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NONLINEAR RAYLEIGH-TAYLOR INSTABILITY OF THE

VISCOUS SURFACE WAVE IN AN INFINITELY DEEP OCEAN

TIEN-TAI NGUYEN

ABSTRACT. In this paper, we consider an incompressible viscous fluid in an
infinitely deep ocean, being bounded above by a free moving boundary. The
governing equations are the gravity-driven incompressible Navier-Stokes equa-
tions with variable density and no surface tension is taken into account on the
free surface. After using the Lagrangian transformation, we write the main
equations in a perturbed form in a fixed domain. In the first part, we describe
a spectral analysis of the linearized equations around a hydrostatic equilib-
rium (po(z3),0, Po(x3)) for a smooth increasing density profile pg. Precisely,
we prove that there exist infinitely many normal modes to the linearized equa-
tions by following the operator method initiated by Lafitte and Nguyén [20].
In the second part, we study the nonlinear Rayleigh-Taylor instability around
the above profile by constructing a wide class of initial data for the nonlinear
perturbation problem departing from the equilibrium, based on the finding
of infinitely many normal modes. Our nonlinear result extends the previous
framework of Guo and Strauss [6] and also of Grenier [10].
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1. INTRODUCTION

The Rayleigh-Taylor (RT) instability, studied first by Lord Rayleigh in [25] and
then Taylor [20] is well known as a gravity-driven instability in two semi-infinite in-
viscid and incompressible fluids when the heavy one is on top of the light one. It has
attracted much attention due to both its physical and mathematical importance.
Two applications worth mentioning are implosion of inertial confinement fusion
capsules [22] and core-collapse of supernovae [24]. For a detailed physical compre-
hension of the linear RT instability, we refer to three survey papers [18, 29, 30].
Mathematically speaking, the nonlinear study of classical RT instability is proven
by Desjardins and Grenier [4]. For the inviscid and incompressible fluid with a
smooth density profile, the classical RT instability was investigated by Lafitte [19],
by Guo and Hwang [5] and by Helffer and Lafitte [14].

Concerning the viscous linear RT instability, one of the first studies can be seen
in the book of Chandrasekhar [3, Chapter X]. He considers two uniform viscous fluid
separated by a horizontal boundary and generalize the classical result of Rayleigh
and Taylor. We refer the readers to mathematical viscous linear/nonlinear RT
studies for two (in-)compressible channel flows in [7], [28] and [12]. For the incom-
pressible fluid in the whole space R3, with a smooth density profile, we mention
the results of Jiang et. al [13] and of Lafitte and Nguyén [20], respectively.

Let T = R/Z be the usual 1D torus and T? = 27L;T x 27LyT (L1, Ly > 0).
The aim of this paper is to study nonlinear RT instability of the viscous surface
wave in an infinitely deep ocean. The domain of the fluid is

Qt) = {z = (x1,22,23) € T? x R, x5 < n(t,x1,x2)} (1.1)

and Q(t) is bounded above by the free surface I'(t) = {x3 = n(¢,z1,22)}, where
7 is an unknown of the problem. In Eulerian coordinate, the fluid dynamics are
governed by the incompressible Navier—Stokes equations (2.1) in the presence of a
gravity force field —ges(g > 0), and the effect of surface tension is neglected on
the free surface. The movement of Q(¢) and T'(¢) raises numerous mathematical
difficulties. Let R_ = (—00,0), we use the unknown function 7 and the Lagrangian



RAYLEIGH-TAYLOR INSTABILITY 3

coordinate transformation to transform the free boundary problem into the equiva-
lent problem, (2.9) in a fixed domain Q = T? x R_, which the fixed upper boundary
is ' =T? x {23 = 0}.

Let ' = d/dxs, we then consider two smooth functions py and P, depending
only on x3. Hence (po(z3),0, Po(z3)) is an equilibrium of Eq. (2.9), provided that
P} = —gpo. Since we are interested in the RT instability, we assume that

CE(R_) 54y >0, suppply = [~a,0], (1.2)
with a > 0. We denote by
0 < p— = po(z3) for all 23 < —a, pp(0) = p4. (1.3)

This means that a layer of finite depth models the heavier fluid before the per-
turbation. We write Eq. (2.9) in the perturbed form, Eq. (2.11) and obtain the
linearized equations (2.13). We study the linear instability by seeking normal mode
solutions e’V (z) of Eq. (2.13). It turns out that the investigation of normal modes
relies on the finding of solutions of a fourth-order ordinary differential equation on
R_, which is

N (K pod — (po¢)') + Ma(@'V — 26°¢" + K'¢) = gk? pfyo, (1.4)
which wave number is k and A € C (ReX > 0) is called as the characteristic value
of the linearized problem (see [3, Chapter X]). The boundary conditions at z3 = 0

are
{u(k2¢(0) +¢"(0) =0, w5
=g (0) + (BAuk? + X2p1 )¢’ (0) + gk*p4¢(0) = 0
and we physically have that ¢ decays at —oo, i.e.
limg(as) = 0. (1.6)

Our first result is to show that there exists an infinite sequence of normal modes
to the linearized equations (2.13) by following the operator method introduced by
Lafitte and Nguyén [20]. The key ingredients are the followings:

) seek the exact solutions on (—o0, —a),
(2) deduce the boundary conditions for (1.4) on (—a, 0) from the outer solutions
and (1.5),
(3) write a variational formulation on H?((—a,0)) for (1.4) on (—a,0),
) use the spectral theory for a self-adjoint and compact operator for a Sturm-
Liouville problem on H?((—a,0)).

The spectral analysis allows us to study fully nonlinear perturbation equations
(2.11). To prove the nonlinear instability, we follow the procedure:

Step 1. establish some a priori energy estimates to the nonlinear equations,

Step 2. formulate a linear combination of normal modes to the linearized equations
(2.13) to set its value at initial time ¢t = 0 of size 0 < § « 1 as an initial
datum to the nonlinear perturbation equations,

Step 3. obtain the difference between the local exact solution and the approximate
solution in Step 2 and exploit some energy estimates for the difference,

Step 4. deduce the bound in time of the difference functions and prove the nonlinear
instability.

Our nonlinear study is inspired by the abstract frameworks of Guo and Strauss
[6] and of Grenier [10]. In the spirit of these above frameworks, only the maximal
normal mode was used in Step 2 to set its value at ¢ = 0 of size 0 < § < 1 to be
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an initial datum to derive a solution of the nonlinear equations. Let us emphasize
that, our nonlinear results show that a wide class of initial data (related to a
linear combination of normal modes) to the nonlinear problem departing from the
equilibrium is formulated in Step 2 and it gives rise to the nonlinear instability. The
nonlinear result in this work is in the same spirit as [23], where the author studies
the nonlinear viscous RT instability in a slab domain 27 LT x (=1,1) (L > 0), with
Navier-slip boundary conditions.

We organize this paper as follows. In Section 2, from the formulation in Eulerian
coordinates of the governing equations (2.1), we then derive the formulation in
Lagrangian coordinates, see (2.9). We introduce our two theorems, Theorem 2.1
describing the spectral analysis of the linearized equations and Theorem 2.2 proving
the nonlinear instability. Section 3 is devoted to the proof of Theorem 2.1. In
Section 4, we construct the a priori energy estimates to the nonlinear perturbation
equations. In the last part, Section 5, we prove Theorem 2.2.

We employ the Einstein convention of summing over repeated indices. Through-
out the paper C > 0 will denote universal constants that depend on the physical
parameters of the problem, u, g, k,a and ps. Such constants are allowed to change
from line to line. We will employ the notation a < b to mean that a < Cb for a
universal constant C' > 0.

2. THE GOVERNING EQUATIONS AND MAIN RESULTS

2.1. Formulation in Eulerian coordinates. We are concerned with the viscous
RT of the nonhomogeneous incompressible Navier-Stokes equations without any
effects of surface tension, that read as

0rp + div(pa) =0 in Q(t),
Or(pu) + div(pa ® 4) + Vp = pAd — gpes  in Q(t),
divii = 0 in Q(t), (2.1)
(pId — uS@)n = parmn on I'(¢),
Oyn = iz — U101M — U02M on T'(¢).

The unknowns p := p(t,x), @ := a(t,x) and p := p(t,x) denote the density, the
velocity and the pressure of the fluid, respectively, while p > 0 is the viscosity
coefficient and g > 0 is the gravitational constant. S& = Vi + V4! is the stress
tensor. The outward normal vector of the boundary I'(¢), n is given by

L (=0m =0, )T
V1[0 + [an]?
The given constant put.,, is the atmospheric pressure. For a more physical descrip-

tion of the equations (2.1) and the boundary conditions in (2.1), we refer to [21,
Sect. 1.8].

(2.2)

To complete the statement of the problem, we must specify the initial conditions.
We suppose that the initial surface I'(0) are given by the graph of the function
7(0) = no which yield the open set £2(0) on which we specify the initial data for
the velocity, u(0) = ug : Q(0) — R3. We assume that the initial surface function
satisfies the "zero-average” condition

[ m=0 (2.3)

and 7(0), u(0) satisfy certain compatibility conditions, which we will present later
(see Proposition 4.1). Note that, for sufficiently regular solutions to the problem,
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the condition (2.3) holds for all ¢ > 0, that is
J n(t)=0 forallt=0. (2.4)
T2

It is a consequence of

d
—J n= (3t77=J fL~n=J diva = 0.
dt Jp> T (t) Q)

2.2. Formulation in Lagrangian coordinates. The movement of the free bound-
ary I'(t) and the domain (¢) raises numerous mathematical difficulties. To handle
that, following Beale [2], we use the unknown function 7. So that we can transform
the free boundary problem (2.1) into a new problem in a fixed domain. We define
(see Appendix A)

6 := Poisson extension of 7 into T? x {z3 < 0} (2.5)
and the following coordinate transformation:

Q52 = (21,22, 23) = (21,22, 3 + 0(t, 21,22, 73)) =: O(t, ) = (y1,y2,y3) € Q).

(2.6)
If n is sufficiently small (in an appropriate Sobolev norm), then the mapping is a
diffeomorphism. From the definition of © (2.6), we first compute

1 0 0
Vo= 0 1 0
010 020 1+ 639

Following [2] again, we denote by

A=0,0, B=020, J=1+030, K=J"! (2.7)
and
1 0 —AK
A=((ve)y H" =10 1 -BK | (2.8)
00 K

We write the differential operators V 4, div.4, A4 with their actions given by

3
(Vaf)ii= Y Aydif, divaX = > A;d;Xi, Auf =divaVaf.

j=1 1<4,j<3
We write
N = (=o1n, —0m, 1)"
for the non-unit normal vector to I'(¢), and we also write the stress tensor S qu as
(SAu)ij = Aikakuj + .Ajkakui.
We now define the density p, the velocity u and the pressure p on the domain 2 by
the composition
(pa u7p)(t7 37) = (ﬁa ﬂ,ﬁ)(t, @(t7 LE))
We transform (2.1) into the following system in the new coordinates

Orp — Ko003p + div 4 (pu) = 0 in Q,
p(Oru — Ko90su + u - V au) + Vap — pdivaS u = —gpes  in Q,
divqu =0 in Q, (2.9)
om=u-N on T,

(pld — ﬂSAU)N = PatmN onI.
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2.3. Equilibrium state and and main results. We now rewrite (2.9) in a per-
turbed formulation around the steady-state solution

(P(t, CC), u(tv x)ap(tv x)a 77(757 xh)) = (Po(xg), Oa PO(wS)v 0)7

satisfying that Pj = —gpo and adding the condition Py(0) = patm. We define a
special density and pressure perturbation by

C=p—po—pof, q¢=p—Po+gpob (2.10)

We still call the perturbations of the velocity and of the characterization of surface
as (u,n) respectively. The equations for the perturbation U = (¢, u, ¢, n) write

0iC + pous = Q'(U) in §,
po0iu + Vq — pAu + gCez = Q*(U) in Q,
divu = Q3(U) in Q, (2.11)
om —uz = Q4U) onT,

((g — gp+m)Id — pSu)e; = Q°(U) ~ onT.
The nonlinear terms Q*(U) (1 <4 < 5) (for short Q) are given by
Q' = phus — pds0 + K0:0(03C + ply + pid + pydsb),
—diva((po + ppf + C)u)
Q% = —(C+ p)dru — (C + po + pof) K 01005u — (Vap — Vg — gCes)
—(C+ po + ppf)u -V au — u(Au — div 4 (S4u)), (2.12)
Q3 = divu — div 4w,
Q* = —u1 011 — uadan,
Q° = (q—gp+n)Id - (e3 — N) — uSues + p(Saw)N.

We refer to Appendix B for the precise expression of Q*(1 < i < 5) as a polynomial
of U,A,B,J, K.

The linearized equations are

0+¢ + ppusz =0 in Q,
poiu + Vq — pAu + gles = 0, in €,
divu = 0 in Q, (2.13)
oim = us on T,

((g — gp+m)Id — uSu)es =0 on T

As in [3, Chapter XI], we seek normal modes U(t,z) = e*V(z) of (2.13), which
are

(Cou,q)(t,x) = eM(w,v,m)(z), nt,z) = e (). (2.14)
We deduce the following system on (w,v,r,v),
Aw + phuz =0 in Q,
Apov + Vr — pAv + gwesz =0 in Q,
divo =0 in €, (2.15)
AV = vg onI,

((r — gpsv)Id — u(Vo + VoT))es =0 onT.

That implies

1, 1
w = —Xpovg, V= XU?"F (2.16)
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and
N pov + AVr — AuAv — gphuges = 0 in Q,
dive = 0 in Q, (2.17)
(W — gpivg)Id — Au(Vo + Vol))es =0 on T

Let k = (k1, ko) € LT'Z x Ly *Z\{0}, we assume further that

vi(z) = sin(k121 + kowa)p(k, 23),
vo(x) = sin(k1z1 + kaxe)p(k, z3),
vs(x) = cos(kixy + koxa2)o(k, x3),
r(z) = cos(k1z1 + kaza)mw(k, 3).
Denote by k = k| = 1/k? + k2, we deduce from (2. 17) that
X2poth — Ny + (k26— ") =0 in R_,
A2pop — Mkom + Au(k2p — ¢") = inR_,
N2pod + A+ Mu(k26 — ¢") = 6<z> nR_,
ki) + koo + ¢ =0 inR_,
At z3 = 0, we have the boundary conditions
1(k16(0) —¢'(0)) =0,
1(k2¢(0) = ¢'(0)) = 0, (2.20)
Am(0) = gp+(0) — 2Aug(0) =
We also need the decaying condition at —oo,

lim (¢, ¢, ¢, m)(x3) = 0. (2.21)

r3—>—00

(2.18)

(2.19)

Note that, due to (2.19)1 24

7= Opod + (k26— ¢") i R (2.22)
Hence, from (2.22) and (2.19),, we get a fourth-order ODE for ¢, (1.4), i.e

N (k2pod — (pod')) + Ma(@™) — 2k2¢" + k') = gk® piyo.
The boundary conditions at 3 = 0 deduced from (2.19),, (2.20) and (2.22) are
(1.5), i.e
p(k*¢(0) + ¢"(0)) = 0, —Aug"(0) + (3Auk? + X?p4)¢'(0) + gk®p+6(0) =
and from (2.21), we have that ¢ decays at —o, (1.6), i.e
lim ¢(x3) = 0.
r3——00

The finding of normal modes of the form (2.14) to Eq. (2.13) relies on the investi-
gation of the characteristic values A € C (ReA > 0) such that (1.4)-(1.5)-(1.6) has
a nontrivial solution ¢ living at least in H*(R_).

We first show that all characteristic values A are real. Since our goal is to
study the instability, we only consider positive A in what follows. Let Ly be the

characteristic length such that Ly' = HZ—:‘;H L= (®_), we further obtain the uniform

upper bound , /L% of .

Lemma 2.1. For any k > 0,

e all characteristic values A are always real,

e all characteristic values \ satisfy that X <, /£-.
0
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Proof of Lemma 2.1 is given in the beginning of Section 3. In view of Lemma
2.1, we look for functions ¢ being real and we only consider the vector spaces of
real-valued functions in what follows in the linear analysis.

We state our first theorem solving the ODE (1.4)—(1.5)—(1.6) .

Theorem 2.1. Let py satisfy (1.2)—(1.3), there exist an infinite sequence (An, On)n>1
with A, € (04/ 1) and ¢, € H*(R_) satisfying (1.4)-(1.5)-(1.6).

Let us discuss about the strategy for proving Theorem 2.1, which is in the same
spirit as [20]. We first look for a solution ¢ € H*(R_).

On (—o0, —a), the ODE (1.4) is an ODE with constant coefficients, for which
we can find explicit solutions in Proposition 3.1 decaying to 0 at —oo. Hence, we
transform the problem for the normal modes on R_ into an ODE problem stated
on a compact interval (—a,0) with appropriate boundary conditions deduced from
the outer solutions. They are described by (1.5) stated above and (3.7) (to be seen
in Lemma 3.1).

In order to solve a fourth-order ODE (1.4) with the boundary conditions (3.7)
and (1.5), the crucial step is to construct a continuous and coercive bilinear form
Bk on H?((—a,0)) (see (3.9) in Proposition 3.2), such that the finding of a
solution ¢ € H*((—a,0)) of Eq. (1.4)-(1.5)-(3.7) is equivalent to finding a weak
solution ¢ € H%((—a,0)) to the variational problem

0
ABo kx (P, w) = ngJ pppwdzs  for all w e H*((—a,0)) (2.23)

and thus improving the regularity of that weak solution ¢.

As By i.x is a coercive form on H?((—a,0)), we have that \/%Ba () is a
norm on H?((—a,0)). Let (H*((—a,0))) be the dual space of the functional
space H?((—a,0)), associated with the norm /%, k(). In view of Riesz’s rep-

resentation theorem, we obtain an abstract operator Y; ; » from H2((—a,0)) to
(H?((—a,0)))’, such that

Bawr(V,0) = Yo, 0y foralld pe H2((—a,0)). (2.24)

Hence, from (2.23) and (2.24), we have that the existence of a solution ¢ € H*((—a, 0))
of Eq. (1.4)-(1.5)-(3.7) is reduced to the finding of a weak solution ¢ € H?((—a, 0))
of

Yo b = gk?phd  in (H?*((—a,0))). (2.25)

Restricting ¢ € C°((—a,0)) in (2.24), we find the precise expression of Y x x
(see Proposition 3.3(1)), i.e. for all ¥ € H?((—a,0)),

Yo rn® = MEpot — (po?')') + p(9® — 229" + k*9)  in D'((—a,0)).

Furthermore, a classical bootstrap argument (see Proposition 3.3(2)) shows that
we are able to define the inverse operator Yajkl,)\ of Ya ., from L?((—a,0)) to a
subspace of H%((—a,0)) requiring all elements satisfy (3.7)-(1.5). Note that, be-
cause ¢ belongs to H*((—a,0)), these boundary conditions (involving the deriva-
tives ¢, ¢"” of ¢ at x3 = —a and at x3 = 0) are well defined. Composing the above
operator Y;,iA with the continuous injection from H*((—a,0)) to L?((—a,0)) (see

Proposition 3.4), we obtain that Yajkl’ » is a compact and self-adjoint operator from
L?((—a,0)) to itself.
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We introduce M the operator of multiplication by +/pj in L?((—a,0)). Note
from (2.25) that, we thus find v satisfying

A

gk?

We show that the operator MY, - !\ M is compact and self-adjoint from L?((—a,0))

to itself (see Proposition 3.5), which enables to use the spectral theory of self-adjoint
and compact operators to obtain that

v—MYkAMv

the discrete spectrum of the operator MY ¥, /\M is an infinite sequence of
eigenvalues (denoted by {'yn()\ k) ns1)-

Let vy, 1, x be an elgenfunctlon of MY, k., /\M associated with the eigenvalue +,, (A, k)
and let ¢k \ =Y, L Moy gy € H4(( a,0)), we obtain

YoM E) Yok a@nkn = M2Gn b, = Pobnkr, - (2.26)

From (2.25) and (2.26), we see that the problem of finding characteristic values
of (1.4) amounts to solving all the equations

A
Pk
In Proposition 3.6, for each n, we will show the existence and uniqueness of a solu-
tion A, to (2.27) owing first to the differentiability in A of v, (A, k) (see Lemma 3.3),
which is an extension of Kato’s perturbation theory of the spectrum of operators
(see [15]), and to the fact that A — v, (), k) is decreasing in A (see Lemma 3.4),
through the derivative d—d)\(m) which exists also thanks to a similar argument

Yn(A k) = (2.27)

(see [15]). Furthermore, we have that {\,},>1 is a decreasing sequence towards 0.

For each \,, we have that ¢, 1, = Y, x, Mun g, € H*((—a,0)) satisfies

Eq. (1.4) with the boundary conditions (3.’75—(1.5) thanks to Proposition 3.3(2)
again. Hence, ¢, 1z, is glued with the decaying solutions of (1.4) in the outer
region (—oo0, —a) by the boundary conditions at x3 = —a to become a solution of
(1.4)-(1.5)-(1.6) in H*(R_) associated with A = \,,. Theorem 2.1 is proven.

Once Eq. (1.4)-(1.5)-(1.6) is solved, we go back to the linearized equations (2.13).
For a fixed k € L7 'Z x Ly'Z\{0}, we obtain a sequence of real solutions to the
linearized equations (2.13) (see Proposition 3.7), which are

MV (I, ) = (X0 b ), 0y (k, ), (0, ), (0, 2n)) T

Note from Lemma 2.1 that

0<A:= sup A1(k) < \/7, (2.28)
keL'Zx Ly "Z\{0} Lo

we show that A is the maximal growth rate of the linearized equations, see Propo-
sition 3.9.

We move to solve the nonlinear instability.

The local well-posedness of (2.11) in our functional framework (see Proposition
4.1) can be established similarly as in [3, Theorem 6.3] for the incompressible viscous

surface wave problem, which is used in [28] for the incompressible viscous surface-
internal wave problem and [27] for the incompressible viscous fluid with magnetic
field. We refer to [3, 28, 27] for the construction of local solutions to (2.11) with

some specific compatibility conditions.
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We derive the a priori energy estimate (4.6) to the nonlinear equations in Propo-
sition 4.2.
Thanks to (2.28), we define the non-empty set
2A
5 )
We further fix a kg € Sy. Hence, there is a unique N = N(kg) € N* such that

Sy = {ke LTYZ % L1 Z\{0} : A (k) >

2A
A= Al(ko) > )\Q(ko) > > )\N(kO) > ? > )\N+1(k0) > ... (229)

Let M € N* be arbitrary. In view of getting infinitely many characteristic values of
the linearized problem, we consider a linear combination of normal modes

M
UM(t,z) = ) c;e’ 0V (Ko, z) (2.30)
j=1

to be an approximate solution to the nonlinear equations (2.11), with constants c;
being chosen such that

at least one of ¢; (1 < j < N) is non-zero (2.31)

and let j,, :=min{j : 1 < j < N,c; # 0},

<5, |15,

1
12(9) > 5 D leillugle - (2.32)

In order to prove the nonlinear instability, we would like to use UM (0, z) as the
initial data for the nonlinear equations (2.11). However, to ensure the local existence
of solutions, the initial data for the nonlinear equations (2.11) must satisfy the
compatibility conditions (4.4) (see again Proposition 4.1), which are not satisfied
by the normal modes V;(k,z) (j = 1). Thanks to an abstract argument from [11,
Section 5C], which was also used in [28, 27], we modify UM (0, ) in Proposition 5.1
as follows: there exist dg > 0 such that the family of initial data

UM (z) = sUM (0, z) + 62UM (z) (2.33)

for § € (0, dp) satisfies the compatibility conditions (4.4). Eq. (2.11) with the initial
data U%M(z) (2.33) has a unique local strong solution U%M (¢, ) on [0, Tinax)-

Hence, we observe that U?(t) = UM (t) — UM (t) solves (2.11) with the initial
data U4(0) = 6202 and the same nonlinear terms Q¥ (1 < i < 5) (see Eq. (5.2)).
For t small enough, we deduce the following bound in time (see Proposition 5.2),

1t uhY )72y + In* (D)1 720y

N
3 Ajt ZAt\3
<0 (Z lc;le*" + max(0, M — N) N+11n£jst|cj|es )2,
J=Im
That relies on some energy estimates of Eq. (5.2) and the bound in time of a
suitable Sobolev norm of U%M (t) (see Proposition 5.3), which we obtain thanks
to the a priori energy estimate established in Proposition 4.2. Combining those

estimates, we obtain the following nonlinear result.

Theorem 2.2. Assume that pg satisfies (1.2)-(1.3). Let M € N* be arbitrary, there
exist positive constants dg,eq sufficiently small and another constant mg > 0 such
that for any 0 € (0,00), the nonlinear equations (2.11) with the initial data (2.33),
i.e.

M
33 ¢Vi(w) + UM (x),
j=1
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satisfying (2.31)-(2.32) admits a unique local strong solution U™ such that
HU(S’M(T(S)HH(Q) = Mmyeo, (2.34)

where T% € (0, Thax) is given by §Zj]\/ijm |cj|e’\J'T(S = €.
3. THE LINEAR ANALYSIS
We begin with the proof of Lemma 2.1.

Proof of Lemma 2.1. Multiplying by ¢ on both sides of (1.4) and then integrating
by parts, we obtain that

IR

0
—0

+ )\,Llf(JR (|¢//|2 + 2k2|¢/|2 + k4|¢|2)d$3 + (¢///$_ ¢,,$/ _ 2]{;2¢'$)‘ )

= gk? fR polol*dus.

Using (1.5) and (1.6), we get

(| 02 mlof? + pol6'Pidzs — pr 007 ©)) + 2 [ (07 + 20716+ K10 )y
R_

+ (3Auk? + A2p1 )¢ (0)6(0) + gk?p[9(0)] + Auk?¢'(0)$(0) — 2Auk?¢' (0)4(0)
S
This yields

z2 f (R poldl? + pol'P)das + Au j (6" + 26218 + K419]?)ds

R_ R_
+ Ak? (' (0)6(0) + 6 (0)6(0)) + gh?p4 |$(0)* = gsz polof>ds.
R_
Using the integration by parts and (1.5) again, we have

)\2f (K%polo|? + pol|d'|?)dxs + AMJ (|¢" + K*¢|> + 4K%|¢'|*)dx3
R_ R_
(3.1)
k%0, |0(0)? + gk? fR phlol2das.

Suppose that A = A\; + ¢)q, then one deduces from (3.1) that

(AT =2 JR (K pold|* + pol¢/[*)des + Aluj (16" + K*¢l* + 4k%|¢'|*)d3

— kSO + gk2f obl[2dzs
R_
(3.2)
and that

—2X1 M0 f (K*pol @l + pold’|*)das = Ao f (I¢" + K*¢* + 4k|¢/|*)dws. (3.3)
R_ R_
If A2 # 0, (3.3) leads us to

200 [ mlof + ol P)daa =g (107 + KO + 48716 Pz <0,
R_ R_
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that contradiction yields Ao = 0, i.e. X is real. Using (3.1) again, we further get
that
0 [ ool + 16/ < gk [ pbloPdes.
R R_

It tells us that A is bounded by 4 /L%' This finishes the proof of Lemma 2.1. O

Note again that, thanks to Lemma 2.1, in what follows in this section, we only
use real-valued functions.

3.1. Solutions on the outer region (—w, —a) and reduction to an ODE on
the finite interval (—a,0).

Proposition 3.1. Let 7 = /k?> + Ap_/u. There are two linearly independent
solutions of (1.4) decaying to 0 at —o0 as w3 € (—0, —a], i.e.

o7 (z3) = €5 and ¢, (x3) = ™2, (3.4)
All solutions decaying to 0 at —o are spanned by (¢7 , P35 ).

Proof. On the interval (—oo, —a), Eq. (1.4) is an ODE with constant coefficients,
— M- (k¢ — ¢") = (™ — 2k7¢" + k'9). (3.5)
We seek ¢ as ¢(x3) = "3, Hence,
Ao (E* —7?) = p(rt — 2k%r? + K1),

which yields r» = +k or r = +(k? + A\p_/u)'/?. Since ¢ tends to 0 at —co, we get
two independent solutions of (3.5),

¢7 (w3) = €75 and ¢y (wg) = K A0/

Hence, we can find all bounded solutions of (3.5) of the form
o(x3) = Ajeflesta) 4 g em-(wata) (3.6)
Proof of Proposition 3.1 is finished. (I

125,

Once it is proven that ¢(x3) outside (—a,0) is precise, we look for ¢ on (—a,0).
That solution has to match with (3.6) well, i.e. there is a condition on (¢, ¢, ¢”, ¢")
at x3 = —a. We will show that in the following lemma.

Lemma 3.1. The boundary conditions of (1.4) at x3 = —a, for ¢ € H*(R_), are

{kT(b(—a) — (k+7_)¢'(—a) + ¢"(—a) = 0,

kr—(k + 1-)p(—a) — (k* + kr— + 72)¢'(—a) + ¢"'(—a) = 0. (3.7)

and at x3 =0, are (1.5).

Proof. For a solution ¢ of Eq. (1.4) on (—a,0), the boundary conditions at x5 = —a
are equivalent to the fact that ¢ belongs to the space of decaying solutions at oo.
On the one hand, it can be seen from (3.6) that

¢(333

)
/
¢’ (w3) :Al—ek(ngra) k +A2—6L(1’3+a) T for z3 < —a.
¢Il(x3) k2 T
(23)

(bll/ T3

—
—

| N

oy
w

3

| w
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On the other hand, direct computations show that the orthogonal complement of
the subspace of R* spanned by two vectors (1,k, k%, k%)7 and (1,7_,72,73)7 is
spanned by

(kr_,—(k+7.),1,007 and (kr_(k+71_), —(k* + km_ +72),0,1)T.

The above arguments allow us to set (3.7) as boundary conditions of Eq. (1.4) at
T3 = —a. O

3.2. A bilinear form and a self-adjoint invertible operator.

Proposition 3.2. Let us denote by

k(b +7)9(=a)e(—a) — kr_9'(~a)e(~a)
via,k,)\(ﬂa 0) =L < B k;T_ﬂ(—(l)Ql(_a) + (k+ T_)ﬂ’(_a)gf(—a)> ) (3.8)

BV (9.0) = k2 (0)(0) + ()6 (0)) + P P20 0)o(0),

and
0
B (9,0) = BVora(9,0) + BV_gxa(9,0) + A | po(k*V0 + ' ¢ )dxs

. ~a (3.9)
+ MJ (0" 0" + 2k*9 o' + k*9g)dxs.

We have that By, is a continuous and coercive bilinear form on H?((—a,0)).

Furthermore, let (H*((—a,0)))" be the dual space of H*((—a,0)) associated with
the norm A/ Ba kA (, ), there exists a unique operator

Yo € L(H?((—a,0)), (H*((~a,0)))"),
that is also bijective, such that
Ba k0, 0) = Yapat, 0) (3.10)
for all ¥, 0 € H?((—a,0)).

Before proving Proposition 3.2, we state our key lemma, whose proof is postponed
to Appendix D. This yields the coercivity of %, x as it will appear in the proof
of Proposition 3.2.

Lemma 3.2. We have
2k2(9'(0)9(0) — ¥ (—a)¥(—a)),? satisfies the constraint

min 0
ser3((~a,0) J (") + 2K ()2 + k*0%)dars = 1.
__ sinh(ka) + ka
~ 3sinh(ka) — ka’
and
2k2(9'(0)9(0) — V' (—a)d(—a)),V satisfies the constraint
max 0 =1.
veH?((—a,0) J (") + 2k2 () + k*9%)dx3 = 1.

Proof of Proposition 3.2. Clearly, %, j x is a bilinear form on H?((—a,0)) since the
terms BV, ;1 (9, 0) and BVp kA (V, o) are well defined. We then establish the bound-
edness of Z, x,x. The integral terms of %, 1. x are clearly < |9 g2 ((—a,0p)ll0] #2((=a,0))-
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About the two boundary value terms, it follows from the general Sobolev inequality
that

max(9°(0), 9*(—a)) < [0 ((—a,0))
and that
max((9'(0))%, (9'(=a))*) < |9 F1((—a,0))-
Consequently, we get

[BV_ara(0, 0) < (19(=a)| + [V (=a))(|e(=a)| + | (=a)])

(3.11)
S 19 a2 ((—a0)ll 0l 22 ((=a,0))-
and
A+1 , ,
|BVoka (Y, 0)| S T(W(Oﬂ + [9°(0)[)(|e(0)] + [2'(0)])
o (3.12)
< TWHHZ((—a,o))HQHH?((—a,o))-
In view of (3.11) and (3.12), we find that
A+1
| Bar (9, 0)] € —— 9 m2((=a,0p |0l 52 ((—a,0)) (3.13)
A

i.e. B, is bounded.

We move to show the coercivity of %, 1 . We have that

0
Ba g\ (0,9) = BVopa(9,9) + BV_g g 2 (9,9) + /\J po(K*9* + (¢')%)dxs

0
+ “J (") + 2k2 () + k*(9)?)dzs3.
We have

%BV_mk,,\(ﬁ,ﬁ) =kr_(k+7)((=a))? = 2kr_9(—a)¥ (—a) + (k + 7_) (¥ (—a))?
= (k+ T,)(ﬁ'(—a) + %ﬁ(—a)f
k(r_(k+71)% —k(k—1_)?)
* k47
> —2k*0(—a)¥' (—a).

Therefore, we deduce that

(0(~a))? = 2k*0(~a)¥'(~a)

%%a,m(ﬂ,ﬂ) > 2k2(9(0)9'(0) — 9(—a)¥ (—a)) + JO (") + 2k2 () + E*9%)dax3.

Notice from Lemma 3.2 that
1 2(sinh(ka) — ka
—Ba w2 (0,9) = ( : (ka) )
1 3sinh(ka) — ka
The inequalities (3.13) and (3.14) tell us that %,k is a continuous and coer-
cive bilinear form on H?((—a,0)). It follows from Riesz’s representation theorem
that there is a unique operator Y, 1 » € L(H?((—a,0)), (H?((—a,0)))’), that is also

bijective, satisfying (3.10) for all ¥, 0 € H?((—a,0)). Proof of Proposition 3.2 is
complete. O

f ' (") + 22 () + k*9%)dxz.  (3.14)

The next proposition is to devoted to studying the properties of Y, i x.

Proposition 3.3. We have the following results.
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(1) For all ¥ € H?((—a,0)),
Yarat = ME ot = (pot)') + Au(9D — 2k%9" + k*0)

in D'((—a,0)).
(2) Let f € L?((—a,0)) be given, there exists a unique solution 9 € H?((—a,0))

of

Yot = f in (H*((~a,0)))" (3.15)
Moreover, ¥ € H*((—a,0)) and satisfies the boundary conditions (3.7)-
(1.5).

Proof. Tt follows from Proposition 3.2 that there is a unique ¥ € H?((—a,0)) such
that
0 0
)\f po(k*90 + 1o )dxs + uf (0" 0" + 2k*9' o' + k*90)dxz = (Y, 120, 0) (3.16)
—a

—a
for all p € C((—a,0)). We respectively define (¢”)" and (9”)” in the distributional
sense as the first and second derivative of ¥ which is in L?*((—a,0)). Hence, Eq.
(3.16) is equivalent to

0 0
A f po(k*90 + ¥ o' )dxs + u((9")", 0) + ”f (2k20' 0" + k*o)dxs = (Yo 120, 0)

- (3.17)
for all p € C((—a,0)). Eq. (3.17) implies that

(") = 2k29" + k*9) + ME?pod — (po?')') = Yarnd in D'((—a,0)). (3.18)
The first assertion holds.
Under the assumption f € L?((—a,0)), we improve the regularity of the weak
solution ¥ € H2((—a,0)) of (3.18). Indeed, we rewrite (3.18) as
0
(") 00 = | (Yapal + 2uk>0" — pk*9 — Mk?pod + A(po?)") odxs
for all g € CF((—a,0)). Since (f + 2uk?9" — puk*9 — Ak pg + A(po?’)’) belongs to
L?((—a,0)), it follows from (3.17) that (9”)” € L?((—a,0)).
Let x1 € C((—a,0)) satisfy Sga x1(y)dy = 1. Using the distribution theory, we
define ¥ € D'((—a, 0)) such that
(E, 00 =<{(0")", ¢ (3.19)
for all p € C((—a,0)), where
T3 0
Colws) = J (Q(y) - X1(y)f @(S)dS) dy

—a

for all —a < z3 < 0. We obtain

&y =—(E,0) = ("), o)
Note that

("Y' = (0" o)~ |

—a

Z3

0
x1(y) f_ o' (s)dsdyy = {(9")", 0),

this yields (X', 0> = —{(¢")", 0). Hence, we have that (¢¥")" + ¥ = constant. In
view of (9")" € L?*((—a,0)) and (3.19), we know that (¢”)" € L?>((—a,0)). Since ¥ €
H?((—a,0)) and (9")', (9")" € L?((—a,0)), it tells us that ¥ belongs to H*((—a,0))
and we can take their traces up to order 3.
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By exploiting (3.16), we then show that o satisfies (3.7)-(1.5). Indeed, for all
o€ H?((—a,0)), we use the integration by parts to obtain from (3.16) that

0 0
)\J po(k*Vo + ' o )dxs + “J (0" 0" + 2k o' + k*90)dx3
—a —a

9" /|°
—vo

—a

0 0
~2yf ) = | (Varad)odes

It then follows from the definition of the bilinear form %, j » that

0
- /\poﬁ’g‘_ +p (19”’9 -

0
- Aﬂoﬂ’@’_ + u(ﬁ”’g B

0
_9" Q/
a

—a

0
—2029'0| ) = BVo(0,0)+ BV_(0.0), (3.20)

for all o € H?((—a,0)). By collecting all terms corresponding to o(—a) in (3.20),
we deduce that

Mo_ V' (—a) — " (—a) + 2uk*Y (—a) = pkr_(k + 7_)9(—a) — pkr_9'(—a).
This yields,
9" (—a) = (72 — k) (—a) + 2k*9' (—a) + kr_9'(—a) — kr_(k + 7_)9(—a)
= (k* + kr_ + 72)9(—a) — k7_(k + 7_)9(—a).

We just proved that ¥ satisfies (3.7),. Similarly, ¥ also fulfils (3.7); and (1.5). This
ends the proof of Proposition 3.2. O

We have the following proposition on Ya_k1 A

Proposition 3.4. The operator Y, kl)\ L?*((—a,0)) — L?((—a,0)) is compact and
self-adjoint.

Proof. It follows from Proposition 3.3 that Y, ; » admits an inverse operator Yaf_kly N
from L?((—a,0)) to a subspace of H*((—a,0)) requiring all elements Satisfy (1’5)
(3.7), which is symmetric due to Proposition 3.2. We compose Y, k y with the
continuous injection from H*((—a,0)) to L?((—a,0)). Notice that the embedding
H?((—a,0)) — H%((—a,0)) for p > ¢ > 0 is compact. Therefore, the opearator
Y, .y is compact and self-adjoint from L?((—a,0)) to L*((—a,0)). Proposition 3.4
is shown. O

3.3. A sequence of characteristic values. We continue considering A € (0, /-]

and we study the operator S, i\ := MY ¥, /\M where M is the operator of mul-
tiplication by +/pf.

Proposition 3.5. The operator S, i : L*((—a,0)) — L?*((—a,0)) is compact and
self-adjoint.

Proof. Due to the assumptions on po, the operator S, is well-defined from
L?((—a,a)) to itself. The operator Y, k y is compact, so is S, ,x. Moreover, be-

cause both the inverse Y k , and M are self-adjoint, the self-adjointness of S, i x
follows. O

As a result of the spectral theory of compact and self-adjoint operators, the
point spectrum of Sy, x is discrete, i.e. is a sequence {y,(X, k)}n>1 of eigenval-
ues of Sy, associated with normalized orthogonal eigenfunctions {w,},>1 in
L?((—a,0)). That means

’yn(/\,k)wn = Smk’)\wn MY K, )\./\/lwn
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So that with ¢,, = Yafkl)\/\/lwn € H*((—a,0)), one has

'Yn()\a k)Ya,k,)\(bn = p6¢n (3'21)

and ¢, satisfies (3.7)-(1.5). Eq. (3.21) also tells us that v,(\ k) > 0 for all n.
Indeed, we obtain
0

0
(0 K) f (Ya,mnmdazg:f P2 dics.

—a

That implies
0
s ) B (S ) f o2 i, (3.22)

Since B kA (n, drn) > 0 and py > 0 on (—a,0), we know that v, (X, k) is positive
for all n. Hence, by reordering and using the spectral theory of compact and
self-adjoint operators again, we obtain that {vy, (A, k)}n>1 is a positive sequence
decreasing towards 0 as n — 0.

For each n, in order to verify that ¢, is a solution of (1.4), we are left to look
for real values of A,, such that

_ M

Yn(An, k) gk2’ (3.23)
To solve (3.23), we need the two following lemmas.
Lemma 3.3. For each n, v,(\, k) and ¢,, are differentiable in .
Proof. The proof of Lemma 3.3 is the same as [20, Lemma 3.2], we omit the details
here. (]

Lemma 3.4. For each n, v, (A k) is strictly decreasing in \.

Proof. Let z,, = %, it follows from (3.21) that

1 d/ 1
k2 podn — (pod)' + Yakazn = ———5P0%n + —+

(A, k) d\ (m)ﬂfﬂbn (3.24)

on (—a,0). At z3 = —a, we have

(=) — (k7 )2 (~) + kr_n(—a) = o= Ph(~a) — K= . (—a),
2M(—a) — (k® + kt— + 72)2l (—a) + k17— (k + 7_)z,(—a)

~ (322 + 2 ) o (-a) - (5= + 2= )ou(-a),

(3.25)
and at 3 = 0, we also have
27(0) + k22,(0) = 0, (3.26)
2 2 .
27(0) = (3K2 + 252)27,(0) + 25252, (0) = 2561, (0) + 25555 6,(0).

Multiplying by ¢, on both sides of (3.24), we obtain that
0 0
| 020 = o0 )udis + [ (Vasrza)ondas
) 0 J ) 0 ) (3.27)
[ sy + () [ htan,
’Yn(A7 k) J‘_G Po? ¢ T3 + X\ ’Yn(A, k) Y p0¢n x3
Thanks to the integration by parts, we have
0

0
|| 0200 = (a6t Yondaa = [ pu262 + (6)2)ds — (podiyon)| - (328)

—a
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and

0 0 0
J (Ya,k,/\zn)d)ndm?) = f (Ya,k,/\ﬁﬁn)zndx?) + (N(zglﬁbn - Zgﬁb/n - ZkQZ;Lan) - Apozédm)

—a —a

0

— (1S zn — D2ty = 2K26),20) = Apody2n)

—a

(3.29)
Owing to (3.28), (3.29) and (3.21), Eq. (3.27) becomes

0
|| o025+ )2 + (et = 2161, — 2K220,00) ~ Az )|

—a

0 0
— (1@l zn = Bzt — 2K, 20) = Apodrzn )| ~(330)

- (po(éiz bn)

d 1 o,
- a('}/n()vk)) f,a p0¢ndx3'

Using (3.25), we obtain
— (H(et 60 = 261, — 2K22,60) = Apoziun ) (—a)

+ (@120 = 9zt — 2626, 20) = Apodzn ) (=a) + p—0),(~)gn(—a)

_ (k;—p: +kp7>(¢n(_a))2 (’;i_ +o )%(_a)(z)n(—a) (3.31)

kp_

S bn(=a)dh(—a) + 2= (@, (~))? + p-¢, (~a)dn(~a)

p4%em> T (6h(~a) = kou(~0))”

Using (3.26) and (1.5), we also have

— (18 = 2060, = 2K2,60) = A0z ) (0) + 44, (0) 6 (0)
(3.32)

k2
+ (@720 — 0121, — 2626, 20) = Apod ) (0) = S5 (60 (0)2,
Combining (3.30), (3.31) and (3.32), we deduce that

d 1 0 0
3\ (m) L Podnds = L po(K*¢2 + (¢,,)%)dxs + kp_(¢n(—a))?

2o (6l (-a) — k(=) + 2 (6,02
(3.33)

This yields that ( SWa) is strictly increasing in A, i.e. v, (), k) is strictly decreasing
in A. This ends the proof of Lemma 3.4. U

Now we are in position to solve (3.23).

Proposition 3.6. For each n > 1, there exists a unique A, > 0 solving (2.27). In
addition, A\, decreases towards 0 as n goes to .

Proof. Using (3.22), we know that

1

0 0
m \f, p6¢idz3 = J; (Ya,k,A¢n)¢nd$3 = '%ja,k,)\(d)n, ¢n)7
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Keep in mind (3.9), we deduce that

1 0 0 0
(M)f podidns = A [ Wpgtdestp | K GRdn
,Y’I’L I —a —a —a

that implies

puk?
— > A+
Loy (A k) P+
Consequently, for all n > 1,
A
lim > gk?. (3.34)
Aoy f25 (A K)
Since v, (A, k) is a decreasing function, we have - ({\ 5 S I L ) for all A <
A Tnl34/Tg>
%4 /L%' Hence,
A
lim ——— = 0. 3.35
X207 (A, K) (3.35)

Combining (3.34), (3.35) and the fact that ~,, is decreasing in A\, we obtain a unique
A solving (3.23).

We prove that the sequence (A,)n>1 is decreasing. Indeed, if A, < A4 for
some m > 1, we have
me()‘n% k) > ’ym()‘m+1a k)
Meanwhile, we also have

’Ym()‘m-kla k) > 'Ym-k—l()‘m-&-la k)
That implies
Am Amat
gk? gk?
That contradiction tells us that (A, ),>1 is a decreasing sequence.

= 7m(>\ma k) > ’Ym+l()‘m+la k) =

To conclude Proposition 3.6, we prove that lim,, ., A, = 0. Indeed, suppose
that lim,, ,, A, = cg > 0, one has that A\, > ¢g for all n > 1. This yields

>\n Co
Yn(co, k) = Yn(An, k) = o2 > o2
Letting n — 00, we obtain that 0 > g‘%, which is a contradiction. Hence, lim, o A, =
0. Proposition 3.6 is proven. U

3.4. Proof of Theorem 2.1 and normal modes to the linearized equations.
We are in position to prove Theorem 2.1.

Proof of Theorem 2.1. For each A, € (0, , /Lio) being found from Proposition 3.6,

let ¢, (z3) = Ya_kl,AnMwn(mg) in (—a,0). Keep in mind our computations in Sub-
section 3.1, we extend ¢,, to R_ by requiring ¢,, satisfies (3.6) for some constants
Ap1,An2 as A = A,. Those constants A, 1, Ay 2 are defined by

{¢n(_a) = An,l + An,Qa

3.36
8,(=0) = KA + Anay 2 4 5= (3.30)

Solving (3.36), we get that

W VB 220~ gn(—a) — ¢, (~a) A, — () —kéu(-a)

) 2 .
’ 2 Anp— _ ’ 2 Anp— _
A/ K%+ T k A/ K%+ m k

(3.37)
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Therefore, the function ¢,, € H*(R_) is a solution of (1.4) satisfying (1.5) and (1.6)
as A = \, for each n > 1. Using a bootstrap argument, we have ¢, € H*(R_).
Proof of Theorem 2.1 is complete. O

Once we have solutions of (1.4)-(1.5)-(1.6), we go back to the linearized equations
(2.13).

Proposition 3.7. For eachk = (ky, ko) € L7 Zx Ly 'Z\{0}, there exists an infinite
sequence of normal modes

AUV, (k, 2) = A 0(G(k, @), i (K, ), g (K, ), 10 (I, 20)) (3.38)
to the linearized equations (2.13), such that
Co € H®(Q),u, € (H®(Q))? and g, € H*(Q). (3.39)

Proof. For each solution A, € (0, /%) of (2.27), we have a solution ¢, = Yﬁl’/\n/\/lwn

in H4(R_) of (1.4) as A\ = \,,. Furthermore, ¢, € H*(R_). We find uniquely
7, € H®(R_) from (2.22) such that
1
(K, 25) = =5 (npodhy + k>, — ¢17)) (, 3).
To look for v, we rewrite (2.19) as a second order ODE,

—l“/JZ + ()\npown + Mkan - klﬂ—n) = 0.
Note from (2.20) and (2.21) that ,, satisfies that ! (0) = k1¢,(0) and that
limg, oo ¥Yn(x3) = 0. By the ODE theory on a bounded interval and the do-
main expansion technique, we obtain a unique solution v, € H*(R_), where the

solution v, depends on the known functions ¢, and m,. We get ¢, in a similar
way. Hence, (¥n, n, ¢n, ) € (H®(R_))* is a solution of (2.19)-(2.20).

Following (2.18), we then construct the functions

v1n(k, ) = sin(kiz1 + kaz2) ¥y (k, z3),
von(k, ) = sin(ki1z1 + kax2)pn(k, z3),
v3.n(k, ) = cos(kiz1 + kaza) o (k, x3),
rn(k, x3) = cos(kixy + kaxo)m, (K, x3).

Keep in mind (2.16), let us define also

1, 1
wn(k,x) = 7)\n(k) po(z3)vsn(k,z3) and vy (k,ap) = ?(k)”&”(k’xh’o)'

Hence
(Cn(ta k7 x)a Un(t, k7 J?), q’n(tv ka x)v Un(t7 ka .Th)) = eAwr(k)t(wn7 UnyTn, Vn)(kv ﬂ?)

is a real-valued solution of the linearized equations (2.13). We claim (3.39) by virtue
Of (w'fl)(pn?qsn)ﬂ-n) € (Hw(R_))4 |:|

3.5. Maximal growth rate. We derive the following proposition on the largest
characteristic value A1 found in Theorem 2.1.

Proposition 3.8. Let us recall the bilinear form By k. x on H?((—a,0)) (3.9) and
(M, ¢1) from Theorem 2.1. We have that

0 /12
L eaph@idrs (3.40)

— max )
gk?  ser?((=a,0) MPBa k. (¢, ¢)
and the variational problem (3.40) is attained by the function ¢;.
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Furthermore, let us define the following bilinear form on H?(R_),

Bia(¢,0) = AJ po(k2¢0 + ¢'0'das + uf (" + k20) (0" + k20) + 4k>¢'0")ds

+ gk?%gb(O)H(O).

Hence, we have
1 Sr_ Poo*drs
gk? d)EII}lQa(ﬁf) MBa, (¢, 0)
The variational problem (3.41) is attained by the function ¢, (3.57) below.

(3.41)

Proof of Proposition 3.8. We divide the proof into two parts, proving (3.40) and
(3.41), respectively.

Part 1. We show that (3.40) holds. For all A > 0, we solve the variational problem

0
muw%:mm(fpm%mpeH%emm» Mapa(6,0) =1).  (342)

Let us define the Lagrangian function

0
Law.d) = [ sty —10Bara(6.6) - 1) (3.4
It follows from the Lagrange multiplier theorem that the extrema of the quotient
i, phd*das
)\%a,k,)\((b7 ¢)
are necessarily the stationary points (vy, ¢.) of £, which satisfy
)‘f@a,k},)\((é*a(b*) =1 (344)
and o
J PoDx0dxs — ANy Bk A (4, 0) = 0, (3.45)

for all @ € H?((—a,0)). Restricting 0 € C$°((—a,0)) and following the line of the
proof of Proposition 3.3, one deduces from (3.45) that ¢, has to satisfy

AV*Ya,k,)\(b* = Pf)¢* (346)

in a weak sense. We further get that ¢, € H*((—a,0)) and satisfies (3.44) and
the boundary conditions (3.7)-(1.5). Hence, all stationary points (v.,¢) of Lz
satisfy that, Av, is an eigenvalue of the compact and self-adjoint operator Sq r x =
MYajk{)\M from L%((—a,0)) to itself, with

1
M Yo x0s = 1Mo, € L*((—a,0))

being an associated eigenfunction. That implies

a1\ k) < Ay (A k). (3.47)
Meanwhile, since the operator S, . is self-adjoint and positive, we thus obtain

that s
’Yl(A,k) — sup < L;,k,k¢a¢> .
$eL?((—a,0)) H¢“L2((—a,o))
Hence, for all ¢ € L?((—a,0)) and for ¢ = Y;,iv%gb € H*((—a,0)), we have

<Ya,k,)\wa 1P> = <Sa7k,)\¢7 ¢>a
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which yields

(a0, 6)°

(N K)Yax b, ) < 5
6 an

< Sak API72((—a0))-

This yields
IMPIZ 200

a0, 1)
Owing to (3.10), we have that
12, o *des
%a,k,)\(wa 1/1)

MmO k) < sup{ 1 e HY((~a,0)) and M~V 4\t € L2((—a,0))}.

k) < sup{ e H4((~a,0)) and MY, 4\t € L2((_a,0))}.

We thus obtain
A (k) < an(\ k) (3.48)

The two inequalities (3.47) and (3.48) tell us that aq(k,\) = A1y (k, ) for all
A > 0, from which we deduce ay (A1, k) = g% and the variational problem (3.40) is
attained by the function ¢;.

Part 2. We prove that (3.41) holds. We set

w00 = e (| rhoPdoABua(0.0) = 1),

¢eH2(R_)

and consider the Lagrangian function

Lo(w,6) = L ph s — w(Bra(ér 0) — 1).

Thanks to Lagrange multiplier theorem again, the extrema of the quotient

S}L p6 (152 dxs

ABia (6, 9)
are necessarily the stationary points (w,, ®,) € Ry x H?(R_) of Lp, which satisfy
ABi A (D, D,) =1 (3.49)
and
J Ph®.0dzs — A By (P.,0) = 0 (3.50)

for all 0 € H*(R_).

We now improve the regularity of ®,. We respectively define (@) and (®})” in
the distributional sense as the first and second derivative of ®” which is in L2(R_).

Hence, (3.50) will imply that

AJ po(K2®,0 + ®,0")dxs + ud (1), 0) + “J (2k2®70 + 4k2D0' + k' D, 0)dxs

1
AWy

f po®.0dxs
R_
(3.51)

for all # € C°(R_). We deduce from (3.51) that

p(®) — 2k2®) + k*®,) + Mk*po®s — (po®’)") ®, inD'(R_). (3.52)

_ =
Now Po
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Thanks to (3.51) again, we obtain (®7)” € L2(R_). Let b > 0 be fixed and arbitrary,
we have that ® € H2((—b,0)). Let x2 € CL((—b,0)) satisfy S(ib X2(y)dy = 1. Using
the distribution theory, we define ¥, € D’((—b,0)) such that
(Zp,0) = (@), Co (3.53)
for all € C§°((—b,0)), where
Co,p(ws) = J

-b

Z3

0
(o) = 2w | 0(s)as)a
for all —b < x3 < 0. We obtain

(3, 0) = =5, 0") = —(®))", Corb)-
Note that

(@) Cor ) = (D) B(as) — f

3

o) f 0 (s)dsdy) = ()", 6),
b —b

this yields (X},0) = —((®7)",0). Hence, we have that (®7)" + X, = constant.
In view of (®”)" € L?((—b,0)) and (3.53), we know that (®7) € L%((—b,0))).
Since ®, € H*(R_) and (®7), (®”)" € L?((—b,0)), it tells us that ® belongs to
H*((—b,0)).

Next, let us take 8 € C3°((—o0, —b)) with b > a. Due to (1.2) and (1.3), one has

p((®))" — 2k2®Y + k*®,) + M\py (K@, — @) =0 in D'((—0, —D)).
As @ is bounded at —oo, hence we have
D, (z3) = aeh® + age(kQH"’*/*‘)I/%B.

Since ®, is explicit, we see that ®, € H*((—o0, —b)). Consequently, ®, € H*(R_)
and @, decays to 0 at infinity.

By exploiting (3.50), we show that ®, satisfies (1.5). Indeed, for all # € H2(R_),
we use the integration by parts to obtain from (3.50) that
0
M @00 — (o®))0s + A0

+ “J (D + k2®,) (07 + k20,) + 4k*® 0" )dx3

0 0 0 0 k2
+ u(cpze' i ) ) 700) + 2 A”* ,(0)6(0)

1 /
= ®,0dxs.
o, JR, Po x3

By collecting all terms corresponding to ' (0) and 6’(0) respectively, we obtain that
”(0) + k*®,(0) = 0 and that

_ "9
o *

+ K2®,0
[oe]

+ 3k°®' 0
o0

gk*py

Ap+ @ (0) — p@(0) + 3K®.(0) + =

$,(0) = 0.
This yields that ®, satisfies (1.5).
We have just shown that ®, € H*(R_) is a solution to

1
w(®WD — 282" + k1®,) + Ak2po®, — (po®.)’) = ngqa on R (3.54)

satisfying (1.5)-(1.6). Since supppj = [—a, 0], we see that ®, is a solution of
p(@D = 2207+ K40,) + A2 po®, — (po®L)) =0 om (o0, —a).
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Then, ®, on (—w,—a) is of the form (3.6). Mimicking the computations in the
proof of Lemma 3.1, we deduce @, on (—a,0) is a solution of

20 Yok APl (—a,0)) = Po®Prl(—ai0) = M*®Pu|(—a,0)
with the boundary conditions (3.7)-(1.5). Set
- 1
= MYk A (@i|(—a0) = o MPl—ap) € L*((=a,0)), (3.55)
it yields . . )
Moy® = MY, \MP = S, 1, 2P
That means Aw, is an eigenvalue of the compact and self-adjoint operator S, i

from L?((—a,0)) to itself, with ® € L?((—a,0)) (defined as in (3.55)) being an
associated eigenfunction. Hence, we get

Aaz (N k) < yi(A k). (3.56)

Let us recall the function ¢ and consider

9, M-
Aqeb(@sta) 4 pyeV R+ (w3 +a) as — o < T3 < —a,

¢1(w3) as —a <3 <O0.

Pux(23) = { (3.57)

One thus has ¢, € H*(R_). Consequently,

SR p6¢%*d$3
Ak) > SR 0T 3.58
OQ( ) )\Bk,/\(¢**7¢**) ( )

The direct computations show that

Bk,)\((b**;(ﬁ**) = f%a,k,)\(gblagﬁl)a (359)

and we keep in mind the assumption supppj = [—a,0]. Then, from (3.58) and

(3.59), we have
0 24
(0 k) > AP0
ABa k2 (d1, 01)
It then follows

0 /.2
as(A, k) = 1, podides = L
MPBajo (b1,01)  gk?
Combining (3.56) and (3.60) gives us that as(A, k) = g% and the variational
problem (3.41) is attained by the function ¢,, defined as in (3.57). We finish the
proof of Proposition 3.8. O

(3.60)

Recall the definition of A from (2.28), we prove that A is the maximal growth
rate of the linearized equations (2.13) in the following sense:

Proposition 3.9. For allt = 0, the following inequalities hold
t
[COIE @) + lu®) 7 ) + 10eu®)]720) +L [u(s) 7 () ds

< (IO 2y + 1) 2 + €O a1 ())e*™,

(3.61)

and
t
2020 + 1000 By + f 121(5) ey

< (IO F2ry + [u(0) 2 () + 16(0)[72(0) )™

(3.62)

The proof of Proposition 3.9 relies on the three lemmas below.
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Lemma 3.5. There holds
1d
53 (| mloa = | gpblual® + [ gorlual®) + 4 | 80 =0. (3.9
2dt\ Jg Q r 2 Ja

Proof. We differentiate (2.13), in time, multiply the resulting equation by d;u and
then use (2.13), to obtain

J po02u - Opu + f Vo - Opu — /JJ Adpu - Opu — J gpousdius = 0.
Q Q Q Q

That is equivalent to

1d
5@([ poldsul” - J QP6|U3|2) + f Vg - Oru — ”j Adpu - dpu=0.  (3.64)
Q Q Q Q

We use the integration by parts over €2 to have

J Voiq - Ou — uf Adu - Opu = J (Orqld — uSou)es - Cyu — J Orqdivosu
Q Q r Q

+ﬁf IS0,u|?
2 Ja

Thanks to (2.13)3 , 5, we obtain

J Voiq - Oru — [LJ Adyu - Opu = f gp+0inlrus + HJ |S&tu|2
Q Q r 2 Jo

(3.65)
= f gp+U3atU3 + gf ‘S(?{LLF

r Q

Substituting (3.65) into (3.64), we conclude (3.63). O
Lemma 3.6. There holds
1

| goblual < [ gpelusl 4 4% [ poluf? + 30 | pisul®. (360

Q r Q Q

Proof. Let k = (ki,ks) € LT'Z x L;'Z be fixed and f be the horizontal Fourier
transform of f, i.e.

f(k,x3) = f f(xn, x3)e” o day,,
We write ’
1 (k,z) = —ip(k,x3), da(k,z) = —ip(k,x3), ds(k,z)=d(k,xs).
Notice that for k = 0,

$(0,0) = Lu;:, _ L divi = 0.

Hence, together with Parseval’s theorem, we have
1
2 2
= E k .
J-ng“r|u3| 471—2L1L2 ) ) gp+|¢( 70)| (3.67)
keL7'ZxL;'Z\{0}

We may reduce to estimate (3.67) when v, ¢ and ¢ are real-valued and then continue
the estimate to the real and imaginary parts of ¢, ¢ and ¢

For each k € LT'Z x Ly;*Z\{0}, we deduce from Proposition 3.8 that

/42 k d < k 2 )\2 2 (¢I)2 k d
9p09” (k, x3)dxs < gp+(9(k, 0))" + AT | po( 7 + 5~ ) (k, a3)das
R_ R_

+ )\WLL ((%ﬂ + k:¢)2 + 4((/)’)2) (k, 2:3)dazs.
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It thus follows from the definition of A (2.28) that

/2
[ aotecaaans < go 0007+ 87 [ (67 + ) ety
N - (3.68)
" 2
+AMJ Tt ko) +4(6)?)(k, z3)dx
(G R0) 4097 (e )y
for all ke LT'Z x Ly 'Z\{0}.

Meanwhile, for k # 0, notice that k1v + ko + ¢’ = 0. One thus has

(¢')% < (k19 + ka)? + (k1o — kotp)? = K2 (¢* + ©7), (3.69)

and
2(¢')? = 2k3p? + 2k2p? + dk1kotp < 2k3% + 2k30% + (k1o + katp)?. (3.70)
Furthermore, we obtain that

(0")? < (k19" + ko) + (k1 — k2t)")? = K2((0")% + ()?).
This yields

(36" +£6) = (@ + 266" + K6 < ) + ()7 — 20kt + hagl) + K67,

k
so that ) )
(50" + ko) < (k1o —¥)? + (koo — )% (3.71)
Then, in view of Fubini’s and Parseval’s theorem again, we find that due to (3.69),
1
2 2 2
Jomil = i X | w6k as)ing
keL['ZxL;'Z (3.72)
1 2, (¢/)2 '
2 -
AL L, 2_1 f ) <¢ )(k 73)drs
keL]'Zx Ly Z\{0}
and that due to (3.70) and (3.71),
1
3 | niser
Q
_ Z J ( 2 4 2k2% + 2k20% + (k1o + k2¢)2> .
WLy, o e\ o= 0 4 (o~ 07
H gﬂ N2
> T 3 J (( +k¢) +4(8) )dscj.
keL]'Zx Ly Z\{0} * "~
(3.73)
Combining (3.67), (3.68), (3.72) and (3.73), the inequality (3.66) follows, we end
the proof here. O
Lemma 3.7. There holds
10:u(0)lz2 (@) = [1(0) [z ry + [w(0)52(0) + [€(0)]L2(0)- (3.74)

Proof. Multiplying by 0;u both sides of (2.13), and integrating by parts, one has
J plowul* = — | Vg -owu+p | Au-opu— f gC0yuz
Q Q Q Q

= —f qOiug + J (qdivoyu + pAu - dpu) — J gCosus.
r Q Q
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Note that divo,u = 0, we substituting (2.13) into the resulting equality to get

j poldsul® = —J gp+noiug — uf (Sues) - dpu + uf Au - dpu — f gCorus.
Q r T Q Q

Hence, we use Cauchy-Schwarz’s inequality and the trace theorem to obtain that

. polova < (Gl + 19l el oy
+ (lull g2 @) + 1€l 220)) |0vu] L2 (0)
< (Il mvez ey + [l m2@) + 1€ 2 @) 10 2 ()
Using Young’s inequality, we deduce that
1
p— HatUH?ﬂ(sz) S VHatuH%?(Q) + ;(H’i”ipm(r) + HU’H?{?(Q) + HCH%%Q))-

Let us take v sufficiently small, we have

lou(®) 220y S IO 2@y + [u®)F20) + 1KOI720

Sending t — 0 in the resulting inequality, we obtain (3.74). Lemma 3.7 is proven.

O
We are in position to prove Proposition 3.9.
Proof of Proposition 3.9. Owing to (3.63) and (3.66), we have that
t
| poieeaP + || wisets)ds =+ | goplua(® - | gorlusto)l
Q 0 Ja Q r
1
<o+ A% [ polulo)? + 3 | ulsu)P
Q 2 Ja
(3.75)
where
i = | e = [ abluaO)F + | apilus()F
Q
Using Cauchy-Schwarz’s inequality, we have that
t
J plSu(t)|* = J w|Su(0)|* + 2f J uSu(s) : Sdpu(s)ds
@ @ (3.76)

JM|SU ffMS@tu |ds+Af J w|Su(s)|?ds

G| ot < AJ p0|6tu|2+Af polul2. (3.77)
Three inequalities (5.70), (3.76) and (3.77) imply that

1 t
Po|u( OFF + 5 | ulSu(®)? <y2+2A | polu(®)® + A plSu(s)[*ds.
2
Q Q 0 JQ
(3.78)

and that

dt

where

p= g+ | HISu(O)

In view of Gronwall’s inequality, we obtam from (3.78) that

| polutor + 5 jJM&>wwwmjpmmF Benn) 379)
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Hence,

1 1 t
1 | mlea®P + 5 | wisu®F <ue+ A [ poluP 42 [ | pisu(s)Pds
A Q 2 Q Q 0 JQ

< (s + 24 L polu(0)]?) 2
(3.80)

Using Lemma 3.7, we have

1+ y2 S [w(0)|F iy + [0:u(0) 72y S [1(0) 7172y + [1(0) 372 ) + [€(0)]Z2(0r)-

(3.81)
Because of (3.79), (3.80) and (3.81), we observe
¢
lu®)IZ2 () + ISu®)lZ2 () + 0|7 q) +L [Su(s)]1Z2q)ds (3.82)
< IOz + 1u(0) 372y + 1€(0)[F2(g) )™
In view of Korn’s inequality (see (C.4)), that implies
¢
() s+ 198O ) + 1000 oy + [ V0 ats
< (IO /20y + [4(0) 7720y + 1€(0)[72() ).
Using (2.13), and (3.83) also, we get
¢
)% < 0)||%. +J w(8) %1 o0 ds
ISz @) = 1€O) [ (o . lu(s)7 (@) (3.84)

5 (”C(O)H?{l(g) + [In(0) H12L11/2(r) + ||u(0)||§{2(9))62m~
The inequality (3.61) follows from (3.83) and (3.84).

To prove (3.62), we use the trace theorem to obtain that
¢ ¢
Hatn(t)H%{l/?(r) +J:) HM(S)H%uz(p)ds = Hu3(t)”?{1/2(F) +J0 HUS(S)H%M(F)d‘S

¢
< sl o + | )l
Together with (3.79), (3.81) and (3.83), we deduce that

t
Joem(®) \|%p/2<p>+f0 12e(5) /20y ds < (1(0) 2y +1a(0) 32y HIC (O3 ).

(3.85)
The resulting inequality tells us that

t
2 < 1O nry + f 10m(5) 271720 s

< (I700) 312y + 103720y + IS (02 2y Je*™.
The inequality (3.62) follows from (3.85) and (3.86). Proposition 3.9 is proven. [

(3.86)

4. A PRIORI ENERGY ESTIMATES

Let us define the full energy functional £;(U(t)) > 0 such that

2 2
EHU) = 0O ey + 35 1l + B 1C 0O ey,
=0 1=0 .

+ g s () + 10:a®) 710
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and its corresponding dissipation D¢ ((u,q)(t)) > 0,

2
Di( Z |V 0tu(t) | Faan () + 10l a2 () (4.2)

For notational convenience, we only write £;(¢) and Dy(¢) in this section.

The local existence of regular solution to (2.11) then follows from [, Theorem
6.3], that we restate below.

Let us recall the definition of K from (2.7) and of A from (2.8) and define
M= KA, R = MM~ and D;u = d;u — Ru. We also define an orthogonal
projection onto the tangent space of the surface {3 = no(x1,22)} according to

No

|N0\2 No  for N = (=d1mo, 210, 1)" . (4.3)

Ilgv =v —

Let us write

G*% = gpynN onT,

G*' = D,G*0 + uS 4 (Ru)N + (uSqu — qld)oeN + pSs, 4uN on T.
Proposition 4.1. Suppose that there is a sufficiently small constant v1 € (0,1)
such that (o, uo,qo0,Mn0) Satisfying

1ColFra () + luollFragay + laolaqy + 70l Frorery < v1-
Suppose also that the following compatibility conditions hold for j = 0 and 1,
{divAoDzuo =0 in Q,

: . 4.4
o (G?9(0) + pS 4, D] ugNo) = 0 on T (44)

Then, there exist vo > 0 and Tmax > 0 such that if £;(0) < vo, Eq. (2.11) with the
initial data (o, uo, qo,Mo) satisfying the compatibility conditions (4.4) has a unique
solution ((,u,q,n) on the time interval [0, Tiax). Moreover, we have

gf(t) <@+ TmaX)gf(O)a

and 1 is such that the mapping O(-,t) defined by (2.6) is a C*-diffeomorphism for
each t € [0, Trax)-

With that regular solution ((,u, ¢,n) of (2.11) on a finite time interval [0, Tiax),
we aim at showing the a priori energy estimates for the nonlinear equations (2.11).

Proposition 4.2. Let C.pp be the optimal constant of the Sobolev embedding
H?*(Q) — L*(Q)
and let
1

0<dg < . 4.5
0 2C emp max (1, maxg_ pj(3)) (45)

Hence, there are € > 0 sufficiently small and another Cy > 0 such that for all
d € (0,680) if supges<; Ef(5) < 9, we have

+ Jo D}%(s)ds
< Co(=7€30) + gfo £3(s)ds + ﬁfo E()(E3(s) + Dy(s))ds + 7 £4(1))

+ Cpe™2 JO (¢ w) ()72 () + [m() [ Z 2y ).
(4.6)
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Strategy of the proof. Respectively, we derive the a priori energy estimates for
the space-time derivatives of 77 in Propositions 4.3, 4.4, for the temporal derivatives
of u in Proposition 4.5 and for the space-time derivatives of ¢ in Proposition 4.6.
Then, we derive some estimates thanks to the elliptic regularity theory (see Propo-
sitions 4.8, 4.9). In view of these above estimates, we obtain (4.6) and complete
the proof of Proposition 4.2.

In what follows, the constants C; (i > 1) are to indicate some constants, which
are referred later.

4.1. Energy estimates of the perturbation transport. We first derive the a
priori energy estimates for 7.

Proposition 4.3. The following inequalities hold

t t
(0 oy < €1 (E20)+ ¢ [ 1)y + | £35)as)

! (4.7)
et L [Vu(8) 14 s,
t t
en(®lfrscry < Ca(E30) + ¢ | 10om(o)frscryds + | £Hs)s)
0 (4.8)
+ Coe™? L ||V(?tu(s)H%(2(Q)ds,
and
t t
B2y < C5(£30) + f |03m() 20y ls + f £}(s)ds)
(4.9)

t
+ Caet Jo ||V5?U(3)|\2L2(Q)ds'

Proof. Let us prove (4.7). For any o € N?,|a| < 4, we have by (2.11),,

0:0%n = 0“uz + (u10%011m + up0®dan) + Z (Pu 0P oy + 0Pugd® P aan) .
0#B8<

=:R{

Using the integration by parts, we obtain

31l = 5 | @+ )il + | @+ RO
So that, we have
1d .0 2 o |2
iaua 77||L2(r) < (H(71U1HL°0(F) + Ha2u2HL°°(F))Ha 77HL2(F) (4.10)
+ ([0%usll 2 (ry + 1RT [ 20y 10%n] 22 (1)
We make use of the trace theorem to obtain that
|05l ooy < |l ma(ry < lullmae), (4.11)
that
|0%us||L2r) < 10%ul (o) (4.12)
and that

[RT 2 (ry < Z [0%ul L2y 10 Pnll vy S 10wl 1 @) 0] 1o 0y - (4.13)
0#B<a



RAYLEIGH-TAYLOR INSTABILITY 31

By summing over a € N2, |a| < 4, it follows from (4.10), (4.11), (4.12) and (4.13)
that

d
%HWH%MF) < ||VUHH4(Q) HUHH‘l(F) + ”U|\H4(Q)H77”%{4(r)

< IVl s oy Il + &3

Using Young’s inequality and then integrating the result inequality from 0 to ¢, we
obtain (4.7).

We show (4.8). Let o € N2, |a| < 2, we get
8?6“77 = 090yuz + u10%010;n + ug0“020;m + Oyu1 0¥ 01m + Oyu0“0am
+ Y (0%ur0°7P010m + 0%un0° P 030m)

0#£B<a

:?]r{g
+ Y (0010 01 + 0% 0,u20° P 0am) .
0#8<a

=:RY

Via the integration by parts, this yields

1d 1 1
e :*J Orug + Oauz)|0%0 2-1-*-[ Or01uy + 0¢O2us2)0%N0“0
5 g 19" 0nlLary = 5 F( 1ur + 02u2)|0%0m|” + 5 F( 01u1 + 0102u2)0"nd“ din

+ J (0%0rus + RS + RS)0%0.
r
Using the trace theorem again, we have

f (@udrus + 2udrus)d*nd*om < |0l s oy |0 nl sz |0l ooy
r (4.14)

< 0sul 2yl z2 o0y [0l 222 1y »
and
0% rus|2ry < [Oeu] giei+1 () (4.15)
We follow (4.13) to get that
IR |2y s D, 10%ull a0 Poml vy S |ull ooy 0l a2 r) (4.16)
0#p<a
and that
IRS |2y € D5 (070wl 2oy 0% Pnl ey IV sl 2 ey 1] a2 ry- (4.17)
0#B<a
Combining (4.15), (4.16) and (4.17), we deduce that

d
%Haﬂl\ﬁp(r) < Vol 2oy |0l 2 ry + EF-

Using Young’s inequality and then integrating from 0 to ¢, we obtain (4.8).

We have (4.9) by following the same strategy as for proving (4.8). The proof of
Proposition 4.3 is complete. O

Proposition 4.4. There holds

t t
(0 sey < Ca(E20) + & [ 1) Broneyds + [ £35)ds)
0 0 (4.18)

t
Lo j Ju(s) |25 0y ds-
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Proof. To prove (4.18), we borrow the idea from [28, Lemma 3.9]. Let J =
1—07 — 3. We apply J%2 to (2.11), and then multiply the resulting equa-
tion by J%2n. Hence, we find that

d 1
G, = =5 [ 00170 + uatal )
+ J («79/2U3 - [u79/2,ul]3177 - [«79/27112]5277)u79/277
N

1
=3 L(alul + Oguy)| TV n|?

| (9 = (7wl - 1T ualean) T,
r
Thanks to (C.5), we have the following estimates,

JF 05ug|TPn® < 105usl o (o) 1T * 02y S Joalsrs oy Il Frore oy (4.19)

LJQ/ngjg/zn < 1T us] 2y | TP 2y < 1T ulms @y Il oy, (4.20)
and
L[jg/z, u;10mT 0 < 105wy oo o) | T 20l L2 oy | TV 210 2y

+ 1Tl L2 0y |07 oo oy | T2 20l 2

< ul g3y HnHi{QM(F) + HJ4UHH1(Q) 171 223 0y 17l Ero72 () -
(4.21)

In view of (4.19), (4.20) and (4.21), we get

d
iy < Tl @y Inlgore oy + 1T el @) (U + Inl sy Inl ove oy
< |l as @)l zorz oy + g}”,

Using Young’s inequality and then integrating from 0 to ¢, we obtain (4.18). (]

We provide some additional estimates on 7, which will be used later.

Lemma 4.1. We have

|l gmn(ry < Ef + €7, (4.22)
|07l a2 (ry S Ef + €7, (4.23)
and

Proof. By (2.11),, we have that
loenl g2y < lusl gre ey + 194 gremy < luslms@) + 194 gre - (4.25)
We use (C.1) and the trace theorem to estimate | Q| gr/2(ry (see Q* in (2.12)) as
19 sr7r2ry < Nl srere oy |Onn a2 oy < Nl sz 0l o2 ()
Substituting the resulting inequality into (4.25), we have (4.22).
Using (C.1) again, we have
|0t Q4||H3/2(r) < HatahUHH3/2(r)HUHHW(F) + HatUHHs/z(r) HahnHHm(r)

< N0enl gsremyllul za@y + |l o2 0y | Orull 72 () -
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Together with (4.22), that implies
Haz?nHH?’/?(F) < HatuSHHz(Q) + HatQ4”H3/2(F) <&+ 5%
One thus has (4.23).
We continue using (2.11), to have that
10nl 20y S 107 us| 2@y + 107 QL2 (ry S 107 us|mr oy + 107 QY 2y (4.26)
As a consequence of Sobolev embedding, we obtain
107 Q% L2(ry < |07ull L2y (01m, G2m) | Loe (1) + | @eut] oo 0y 10 (D11, O2m) | L2 ()
+ [l oo 0y 107 (217, G2m) | L2 (1
S H(7t2U||L2(F) Il ms 0y + [0vw] 2oy [0l () + [ul 2 H0t277HH1(F)~
We continue using the trace theorem to observe
107 Q* | 2(ry S 107wl i yllml mra oy + I0vwl s @y ll0en | oy + Il g2 oy 107 a0 ry-
In view of (4.23), we deduce
1079 L2(ry S 0Ful () + |0t s ) + EF. (4.27)

The inequality (4.24) follows from (4.26) and (4.27). Lemma 4.1 is proven. O

4.2. Energy estimates for the perturbation velocity. If we use the nonlinear
equations in the perturbed form (2.11), there will be no control of the highest tem-
poral derivative of ¢ appearing in the nonlinear term Q2. Instead, we switch our
original nonlinear equations (2.9) to a new formulation using a geometric transfor-
mation of the domain. The equations are

01 + diva(pou) = F?! in Q,
(po + phf + C)0su + V. 4q — udivaSqu + gCesz = F? in Q,
divqu =0 in Q, (4.28)
om=u-N on T,
(gId — uSqu)N = gpinN, on I

Here,
F' = Ko,0(pg0 + 05¢) — diva((poh + u),

F% = —(po + phf + C)(—K0,:003u + u - V au) — gpp(AKO, BKO, (1 — K)0)T.
(4.29)

Applying the temporal differential operator 0! to (4.28), the resulting equations
are

2,(21€) + div A(podtur) = in 0,
(po + pof + C)0(0u) + V.adhq — pdivaSadiu + gdiCes = F>! in Q,
div 48y = F3! inQ, (4.30)
0¢(0ln) = dlu - N + F! onT,
(0lqId — uS 40N = gpy dnN + F5 onT.

The terms F7!(1 < j < 5) are given in Appendix B. We derive the following
proposition.
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Proposition 4.5. For 0 <[ < 2, we have

i
loiu®) 22y + l0m(8)| 22 (r +f |V otu(s) |72 a)ds
0 (4.31)

<c¢ﬁ@+f<mm@@@w+f$@w)

The proof of Proposition 4.5 relies on Lemmas 4.2, 4.3 and 4.4 below.

Lemma 4.2. Let J be defined as in (2.7). For any scalar function 9 € R and any
vector function o € R3, there holds

JQ(VAﬁ)Jg: Lﬂw.g) _ L J9div40. (4.32)

Proof. We have from the integration by parts that
f (VA’lg) . JQ = J JAijajﬁgi = J 19(.]./42'391-) - f ﬁaJ(JAZle) (433)
Q Q r Q
Note that JA;30; = N - o, hence
| 90400 = | o0 (434
r r

Note also that
0j(JA;;) =0 foralll<i<3,

this implies
J 19(}]([]./413@1) = J ﬂJAijani = J JﬁdiV_Ag. (435)
Q Q Q
Substituting (4.34), (4.35) into (4.33), we obtain (4.32), i.e. Lemma 4.2. O
Lemma 4.3. There holds for alll = 0,
1d / 112 f 1o2) o L f 12
51 (| (oot i+ QP + | apilolal?) + G| 1840k
_1 0 1,12 20 ol — adlc ol 3,041
=3 Or((po + pof + Q) J)|osul® + | J(F=' - dju — g0;Copus + F>'0yq)  (4.36)
Q Q
- J (gp+0nFY + FOL- dju).
r
Ifl > 1, one has
1 / 1,12 112 11al=1, |2 1 I 12
5 ( (po + pof + Q) J[0ul” + | gp+[oml” — | gppldy us] ) + i | JISadul
1 )
=5 | a0+ i+ Qi + | I olu+ ool
- J (gpionFH + F5L. k) + J gpo J F3 10l
r Q

— JQ gpb(Ad T d3uy + B d3ug)dlug — JQ gJFY ol
(4.37)
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Proof. We multiply by Jolu on both sides of (4.30), to have that

1d / 1,12
5@([{)@0 + pof + ) J|0ul )
1 .
=3 f %((po + pof + ) )| dpul® — f V.adiq - Joju + f p(divaS 40iu) - Joju
Q Q Q

— L gJolColus + L JE2L. oy,

(4.38)
Thanks to Lemma 4.2, one deduces
f Vadiq- Jou + J p(divaS adiu) - Joju
. (4.39)
= J (uS 40yu — O4qId)N - Oju + L J(divadiu)dtg — 5 L pd|S a0pul?
r
Substituting (4.39) into (4.38), we have
1d / L2 1 l,,12
55 (| ot st Q1atR) 4 5 [ pri5dta
1 :
=5 | 2o+ aip+ ik + | Taivadiuil (4.40)

+ J (uS A0ku — SqId)N - Ot — f gJoL¢olusz + J JE?L. o,
T Q Q

Using (4.30); 4 5, we obtain (4.36) from (4.40).
To prove (4.37), we use (4.30), at order I — 1 to get that

f gJoL¢oluz = JQ gJdiv a(podt— u)dlus — JQ gJFV =1 oly
= L 9p00; "usdiug + L 9poJ F¥' 1 0jusg

— L gpb (A0 d3uy + BOL T dsug)dlus — L gJFY 1ol

(4.41)
Combining (4.41) and (4.36), we obtain (4.37). Lemma 4.3 is proven. O
Lemma 4.4. The following inequalities hold
1
2 (IFM B2 F) ey + (FY, )y ) < €3 (4.42)

and

[(F"2, F2, F)| g + [(F*2, )| ey < E5(Ef + IVPul o). (443)

Proof. For ¥ = Qor I, all quadratic terms | X1 X z2(5) or cubic ones | X1 X2 X3 2(5)
appearing in F7! with 1 < j < 5 will be bounded by using Sobolev embedding,
Lemma A.1 and other inequalities in Appendix C. Precisely, we have

X1 Xo]z2(m) S [Xillpo ) [ Xollzzm) € [Xilm2m) |1 X2] L2z
and
IX1 X2 X3 12(s) S [ Xl zoe (2 1 X2l e () [ X3] 25y
< [ Xallme o) [ Xal 22 1 X5 2 (3
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We only show the estimates of the term F2!/(0 <1 < 2) (see (4.29) and (B.8)), the
estimates of others terms are proven in the same way.
For F? (see (4.29)), we have
(po + ppf + C)K01003u = (po + puf + C) (K — 1)0:005u + (po + ppf + €)0:005u.
Thanks to Lemma A.1 and (C.9), we obtain
I(po + pof + () K 0:005u] 12 (q)
S L+ [0, Ol @) (1 + 1K = a2 @) [0:0] 2@ lul mr @
< X+ IKlaz) + Il zee @) (X + [0l gse o) 10 mam @ [l g @)
<&
Note that

(4.44)

u-Vau=1u-Vp_1qu+ u- Vu,
we use Lemma A.1 and (C.11) to get that
[(po + pof + Q) - V. aul 12(q)
< (po + pof + Qu -V a1aul L2y + [(po + pof + CQ)u - V| 2oy
< M+ IClaz) + Il gsemy) (X + A = 1d| g2 @) [ul g2 lull g @) (4.45)
< (L + [l + 0l mse @) (X + [0l mse o) |ullz2 @ |l @ @)
<&
Due to Lemma A.1 again and (C.9), (C.10), we have
I(AKO, BKO, (1 — K)0)| 12(0) < |(AK, BK, K — 1)[ #r2(0)|0] 22(0)
< [l sz oy Il 22 () (4.46)
< &
It follows from (4.44), (4.45) and (4.46) that | F?|| 20 < EJ%.
For F%! (see (B.8)), we obtain
|E>1

12@) S 10F?| 20y + (1 + A = 1d| s 0) ) IV 2 o) |00 All 11 (02

+ [l as ) ll0eA] L2y + (10:C ] m2 () + 10:0] m2 () 10eu] L2 (0)-
(4.47)

According to Lemma A.1 and (C.11), it follows from (4.47) that
HF2,1

2@ S 0eF?( L2y + (1 + [0l ) 10l grsre ooy |l o)

+ < a0l oy + (10eCm2 Q) + 106n] 732 (1)) | 0w L2 (@)

< 0:F?| 12 0) + E7F-
(4.48)
We calculate each term of 0, F2,
2:((po + pbf + Q) K 0:003u) = (po + ppf + €)(0: K 0:003u + K0?003u + K 0,00;03u)
+ (ph0:0 + 6:C) K 0:003u,

which will be bounded as follows

10¢((po + pof + Q) K 0:003u)| L2 (q)

< A+ [0, Ollaz@) (1K — g2 +1)

x (| 0sull 2 () |070] 20y + 1060] 2 () | (, Orw) | v )

+ (08, 0:C) | 2 0) (1 = 1 5202y + 1)[040| 2 02y v 11 (2 -
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Using Lemma A.1 and (C.9), we deduce that

10:((po + P + () K 0:003u)]| L2 (0
< A+ IKla2) + Il zsz@) (X + [0lmse @)
< (Ilull sy |07l L2y + 10en] sz oy | (w, Oew) | 1)) (4.49)
+ ([0:Cl 222y + 19en] zrs20y) (X + [0 572 (0y) |l 221 () O s (0
2
<&

Next, we compute

0e((po + pof + Q)u - V.au)
= (,00 + pf)@ + C)(&tui.Aij&juk + uiétAijé’juk + uiAijatajuk)
+ (p66t9 + 6,5C)uw4wc9juk

Hence, it follows from Lemma A.1 and (C.11) that

[0¢((po + pof + Q)u - V au)| L2 (q)
< (1 + [0, Olla2@) (A = 1d] g2(0) + 1)|ul #s o) | Orul 51 (o)
+ (110, Ol ) [ ulFrs ) |06 Al L2 0
+ (40, 0:Q) | 2 (0) (1A = 1| 2 () + Du] z2 ) [ 1 ()
< (L4 ISz + Il gse @) Unllgse ey + Dlul s @)ldvul g @)
+ (L4 Sl + Inllee ) |ulzs ol @l e oy
+ (10:Cll =) + 10l 320y (Il 7572 0y + Dl 20 [l 12 0)
< &7

(4.50)

Using again Lemma A.1 and (C.9), (C.10), one has

|0:(AKO, BKO, (1 — K)8)|L2(q)
< [(AK, BK, K — 1) g2 010 L2 (o) + [0:(AK, BK, K — 1)| 20|10 12 (0)
S ||TIHH5/2(F) HathLQ(F) + HathHl/z(r)H77|\H3/2(r)
< &7
(4.51)

We deduce [0;F?|p2) S EF from (4.48), (4.49), (4.50) and (4.51). So that,
HF2,1

L2(Q) S 8‘?

By the same arguments as for the proof of (4.47), to prove
[E22120) < E(Er + [V OFul L2 () + [Voru| m2(0),
it is enough to show that

167 F2| L2y < E¢(Ep + V37Ul L2() + [Vorul m2(e)).
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We now estimate each term of 07 F? (4.29). One has that

107 ((po + pob + () K 0:005u)| 12 ()
3

< @+ 10 Ollaz@) (1K = a2 + 1) |ulms @ ( Z HafﬂHL?(Q))
j=1

+ (14 (8, Ol 2 @) 10 K | 202
< (10001120 |0vul sy + 10360 20y [l 13 )

+(1+ ”(97C)HH?(Q))H@QKHM(Q) 10601 £r2 () | ull 3 (2
+ (048, 0t ) 2 (1 — L 2 (0) + 1)

< (103012 0y lull s ey + 103011120y |0l o
+ (040, 0O 2 () |06 K || L2 () 1040 22 () [ ull 123 ()
+ (076, 37O 2 () (1K — 12y + D)0 2yl ul g2 (0 -

Thanks to Lemma A.1 and (C.9), this yields

107 ((po + Po0 + () K 0:005u) | L2 (e
3 .
< (X + [nllase @y + 1CTaz @) Unll gse @y + Dlullas @ ( Z ||5f77HL2(r)>

j=1
+ (L + |9l zs2 0y + 1€ z2 @) 10 m5/2(ry
g (P LR P o P D ety
+ (1 + |9l sz @y + HC\|H2(Q))(||3t277”f11/2(r) + HathiIlﬂ(r))”athHW?(P) ] 3 (@)
+ ([0l gsr2ry + [0eCl 2 ) (Il 52y + 1)
x (1020l 2y s ) + 10l sy Ovtl i o) )
+ ([0l gsr2ry + [0eCll 2 @) [0enl 12 o0y |06 32 0y || 22 ()

+ (10Fn] L2y + 107¢0 2@) (Il ey + DIl ey lul s @)
(4.52)

Using (4.23) and (4.24), we thus have from (4.52) that

167 ((po + P40 + Q) K 0:005u)| L2() < E¢(Ex + [07nl 20y + 1070 2y + 10enl 5o )

< (&5 + |VoFul L2(ay)-
(4.53)

In a same way, we have

107 ((po + P60 + Q- V. au) | L2 (e

< (40,0 m2@) (A = 1d] g2y + 1) (107u] 20 lul 720y + ||0tu||§{2(9))
+ (1 + 100, Ol a2 @) (10eAl L2 @y | vull 3 () + 107 All L2l 20 ull 123 )
+ (020, 0:Q) | 2 () (I A = 1d| 2 () + Dl|Ovull () |l ms (o)
+ (870, 07Ol 2 (A = 1d] a2 ) + 1) [ul Frs (-
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Thanks to Lemma A.1 and (C.11), we further get that
102((po + P60 + QO - V 4u)| 12(0)
< (L+ Il gy + 1€ m2@) Unll sz ey + DU w] @ lulas @) + 10:ul32 )
+ (L + Il sy + (€l 2(0)
x (10enl g2y |0l 13 ) + (1070 vv2 oy + 1060 Frs/2 o) [l 22 ) [l 123
+ (10 zrsr2 0y + 106Cl 12 0)) Ul 52 0y + D Qe s oy llu] 23 (@)
+ (1920l L2y + 197 ¢ 2 @) Ul sz oy + Dllul s g
< Ep(&r + Hat277||H1/2(1‘) + Hat77||§{5/2(r) + HvatQUHL2(Q))~
Due to (4.23), we obtain
107 ((po + P60 + Qu - Vaw) |2y < Ef(Er + [VFul L2(q))- (4.54)
Furthermore, thanks to (4.23) again and Lemma A.1, (C.9), (C.10), one has
|07 (AKO, BKO, (1 — K)0)|>(0)
< |07 (AK, BK, K = 1)| 12|02 (@) + |0:(AK, BK, K — 1) 20 |0:0] 12 ()
+ [(AK, BK, K — 1)| 2(0)[|0760]| L2 (o)
< (Ha?nHHl/Q(F) + Hath?ﬁ/?(F))Hn”Hf’/?(F) + |0 /2 0y [0l e/
+ |l o2 HaanLQ(I‘)
< E(Er + 0Fn] ey + Ham“%{wz(r))

< &5
(4.55)
Consequently, there holds
102 F? | L2(0) < E(E + | VOl 2(0)
thanks to (4.53), (4.54) and (4.55). O

We are in position to prove Proposition 4.5.

Proof of Proposition 4.5. In view of (4.36), we have
1 / 2 2 I 2
S (| (o060 + QIO + | goaln®I) + 5 | | JISau(s)las
2\ Jo r 2" Jo Ja

_ 1(L(p0 + b0 + O TJu(®)]? + Lgmln(t)lz)‘

2 t=0

: t
+ %L JQ 0t ((po + pof + ¢)J)|ul?(s)ds +L JQ J(F?-u— gCug + F3q)(s)ds

— J f (gpnF* + F° - u)(s)ds
0 Jr
(4.56)

We first estimate the Lh.s of (4.31). Notice that

JHSAuH%z(Q) = ||Su\|2L2(Q) —|—J, (J —1)|Sul? +f J(Sau+Su) : (Sau— Su).
Q Q

Since

Sau £ Su = (Aj + (L»k)akuj + (Ajk + 5jk)8kuj,
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we use (C.8) to obtain

f J(Sau+Su) : (Sau — Su) = 4[ (A2(01ug + Oouq)? + B?(d1uz + dzuy)?)
Q Q

< (A B) e (o [Vulizq)
<&
Note also that ||J — 1] z=(q) < 1 (see (C.7)), we use Korn’s inequality (C.4) to have
JIS aulZegqy 2 [Vul2a0) — €1 (4.57)

Due to the assumption on g (4.5) and Sobolev embedding, we then have

. 1

inf(po + pof + ) = p- = Comp max(1,max py(23)) (0, Ol w2 () = 5o (4.58)
The Lh.s of (4.56) will be estimated as

(L(Po + 0o + C) T u(t)® + L gp+\n(t)\2> M Lt JQ TBaule)lds (4.59)

t t
2 [ + IOy + | IV ayds = [ 3o
We now estimate the r.h.s of (4.56). By Gagliardo-Nirenberg’s inequality (see
(C.2)) and Sobolev embedding, one has
[0:((po + P60 + Q) T) L= (0)
< (o + p60 + Q)0 |2y + 1100010 + 0:C) || Lo ()
S (L+ 0, Olla2()10:0] 3 () + [(060, 0:0) | 20 (1 + [|J — 1L (2))-
Together with Lemma A.1, (4.22) and (C.7), we observe
10:((po + P8 + O)T) | = ()

< (X + [nllase @y + 1Kz @) 106l goe 0y + 1060 goe 0y + 10:C1 a2 ()
< &y,

which yields
¢ t
J f 2u((po + o + O)T)ul2(s)ds < f £3(s)ds. (4.60)
0 Jo 0
Substituting (4.57), (4.59) and (4.60) into (4.56), we deduce (4.31),_,.
For [ = 1, we make use of (4.37) and (4.42) to estimate that
t
| ot sip+ PO + [ gostomel + | 1986 s
0

t
< 10u(0)]22 0 + L gpblus(t)? + f L 2u((po + pbf + O)D)|orul(s)ds
0

t
+ JO Eﬁ(s)ds.

By a similar argument as the proof of (4.59), we get

t
|ovu(t)|72q) + 0720 +J [V oru(s)]72(0yds
0 (4.61)

t
< 10u(0) 22 + L aphlus(D)]? + j £3(s)ds.

Combining (4.61) and (4.31),_,, the inequality (4.31),_, follows.
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For | = 2, we use (4.37) and follow the previous arguments to observe that
0200 oy + 1000+ [ 1902006

< [07u(0) 720y + [0rus ()72 0) + L EF(3)(Er(s) + [VOFu(s) | 12(0))ds.

Applying Young’s inequality, one has that for v > 0 arbitrarily

¢ ¢ 1t
Jo S?(s)Hvafu(s)Hp(Q)ds < I/L HV&?U(S)Hsz(Q)ds + ;Jo S;‘(s)ds

This yields
t
|07 u(t)|Z2q) + 0700 Z2r) +J0 [VRu(s) |72 0)ds

t 1 t
S 12O iy + 10us Oy + v | 19506 s+, [ EFopas

Let v be sufficiently small, we obtain (4.31),_, thanks to the resulting inequality
and (4.31),_;. O

4.3. Estimates of the perturbation density. We continue deriving the energy
evolution of the mixed horizontal space-time derivatives of (. Notice from (2.11)1’3
that

0:¢ = K0,005¢ — u; Aji0iC — phus — poQ° + QF, (4.62)
where
Q = pOKaat — q A Opu; — A Ok (p()&ul) — (Alk — 5lk)ak(p0ul). (4.63)
We now present some estimates of the nonlinear terms Ql, Qi(l <i<5).

Lemma 4.5. The following inequalities hold

19 1 rr2(0) + 10:Q 220y + 106 Q% |12y + Q% | 2 () + 10:Q% | 112 ()
+ Q% w3y + 10Q% 0: QM | vz ey + 1Q° sz (ry + 10:Q° ey < EF,

(4.64)
and
19 s + 192 2 (0 + 10:Q% 10y + 1 Q% sy + 10:Q% | 2y < E7(Ef + Dy).
(4.65)

Proof. For (4.64), we only present estimates for some terms of the L.h.s, precisely,
10: Q%1 () + 1QY | 2y < €7

the estimates of the other terms in the Lh.s of (4.64) follow the same way. To get
10:Q3 | 1) < 5]%, we use (C.1) and (C.9), (C.10) to bound each term of @3 (B.5).
Indeed, we have
10:((1 = K)O3us)| () < 0K | ()l Osus| me () + [ K — 1] ms [ 0:03us| ar (o)
< 00l zar oy llusl ma ) + [0l z72 ()l Orus | 20
< &7,
(4.66)
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and
[0:(AK d3uy + BKOsuz)| g1 ()
< [0:(AK, BK)| zv oyl 03ul g3y + [(AK, BK)| s 0:03ul g (o)
< M 0enl gsremyllul za@y + |0l a2 @y Orull 72 ()
< &7

(4.67)

Hence, |0;Q%| 1) S &7 follows from (4.66) and (4.67). Moreover, using (C.1),
(C.9), (C.10) again and the trace theorem, we show [|QF| sz < 7. From the
expression of Q3 (B.6), we have that
101n(q — p+n — 2p(d1ur — AK d3ur)| sz (ry
S HamHHS/?(F)(H (qm,m)l\Hs/z(r) + HAKHHS/Q(F) H‘33U1HH5/2(F))
< HUHH7/2(F)(”(CLul)HHE‘(Q) + |\77HH5/2(F) + ”AKHH3(Q) ||U1HH4(Q))
< Il gz oy (g w)l s @) + 10l mse ey + 0l a7z @y luilme@),

(4.68)

that
Hag’ﬂ(alllq + Oguy — AK&gUg — BK03u1)|\H5/2(F)
< [02nl g2 oy lwll g7z oy (1 + [(AK, BK)|| g2 ry)
< |@2nl sz oyl 7z 0y (1 + [(AK, BK)| 113 (0))

< Al e oy lull e ) (1 + [0l g7z ry)s

(4.69)

and that
11 = K)dsur + AKdzus| gsrzry < |(K — 1, AK) | gs/2 0y | 030l o2 1

< (K =1, AK)| 2 o) |ul (o) (4.70)
< [l ez oy lull e )
Hence, the inequality |QF|ps2ry < €7 follows from the three above estimates
(4.68), (4.69) and (4.70).
Similarly, for (4.65), we show only
19 ma() + 10: Q¥ 2 () + Q| ey S E5(Ef + D).
For Q' (see (4.63)), in order to prove ||Q! ) < Ep(Ef +Dy), we use (C.1), (C.9)
and Lemma A.1 to have that
lpo K000 ey < (1 + |1K — 1 ga ) 10] 54 ()l 010l 4 )
< (X + [l oz @)nl g7z @y 0l g7 0y
Combining (4.22) and the resulting inequality, we have

|00 K000 a0y < EF. (4.71)
Using Lemma A.1 again and (C.1), (C.11), one has
Ak (60w a0y < (1 + A = 1d] ga(a)) 0] ms @) lu] 5 @)
< (X + [0l oz ) Il gorz oy lull 5 o) (4.72)
<

Er(&r + | Vullga))
and
| (Auks = 0k) Ok (pow) | a0y < |A=1d|ga(e) [ulms ) < E¢(Ef + [ Vulaiq)). (4.73)
Thanks to Gagliardo-Nireberg’s inequality also and (C.11), we obtain
la Aokl ma) < (1 + A =1d|ga)) (gl m2@) IVl m0) + gm0 [Vul m2(0)

< Er(Er + | Vulgay),
(4.74)
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Those above estimates, (4.71), (4.72), (4.73) and (4.74) imply
1Q 110 < E¢(Er + [Vulmag)) < E5(Ef + Dy).

Meanwhile, the inequality | Q3| a(q) < €Dy (see Q% in (B.5)) is proven by using
(C.1) and (C.9), (C.10),

19| @) < I(AK, BK, K — 1) ga (o)l Osull sy < 10l ros oy | Vol o)

Let us prove [0, Q%1 (q) S Ef(Ef + Dy) (see Q' in (B.1)). In view of (C.1) and
Lemma A.1, we obtain that
10:((¢ + pp®)0rur) (e < 1(0eC, 0) | m (o | Gvun | =) + (€, 0) | s ) |07 wn | 2 ()
< (I0eCl e ) + 10em] vz oy 10cua || 3 )
+ (€ a2y + [0l mrsrz o)) 07w | 1 )
< Er(Er + | Vorur| ) + VO ur] 2 (o)-
(4.75)
We further use (C.1) to have

[0+ ((po + pof + Q) Kuzdsur) | (o)
< (X + 00, Qs @) 10:(Kusdsur) [ ey + [(0:C, 00)| 1 (o) | Kuzdzur | s (o
< (X410, Ollas @) 0 K ||z ) llus | 2 0 0311 | 23 ()
+ @+ 100, Ol ) (1K = 1 g2y + 1)
X ([|Osus o) O3un | 30y + [0e03ua || (o us s ))
+ [(0:C, 0e0) | m11 ) (1K — 1| sy + 1) [[uzl a3y 03us ] g3 ) -
Thanks to Lemma A.1 and (C.9), we deduce

10:((po + pof + ¢) Kuzdzur)| (e

< (L + ¢l as@) + Il sz ay) 0l gaeylulFaq)
+ (L + Il a3 @) + Il ase@y) Unl a7z + Dlowul g2 lulme)  (4.76)
+ ([0:Cll 21 () + 10enll g1z 0y I v 0y + 1)”“”%{4(9)

<&

Since K2 — 1 = 2030 + (036)?, let us use (C.1) to obtain

|0:((K? + A% + B® — 1)055u1 — 2AK 07gu1 — 2BK055u1)| i1 ()

< (|(A%, B?, AK, BK) | gs) + | K* = 1] g3 ()| 0rua | g5«
+[0,(A% B*, K* — 1, AK, BK) | i1 (0 |V u1 | 113 e2)

< (4, B)HQHB(Q) + [(AK, BK)| g3 () + 030 m3 ) (1 + 030 m3 () | O || 3 ()
+ (104, B) |3 (@) (0:A, 2:B) | 11102y + 10:036)| 511 () (1 + 030 30|V [ 13 )
+0:(AK, BK)| g1 (o) V1| 113 (-

Owing to (C.8) and (C.10), we deduce

|04 ((K? + A? + B® — 1)035u1 — 2AK 075uy — 2BK035u1) | 111 (a)

< Il gz oy U+ [l e o) Q6w | 20y + 10en] sz oy (U + [l ez o) VP01 | 15 ()
S Er(Er + Vo] a2y + IVur | ga))-
(4.77)



44 TIEN-TAI NGUYEN

We continue using (C.1), Lemma A.1 and (C.10) to get
|0:(AK (03q — 9p60)) | 1 (22)
S [0 (AK) [ @l (g, 0 15 () + [AK | 15 0 (19: 03¢ 1 (2) + 10:0] 111 ()
< l0enl msrz oy (lal 73 ) + 0l sz y) + Il g7z ey 10kl 22 0) + 106m] gz (ry)

S Ep(Er + 0tql m2(02))-
(4.78)

From the product estimate (C.1), we obtain also
|0:((K0sK(A? + B> + 1) — 01(AK) — 03(BK) — A1 K — Bd2K)osu1) || 1 (0
< (I(A, B)[Frs 0y + IVE 33 (0)) (1 + 1K = 1| 113 () | 0s0301 | 11 0
+ (IV(AK, BK)| g3y + (A, B)| a3 @) VK | g3 9) [ 0:03u1 | 11 (0
+ (10:(K 03 K) |z ) (1 + (A, B) s ) + [VO(AK, BK) |1 () |05 ] 113 ()
+ (VO K| 120 | (A, B)|m2(0) + |0:(A, B) | 20) [VE | 13 (0))| O3 | 112 () -

Thanks to (C.1) again and (C.9), let us estimate the term [0;(K03K)|r2(q) as
follows

10 (K03 K)|L2(0) < |0:K | m1(e) |03 K | () + (1 + [ K — 1 ma(e))[0:03 K | 10
< |0l gsrwylnl grewy + X+ Il g7z @) 0] g5z ).

Hence, due to (C.8), (C.9), (C.10) and note that [0y gs2ry < & from (4.22), we
have

\|6t((Kﬁ3K(A2 + B2 + 1) — ('7’1(AK) — aQ(BK) — A&lK — B&gK)@gul)HHl(Q)
< Inllazre @y (X + Il a7z @) lQeua |l m2 @) + [0 mse oy (L + [l g7z @) vl 7o)
<&
(4.79)
Combining (4.75), (4.76), (4.77), (4.78) and (4.79), we conclude

10:Q3 | 110y < Er(Er + |VOFur|r2(0) + |0eal 20y + | VOrut| 2 (a))
< 5f(5f + Df).

Proposition 4.6. The following inequality holds

O < Co(50) + < [ s+ [ ftepas) (450)

¢
+Co fo (elVus(s)[3rs0) + " (uz, ()12 () ds-
Proof. It can be seen from (2.11), that
331l = = [ phuac+ | Q1€ (lualsacey + 19" z2(o) €z
Due to (4.64), we thus have

%”CH%%Q) < Jlusllz2@) 1< L2y + £7F-

This yields

C()12 0 < E2(0) f (s, Q) () 2 >ds+j £3(s) (4.81)
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For a € N3, 1 < |a| < 4, we have from (4.62) that

0,0°C = K010030°C — uj Ajrdpd®C + Y. 0°(K0,0)0° P os¢
0#[<a

- (4.82)
D1 P Ar)0° P okC + 0% (—ppus — poQ® + QY.

0#£B<a
We deduce from (4.82) that
1 d (6% (6% (6% {07 o —
2 L 10%C ey = L(K@teaga ¢ —usApdrd®o°C + Y L B (K,0)0°PosC

0#£8<a
— Z J 0% (ujAji) 0P or¢ +J 0% (—phus — po Q> + QH)oC.
Q Q

0#B<a
(4.83)

Using the integration by parts, one has
2J (K210050°C — uy Ayydpd® ()¢ = f (K21005]0°C| — u; Ayidp|0%¢[?)
Q Q
= f (K00 — ujAjs)|0%C|?
r

- |, @ur0) = (s Al
On T, we have K00 — ujAj3 = Kon — ugAsz = 0. This yields
5 fQ(Kateagaag g A 0p )¢ = — L(ag(Ke) — ouluyAy)) ¢
Due to Sobolev embedding, it can be seen that
L(as(KH) — Ok (ujAji))[0°C* < 103(K0) — dn(ujAji) 2 () ISl s ) < EF-

(4.84)
Thanks to (C.6), we have

L 07 (plu3)0C < 10°Cl e sl arer @y S €10°C 2 gy + €~ luts s o

By Young’s inequality and (C.6), this yields

1
0 (ppus)0*C < €l|0°CllF2q) + =(€%|lusl s ) + e *luslZz(q)
JQ 0 rxe) T H5(Q) 12(Q) (4.85)

< e(10°¢ 720 + luslFs ) + e lusl 72 q)-
Thanks to (4.65), we have
5 0*(=poQ° + @)0°¢ < (1% () + 12 1 @) €] 20 (4.86)
< EF(Er + [ Vulaa))-
We use Cauchy-Schwarz’s inequality to bound the other terms of (4.83) as follows

3| P an s < IVK ooy |l irson|Clinscor = €5,
0#[<a Q

S [ Ao < Alme ol < £
0#[<a

(4.87)



46 TIEN-TAI NGUYEN

In view of (4.83), (4.84), (4.85), (4.86), (4.87), we get

d _

prl W2y < e(EF + 1 Vuliai) + e luslZa(q) + £F-
Integrating the resulting inequality from 0 to t, together with (4.81), one has (4.80).
Proof of Proposition 4.6 is complete. O

In addition, we have the following estimate.
Proposition 4.7. There holds
lulraey + 10suli () + 19020y + 107¢I 220y < C7E}- (4.88)

Proof. Tt follows directly from (2.11); and (4.64) that

10:¢ 1520y S luslFrzy + 19 o) S luslFrzo) + &7
and
107¢172 () S I0susliay + 10:Q 1720y S I00us|Tz(q) + EF-
Then, let v > 0, one has
HUJH%I‘*(Q) + HatuH%ﬂ(Q) + V(HatCH?q?(Q) + \|5t2C||2L2(Q))
S v([luslFe ) + [ 0rus|F2(qy) + 20E5 .
If v is sufficiently small, we deduce that (4.88) holds. O
4.4. Elliptic estimates. We use the elliptic estimate (C.3) to derive some inequal-
ities.
Proposition 4.8. There holds

HuH?{‘l(Q) + H11||:;13(Q) + Hatu\lim) + HatQH?tll(Q)

(4.89)
< C8(Hat2u||2L2(Q) + ”CH%{Q(Q) + H77”2HS/2(1") + Hat77||§11/2(r) + 5;?)-
Proof. We derive from (2.11) that
—pAdu + Vorqg = —pod2u — goiCes + 0, Q2 in €,
div@tu = é’t Q3 in Q, (490)

(0¢qld — uSosu)es = gp, Omes + 0, Q° on I

Applying the elliptic estimate (C.3) to (4.90), it tells us that

HatUH%{?(Q) + Hatq”%{l(ﬂ) S ”atQUH%%Q) + HatCuiz(Q) + ”atQ2”%2(Q)

+0: Q% @) + 10052y + 10:Q° [Fra/2ry-
Note that from (4.88),
106C1172(0) < 10620y < CES
and due to (4.64), we have
l0vullFrzqy + 10l Fr ) S 107 ul72) + 103z ) + Ef- (4.91)

Meanwhile, we obtain from (2.11) that
—Au+ Vg = —podu — gles + Q2 in Q,
divu = Q3 in Q, (4.92)
(qld — puSu)esz = gpnez + Q° onT.
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Applying the elliptic estimate (C.3) again to (4.92), we observe that
H“HQH‘*(Q) + ”CIH%W(Q) S HatuH%IQ(Q) + HC”?P(Q) + HQQH%&(Q) + HQ3H§{3(Q)
+ HWH%IS/Q(F) + Q5H?{5/2(r) (4.93)
< lovul bz + 1<) + Il + €5-

Combining (4.91) and (4.93), one has (4.89). Proof of Proposition 4.8 is complete.
(|

Proposition 4.9. There holds
IVulbaqy + IVorulFzq) + 1 Valis ) + 1Vl g

- (4.94)
< Cy (HV(u, Bru, 07u) |32y + €2€F + €032y + EFEF + D;)).

Proof. We continue applying the elliptic estimate (C.3) to

—pAdu + Vorg = —podiu + g(phus — Q') +0,9%  in Q,
divoyu = 0,93 in Q,
Oru = Opu on T,

to have that
IV aeulfre) + IV 0:dli @) < IVOFulia) + [Vusliaq) +1V(Q1,2:Q%) 72
+ [V, Q%7 0y + | VOrtlzg=0l 312y -

This yields

[VorulFre(q) + IVoalin ) < 1V ulzz () + IVus|z(q (4.95)
+ [ Vorules=ol3pz(ry + EF(EF + DF) '

due to (4.65). Using the trace theorem and the interpolation inequality (C.6), we
get that, for v > 0,

Ity ollis ey < V0l ) S VIV Gl3paiay + v Vol (4.96)
In view of (4.95) and (4.96), we have
[Vorulire (o) + 1Vl o) S IV uliaiq) + [Vus|2) + v Vo2
+ | Vol F2q) + EF(ET + D).
Consequently, let v > 0 be sufficiently small, we obtain

Vol oy + IVl o) S IV (u, 0w, 07u) |72y + EF(EF + D7) (4.97)

Meanwhile, applying the elliptic estimate (C.3) to
—pAu + Vg = —podyu — gCez + Q% in (,
dive = Q3 in €,
uU=1u on T,
we have
”VUH?LH(Q) + ”VQH%{%Q) S \\Vatu\lip(m + HVCH%W(Q) + HVQZH%I?(Q)
+[VQ s () + Hvu‘l‘3:0“2H5/2(F)'
Using (4.97) and (4.65), we further obtain
HVUH?%(Q) + Hv‘]“%ﬂ(ﬂ) S ||V(U75tU75tQU)H2L2(Q) + HC”?W(Q) + HVU|x3:OH§15/2(F)
+EF(EF + D).
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With similar arguments as for the proof of (4.96), we obtain for v > 0 that
IVulFa ) + 1 Vel s ) S 1V (w, 0w, 07u)|72(q) + I¢1FHs @) + YIVulFaq)
+ v |VulLaq) + E7(EF + D)),
Hence, for v > 0 sufficiently small, we have
IVulFaay + 1ValFa oy S 1V (us dpu, Fu) [Ty + 1<) () + EFEF + DY)
Using (C.6), the resulting inequality tells us that
[Vulba) + 1ValFs @) S 1V (W, 0w, 37u)l72q) + e I¢1720) + 1¢I5 0
+E7(EF +DY).
(4.98)
We obtain (4.94) from (4.98) and (4.97). Proposition 4.9 is proven. O

4.5. Proof of Proposition 4.2. We obtain from Propositions 4.3, 4.4, 4.5, 4.6
that

& (In3rsry + 1Oz ey + 102003y + 1O Rrs i + 90

t
(s Bt 200) () 2y + j I (a1, Byt 0210) (5)[2 )
t t
< 01,55,%(0) + Clo€3f Ef(S)dS +((C1 + Cy)e + 0653),[ HVU(S)H%I‘l(Q)dS
0 0
t t
t Oy j [ 00(3) 22 g d5 + Cse j IV 02u(s) 2 ds

t t
+ Cz,ef (¢ w) () F2 () + In() 172y )ds + C’s,ej £} (s)ds,
" " (4.99)
where
Cie = (C1+ Co + Cs + Cy)e? + Cs,
Cio=C1+ Co + Cs + Cy + Cs,
Coe=Cye+ Cs5+ Coe™ 7
Cs. = Cppe3 + Cs.
Chaining (4.99) with (4.94), we get that

2
52( Z () Fra-2 0y + 1S 71y + () \@19/2@))
i=0

1 t
2 ) )+ gy | DR

C t t
< C1.E7(0) + (010 + Co i 1>53f0 EF(s)ds + ((C1 + Ca)e + C'653)J-0 IV u(s) ey ds

t t
T Oy f 7 30(5) 32y s + Cse j [V320(5) |2y s
0 0

Co _o\ [*
+ (Cz,a + Goil’ 9) L (¢ w) () F20) + In(s)|72(ry)ds

+ <C’ + &63) JtES(s)ds + % th (5)D%(s)ds
376 Cg + 1 0 f Cg + 1 0 f ’
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Let 0 < € < 1 be sufficiently small such that

1

Ci+Cy+Cs+C Cee® < ————,
(1+ 2+ Cs + 4)E+ 6E Q(C’ngl)

So that, the inequality (4.100) implies

2

(3 1) By + 16O Bracey + 110 oz ry)

Jj=0

2 2 1 Jt 2
2 — | D
+ “(uaatu’at u)(t)HL Q) + 2(C9 I 1) 0 f(S)dS

C t
< C1E30) + (Cro + o 1)5’[ £2(s)ds (4.101)
0

Coy _o\ (" 2 2
+ (ot goge™) [ €@ iy + s

Co 3\ [ es Co (' >
+ (03,5 + Cot 1€ )L E(s)ds + Co 1 L Er(s)D3(s)ds,

By dividing both sides of (4.101) by &2, we have

2

1€ Fra ) + I 772 (ry Z )| a2 ry + 1w, G, ) ()72 + J D} (s)ds

< O (=72€3(0) + < L £2(s)ds + 2 fo E4()(EX(s) + Di(s))ds)

1
+Cpye !t fo (1(C ) ()72 + n() 72 )ds.
(4.102)

Combining (4.88), (4.89) and (4.102), one has

[y + 00720y + 10O 2 () + 107CH)Z20)
+ 2 () Fra0) + 1aO 1Ty + 10u(®) 312 () + 104D [ (@) + 1Oz 0

+ |n() 02y + Z |62 n(t) | 3a—s (ry + [ (u, B, 070) (1) 720y + Df s)ds
(x)
< CrEf(t) + CBEl/Q(HatQu(t)“L?(Q) + <Oy + 1) Fs oy + Hatﬁ(t)ﬂfql/z(r))
t t
+ s 2EH(0) + Cur (=230 + = L £3(s)ds + e‘QL £4()(E}(s) + D} (s))ds)

t
+ Cpye M L (G w) ()72 + In() 72 )ds.
(4.103)

Let us refine € so that

—_

1/2
086/ < -,

[\
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it follows from (4.103) that
[u®)Fra 0y + 10:u(®)[F20) + 10:C O 520y + 107¢(B)1 720
+ e 2 (Ju®) ) + 190 30y + 10u®) 72 () + 10:a(D) 1 0))

1
+ 5(\|C(t)||?14<9) + O oy + 190 |20y + 107 u®)]72(0))
t
+Hﬁ%ﬂﬁqm+ﬂmﬁmﬂﬂﬁqm+J;Dﬁ$%
< (C 154 Ci1(e72E2(0 t52 d —2 ts &2 D2(s))d
<( 7+§) F6)+ Cu (72630 +¢ Ef(s)ds + <77 | E4()(E](5) + D) )

t
+Qm“Lw&w@ﬁmmwmw§mM&
(4.104)

Dividing both sides of (4.104) by £'/2, one has

2
2 07 () a2 gy + 10/ () 3210y + 10700 |Frs-25(r)
j=0

t
+ a1 Hs ) + [0:a(®) |7 0 + ||77H?{9/2(r) + L D} (s)ds
t t
< Oy (5*5/25]%(0) +el/? f EF(s)ds + e f Er(s)(E7(s) + D3 (s))ds + 5*1/25;1(15))
0 0

t
+aﬁJWmew@ﬁmmwmw;mm&
(4.105)

Switching £'/2 by € in (4.105), one has (4.6). Proof of Proposition 4.2 is finished.

5. NONLINEAR INSTABILITY

Note again that, we compactly write U = (¢, u, ¢, n) throughout this paper.

Thanks to Proposition 3.7, we will consider a sequence of approximate solutions
eV, (k, z) to the nonlinear equations (2.11), that are solutions to the linearized
ones (2.13). Let us fix a k = ko € Sy such that (2.29) holds. We recall (2.30),

M
UM(t,z) := Z ;e MOty (ko )
j=1
and require that the coefficients c; satisfying (2.31)-(2.32). Due to the compati-
bility conditions (4.4), we cannot set UM (0, z) as the initial data for the nonlinear
equations (2.11). With the help of an abstract argument in [11, Section 5C], we
obtain the modified initial data Ug’M(x).

Proposition 5.1. There exist a number §g > 0 and a family of initial data
USM () = UM (0, z) + 62USM (z) (5.1)
for 6 € (0,60) such that
(1) UM satisfies the compatibility conditions (4.4) and c‘,’f(Uf’M) < Cy <o
with C; being independent of 4,

(2) the nonlinear equations (2.11) with the above initial data Ug’M has a unique
solution UM satisfying that supg<, pmax Er (UM (t)) < 00.
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5.1. The difference functions. Set
Ud(t,z) = UM (t,2) — SUM (¢, ).

Then U? satisfies

0C? + poug = Q1(U°M) in Q,
podeut — pAut + vVt + g¢les = Q*(UM)  in Q,
divu? = Q3(U>M) in €, (5.2)
om? = ug + QHUM) on T,
((¢" = gp+n)1d — pSu)es = Q*(U>M) onT.

The initial condition for (5.2) is

U(0) = (¢* a0, q%)(0) = 8*UMM. (5:3)

Let |Ullg, := E¢(U), which is defined as in (4.1). Let Fps(t) = M Ajt

. lcjlett and
J=Im
0 < ¢o « 1 be fixed later (5.35). There exists a unique 7 such that §Fy(T?) = €.

Let

Cua = UM O)le,, Cas = /I ) Oy + [0 (O ey
We define
T* = sup {t e (0, T™)[[UM (1) ¢, < 2C14d0},

T 1= suplt € (0.7 uP ™M) () gy + [ ()] 12y < 2C50Fu (1)},
(5.4)
Note that [U%M(0)|e, < C146 + C};6% < 2C146, we then have T* > 0. Similarly,
we have T7** > 0.
The aim of this part is to derive the bound in time of [(¢%,u?)(t)]12(q) +

In%(t)||z2(r) in the following proposition.

Proposition 5.2. For all t < min(T%, T*,T**), there holds

[ ut) (0720 + In? (O]
J A 2 A (55)
< C66%( Z lcjle?’ + max(0, M — N)  max |c;jles)3.

= N+1<j<M
j=im

In order to prove Proposition 5.2, we need the following bound in time of
UM ()], -

Proposition 5.3. For all t < min{T°, T* T**}, there holds

HUJ’M(t)Hgf < C170F) () for all t < min{T®, T*, T**}. (5.6)

Proof. We fix a sufficiently small constant € such that

C()E < % (57)
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and Proposition 4.2 holds. Hence, it follows from (4.105) that

+ f D7 (s)ds
)\MJ £3(s)ds + Or,, (£3(0) f Er()(EX(s) + DY)ds + 1)) (5:8)
+ Chy L (¢ ) ($)72) + [n()1 72 (1)) ds.
Refining also &g, we get
and g < 2, (5.9)

C)\M(SQ C)\M(SO <

l\J\»—t

one thus has

! tD2 ds < Cy. E2(0 AM L so t52 d
+y ) Pie)s <O, 30) + (545 + 6 ) RO

o j <||<<,u><s>niz<m +10(3) By s
(5.10)

A
<O &0+ 5 | E3(s)ds

O [ €6 oty + I e
Consequently, for all + < min{7°, T*, T**},
(UM (@)]12, <203, UM (0)[Z, + Anr Lt [T (5|2, ds
+2C, Lt(H(C‘S’M»u‘S’M)(S)I%m) + M () 22(r))ds
< Ay Jot HU‘S’M(s)H%fds + C180% F3,(t).
Applying Gronwall’s inequality, the resulting inequality tells us that
[UM (1)]2, < Crs (2F3 () + 62 f t M IR (5)ds). (5.11)

0

Note that Aps < Aj for all 1 < j < M — 1, we have

t
J' M=) 2 (5)ds < M2 Z J M (=9) |, [262%5 g

0
I=Im (5.12)
26(2)\ )\]\/[)t

MHWZM 20 — A

J=Jm

Substituting (5.12) into (5.11), this yields (5.6). We deduce Proposition 5.3. O

We now prove Proposition 5.2.
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Proof of Proposition 5.2. Differentiating (5.2)2’5 with respect to ¢t and then elimi-
nating the terms 0;¢%, d;n? by using (5.2), ,, we deduce from (5.2) that

pod?ud + Vorq? — pAdud — gphudes = 0,Q*(USM) — gQY (UM )ey in Q,

divé’tud = ﬁt QB(U(S’M) in Q,
(0rqld — uSoiut)es = gpyues + gpy QHU>M)es + 0, Q°(U*M) onT.
(5.13)

Multiplying both sides of (5.13); by o.u, we obtain that

1d I
oo (| mloaP = [ gopfudl+ | gpetud)+ [ isa
Q Q r Q

- f (@, QX(UPM) — gQM (UM )ey) - dyut — f (@ QP (U™M) + gpy QHUMMes) - oy,
Q T
(5.14)

after using the integration by parts. Note that
| @@won - o o - ot
< (16:Q2(UM) 20 + QMU M) L2 () (056" [ L2y + S0 | L2(0)-
In view of (4.64), we have
| @i — 9@ W M)ea) - ot < UM, (U5, + 00120

< BF3(t). 515)
5.15

Similarly, we use (4.64) and the trace theorem to get
J (at Qs(Ué’M) + gp+ Q4(U5’M)€3) . 6tud
r

< (0. Q2 W™ gz ey + 124U ™) vz ey 0w pr-172 (5.16)
< (18:Q5(U™M) | gz ey + 1Q* (UM vz ) 1 0su? | p2 (0
< BF3(t).
Substituting (5.15) and (5.16) into (5.14), we obtain that
t
J poldiud(t)]? —&—f J- w|Soru(s)|ds
@ 0 (5.17)
d (2 2 33
<ot [ aldOF — | apilua(®F + Crad Py (o),

where
2= | mleatOF = [ gl + | gp-tuio)”
Q Q r
Thanks to Lemma 3.6, we deduce from (5.17) that
t
| izt + || wisaut(s)as
Q 0 Ja

(5.18)
1
<24 A ol + A | o) + CuodFy ).
Q Q
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Using Cauchy-Schwarz’s inequality, we have that

L JlSud(t) 2 f ulSut(0)2 + 2] L LSut(s) : Sou(s)ds
< JQ p|Sul(0)* + n Jo JQ p|Soul(s)2ds + A Lt JQ ,u|Sud(s)(2ds

5.19)
and that
a2 < )2 )2
A 2
G|l < 5|l a | polut (520)
Three above inequahtles (5.18), (5.19) and (5.20) imply that

Z1

d 1
Dot + L f mSud<t>|2<—+f HISu4(0)? + 24 j polu (1) 2
dt Jo 2 Jo A Q Q

t
*AJ f ulSu’(s)2ds + Cao0® 3, (1),
0 JQ
(5.21)

It follows from U%(0) = 682U that 2, < 63, this yields
2
A
Hence, the inequality (5.21) implies
d 2 1 dpy)2 (g2 ' ()2
po\u OF +5 | wSu®)F <20 ] polu(®)]” + A plSu(s)|"ds
dt 2 Jo Q 0 Jo
+ Cn 8 Fy(t),

+ | plsu(0)? < o°.
Q

(5.22)
In view of Gronwall’s inequality, we obtain from (5.22) that
f polu(t J f p|Sud(s)?ds < Czlégf A=) 3 (s)ds
(5.23)
< 021M253f eZA(t_S)FM(Z’)s)ds.
0
Due to (2.29), we obtain for 1 < j < N,
t
1 1
(3)\j72A)8d — (3)\1'72/\)15 -1 < (3)\j72A)t 24
Le y 3Aj—2A(e ) 3, —2A° (5.24)
and for j > N + 1,
Jt (3>\j—2/\)sd _ 1 ( (BA;—2A)t 1) < 1 (5 25)
0 TN —2n SN -3 ‘

Substituting (5.24) and (5.25) into (5.23), we observe that if M < N,

t M
C; .
||ud(t)HiQ(Q) +J;) ”vud(S)”%z(Q)dS < 02253( Z ﬁe?’)‘ﬂ) (526)
J=dm =7

and if M > N + 1,
M

t
d1y)2 dioy2 3 |CJ| 3Nt ‘CJ| 20t
) | 190891 oys < Ot v > Teywat

J=jm j=N+1
(5.27)



RAYLEIGH-TAYLOR INSTABILITY 55
We then estimate [(%(¢)]2(q). Due to (5.2);, we obtain
¢
I¢ )1 Z20) < HCd(O)Hiz(QﬁC’ML(||U§(S)H2L2(Q)+HQI(U‘S’M)(S)Hiz(Q))d& (5.28)
Note that ¢4(0) = 62¢2"™ and thanks to (4.64) also, the inequality (5.28) implies

IOy < Can (64 + | (10(6) ey + 1@ W) o) e )ds). (529

Combining (5.6), (5.26) and (5.29), we get that if M < N,

M
164172 () < Ca68® D [ejle®t (5.30)
and if M > N +1,
M M
[ )72y < 02763( D lelet+ Y |Cj|62At)~ (5.31)
I=Jm j=N+1

To estimate |[n?(t)[ z2(r), we use (5.2), to obtain

d
ey < Inllze ey (sl e ey + 1Q1U )| L2ry)-
this yields,

H77 l2ry < gl ) + Q4 U™ L2 (-

Hence,

t
I @12y < In(0) 72y + L (lug ()1 @) + 1Q1TM)(5) 22 (r))ds

Thanks to (4.64) and (5.27), we have that ||17d(t)||2L2(F) is bounded above like (5.30)
or (5.31). Together with (5.26), (5.27), (5.30) and (5.31), Proposition 5.2 is proven.
O

5.2. Proof of Theorem 2.2. We have

u HL2 @) = Z c; Z cicjeNitAi )tf wi - uj. (5.32)
Q

1=Jm Im<i<j<M

It can be seen that

M
[ O = 20 e uiliam +2 )] ciCje(Ai+Aj)tf w; -y
J=jm Jm+1<i<j<M Q
M
X A
- ‘ijwujm”LQ(Q)( 2 |cj|Huj||L2(Q))e( dm T g +1)E
J=jm+1

By Cauchy-Schwarz’s inequality, we obtain

2 Z CiCje()\iJr)\j)t J Uj - Uy
Q

Jmt1<i<j<M
>— > laillejle@amerFAame D | Loy s 120y
m<i<j<M
M 2
>_e(Ajm+1+>\jm+2)t( Z |cj|||ujHL2(Q)>.

J=Jjm+1
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56
This implies
M M
[ )72y = D, Ge uyl7e 0 —e(AJ’”“M"m“)t( > |Cj|\|uj”L2(Q)>
j:jm j:ij+1
M
_ ‘ij e()\jm-f-)\jmﬂ)tuujm Lz(g)( Z ‘Cj|“ujHL2(Q)).
i=gm+1

Due to the assumption (2.32), we deduce that
il 1
2 e(/\jm+1+>\jm+2)tHujm H%2(Q)

Z e t““a”m - chm

HU ||L2(Q)

B Ay AN
— =c3 ePmPhima Vg, |12, o)

llliS ylelds
1 1
2 20t Aj Aj t g A t 2
> C'm (@ imt *6( m+1+ ]m+2) _ *6( im .7m,+1) )Huj'rn ||L2( )

|[u™ (@)]7 ©) =€

M
+ Z e u; 720
J=im+1
0,

Notice that for all ¢ >
le(kjmﬂ FXjm+2)t

le(/\jm FAjm+1)t > %e”\jmf.

e2Nimt
Hence, we have
|u™ ()] 2() = CasFar(t), (5.33)
for all ¢ < min{T?,T*, T**}.
Let
¢(M) = max o1 >0
N+1<j<M |cj, |
Now, we show that
T° < min{T*, T**} (5.34)
by choosing
. (C1400 Cis C3q )
< . 5.35
€0 mln( C17 ’016(1 +M€(M))3’ 4016(]— +ME(M))2 ( )

Indeed, if T* < T?, we have from (5.6) that
[USM(T*)|le, < Cr76Fn(T*) < C176Fp (T°)
which contradicts the definition of T* in (5.4). If T** < T, we obtain from (5.5)

= Creg < Ci460,

that
1M, u MY (T0) | L2y + M (T0)] L2y

uh)(T) 120y + 11T 22(0) + S )T 220y + 0™ (T°) | 22qry)

<

i3S AT aar? 3\
<V/Croot (3] lesle® +rnax(0,M—N)<N+r1n§];(<M|cj|)e )

J=jm
+ C150Fpy (T9).
(5.36)
Notice from (2.29) that for N+ 1< j < M,
19847 < L ey, Jorm ) < Sl oy = Tl
|c]m| |cj7n|

[
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Then, it follows from (5.36) that
H(C57M7u6’M)(T6)\|L2(Q + ||77(S M(T6)||L2(r)
< C150Fn (T%) + v/ C168%2(1 + Me(M))*2F (1)
< Ciseo ++/Cro(1 + ME(M))*2e)?
Using (5.35) again, we deduce
H(Cé’Mvué’M)(Té)”L?(Q) + Hné’M(Té)HH < 2015€0 = 2C150 Far (T7),
which also contradicts the definition of 7** in (5.4). So, (5.34) holds.
As a consequence of (5.5), (5.33) and (5.34), we have
Hué M(T(;) HL2(Q

> 6[u(T°)| 20 — |[uh(T°) ]2

3/2
> CosdFa (T°) — \/753/2(2 ;€7 + max(0, M — N)<N+Iln<a§(<M‘cj|)62AT6/3) .

Thanks to (5.35) again, we conclude that
1
Hué’M(Té)||L2(Q) = Cogeg — \/0716(1 + ME(M))3/263/2 = 502860 > 0.

Theorem 2.2 follows by taking dg satisfying Propositions 4.2, 5.1 and the inequality
(5.9), go satisfying (5.35) and mg = %ng.

ACKNOWLEDGMENTS
APPENDIX A. POISSON EXTENSION

We define the appropriate Poisson sum that allows us to extend n defined on '
to a function 6 defined on €. For any k € L_IZ X L_1Z, we write

7’Lk Th
J flx 277 Lngd h (A1)
and define the Poisson sum on € by
eik~wh .
(pf)(@h, x3) = > melklwgﬂk) (A.2)

keL['ZxL;'Z
We then have p : H*(T') — H*+1/2(Q) is a bounded linear operator for s > 0.

Lemma A.1. For q € N, let H] be the usual homogeneous Sobolev space of order
q and pf be the Poisson sum of a function f in H,TI/Q(F). There holds

IV fl20) < ||f\|i,z—1/2 (A.3)

@’

Proof. Thanks to Fubini’s theorem and Parseval’s formula, we obtain

qupf”%z(ﬂ) Z f k|| f (k) |22 4z
—1

kel Z><L z
SISV ROl
kel 'ZxLy'Z

The inequality (A.3) then follows. d
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We extend 7 defined on I" to be a function defined on 2,

0(t,x) := (pn)(t, zp, x3) (A.4)

for all z;, € T?,x3 < 0. Lemma A.1 implies in particular that if n e HI~V/2(T),
then 6 € H1(R2) for ¢ = 0.

APPENDIX B. NONLINEAR TERMS

The nonlinear terms Q'(1 < i < 5) in (2.12) are presented by that

Ql = —Kpg@u?, + K8t0(83§ + ,0/0/ ) - Kp{)H(Aul + B’U,Q)

B.1
—u101¢ — ug09¢ — Kuzds3( + K(}gg(AUl + BUQ) ( )

that

Q% = —(C + phf)arus — (po + pld + VK 240051 + AK (354 — 9ph0)
— (C+ po + pob) (u1(51U1 — AKdzu1) + u2(0auy — BK Ozu) + KU3(73U1)
((K2 + A% + B? = 1)055u1 — 2AK0tquy — 2BK033u )
1

(KOsK(A? + B> + 1) — 0,(AK) — 05(BK) — A0, K — Boo K )d3uy
(B.2)

Q3 = —(C+ phf)dus = (po + pof + K 003u1 + BK (03q — gpif)
— (C+ po + pt0) (s (Pruz — AK Gyuz) + us(@puz — BKOsus) + Kugdgus )
((K2 + A? + B? — 1)03;uz — 2AK 0{gup — 2BK 035u» )
7

(KOs K(A? + B> + 1) — 0,(AK) — 03(BK) — A0, K — B0y K )d3us
(B.3)

Q3 = (¢ + ppf)drus — (po + pof + Q) K 803us + (1 — K)(03q — gpob)
- (C + po + p66) (U1(81U3 — AK(}gUg) + 1@(0211,3 — BK(‘}g’U,g) + KU3(}3U3>
+ (K — 1)(6%3111 + 653’11,2) + 01 K 03uy + 03K O3us
— 01 (AK(?gug) — AKag(Kagul + O1u3 — AK63U3)
- 62(BK83U3) - BK(?g(K&qu + Oouz — BKag’U,g)
+ 2(K2 — 1)69%3U3 + 2K 03K 03us,
(B.4)
that

Q3 = (1 — K)@gUg + AK0O3uy1 + BKd3uo,

B.5
Q* = —u101m — u2dam, (35
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and that
q—gp+n — 2u(d1u1 — AKO3uy)
Q5 = aln —/,L((91U2 + Oguy — AKO3us — BKé’gul)
—u(@lm, — AK0d3us + Kagul)
—M(61UQ + Oguy — AKO3us — BK&gul)
+ 021 q = gp+n — 2p1(O2uz2 — BK d3us) (B.6)
—M(§QU3 — AK0O3us + K03u2)

(1 — K)(?gul + AKd3us

— K (]. — K)(‘)3U2 + BK0d3ug
2(1 —-]()83u3

The terms F7!(1 < j < 5) in (4.30) are given by
FY = alF = > €Y o] Ajxdr(pod; uy), (B.7)

0<j<l

FPL=0lF? 4+ ) Cf p(Ajwdr (0] Ajmt Omts) + 6 Ajidi ™ 01 (Ajim Omus)

o<j<l
— Y G (pod] Aindndy ¢+ (¢ + p0)2u(8;wa)),
0<j<l
(B.8)
PO = — 3 G o] A (0 wa),
0<j<l
. . (B.9)
FH = N ClolN -8,
0<y<l
FPt=p > CJ (0] (AiNm)Okdy Tt + 0] (AmiNom )00y ;)
o<j<l
o i (B.10)
+ > CloINo (gpn — q).
0<y<l
APPENDIX C. SOME USEFUL ESTIMATES
Product estimate. Suppose that ¥ = Q or T, let f € H*1(X),g € H*2(X),
(1) if 0 < r < s1 <sg and s > r + 3/2, then fge H"(X),
(2) if 0 <r < sp <sgand sy > 3/2, then fge H'(Z).
In both cases, we have
19l 2y < [l )lglla= ), (C.1)

We refer to [8, Lemma 10.1] for the proof of (C.1).

Gagliardo-Nirenberg’s inequality. Let ¥ = Q or " and f,g € H*(X) n L* (%),
we have

I(f D2y S N flmsylglze sy + [ Flze ) lglms =) (C.2)
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Elliptic estimate. Suppose (u, q) solve
—Au+Vqg=¢e H2(Q),
divu =y € H™~Y(Q),

(¢Id — pSu)es = a € H'3/2(%).

For r = 2, we have

[l ) + lalFr—1@) S 101H—2(q) + 131 (q) + lalFr—szq)- (C.3)
thanks to [, Lemma A.15] for example.
Korn’s inequality. The following Korn’s inequality is proven in [17, Theorem
5.12),
[Vul7zi) S [SulZ2(0)- (C4)

Commutator estimates.
Let J = +/1 — 07 — 03 and let us define the commutator
(7%, flg = T*(f9) = fT°9.
We have
117, Ay € IV el e + 17 emldloemy. ()
The proof of (C.5) is similar to that one of [16, Lemma X1].
Interpolation inequality. It can be found in [I, Chapter 5] that

1/(G+1 +1
lullzs oy < lul Sl Tul i i

That implies for € > 0, there is a universal constant C'(j) such that
lulzs o) < elulmivi) + CGe ulL2()- (C.6)
Coefficient estimates. If 1] ys2(ry < 1, we have
IJ = 1oy + N = lze@y + 1K = Uzemw) < [0l mse@- (C.7)

Also, the map © defined by (2.6) is a diffeomorphism. We refer to [9, Lemma
2.4] for the proof of (C.7). In the following lemma, we provide some additional
estimates.

Lemma C.1. Under the assumption |n| gos2ry < 1, the following inequalities hold

||6l(A B)HH () N “atn“Ha+1/2(F) fOT' any 0<I<2and0<s< 4, (CS)

and
1K = Ums@) < Inlg+v2@y for0<s <4,
H(}tKHHS(Q) < HathHsH/z(p) for 0 < s <2, (C.9)
192K Lzs @y < 100y + 1elasmge
and
I(AK, BK)|zs ) < [0l mresrzqy  for 0 < s <4,
|0:(AK, BK) ||+ (o) < [0l gavr2ry  for 0<s <2, (C.10)
02 (AK, BE) 20y % 1020020y + 100ngsm e
and

| A= Id| rs(0) < [Mllzovr2@y  for 0<s <4,
H&tAHHs(Q) < HathHs+1/2(F) for 0<s< 2, (C.ll)
62 A0 20 < 16l aracry + 1012y
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Proof. To prove (C.8), we use Lemma A.1 to obtain
10:(A, B)|l 1=y = 10(018, 020) | 1r=(02) S 1010] 1r++102) S 00] g2 (-

We then claim (C.9). Since K — 1= J (1 —J) = —J 1050, we have
|K = a0y < 17710300 m0) < 101 me+10) < Inllissre -

Owing to Sobolev embedding, Lemma A.1 and the fact that |J—1[ =) < 1 (C.7),
we get

10:K |20y < |71 0:050] 120y + 1T 204 T 030|120
< 00030 12 (02) + 00050 12(02) [ 030 12 (02)
< ol g2y (X + 0] zs2 )
< 0l 2y
Let us use the product estimate (C.1) also, that implies
|0 K |y S 17100030 ) + [T 201030 11 )
< |0:030] () + 0030 112 () [ 036 112 ()
< ol gsrz oy (1 + [0l g7z ry)
< [0l sz ry-
and
10K |20y < 17710000 20y + |20, T 036] 12
< 01030 2y + |0:030| rr2 () 030 12 ()
< |0l gse ooy (X + [0l sz ry)
S HathHWZ(F)'
We continue applying Sobolev embedding, Lemma A.1 and (C.7) to obtain
|07 K| 2y S 1771 07030] 2y + | T72(0:030)% | L2y + | 207 030050 L2 (o
< 102050 20y (1 + 030l rr2(02)) + 00030 12 () 01030 | 112
S Ha?nHHl/Q(F)(l + Il as2@y) + 10| g2 oy |0enl 572 ()
< 00l vz ey + 103y
Hence, (C.9) is proven.

We combine (C.8) and (C.9) to prove (C.10). Note that XK = X(K —1) + X
for X = A or B, we use Sobolev embedding and (C.9) to obtain that

IXKr2(0) < 1X ]2 (1 + [K = 1 z29) < [0 a2
We make use (C.1) and (C.8), (C.9) to obtain
IXK|mo) < X[ m @)1+ K = 1ga@) < Inlwgser)
and if s = 2,3 or 4, we use also Gagliardo-Nirenberg’s inequality to have
XK m:0) € [ X[m0 (1+ K =1 m20) + [ X[ g2 (1 + 1K = 1g:(0)
< [l g1z (ry-
We further obtain
10e( X K) | s ) S 10: X | 1o () + [0:X (K — 1) o) + [ X0 (K — 1)+ -
If s = 0, we use Sobolev embedding and (C.8), (C.9) again to have
[0:(X K )| L2(0) S 106X [ 2200) (1 + | K — 1 g2(0)) + [ X[ m20) [0:K | 2 ()
S N0l gz ooy (L + 1] rs2ry) -
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If s =1 or 2, we use (C.1) and also (C.8), (C.9) to obtain
[0 XE) [ 111 ) S 10X 1) (1 + 1K =13 e) + | X 15| 0K | 110

< |0l garz oy (L + [0l 272 ry)-
or

10X K) |l m2(0) S 10:X [ 2000 (1 + [ K = 1 m2(0)) + 1 X |20 106K | 7202
< 0l o2y (L + [0l o2 (ry)-
Similarly, it can be seen that
107 (X K) | 2() S 107X |20y + 07X (K = 1)] 20) + [0:X 0:(K = 1)] 20
+ | X0H(K = 1) |20
S0FX 21+ [ K = 1 g2(a)) + 106X | 20 0K 20
+ 1 X 2 107 K[| 2 (o)
S ||at277|\H1/2(r)(1 + 0l ws2ry) + 10enl iz oy 10en| sz oy
+ HUHHE’/?(F)(Hat277HH1/2(F) + HatUH?qS/z(r))
S HatﬁH?qS/z(r)'
Thus, the proof of (C.10) is complete.

Note that
[0H(A = 1) | 1) < 01K = D) + [01(AK) |1() + [0(BE) |+ (-
Hence, (C.11) follows from (C.8), (C.9) and (C.10). O

APPENDIX D. PROOF OF LEMMA 3.2

Note that the quotient
2k%(¢'(0)¢(0) — ¢'(—a)d(—a))
a((&1)2 + 2k2(9')2 + K162)ds
is bounded because of the embedding H?((—a,0)) < C*((—a,0)). To prove Lemma
3.2, let us consider the Lagrangian functional

0
206.8) = B( | (@200 + K6y ~1) ~202(6 (0)0(0)~ (~a)o(~a),

—a

(D.1)

for any ¢ € H?((—a,0)). Using Lagrange multiplier theorem again, we find that
the extrema of the quotient (D.1) are necessarily the stationary points (¢, Sx) of
%k, which satisfy

0
J (B0)% + 2K2(8))? + k2 )dus = 1 (D2)
and ’

0
5,4 (670" + 2K 50" + K ¢p.0)das

(D.3)
= k*(63,(0)0(0) + ¢1.(0)0'(0) — ¢},(~a)8(—a) — px(—a)¥'(~a)).
for all € H?((—a,0)).
Taking the integration by parts, we obtain that
0 0
B J_a((/),(f) — 2k @), + k' dn)0dzs + Br(d0' — &0 + 2k760)| D4

= k(¢1,(0)6(0) + ¢1.(0)¢'(0) — ¢, (—a)8(—a) — dr(~a)d'(~a)).
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Restricting 6 € C°((—a, 0)), the resulting equality yields
o — 2k27 + k*pr =0 on (—a,0). (D.5)
Hence, (D.4) tells us that

Brdi(0) = k*¢r(0),
Br (=7 (0) + 2k2¢7,(0)) = k*¢4,(0),

Y ) (D.6)
Brdy(—a) = k*¢r(—a),
Br(=d (—a) + 2k*¢(—a)) = K¢} (~a).
Any solution ¢ of (D.5) is of the form
¢r(x3) = (Axs + B) sinh(kzs) + (Cxs + D) cosh(kzs), (D.7)

with A, B, C, D are four constants such that A2+ B2+C?+D? > 0. Let us compute
from (D.7) that

&% (23) = (A+ kD + kCx3) sinh(kx3) + (C + kB + kAx3) cosh(kxs),
o} (x3) = (2kC + k*B + k* Axs) sinh(kx3) + (2kA + k*D + k*Cx3) cosh(kx3).
and
Y (w3) = (3k*A + k*D + k3C) sinh(ka3) + (3k*C + k> B + k*® Ax3) cosh(kx3).
Substituting these formulas into (D.6), we obtain

{ Br(2kA + k2D) = k2D, (D8

Be(—k2C + k3B) = k2(C + kB),
and
gk( — (2kC + K*(B — Aa))sinh(ka) + (2kA + E2(D — Ca)) cosh(k:a))
= k?(—(B — Aa)sinh(ka) + (D — Ca) cosh(ka)),
5k( — (3k%A + K3(D — Ca)) sinh(ka) + (3k2C + k3(B — Aa)) cosh(ka))
— k228, — 1) ( — (A + k(D — Ca))sinh(ka) + (C + k(B — Aa)) cosh(k;a)).

(D.9)
System (D.8) is equivalent to
KB~ DB = (6 + 1)C, D10)
k(Br —1)D = =28, A.

We also obtain that (D.9) is equivalent to
((—,Bk(k;a sinh(ka) + 2 cosh(ka)) + ka sinh(ka))A + (Br — 1)k sinh(ka)B
+ ((2 sinh(ka) + ka cosh(ka))Bx — ka cosh(ka))C + (=B + 1)k cosh(ka)D = 0,
( — (Br + 1) sinh(ka) + (Br — 1)ka cosh(ka))A + (=Bk + 1)k cosh(ka)B

+<(—ﬂk + 1)kasinh(ka) + (Bx + 1) cosh(ka))C + (Br — 1)k sinh(ka)D = 0.
(D.11)
Substituting (D.10) into (D.11), we deduce

katanh(ka)(—Bk + 1)A + (38 + 1) tanh(ka) + ka(Br — 1))C =0,
(—(3Bk + 1) tanh(ka) + ka(Bx — 1))A + (=B + 1)ka tanh(ka)C = 0.
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Hence, system (D.6) is equivalent to

(B +1)C — k(B — 1)B =0,

28k A+ k(B —1)D =0,

katanh(ka)(—B + 1)A + (tanh(ka)(38k + 1) + ka(Br — 1))C = 0,
(—tanh(ka)(30k + 1) + ka(Br — 1)) A + katanh(ka)(—Fr + 1)C = 0.

System (D.12) admits a nontrivial solution (A, C, B, D) if and only if the determi-
nant of the corresponding matrix is equal to zero. This yields

(5~ 1)* (ko) tanh (ha) (= 1P — (ko) (o= 1P —tand® (h) 381 +1)°) ) = 0.
Equivalently,

(D.12)

k2 (B — 1)%((ka)?(By — 1) — sinh®(ka) (3% + 1)) = 0. (D.13)
We have three possible values of 8, which are solutions of (D.13) and ordered as
sinh(ka) — ka sinh(ka) + ka

1 (multiplicity 2) > — - '
(multiplicity 2) > 3sinh(ka) + ka - 3sinh(ka) — ka

Let us take the maximal value g = 1. Clearly, we obtain A = C' = 0 from
(D.10) and

¢r(x3) = Bsinh(kzs) + D cosh(kzs).
Substituting the above ¢ into (D.2), we have

0 0
1
J (Bsinh(kxs) + D cosh(kxs3))?dxs + J (D sinh(kz3) + B cosh(kxs))?drs = s
Equivalently,
0 0 1
(B? + DQ)J cosh(2kzy)dwy + 2BD | sinh(2kzs)dry = oo
We directly have
1. 2 2 : 2 1
3 sinh(2ka)(B* + D?) — 2sinh“(ka)BD = 53
This yields
D is arbitrary and
2 sinhQ(ka)i\/sinh2(ka)(2 cosh?(ka)+cosh(2ka)) D2+ k% sinh(2ka) (D14)

2 sinh(2ka)

sinh(ka)+ka

~ Femh(ha)—Fa It can be seen from

Let us consider the minimal value B =

(D.12) that
_ sinh(ka) + ka _ cosh(ka) — 1
~ 2ksinh(ka) A4, ~ sinh(ka) D19
and .
B__ (sinh(ka) — ka)(cosh(ka) — 1)A. (D.16)

2k sinh? (ka)
Hence, ¢x(x3) = Azp(x3), where
(sinh(ka) — ka)(cosh(ka) — 1)
2k sinh? (ka)
<cosh(ka) -1 sinh(ka) + ka
- T3 — -
sinh(ka) 2k sinh(ka)

zk(z3) = (xg - ) sinh(kx3)

) cosh(kxs).
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To find A, we trace back to (D.2). That means

0
AQJ ((z1)? + 2K%(2},)* + k*23)dxs = 1. (D.17)
—a

From the above cases, we conclude that

L 0)90) ~ ¢ (~ad(-a)
veH?(—a.0) 0 ((¢")2 + 2k2(¢')2 + k¢?)dus
That variational problem is attained by functions
¢(z3) = Bsinh(kzs) + D cosh(kxs),
where B, D satisty (D.14).

2k%(¢'(0)(0) — ¢'(—a)d(—a)) sinh(ka) + ka

¢6H§[(1(1£1a70)) Sga((qy/)z + 2K2(¢)2 + k12 das ~ 3sinh(ka) — ka
That variational problem is attained by functions

¢(x3) = (Azs + B) sinh(kzs) + (Cxs + D) cosh(kxs),
where A, B, C, D satisfy (D.17), (D.16) and (D.15).
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