (4.129), (4.130) (4.131), (4.132), (4.133) and (4.134) into (4.128)
to have

d . _
107 ey = 2 (UCls o) + luslirsay) + & uslZe ) + €5(Ef + DF).

Integrating the resulting inequality from 0 to ¢, together with (4.126), one has
(4.125). Proof of Proposition 4.7 is complete. g

In addition, we have the following estimate.
Proposition 4.8. There holds
10:C1 32y + 107¢ 1720y < Cro(lluslzrz(ay + 0rualZ2q) + €5)- (4.135)

Proof. Tt follows directly from (2.11); and (4.84) that

HatCH%P(Q) S Hu?»HiI?(Q) +[ Q! H%F(Q) S Hu3||§12(9) + 5? (4.136)

and
107¢1720) S \|5tU3H2L2(Q) 1% H%Q(Q) S ”atug\@?(ﬂ) + & (4.137)
Hence, we obtain (4.135) by combining (4.136) and (4.137). O

4.5. Elliptic estimates. We use the elliptic estimate (C.3) to derive some inequal-
ities.

Proposition 4.9. There holds
HUH%H(Q) + HQH%ﬁ(Q) + HatuH%IQ(Q) + HatQH?Kll(Q)

< Cur (108wl + lusl3aay + 1<y + Inlisnqy + 103y + €1)-

(4.138)
Proof. We derive from (2.11) that
—pAdu + Vorqg = —podiu — goiCes + 0, Q? in Q,
div&tu = (3t Q3 in Q, (4139)

(0rqld — uSosu)es = gpi Oimes + 04 Q° on .
Applying the elliptic estimate (C.3) to (4.139), it tells us that
||6tu||§{2(9) + Hat(JH?{l(Q) 5 Han”?w(Q) + HatC”2L2(Q) + |\5t77||§{1/2(r)
+ ”atQ2H%2(Q) + HatQ?’”%{l(Q) + HatQSH?Lp/z(ry
Note that from (2.11), that ,

[0:¢1 720y < luslZzqoy + 19172 (0)-
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Hence, we have
HatUH%{z(Q) + H&q”fm(m S HatzuH%Z(Q) + ||at77“%11/2(r) + ||U3H%2(Q) +]Q! H%?(Q)
+ HatQ2||2L2(Q) + H&tQﬂﬁp(Q) + HatQSH?{l/z(ry
Due to (4.84), this yields
lovultra) + 10l Fr ) < 107 ulfai) + TuslZzqoy + 106772y + £ (4.140)

Meanwhile, we obtain from (2.11) that
—Au+ Vq = —podsu — glez + Q2 in Q,
divu = Q3 in Q, (4.141)
(qId — pSu)esz = gpynes + Q° onT.

Owing to (4.84) and by applying the elliptic estimate (C.3) again to (4.141), we
observe that

HUH%H(Q) + HCI“%MQ) S Hatuﬂiﬂ(m + HCH?’{Z(Q) + ”Q2H§—IZ(Q) + HQ?)”%[?’(Q)
+nllFsrz ey + 19° 52y (4.142)
S Hatu”iﬂ(ﬂ) + ¢z + ||77H§{5/2(F) +&}.

Combining (4.140) and (4.142), one has (4.138). Proof of Proposition 4.9 is com-
plete. O

Let us define the "horizontal" dissipation Dy, > 0 as follows,

D= Y |Voullagy + D IVOawuliag, + [VOiulisq). (4.143)
BeN?,|B]|<4 BeN?,|B]<2

The next proposition is to compare Dy (4.2) and Dy, (4.143).
Proposition 4.10. Assuming oo sufficiently small (see (4.173)), there holds

D} < Cua (D + €3 + & (1(C W) ey + InliFaqry) + £5). (4.144)

To prove Proposition 4.10, we use the two lemmas below.

Lemma 4.7. For any s = 0, there holds

1 oy S 1flGneey + Do 10k fl3ey (4.145)
BeNZ,|B|=s

Proof. Since T' = 27117 x 2nLsZ % {0}, we exploit the definition of the Sobolev
norm on I' to have that

Bz = 3 L+ n2) 21 ()P,

nez?

where f is the Fourier series of f. By Cauchy-Schwarz’s inequality, one has

1172y € 25 A+ P2F@P+ > > A+ 1) P f )P,

nez? BeN2,||B|=s neZ?
which immediately yields (4.145). O

Lemma 4.8. Let us write
W i= SISy + Nl oy + Iy + €3
The following inequalities holds
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and
|62ul 2@ < [Vl 2oy + [Ve2ul sy + 7. (4.147)

Proof. Let us show (4.146) first. Multiplying by d;u on both sides of (2.11),, we

obtain
f po|8tu|2 = fj Vq - diu +,uf Au - dpu — J gCorus + J Q% du
Q Q Q Q Q

= fj (¢Id — uSu)es - dpu + J qdivoiu — L f Su : So;u
r Q 2 Ja

- J gCoruz + J Q% duu,
Q Q
after using the integration by parts. Using (2.11), 5, this yields

J poldwul® = —f gp+nosuz — J Q° - dyu + J q0,Q° + ,uf Su : Sosu
Q r r Q Q

- f 9¢0susz + f Q? - dyu.
Q Q

By Cauchy-Schwarz’s inequality, we have

(4.148)

g Su : Sopu — J;l gCoruz < HUHH1(Q) HatuHHl(Q) + HC”Lz(Q) ||atU3HL2(Q). (4.149)
Q

Using also the trace theorem, we have

L 9pnérus < [nllza(ry |0l 1 - (4.150)

Because of (4.84) and the trace theorem again, one has
| @t [ a0+ | @t s (1Qae) + 1@ e ol
r

+0:Q%| 20 lal 2
3
< &
(4.151)
Combining (4.149), (4.150) and (4.151), we obtain from (4.148) that
HatuH%Q(Q) S l0vul L2y (Inl 220y + 1wl mro) + 11€] 22 @)
+ Vol L2 (Inll 2@y + lulla @) + £F-
Using Young’s inequality, we get further that for any v > 0,
HBtuH%g(Q) < Z/”atU”%z(Q) + HV@{UH%Q(Q) + (1 + Vﬁl)W. (4152)
Let v > 0 be sufficiently small, the inequality (4.146) follows from (4.152).
To prove (4.147), we differentiate (2.11), 5 with respect to ¢ and then eliminate
the terms 0;C, d;n by using (2.11), , to deduce that
podiu + Vg — uAdyu — gppuzes = 0,Q* — gQles  in
diVat’U, = 8t Q3 in Q, (4153)
(Orqld — uSosu)es = gprues + gpy Qles + 0,Q° onT.
Multiplying both sides of (4.153), by 07u, we obtain that

J pol0Zul? + J (Voyq — uAdyu) - 02u — J gphusdiuz = J (0,9% — gQles) - 02u.
Q Q Q Q
(4.154)
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Using the integration by parts, we have that
J pold?ul? = —f (Oeqld — puSdsu)es - dyu + J Orqdivoyu — HJ Sosu : So?u
) r Q 2 Jo

- J gpyusdius + J (0:Q% — gQ'es) - dfu.
Q 0

Substituting (4.153), 5 into the resulting equality yields
f po| 07 ul?® = —J gp4usliug — J (gp+Q'es + 0,Q°) - Ofu + J 01q0r Q°
Q r r Q

— EJ Sou : SoFu — J gpouzdiusz + J (0:Q* — gQles) - d7u.
2 Ja Q Q
(4.155)

We estimate each integral in the r.h.s of (4.155). For the first integral, we use
Cauchy-Schwarz’s inequality and the trace theorem to have

—J gp+uzdiuz < |uslrzm) |07us] 2oy < Juslai @) |07 usl i) (4.156)
T
For the fourth and fifth integral, we bound as

%
—§J Sopu Satzu —f QPGUS(??US p HatuHHl(Q) HatzuHHl(Q) + HU3HL2(Q)H5t2“3”L2(Q)~
Q Q

(4.157)
For the other integrals, we use (4.84) to obtain
| @@~ g@tes) - tu+ | agae?
Q Q
< a 2 1 (72 (} a 3 (4158)
< ([106Q% 220 + 1Q 2205 ul L2 () + [Orall 20 [0:Q° | L2(0)
< &,
and use the trace theorem also to obtain
J (94 Qles + 0:Q°) - 7u < (19 2(ry + 10:Q° | L2 (0)) 07wl 1 ()
r (4.159)
< 51%”a?uHH1(Q)~
Substituting (4.156), (4.157), (4.158) and (4.159) into (4.155) yields
”atZUH%Q(Q) S (Jullgr @y + [0eu] g1 o) + 5?)|\53U\|H1(Q) + 5}3 (4.160)
< (Il @) + loaul g @) + EH IV ul 120y + Ef)-
Combining (4.160) and (4.146) gives us that
|07uliz(q) < (VO] L2y + #)(IVFul L2y + #). (4.161)

Thanks to Cauchy-Schwarz’s inequality, the resulting inequality (4.161) implies
(4.147). Lemma 4.8 is shown. O

We are able to show Proposition 4.10.

Proof of Proposition 4.10. We apply the elliptic estimate (C.4) to

—pAdu + Vorqg = —pod2u + g(ppus — Q1) + 0,Q%  in Q,
divé’tu = é’t Q3 in Q,
Oru = Opu on I,
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to have that
HatUH%{s(Q) + HatQH%H(Q) S H&fu”fm(m + HU3H%{1(Q) + \I(Qlﬁt@)\l%p(m
+[0:Q% 20y + Hat“H?{f:/?(F)'
This yields

|0vullFsqy + 10:alFr2 0y S 107wl ) + luslFr oy + 10culagsz oy + EF(EF + D7),

(4.162)

due to (4.85) also. It follows from (4.145) and the trace theorem that

HatuH%IS/z(r) S HatuH?ql/z(r) + Z Hafatuuip/zw)
N2, 8|=2
, e (4.163)
< ol ) + Z |05, Gvuell 1 ()
BENZ,|B|=2
Combining (4.162) and (4.163) gives us that
HatuH%IS(Q) + ||atq\|%12(n) < [ (u, Oru, 33“) H%Il(ﬂ) + Z H&f@tu\\fql(m

BeN? |]=2 (4.164)

+EF(EF + DF).
Thanks to the interpolation inequality (C.7), we get that, for v > 0,
HafatuH%?(Q) S ||atu||§q2(sz) S V”atU”%{S(Q) + VﬁQ\wtuH%%Qy
Hence, it follows from (4.164) that

HatuH?ﬂ(Q) + Hatqn%ﬂ(m S ||(U73tu’5t2u)||§11(9) + VHatuH?{sm)

BENZ?,|B|=2

Let v > 0 be sufficiently small, one has

lovul}ps oy + 10ealz 0y < 1w, 00, 33y + D [V dwul3e g,
BeNZ,|B|=2 (4.165)
+ EF(EF + D7).

Meanwhile, applying the elliptic estimate (C.4) to

—pAu + Vq = —poosu — gles + Q> in ,
divu = @3 in Q,
U=1u on T,

we have
HUH%IS(Q) + HQH?LH(Q) S HatUH%Ii‘(Q) + HC”%I?*(Q) + ”QZH?LF‘(Q)
+ Q) + H“H?{g/z(ry
Using (4.165) and (4.85), we further obtain
||U||§{5(Q) + HQHfWL(Q) S H(U,atuvatzu)ﬁ{l(m + ”CH%F'(Q) + |\U||%19/2(r)

+ Y Vol + EHE +DE).  (4:166)
BENQ)IB‘:z
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Using (4.145) again and the trace theorem, we obtain that
luldrory S luldpem + D 10hulinem,
BeN?,|B|=4

< Julzng) + 2 Ha}ﬁzuH?{l(Q)'
BeN2,|B|=4

(4.167)

Notice from (C.7) again that, for v > 0,
[0RulZ2 0y S lulfra) S Vil @) + v uliz (). (4.168)
In view of (4.167) and (4.168), we deduce from (4.166) that

”’U’H%ﬁ(ﬁ) + HCIH%#(Q) S H(u,@tuﬁfu)ﬂil(m + ||CH?13(Q) + VHU‘H%W(Q)

S VUl + EXEI DY), (4169)
et Tol=1

Let v > 0 be sufficiently small, the inequality (4.169) implies that

HU'H?P(Q) + HQH%H(Q) < [[(u, dyu, 0Fu) Hip(n) + HC”%F(Q)

S VAl + E2EF+ D). (4170)
BeNZ? |B|=4

Keep in mind the definition of Dy, (4.143), we obtain from (4.165) and (4.170) that

HUH%{E’)(Q) + Hatu‘ﬁ{?'(ﬂ) + HQH%H(Q) + HatQH%W(Q)
< iy + || (u, G, 37) |32 ) + €I ) + EF(EF + DY)

Thanks to the definition of Dy (4.2), that implies
D2 < D + (s 0, 020) 3y + €1y + EX(ER + D). (4.171)
Thanks to Lemma 4.8, we deduce from (4.171) that
D} S Dj + [ull oy + €¢I a0y + 072y + €7 + EFDF.
We continue using (C.7) to further have
D} <D + & (Jullaqa) + [aca) + = Lullagey + =130y + InlZ2qry
+ &} + E7D3.
That means

D} < 013(17% +&%87 + (|G w2 ) + Il Z2ry) + EF + 51%7);). (4.172)

Restricting further

1
C1305 < 3 (4.173)
we obtain (4.144) from (4.172). Proposition 4.10 is proven. O

4.6. Proof of Proposition 4.2. Let us denote

Cre=(C1+Cy+ C3+ Cy)e® + Cs + Cs + C7 + Cs + Cy,
Cia = Z?=1 Ci,

Coe = (C1 + Cy + C5 + Cy)e + (C7 + Cs + Cy)e3,

0375 =C5+ Cs + (07 + Cg + 09)6727.
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We obtain from Propositions 4.3, 4.4, 4.5, 4.6, 4.7 that

& (I oy + 10m(®) By + 10203 ) + 90301 )
t
10O + 1ot ) Oy + [ 19000, 0800 () s

+ Y fuvaﬁ Wogds + Y fuvataﬂ 2o
Benz T<|8]<4

BeNZ,1<|B|<2
t
< C1E2(0) + CoEd(t) + cl4g3f £2(s)ds + CQ,EJ D2 (s)ds
0

t t
+Cs.c L (1, ©)($)1 22 () + [n(8)|22(r))ds + Cue . E7(EF + DF)(s)ds.

(4.174)
Keep in mind the definition of Dy, (4.143). It follows from (4.174) that

&2 (IO ey + 10mO ey + 103900y + 1O 0031 )
t
SO ra gy + 1w, O, Fu) (8720 + .[) Dj(s)ds

t t
< C1E2(0) + CoEd(t) + cl4g3f £3(s)ds + OQ,EJ D2 (s)ds
0

t t
+ Cs.c L (1, ) ($)1 22 () + In(8) |22 (r))ds + Cue . E7(EF + DF)(s)ds.

(4.175)
Chaining (4.175) with (4.144) in Proposition 4.10, we get that

€2<H77(t)\|?{4(r>H\@tn(t)llip + (72 + 11 G020y + 1€ s )

(s ety ) ()22 g + JDf
t
< C1E2(0) + CoEY(t) + (Cra + 1)E° f £2(s)ds + Ca.e J D2 (s)ds
0

t t
+Ce L (1w, () 720y + In(8)1Z2r))ds + (Cre +1) . E7(E7 + DF)(s)ds

(4.176)
where Cy . =C3. +e7 % Let 0 <e <

1 be sufficiently small such that
1

Coe < .
2,e 2012

So that, the inequality (4.176) implies
(Hﬁ(t)\@mr) + 10en(®) 32y + 1070 |22y + (O Fgos2(ry + 1675 Q))

1 t
w8 )0 ) + 5 | Do)

t t
< €1 .£3(0) + CeE3(t) + (Cha + 1)é? f £2(s)ds + (Crc +1) J £/(€2 +D2)(s)ds
0 0
t
+ Cye L (1w, ) () 720y + ()12 (1)) dls.

(4.177)
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By dividing both sides of (4.177) by &2, we have
Hn(t)H?{Qm(r) + ||Tl(t)”%14(r) + Ham(t)\@p(r) + H@Qﬂ(t)HQL?(F)

t
ICO By + 1, 0o, 2) (D)2 + f D3(s)ds

2 t o2 PN (4.178)
<C15(6 Ef(0)+5L5f(s)ds+5 Lé'f(é'f-i-Df)(s)ds)

¢
+ Crse™ L (1 w) ()72 () + [n(8)| 22 (ry))ds + Crse™2E(1).
Combining (4.138) and (4.178), one has

4 (1) ey + 1900 s @y + 100t By + 100D 302 e

+ @2y + 110y + 100 )20y + 10800122 r)
t
+ ¢y + u®) 72 + 107ut)|Z2 () + JO Dj(s)ds
< 01151/4(||(5t2ua uz) ()| 720y + 1) + 1) Fs2 0y + ||at77(t)H§{1/2(r)>

t t
+ Cus(=7263(0) + af E3(s)ds + &2 f £4(67 + D} (s)ds )
0 0

t
+ Cize L (1C, u) ()20 + Im()[72(ry)ds + Crse EF(t) + Crae"/*EF (L)
(4.179)
Let us refine € so that )
01161/4 < 5,

it follows from (4.179) that
A (L) + 100 sy + 10003y + 1000 s o)
1
45 (1@ ) ()220 + 160 s ey + 190 oy + 1200 o)

t
gy + 18200 2 + f D2 (s)ds

t t
< Oy (=72€3(0) + < L E2(s)ds + &2 L £4(63 + D3)(s)ds)

t
+Crse L (1 w) () 7200y + [n(3)1F2(r))ds + Crae 2EF () + Crae'/*ER ().
(4.180)
Dividing both sides of (4.180) by £'/4, one has
2
(It () Fra-2s () + 100 Fra-20 0y) + <O Fra gy + [0 502y
j=0
t
+ 10O sy + 10 o + [ D01
0 (4.181)

t t
< Cis (5-9/45]%(0) + 53/4f E3(s)ds + 5—9/4f Ep(E7 + D?)(s)ds)
0 0

t
+ Cyge17/4 f (1 w)(5)32 () + [m(5) |32y )ds + Crge ™"/ AER ().
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Combining (4.181) and (4.135) in Proposition 4.8, we obtain

Z (16fw(®) 137421y + 1010 Fra—24(ry) + IS Fra gy + Il
j=0
t
+ 1a®) 230 + 100a(®) 121 ) + L Di(s)ds + (| 0:¢ 32y + 107¢172(c))
t t
< Cis (6*9/45)%(0) + 53/4J E3(s)ds +e f Ep(EF + D]%)(s)ds)
0 0

t
T G117/ j (G w)(3) 2 + [7(5) 1220y dis

+ 0165_9/45?(75) + 01051/4(“1‘3‘@12(9) + Hatu?,H%z(Q) + g}l(t))

(4.182)
We continue refining € so that
01051/4 < %
It follows from (4.182) that
2
Z [6fu(t)]3a- 25(Q) T |ein(t )H%%z’j(r)) + Hg(t)H%ﬂ(Q) + ||77H§{9/2(F)

7=0
t
+ g1 s ) + HatQ(t)H?HI(Q) + L D} (s)ds + 51/4(”@(“%{2(9) + H(??CH%%Q))

t t
< Cur (= 4e3(0) + ¥ J £3(s)ds + e~/ J £4(63 + D3)(s)ds)
0 0

i
+ Crge 11T L (G w)($) 2 () + [1(5)|Z2(ry))ds + Caz (e EF (1) + £V/*EF(1)).
(4.183)

Let us recall the definition of £ (4.1) and divide both sides of (4.183) by /4 to
deduce

t
+ L D;(s)ds

t t
< Cis (5*5/2@%(0) + 51/2J E3(s)ds +e°2 f Er(EF + D]%)(s)ds) (4.184)
0 0

t
+ Crge ™2 fo (1(¢, W) ()72 + In(s)Z2(r))ds + Crse™>2ER(2).

Switching €'/2 by € in (4.181), one has (4.6). Proof of Proposition 4.2 is finished.

5. NONLINEAR INSTABILITY

Note again that, we compactly write U = (, u, q,n) throughout this paper.

Thanks to Proposition 3.7, we will consider a sequence of approximate solutions
eV, (k, z) to the nonlinear equations (2.11), that are solutions to the linearized
ones (2.13). Let us fix a k = ko € Sy such that (2.30) holds. We recall (2.31),

M
UM(t,w) = ), eV (ko, @)
j=1
and require that the coefficients c; satisfying (2.32)-(2.33). Due to the compati-
bility conditions (4.4), we cannot set UM (0, z) as the initial data for the nonlinear
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equations (2.11). With the help of an abstract argument in [11, Section 5C], we
obtain the modified initial data Ug’M(x).

Proposition 5.1. There exist a number 69 > 0 and a family of initial data
UM (z) = sUM (0, z) + 62USM (z) (5.1)
for 6 € (0,60) such that
(1) Ug’M satisfies the compatibility conditions (4.4) and 5f(Uf’M) <Oy <
with Cy; being independent of 4,

(2) the nonlinear equations (2.11) with the above initial data Ug’M has a unique
solution UM satisfying that supg<, - pmes Er (UM (1)) < 0.

5.1. The difference functions. Set

Ud(t,x) = UM (t, ) — UM (t,z).

Since U%M solves the nonlinear equations (2.11) and UM solves the linearized

equations (2.13), we obtain that U 4 satisfies

¢t + phud = QHUSM) in £,

podiud — pAu? + Vg + g¢les = Q2(USM) in Q,
divu? = Q3(UM) in Q, (5.2)

om? = ug + QHUM) onT,

((q* = gp+n)Id — pSu)es = Q*(U*M) onI'.

The initial condition for (5.2) is

U%(0) = (¢%u,n?,q*)(0) = 8°UPM. (5.3)
Let |Ullg, := E¢(U), which is defined as in (4.1). Let Fps(t) = ij\ij |cjle?t and

0 < ¢o < 1 be fixed later (5.39). There exists a unique 7 such that § Fys(T?) = €.
Let

Cro = UM O)les Cao = I M) O) gy + I O) 3oy (5:4)
We define
T* := sup {t & (0, T™)|| UM (1) ¢, < 2C1900},
T i= supft & (0,77 ) | (M, M )(t) |20 + [0 (8)] ) < 2C200Far(8)}
(5.5)
Note that
[0S (0) e, < S[UM(0)]e, + [U40)]le, < Crod + T8> < 2C1080,
we then have T* > 0. Similarly, we have T** > 0.

The aim of this part is to derive the bound in time of |(¢%,u?)(t)]z2(q) +
In% ()|l L2(r) in the following proposition.

Proposition 5.2. For all t < min(T°,T*, T**), there holds

1 w720 + In* (D72

< C 53( i cjle?t + max(0, M — N)  max |c»|e%At>3 (5:6)
x 21 = i 5 NilsieMm j .
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In order to prove Proposition 5.2, we need the following bound in time of
(UM (@) e,

Proposition 5.3. For all t < min{T?,T* T**}, there holds
UM (t)|le, < C226Fni(t)  for all t < min{T°,T*, T**}. (5.7)

Proof. We fix a sufficiently small constant € such that
A
Coe < TM (5.8)

and Proposition 4.2 holds. Hence, it follows from (4.6) that
! A
+f D2(s)ds Mf E3(s)ds + Ca,, (£3(0) J £/(EF + D) (s)ds + E}(1))
0
+ Oy L (1¢ w ()22 + ()1 L2 ) s

Refining also &g, we get

Aum

CAMC;Q < and C,\M(SQ < T, (510)

DN | =

one thus has
5 D s < Oy, E2 A e t52 d
SE5(t 7(s)ds < Cx,, E5(0) + (74‘ AM> . 7(s)ds

Oy, f (G w) () 22y + 10(3) 220y dis
(5.11)

< O, E30) At J E3(s)
+Ch, f (G ) )22y + 11(5) 22y )

Consequently, for all + < min{T°, T*, T**},

t
[0 ()13, < 200, [0 O)1Z, + A | U (5], s
t
#2030 [ (1 a5M)(5) ey + I 0) oy s

t
< A J HU(S’M(S)H%de + Co30°F3, ().
0
Applying Gronwall’s inequality, the resulting inequality tells us that

t
[P (1), < Cos (823 (1) + 62 J e
0

Note that Aps < Aj for all 1 < j < M — 1, we have

t
J- A (t— S)F2 M2 Z f A (t— €)|C ‘2 2, iSdg

0 J=im
2 2
< M2t Z Ic;|
J=im

Substituting (5.13) into (5.12), this yields (5.7). We deduce Proposition 5.3. O

)‘M(t’s)Fﬁl(s)ds). (5.12)

5.13
6(2)\j—)\A4)t ( )

2X; — A
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We now prove Proposition 5.2.

Proof of Proposition 5.2. Differentiating (5.2)275 with respect to ¢t and then elimi-
nating the terms 0,¢%, d;n? by using (5.2), ,, we deduce from (5.2) that

pod?ut + Vorq? — pAdud — gphudes = 0,Q*(USM) — gQY (UM ey in Q,

divoyud = 0,Q3(U%M) in Q,
(0:q"1d — pSout)es = gpiues + gpy QUM ez + 0,Q°(UM) on I'.
(5.14)

Multiplying both sides of (5.14), by d;u?, we obtain that

1d

—— f poldiud|? + J (Vorq? — pAdud) - dpu — J gp()uglatugl

= J (atQ2(U6)M) _ ng(Ué’]\/[)efj) . @tud, (515)
Q

Using the integration by parts, we deduce from the resulting equality that

1d
§%<J polorul|? — f aphlud)?®) + J (0rqld — pSo,ut)es - opu?
Q Q r

:f 0q divo,ud — %J |S&tud|2+J (0, Q2(USM) — gQ (UM )es) - 0,ul.
Q Q Q
Substituting (5.14), 5 into (5.15), we have
1d )
53 (| mloe' = [ aonlud?) + | apv oo
+ [ @) + 9p. QU U Men) - o
r
= J 0ig"0, QUM — gj [Sorul? +J (2:Q*(UM) = gQ (UM )es) - dyu.
Q Q Q
This yields
li(J p IM"ZIQ—j gp’\ud2+f gp+|us 2) +HJ S
2dt\ Jo " o one pt e 2 )
- f (2. Q2 (UPM) — gQ (UM )eg) - dru + f 20, Q3 (UM (5.16)
Q Q

- f (@ QP (UPM) 1 gpp Q' (UM )es) - dpu,
I

Note that
Jﬂ(atgz(ch,M) — gQ (U M)eg) - dyu
< (105U M) 120 + QU™ L2 () (006 | L2 () + S0u™ | 12 (0))-
In view of (4.84), (5.3) and the definition of UM, we have
[ @)~ 4@ 0o ¥)es) ot < U2 (U e+ 8100 )

< BF3(t). o)
5.17
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Similarly, we observe

L 0170, Q3 (UM < 0, Q3(UM) 1202 (|106¢™ ™ | L2 (02) + 6]10:0™ [ 12 ()

< S3F3 ().

(5.18)

We continue applying (4.84), (5.3) and use the trace theorem to get

J (0,Q°(UM) + gp, Q*(U*M)es) - dul
r

< (10:.Q°(UM) | L2ry + 11U 2y 0w | 2y (5.19)
< (12eQ2W ™) gz oy + 1Q1 U M) a1y [0u 1 ()
< BF3 (1),

Substituting (5.17), (5.18) and (5.19) into (5.16), we obtain that

t
| mletp s || pistitis)as
Q@ 0Je (5.20)
<m+LWM@@F*JWHW®F+@M%%@,
I
where
n=mewmﬁimewW+me@w2

Thanks to Lemma 3.6, we deduce from (5.20) that

t
J poldrud(t))? +J J p|Sosu(s)*ds
9 0 Ja X (5.21)
<z AQJ polu(t)? + iAJ plSut ()| + Ca30® Fiy (¢).
Q Q

Using Cauchy-Schwarz’s inequality, we have that

Lu\gud(t)\ Ju\Su |2+2f f pSud(s) : So,ut(s)ds
J |Su?(0 Aj f p|Soul(s)| ds—i—AJ f p|Sul(s)|*ds

(5.22)

and that

d
p pol I < Af pologu|® +AJ polu®|?. (5.23)

Three above inequahtles (5.21), (5.22) and (5.23) imply that
d 2 1 Sud()1? < 1 Sud(0)12 + 2A d(g\(2
po\u OF +5 ) wlSu@OF < -+ | ulSu(0)]" + polu®(t)]
dt 2 Ja 0 Q

t
+ Af J plSu(s)|2ds + Cosd> iy (1),
0 JQ
(5.24)

It follows from U%(0) = 62U that 2, < 6%, this yields

24 | usatop
Q
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Hence, the inequality (5.24) implies

d 1 t
lulOF + 5 [ nisuoF <2 [ poltF + 8 | | pisut(s)Pas
dt 2 Jo Q 0 Jo

+ Co56° F3, (1),

(5.25)
In view of Gronwall’s inequality, we obtain from (5.25) that
1t t ,
[t 5 || nisuto)ds < Cass® [ N0 E (s)as
Q 0 JQ Ot (526)
< 02653J 62A(t75)FM(38)d5.
0
Due to (2.30), we obtain for 1 < j < N,
t
1 1
(3)\J72A)8d — (3)\1 72/\)15 _ 1 < (3)\J 72A)t .2
Le S= 3y, 2 )< 35, —2a¢ (5.27)
and for j > N + 1,
Jt e(SAj_QA)SdS _ 1 (e(3>\j—21\)t _ 1) < 1 (5 28)
0 3\ —2A T2A -3 '
Substituting (5.27) and (5.28) into (5.26), we observe that if M < N,
dgy)2 ' A2,  ds < Cond \ |c; 3X,t
IO+ | 1906 rds < Cood®( 3 g5 2aze™)  (20)
and if M > N + 1,
t
@)y + [ 1900 oy
(5.30)

M
<C%53(j§ 3>\|Ci|2A M Z 2A|C]!3)\ ).

j=N+1

We then estimate HCd(t)HLz(Q). Due to (5.2),, we obtain
¢
IOy < IO Baoy + [ (o) ) +1Q OO op)ds. - (531)
Note that ¢%(0) = 62¢2™ and thanks to (4.84) also, the inequality (5.31) implies

t
[C )72y < 0* + L (lug ()22 (@) + 1UM ()], )ds

; (5.32)
<84 [ (o) ey + 5P (),
0
Note that 6Fy;(t) < 9 < 1 for any t < T°. Hence, we have
t t t
54J Fi(s)ds < 5SJ F3(s)ds < 5SJ Fr(3s)ds,
0 0 0
this yields
t M
5 J Fi(s)ds <% Y Jejlett, (5.33)
0

J=Jm
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Combining (5.29), (5.30) and (5.33), we deduce from (5.32) that, if M < N,

M
164720y < Cord® D lejle®™! (5.34)
i=dm
and if M > N + 1,
M M
[ )72y < 02753( D7 leilet+ Y |Cj|€2At)- (5.35)
i=gm J=N+1

To estimate [n?(t)] 12(r), we use (5.2), and the trace theorem to obtain

d
%HﬁdH%%r) < HndHL2(F)(HugHL2(F) + \|Q4(U5’M)HL2(F))
< In?l 2y (lugl @) + 121U ) L2 (ry)-
This yields
d
%HndHLZ(F) < Il @) + 124U L2y

Thanks to (4.84) and (5.3), we further get
t
In* )72y < 1770120y + JO (lug ()1 Fr1 0y + IU>M]Z,)ds
t
S0+ | (e + Pl

Using (5.29), (5.30) and (5.33) again, we have that Hnd(t)H%Z(F) is bounded above
like (5.34) or (5.35). Together with (5.29), (5.30), (5.34) and (5.35), Proposition
5.2 is proven. (]

5.2. Proof of Theorem 2.2. Since j,, = min{j : 1 < j < N,c; # 0}, we have

M
[ O @ = 3 e fulte +2 Y age | i (536)
i=jm Jm<i<j<M @
It can be seen that

M

HUM(t)”QLz(Q) = Z C?ez)\jt”’u]‘H%Q(Q) + 2 Z CiCjE()\iJr/\j)tJ Ui - Uy
J=Jm Im+I<i<js<M Q

M

_\ij|\|ujm”L2(Q)( 2 |cj|Huj||L2(Q))e(/\jm+/\jm+1)t.
J=jm+1

By Cauchy-Schwarz’s inequality, we obtain

2 Z CiCje()\iJr)\j)t J Uj - Uy
Q

mt1Si<i<M
>— > laillejle@amerFAame D | Loy s 120y
m<i<j<M

M

2
> —eCamem Dt ( ey xmy)
J=jm+1
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This implies

M M 2
[ ()17 20) = Z e u; |72 (q —e(A”"‘“Jr’\’m“)t( Z |Cj|Huj”L2(Q))
j:jm j:jm""l
M
- \ij|€(A“L+A”"”“)t\|ujmHLz(Q)( DT Ieillug HL%Q))'
j=gm+1

Due to the assumption (2.33), we deduce that

M
HUM(t)H%Q(Q) > Z C?GZ)\thUj H%?(Q) _ C?me()\jm+l+)\jm+2)t”Ujm“%2(9)
J=Jm

— C2 e(kj'rrz-’»kj'rn*’l)t

Jm s, H%?(Q)'
This yields

HUM(t)H%%Q) > C?m (62>\jmt — eQim+1+ X 2)t _ e()‘jrn+>‘17n+1)t)

M
by
Y Gyl

J=jm+1

(I H%?(Q)

Notice that for all ¢t > 0,

1
e2Ximt _ eQim+1+Ajm+2)t _ oM T A +1)t > Z 02Aimt

Hence, we have
[u™ (#) ] L2(q) = CasFar(t), (5.37)
for all ¢ < min{7T9%, T*,T**}.
Let

¢(M) = max i > 0.
N+1<j<M |[cj,.

Now, we show that

T < min{T*, T**} (5.38)
by choosing
. (201900 C3o Cs
. 5.39
g0 < min < 022 3 021(1 + ME(M))s, 4021(1 + ME(M))2> ( )

Indeed, if T* < T?, we have from (5.7) that
HU(S’M(T*)Hgf < CQQ(SFM(T*) < CQQéFM(Té) = 02250 < 2019(50,

which contradicts the definition of 7* in (5.5). If T** < T°, we obtain from the
definition of Cyg (5.4) and the inequality (5.6) that

1M M) (T0) | g2 + "M (T0) ] 2y
<€ u)T) L2 + 11T L2 (@) + 8w )T 12(0) + 0™ (T°)] 2(r))

£ S 3/2
<Vt (] lesledT 4 max(0, M~ N) (| max e;) 2\ T)

- N+1<j<M
J=Im

+ Cogd Fay (T0).
(5.40)

Notice from (2.30) that for N+ 1< j < M,

|cj\5e§AT5 < M(5|ij|ekj,,LT5) < |fj| SFar(T7) = |fj| co.
€ N S5,
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Then, it follows from (5.40) that
(M MY (T9) | oy + [ (T9)] 2oy
< CondFp (T%) + A/ Con 6%2(1 + ME(M))?2F32 (1)
< Cageo + A/Car (1 + ME(M))32e))?.
Using (5.39) again, we deduce
1M MY T 2@ + 0™ (T L2(r) < 2C20€0 = 2C206Fa (T°),
which also contradicts the definition of 7** in (5.5). So, (5.38) holds.
Once we have (5.38), it follows from (5.6) and (5.37) that
[ M(T°)] L2 (e
> 6[u™(T°)| 20 = |[uh(T°) ]2
> CogdFp (T°)

N
B \/072163/2< 2 |Cj|6’\jT6 + max (0, M — N)( max |Cj\)62AT5/3>3/2‘

= N+1<j<M
J=Im
Thanks to (5.39) again, we conclude that
- 1
HUS’M(T(S)||L2(Q) = Cogeg — \/Cizl(l + ME(M))S/%S/Q = 502860 > 0.
Theorem 2.2 follows by taking &g satisfying Propositions 4.2, 5.1 and the inequality
(5.10), o satisfying (5.39) and my = 3Cos.

APPENDIX A. POISSON EXTENSION

We define the appropriate Poisson sum that allows us to extend n defined on I'
to a function @ defined on Q. For any k € L7'Z x Ly '7Z, we write

R e—ik-xh

k) = ——d Al
f( ) T2f(xh)277\/m Lh ( )
and define the Poisson sum on 2 by
ik-Ih,
- el A2
(pf)(zhaxlS) Z 2ﬂ_me f( ) ( . )

keL['ZxLy'Z
We then have p : H*(T') — H**1/2(Q) is a bounded linear operator for s > 0.

Lemma A.1. For g € N, let H} be the usual homogeneous Sobolev space of order
q and pf be the Poisson sum of a function f in Hg_l/z(I‘), There holds

IV fl20) < ||f\|i,z—1/2 (A.3)

@’

Proof. Thanks to Fubini’s theorem and Parseval’s formula, we obtain

0
IVipf ey S 2 f 29 ()220l
keLi'zxL;'z "%

< Y KPR
keL{'ZxL;'Z

The inequality (A.3) then follows. d
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We extend 7 defined on I" to be a function defined on 2,

0(t,x) := (pn)(t, zp, x3) (A.4)

for all z;, € T?,x3 < 0. Lemma A.1 implies in particular that if n e HI~V/2(T),
then 6 € H1(R2) for ¢ = 0.

APPENDIX B. NONLINEAR TERMS

The nonlinear terms Q'(1 < i < 5) in (2.12) are presented by that

Ql = —Kpg@u?, + K8t0(83§ + ,0/0/ ) - Kp{)H(Aul + B’U,Q)

B.1
—u101¢ — ug09¢ — Kuzds3( + K(}gg(AUl + BUQ) ( )

that

Q% = —(C + phf)arus — (po + pld + VK 240051 + AK (354 — 9ph0)
— (C+ po + pob) (u1(51U1 — AKdzu1) + u2(0auy — BK Ozu) + KU3(73U1)
((K2 + A% + B? = 1)055u1 — 2AK0tquy — 2BK033u )
1

(KOsK(A? + B> + 1) — 0,(AK) — 05(BK) — A0, K — Boo K )d3uy
(B.2)

Q3 = —(C+ phf)dus = (po + pof + K 003u1 + BK (03q — gpif)
— (C+ po + pt0) (s (Pruz — AK Gyuz) + us(@puz — BKOsus) + Kugdgus )
((K2 + A? + B? — 1)03;uz — 2AK 0{gup — 2BK 035u» )
7

(KOs K(A? + B> + 1) — 0,(AK) — 03(BK) — A0, K — B0y K )d3us
(B.3)

Q3 = (¢ + ppf)drus — (po + pof + Q) K 803us + (1 — K)(03q — gpob)
- (C + po + p66) (U1(81U3 — AK(}gUg) + 1@(0211,3 — BK(‘}g’U,g) + KU3(}3U3>
+ (K — 1)(6%3111 + 653’11,2) + 01 K 03uy + 03K O3us
— 01 (AK(?gug) — AKag(Kagul + O1u3 — AK63U3)
- 62(BK83U3) - BK(?g(K&qu + Oouz — BKag’U,g)
+ 2(K2 — 1)69%3U3 + 2K 03K 03us,
(B.4)
that

Q3 = (1 — K)@gUg + AK0O3uy1 + BKd3uo,

B.5
Q* = —u101m — u2dam, (35
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and that
q—gp+n — 2u(01uy — AKO3uy)
Q5 = a177 —u(&1u2 + Oou; — AKO3up — BKag,U,l)
*,LL((71U3 — AKd3us3 + Kagul)
—,u(é’lug + Oqu; — AKO3ugy — BK&gul)
+ 6277 q—gp+mn — 2#(62’&2 — BK(?qu) (B6>
—/L(agu::, — AK0O3us + K03u2)

(1 - K)(?gul + AKd3us

— K (]. — K)03U2 + BK0d3ug
2(1 —-f()&gug

The terms F7!(1 < j < 5) in (4.30) are given by
FU = 0Pt — > Yo Ajrdr(pody T uy), (B.7)

0<y<l

FP =0F? + > Cf u(Ajdn (0] Ajmndy ™ dmus) + 0 Ajidy ™ 0 (Ajm ;)

o<j<l
— 2 Ol (pod] Awddi ™ ¢ + 8] (C + pf)2n(0ui)),
0<j<l
(B.8)
FoL = — 3 O o] A (0 us),
0<y<l
- _ (B.9)
PP = N CloIN -6,
0<j<l
FPl=p > CF (0] (ANm) k)t + 0] (AmiNo )08y ;)
o<j<l
o iy (B.10)
+ > CIAINo T (gpn — q).
0<y<l
APPENDIX C. SOME USEFUL ESTIMATES
Product estimate. Suppose that ¥ = Q or ', let f € H*1(X),g € H*2(X),
(1) if 0 < r < s1 < sg and s3 > r+ 3/2, then fge H"(X),
(2) if 0 <r < sp <s9 and 57 > 3/2, then fge H"(X).

In both cases, we have

[ fallmrs) < [ fle )9l ), (C.1)

We refer to [3, Lemma 10.1] for the proof of (C.1).

Gagliardo-Nirenberg’s inequality. Let s > 0, X = Qor " and f,g € H*(X) n
L*(X), we have

£ gl 2y S Wfllzs gl ey + [ Flze ) lglms =) (C.2)
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Elliptic estimates. Let 7 > 2 and ¢ € H""2(Q),% € H""'(Q) and a € H"~Y2(T").
There exist unique v € H"(2) and ¢ € H"~1(Q) solving

—Au+Vqg=1¢ in Q,
divu = ¢ in Q,
(¢Id — pSu)es = « on Y.

Moreover, we have
HUH%T(Q) + HQH%IPI(Q) S ||¢H%n72(9) + H'L/)Hip“*l(ﬂ) + HO‘H%T*?'@(Q)' (C.3)
thanks to [, Lemma A.15] for example.

We also recall the classical regularity theory for the Stokes problem with Dirich-
let boundary conditions (see [27, Theorem 2.4] after using the domain expansion
technique). Let 7 > 2 and f e H"2(Q),ge H"~'(Q) and h e H"~'/?(T) such that

f g= f h - v, where v is the outward unit normal vector to the boundary.
Q r

There exist uniquely u € H"(2) and ¢ € H" () solving
—Au+Vqg=f in Q,

divu = g in ,
u=nh onT.
There also holds
Jul ?{r(n) + quﬁirfl(ﬂ) S Hf”%{r*zm) + ||9H§1r71(9) + ||h\|12qr—1/2(r)- (C4)
Korn’s inequality. The following Korn’s inequality is proven in [17, Theorem
5.12],
[Vul7z) S [SulZ2(0)- (C.5)
Commutator estimates.
Let J = +/1 — 0% — 02 and let us define the commutator

(7%, flg=T*(fg9) — fT*9.
We have
ILT%, Aglezwy S IVFlLem 1T glewy + 1T Flezayllgl ey (C.6)
The proof of (C.6) is similar to that one of [16, Lemma X1].

Interpolation inequality. It can be found in [I, Chapter 5] that

1/(7+1 1 /(7+1
lullers @ < Tl Tuls iy -

That implies for e > 0, there is a universal constant C(j) such that
lullzio) < elullmis) + CUe™ Jull Lz (o). (C.7)
Coefficient estimates. If ||1] gs/2(r) < 1, we have
|J =1 ze@) + N = lze@y + 1K = zemw) < [0l msz@- (C.8)

Also, the map O defined by (2.6) is a diffeomorphism. We refer to [9, Lemma
2.4] for the proof of (C.8). In the following lemma, we provide some additional
estimates.
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Lemma C.1. Under the assumption |n| gor2ry < 1, the following inequalities hold

||6i(A, B)|lg=() < H&inHHsﬂ/z(p) forany 0 <1 <2 and 0 < s <4, (C.9)

and
1K = 1 a0y < [nllgssrz@y  for0<s<4,
10K | s ) < [0l gevrz@y  for 0<s <2, (C.10)
162K |2y S 1620l macey + 12enlyracry. |
102K | L2y S 1020 a2y + 106l sz oy 1070 1720y + H5t77||§15/2(p)7

and
H(AK, BK) HHs(Q) < H?]HHerl/z(p) fO?" 0<s< 4,
Hat(AK, BK>| H*(Q) < |\8m||Hs+1/2(p) fO'l" 0<s< 2,

|02 (AK, BK)| r2(0) < |67l mryvzry + 101572 1y
|03 (AK, BK) | L2(9) < [020]m1/2ry + 1060l mrsr2 (01070 1720y + 10635/ 1y »
(C.11)
and
|A = Id|gs ) < Inllgstr2@y for0<s<4,
|oeAl = (o) < |0l re+ar2ry  for 0 < s <2,
107 All 20y < 100 a2 0y + 10052 1y
103 Al 20y < ||af77”H1/2(r) + 0en 52 () HathHHl/Q(F) + ‘|at77H3H5/2(r)~

(C.12)

Proof. To prove (C.9), we use Lemma A.1 to obtain
[04(A, Bl o) = 10,010, 020) | 1+ (2) S 1016] mro+1 () < 1041 o2 ry -

We then claim (C.10). Since K —1 = J (1 —J) = —J 1036, we have
K —1]

@) S 171030 ) S 101 1= @) S Il rssare(ry-

Note that K = J~!, we have ;K = —J20,J. Owing to the product estimate
(C.1), Lemma A.1 and the fact that |J — 1]|p» ) $ 1 (C.8), we get

10:K | 1=y S 1T 201050 o) S 106030 1=y < 0em ] grosrrzry-

Since 02K = —J20%2J + 2J73(0;J)?, we continue applying Sobolev embedding,
Lemma A.1 and (C.8) to obtain

107K 20y < 1T7207050) L2(0) + T2 (04030)°| L2 ()
< 102050 20y (1 + 030l r2(02)) + 00030 12 () 01030 | 112 ()
S ”atanHl/?(F)(l + Il sz @y) + 10l gz oy [0l g2y
< N0Enl gy + 103y
Similarly, we have
BK =—J 2000 +6J 30,007 J — 6J *(01J)>.
This yields
107 K| 220y < 177207030 120y + [T 20:03007 030 L2 () + [T~ (0:030)° | L2 ()
< 07 030)| 2 () + 10:030 | rr2() |07 030 L2y + 0603072 (0|06 036] L2 (2
S 0inlmewy + 10| s @00l gy + Hﬁtnniﬁ/?(r)'
Hence, (C.10) is proven.
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We combine (C.9) and (C.10) to prove (C.11). Note that XK = X(K —1) + X
for X = A or B, we use Sobolev embedding and (C.10) to obtain that

XKl z2(0) < 1 X|p20) (1 + |K = lmz29) < [0l 20
We make use (C.1) and (C.9), (C.10) to obtain
XKl o) < [ X[ 0) 1+ [K = as@)) < |nlwsem
and if s = 2,3 or 4, we use also Gagliardo-Nirenberg’s inequality to have
IXK|m: ) < [ X[ #)(1 + [ K = 1 m20) + [ X[ m20) (1 + [ K — 1 ()
< [l g1z (ry-
We further obtain
|0t (X E) a0y S [0eX|ms (o) + [0:X (K — 1) ms(a) + [ X (K — 1)|g:(0)-
If s = 0, we use Sobolev embedding and (C.9), (C.10) again to have
04 (X K) | 22(0) < 10:X | L2(0) (L + |1K = 1 mr2(0) + [ X m2(0) [0eK | 2(0)
< |oenl grz oy (1 + 0] go2(ry)-
If s =1 or 2, we use (C.1) and also (C.9), (C.10) to obtain
loe(XE) [ m1 o) < [0:X o)1+ 1K = 1 ms@)) + [ X @@l 0K | 710
< |0l sz oy (L + [0l 72y )-
or
10e( X K) |20y S 10:X [ m200) (1 + [ K = U m2)) + [ X |20 10K | 122(02)
< 0l gsrz ey (L + [0l zs2@y)-
Similarly, it can be seen that
107 (X K) | 2() S 107X L2y + 07X (K = 1)] 20) + [0:X 0:(K = 1)] 120
+ | XK — 1) 120
S 07X 2y (1 + | K = 12 (e) + 10X || L2() 100K | 120
+ | X |20 107 K | 120
< ||at277”H1/2(1“)(1 + [0l ez ry) + 10en] gz ooy |0en| s/
+ H77|‘H5/2(F)(Hat277HH1/2(F) + Haml\qu/z(p))
< 07l e ey + H@tnl\qu/z(p)-
In a same way, we have
|08 (X K|l 2y S 107X [L2(0) (1 + 1K = 1 m2()) + 07 X[ 20| 0K 1220
+ 10: X | 2@ 107 K [ L2 + [ X |2 @107 K 22 ()
< Ha?nHHlﬂ(F) + [10enl a2 1y Hagn”Hl/Z(F) + Ham”?};sn(r)-
Thus, the proof of (C.11) is complete.
Note that
Hazls(A —1d)| g+ ) < Hé’i(K — Dllas) + ”ai(AK)HHS(Q) + H&i(BK) s 02y
Hence, (C.12) follows from (C.9), (C.10) and (C.11). O
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APPENDIX D. PROOF OF LEMMA 3.2

Note that the quotient
2k*(¢'(0)9(0) — &' (—a)d(—a))
§2,((67)% + 2k2(¢))2 + k49 das

is bounded because of the embedding H?((—a, 0)) — C*((—a,0)). To prove Lemma
3.2, let us consider the Lagrangian functional

(D.1)

0
200.8) = B | (@206 1 6P)da 1) ~20(6 (000(0) - (~a)o(~a),

for any ¢ € H?((—a,0)). Using Lagrange multiplier theorem again, we find that
the extrema of the quotient (D.1) are necessarily the stationary points (¢, Sx) of
%k, which satisfy

0
J'«ZP+%%%V+WﬁMm=1 (D:2)
and

0
ﬁkj (670" + 2K 50" + K ¢p.0)das

(D.3)
= £*(61,(0)0(0) + ¢1(0)¢/ (0) — ¢ (—a)f(—a) — px(—a)0'(~a)).
for all € H?((—a,0)).
Taking the integration by parts, we obtain that
0 0
B | (60 — 200 + K ou)0des + B - o0 + 20°030)] -

= k*(¢%(0)0(0) + ¢1.(0)0'(0) — ¢ (—a)f(—a) — ¢r(—a)¥' (—a)).
Restricting 6 € C§°((—a,0)), the resulting equality yields
o — 2627 + k*pr = 0 on (—a,0). (D.5)
Hence, (D.4) tells us that
Brei(0) = k¢, (0),
Br(=d (0) + 2k2¢},(0)) = k*¢7,(0),
Brdi(—a) = K¢x(—a),
Be(=d (—a) + 2k, (—a)) = k*¢}(—a).
Any solution ¢ of (D.5) is of the form
ér(z3) = (Azs + B) sinh(kxzs) + (Cxs + D) cosh(kzs), (D.7)

with A, B, C, D are four constants such that A%+ B?4C?+4D? > 0. Let us compute
from (D.7) that

@ (x3) = (A+ kD + kCx3) sinh(kz3) + (C + kB + kAx3) cosh(kxs),

Y(x3) = (2kC + kB + k* Ax3) sinh(kx3) + (2kA + k*D + k*Cx3) cosh(kx3).
and

V(x3) = (3k*A + kD + k3C) sinh(kx3) + (3k%C + k3B + k3 Ax3) cosh(kx3).

Substituting these formulas into (D.6), we obtain

{Bk(%A +k2D) = k2D,

Br(=k2C + k*B) = k*(C + kB), (D.8)
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and
5k( — (2kC + K%(B — Aa))sinh(ka) + (2kA + k2(D — Ca)) cosh(ka))
= k%(—(B — Aa) sinh(ka) + (D — Ca) cosh(ka)),
Bk< — (3k2A + K3(D — Ca))sinh(ka) + (3k2C + k3(B — Aa)) cosh(ka))
= k228, — 1) ( — (A + k(D — Ca))sinh(ka) + (C + k(B — Aa)) cosh(k‘a)).

(D.9)
System (D.8) is equivalent to
k(Br —1)B = (B + 1)C, (D.10)
k(Br —1)D = =283, A.

We also obtain that (D.9) is equivalent to

((—,Bk(k;a sinh(ka) + 2 cosh(ka)) + ka sinh(ka))A + (Br — 1)k sinh(ka)B

+ ((2 sinh(ka) + ka cosh(ka))Bx — ka cosh(ka))C’ + (=B + 1)k cosh(ka)D = 0,
( — (Bk + 1) sinh(ka) + (Br — 1)ka cosh(ka))A + (=B + 1)k cosh(ka)B

+<(—ﬂk + 1)kasinh(ka) + (Bx + 1) cosh(ka))C + (Br — 1)k sinh(ka)D = 0.

(D.11)
Substituting (D.10) into (D.11), we deduce
katanh(ka)(—pr + 1)A + ((38k + 1) tanh(ka) + ka(Br — 1))C = 0,
(—(3B% + 1) tanh(ka) + ka(Br — 1))A + (=B + 1)ka tanh(ka)C = 0.
Hence, system (D.6) is equivalent to
(Be +1)C = k(Br —1)B =0,
28k A+ k(B —1)D =0, (D.12)

katanh(ka)(—B + 1)A + (tanh(ka)(38k + 1) + ka(Br — 1))C = 0,
(—tanh(ka)(30k + 1) + ka(Br — 1)) A + katanh(ka)(—F; + 1)C = 0.

System (D.12) admits a nontrivial solution (A, C, B, D) if and only if the determi-
nant of the corresponding matrix is equal to zero. This yields

k2(6k71)2((ka)2tanh2(ka)(5k71)27 ((ka)z(ﬂk—l)QftanhZ(ka)(?)ﬂkJrl)Q)) ~ 0.
Equivalently,

k(B — 1)%((ka)®(Br — 1)? — sinb®(ka) (35, + 1)%) = 0. (D.13)
We have three possible values of Ay, which are solutions of (D.13) and ordered as

sinh(ka) — ka sinh(ka) + ka

~ 3sinh(ka) + ka ~ 3sinh(ka) — ka’

1 (multiplicity 2) >

Let us take the maximal value By = 1. Clearly, we obtain A = C' = 0 from
(D.10) and

¢r(z3) = Bsinh(kzg) + D cosh(kxs).
Substituting the above ¢ into (D.2), we have
0 0
1
f (Bsinh(kx3) + D cosh(kas))?dxs + J (Dsinh(kx3) + B cosh(kxs))?drs = TR

—a
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Equivalently,
0 0 1
(B? + DQ)J cosh(2kzy)dws + 2BD | sinh(2kzg)dry = oo

We directly have

1 1

3 sinh(2ka)(B? + D?) — 2sinh®(ka)BD = TR
This yields

D is arbitrary and
2 sinhQ(ka)i\/sinh2(ka)(2 cosh?(ka)+cosh(2ka)) D2+ k% sinh(2ka) (D14)

2 sinh(2ka)

sinh(ka)+ka

~ Fsmh(ha)—Fa- It can be seen from

Let us consider the minimal value B =

(D.12) that
sinh(ka) + ka cosh(ka) — 1
S S e R Vi A D.1
2k sinh(ka) ¢ sinh(ka) (D.15)
and
B _ (sinh(ka) — I.m)(zcosh(ka) - 1)A. (D.16)
2k sinh*(ka)
Hence, ¢y (x3) = Azp(x3), where
(sinh(ka) — ka)(cosh(ka) — 1)\ .
= (a5 — h(k
2 (x3) (583 % sinhQ(ka) ) sinh(kw3)
cosh(ka) — 1 sinh(ka) + ka
— h .
( sinh(ka) ° " 2ksinh(ka) ) cosh(kas)
To find A, we trace back to (D.2). That means
0
A2J ((2)? + 2K%(23,) + k*23)das = 1. (D.17)

From the above cases, we conclude that

2R (0)6(0) — ¢ (—a)¢(=a)) _
veH(—a.0) [0 ()2 + 2k2(¢/)2 + k1¢2)dxy

That variational problem is attained by functions

¢(x3) = Bsinh(kxs) + D cosh(kxs),
where B, D satisfy (D.14).

, 2k2(¢/(0)$(0) — ¢'(—a)é(—a)) _ _ sinh(ka) + ka

min =

$eH2((—a,0)) Sga((¢//)2 +2K2(4)2 + k4¢2)dzs 3sinh(ka) — ka’

That variational problem is attained by functions
¢(z3) = (Azs + B)sinh(kzs) + (Cxs + D) cosh(kxs),
where A, B, C, D satisty (D.17), (D.16) and (D.15).



(1]
(2]
(3]
(4]
(5]
[6]
[7]
(8]

(9]

RAYLEIGH-TAYLOR INSTABILITY 79

REFERENCES

R. A. Apams, J. F. FOURNIER, Sobolev Space, 2nd edition, Academic Press, New York,
2005. 73

J. BEALE, The initial value problem for the Navier-Stokes equations with a free surface.
Comm. Pure Appl. Math. 34 (1981), pp.359-392. 4, 5

S. CHANDRASEKHAR, Hydrodynamics and Hydromagnetic Stability, Oxford University
Press, London, 1961. 1, 2, 6

B. DEsJARDINS, E. GRENIER, On Nonlinear Rayleigh—Taylor instabilities, Acta Math.
Sinica (Engl. Ser.) 22 (4) (2006), pp. 1007-1016. 1

Y. Guo, H. J. HwaNG, On the dynamical Rayleigh—Taylor instability, Arch. Rational
Mech. Anal. 167 (2003), pp. 235-253. 1

Y. Guo, W. STRrAUSS, Instability of periodic BGK equilibria, Comm. Pure Appl. Math.
48 (1995), pp. 861-894. 1, 3

Y. Guo, I. TICE, Linear Rayleigh-Taylor instability for viscous, compressible fluids,
SIAM J. Math. Anal.42 (2011), pp. 1688-1720. 1

Y. Guo, I. Ticg, Local well-posedness of the viscous surface wave problem without
surface tension, Anal. and PDE 6 (2013), pp. 287-369. 9, 28, 72

Y. Guo, I. TICE, Almost exponential decay of periodic viscous surface waves without
surface tension, Arch. Rational Mech. Anal. 207 (2013), pp. 459-531. 73

E. GRENIER, On the nonlinear instability of Euler and Prandtl equations, Commun. Pure
Appl. Math. 53 (2000), pp. 1067-1091. 1, 3

J. JaNG, 1. TICE, Instability theory of the Navier-Stokes-Poisson equations, Anal. PDE
6 (2013), pp. 1121-1181. 10, 62

J. JANG, I. TiceE, Y. WANG, The compressible viscous surface-internal wave problem:
nonlinear Rayleigh—Taylor instability, Arch. Rational Mech. Anal. 221 (2016), pp. 215—
272. 1

F. JiaNG, S. JianG, G. NI, Nonlinear instability for nonhomogeneous incompressible
viscous fluids, Sci. China Math. 56 (2013), pp 665-686. 2

B. HELFFER, O. LAFITTE, Asymptotic methods for the eigenvalues of the Rayleigh equa-
tion for the linearized Rayleigh-Taylor instability, Asymptotic Analysis 33 (2003), pp.
189-235. 1

T. KaT0, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995, Reprint
of the 1980 edition. 9

T. Karo, G. PONCE, Commutator estimates and the Euler and Navier- Stokes equations.
Commun. Pure Appl. Math. 41 (1988), pp. 891-907. 73

N. KikucHi, J. T. ODEN, Contact Problems in Elasticity: A Study of Variational Inequal-
ities and Finite Element Methods, Studies in Applied Mathematics, STAM, Philadelphia,
1988. 72

H. KuLL, Theory of the Rayleigh-Taylor instability, Phys. Rep. 206 (1991), pp. 197-325.
1

O. LAFITTE, Sur la phase linéaire de l'instabilité de Rayleigh-Taylor. Séminaire Equations
aux Dérivées Partielles du Centre de Mathématiques de 1’Ecole Polytechnique, Année
2000-2001. 1

O. LarITTE, T.-T. NGUYEN, Spectral analysis of the incompressible viscous Rayleigh-
Taylor system, Water Waves 4 (2022), pp. 259-305. 1, 2, 7, 17

D. LANNES, The water waves problem: Mathematical analysis and asymptotics, Mathe-
matical survey and monographs, vol. 188, AMS, Providence (2013). 4

J. D. LINDL, Inertial Confinement Fusion, Springer, 1998. 1

T.-T. NGUYEN, Linear and Nonlinear analysis of the viscous Rayleigh-Taylor system
with Navier-slip boundary conditions, preprint, https://arxiv.org/abs/2204.09857. 3
B. A. REMINGTON, R. P. DRAKE, H. TAKABE, D. ARNETT, A review of astrophysics
experiments on intense lasers, Phys. Plasmas 7 (2000), pp. 1641-1652. 1

J.W. STRUTT (LORD RAYLEIGH), Investigation of the character of the equilibrium of an
incompressible heavy fluid of variable density, Proc. London Math. Soc 14 (1883), pp.
170-177. 1

G. TAYLOR, The instability of liquid surfaces when accelerated in a direction perpendic-
ular to their planes, Proc. R. Soc. Lond. Ser. A 201 (1950), pp. 192-196. 1

R. TEMAM, Navier—Stokes Equations: Theory and Numerical Analysis. 3rd ed. Amster-
dam: North-Holland (1984). 72

Y. WANG, Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves
in 3D, Arch. Rational Mech. Anal. 231 (2019), pp.1675-1743. 9, 10



80 TIEN-TAI NGUYEN

[29] Y. WaNG, I. TICE, The viscous surface-internal wave problem: nonlinear Rayleigh—
Taylor instability, Commun. Part. Differ. Equ. 37 (2012), pp. 1967-2028. 1, 9, 10, 31

[30] Y. ZHou, Rayleigh—Taylor and Richtmyer—Meshkov instability induced flow, turbulence,
and mixing. I., Phys. Rep. 720-722 (2017), pp. 1-136. 1

[31] Y. ZHou, Rayleigh—Taylor and Richtmyer—Meshkov instability induced flow, turbulence,
and mixing. II., Phys. Rep. 723—725 (2017), pp. 1-160. 1

(Tién-Tai Nguyén) LABORATOIRE ANALYSE GEOMETRIE ET APPLICATIONS, UNIVERSITE SOR-
BONNE PARIS NORD, 93430 - VILLETANEUSE, FRANCE

Email address: tientai.nguyen@math.univ-parisi3.fr


mailto: Ti�n-T�i Nguy~\T5\ecircumflex n <tientai.nguyen@math.univ-paris13.fr>

	1. Introduction
	Acknowledgments
	2. The governing equations and main results
	2.1. Formulation in Eulerian coordinates
	2.2. Formulation in Lagrangian coordinates
	2.3. Equilibrium state and and main results

	3. The linear analysis
	3.1. Solutions on the outer region (-,-a) and reduction to an ODE on the finite interval (-a,0)
	3.2. A bilinear form and a self-adjoint invertible operator
	3.3. A sequence of characteristic values
	3.4. Proof of Theorem ?? and normal modes to the linearized equations
	3.5. Maximal growth rate

	4. A priori energy estimates
	4.1. Energy estimates of the perturbation transport
	4.2. Temporal estimates for the perturbation velocity
	4.3. Horizontal estimates of the perturbation velocity
	4.4. Estimates of the perturbation density
	4.5. Elliptic estimates
	4.6. Proof of Proposition ??

	5. Nonlinear instability
	5.1. The difference functions
	5.2. Proof of Theorem ??

	Appendix A. Poisson extension
	Appendix B. Nonlinear terms
	Appendix C. Some useful estimates
	Appendix D. Proof of Lemma ??
	References

