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BLIND QUALITY OF A 3D RECONSTRUCTED MESH

Rémy Alcouffe, Simone Gasparini, Géraldine Morin, Sylvie Chambon

University of Toulouse, IRIT – Toulouse INP, France

ABSTRACT

This paper proposes blind mesh quality measures for a recon-
structed 3D model. The assessment of 3D model quality is a
fundamental step in the process of 3D reconstruction, to ef-
ficiently and iteratively improve the model quality. We first
prove that metrics based on a reference model (extrinsic met-
rics) that have been shown to be correlated to subjective in-
terpretation, are able to capture flaws that may occur while
reconstructing. However, no reference is available during an
iterative reconstruction process, so we study intrinsic mea-
sures on a 3D model to evaluate the quality of the 3D model
being reconstructed. As expected, our results show that these
intrinsic metrics give high responses in regions locally cor-
rupted by noises.

Index Terms— 3D mesh, extrinsic and intrinsic quality
evaluation, iterative 3D reconstruction.

1. INTRODUCTION

Digital 3D models are present in numerous domains such as
Computer Aided Design (CAD), to model technical parts, in
cinema to produce animated films, or for cultural heritage
conservation. More recently, new technologies like the Meta-
verse induce high demand for 3D content. Such models can
be generated with 3D reconstruction algorithms based on im-
ages [1, 2, 3], or from data acquired by a depth sensors such
as LiDAR (Light Detection and Ranging) sensor [4, 5, 6]. Al-
though these approaches are now reliable and efficient, and
can even generate very large scale models [7], the quality of
the generated models is, in general, limited by the data acqui-
sition phase. Indeed, these reconstruction techniques require
manual acquisition of data and the choice of shots is the re-
sponsibility of the operator who follows general qualitative
rules to find a compromise between the capture overlapping
and the acquisition of the whole scene [8, 9]. The position and
orientation of the sensors w.r.t. the object surfaces are also im-
portant and can lead to a non-uniform mesh density or holes
in different parts of the scene [10] and, as a consequence, to
non-homogeneous level of detail at different locations of the
object (see Figure 1).

To overcome these issues, new acquisitions are needed
and the problem of finding a new acquisition point is referred
to as the Next Best View (NBV) [11]. The NBV allows to

Fig. 1: Common issues of reconstruction 3D algorithms. (1)
is a hole in the mesh, (2) shows a non-uniform density.

reconstruct missing parts of the models or to improve the 3D
model by estimating the optimal point of view of the next ac-
quisition. To this end, we need a metric to identify the regions
of the reconstructed object that need to be improved.

In this paper, we propose a state of the art review of the
existing metrics to locally evaluate the 3D model quality (ex-
trinsic and intrinsic). We then evaluate the pertinence of the
existing metrics for the reconstruction of 3D models. Finally,
we introduce a new metric QLR, which is a second order ex-
tension of the PLR metric; we show that QLR is able to detect
regions of the 3D model that are poorly reconstructed. Inten-
sive experiments confirm the interest of using these intrinsic
measures for identifying the parts of the object with a lower
quality.

2. EXTRINSIC METRICS

Model comparison metrics, that we denote extrinsic, are the
most commonly used. Indeed, most of the metrics for assess-
ing the quality of 3D models have been introduced to evaluate
compression or watermarking algorithms [12, 13]. We con-
sider state-of-the-art 3D model difference measurements. The
Hausdorff distance is the simplest and most used [14]. Then
completeness and accuracy measures [15] are an evolution of
the Hausdorff distance dedicated to evaluate the quality of a
complete 3D reconstruction, so these measures are particu-
larly relevant to our targeted context. The last three measures
we consider [16, 17, 18] are derived from 3D modelling and
are of great interest since they are able to quantify a percep-
tual quality. Let us denote (Vr,Sr), respectively the point set



of the reference model and its surface, and (V,S) the same
elements for the reconstructed model.

2.1. Asymmetric Hausdorff distances

The asymmetric distance [14] is defined as :

d(Sr,S) := max
vr∈Vr

min
v∈V

δ(vr, v)︸ ︷︷ ︸
d(vr,S)

(1)

where δ(x, y) represents the Euclidean distance in R3. The
distance d(vr,S) can be used to create a distance map to vi-
sualize the closest points from the reference model.

2.2. Completeness and Accuracy

Accuracy [15] measures how close a model S is to a reference
model Sr: it is defined as the distance dTa

, such as Ta% of the
points from the reconstructed model S are at a distance, given
by d(v,Sr) , less than dTa

of the reference model. Complete-
ness [15] measures how much of Sr is modeled by S by com-
puting the distance d(vr,S) : it is then defined as the percent-
age of points that are within a distance dc of the reconstructed
model. The choice of the two thresholds Ta and dc is clearly
fundamental as they introduce a natural filtering of the metric
(a noise whose amplitude is less than the distance dc will not
be detected). These metrics only rely on geometrical charac-
teristics while Human Visual System (HVS) is more sensitive
to curvature variations and distortions. The following metrics
aim at addressing these specificities of the HVS.

2.3. Mesh Structural Distortion Measures

The Mesh Structural Distortion Measure (MSDM) [16] is in-
spired by the Structural SIMilarity Measure (SSIM), intro-
duced by Wang et al. [19]. While SSIM is based on the grey
levels, MSDM uses curvature. Thus, the authors use µ et σ,
respectively the mean and standard deviation of the curvatures
in a given neighborhood. Similar to SSIM, the MSDM mea-
sure relies on the computation of three elements: L (resp. C)
is the relative difference of µ (resp. σ) between the neighbor-
hoods ṽr and ṽ and the structure S is defined as follows:

S(ṽr, ṽ) =
∥σṽrσṽ − σṽrṽ∥
σṽrσṽ +K

. (2)

The authors recommend using a radius r of ṽ equivalent to
1.5% of the bounding box diagonal. The constant K is in-
troduced to avoid zero-division. These three differences are
combined using a Minkowski metric to obtain a local com-
parison function: Local MSDM (LMSDM).

Subsequently, a multiscale improvement MSDM2 was
proposed by the authors [17] in which the same principle as
MSDM is applied at different scales. In the framework of
3D models, the scale corresponds to the radius of the local

Fig. 2: 3D model with local noise (yellow regions, left image)
and the local response of the MSDM2 metric (right model,
blue corresponds to low values, red to high ones).

neighborhood used to calculate the curvatures. Their user
study has shown the strong correlation of MSDM metrics
with subjective quality. Moreover, at the perceptual level,
taking into account different scales enhance the similarity to
the HVS, so MSDM2 is even more correlated to subjective
quality. The distortion maps from the different scales are then
summed and normalised to obtain a general distortion map:
Multiscale Local Distortion, MLD (see Figure 2).

2.4. Dihedral Angle based metrics

Dihedral Angle Mesh Error (DAME) [18]. The surface
roughness is assumed to be proportional to the dihedral angles
between neighbor faces. Since the human eye cannot discern
small distortions on a rough surface, the authors propose to
keep only dihedral angles of large amplitude. Moreover, they
also filter according to a visibility criteria.
Reduced reference metric [20]. Abouelaziz et al. proposed a
statistical analysis of the dihedral angle distributions between
the reference and the reconstructed mesh. More precisely,
they compare the local distributions (Gamma and Weibull) of
the dihedral angles. This objective metric shows good corre-
lation with the perceptual user study proposed by [16]. How-
ever, the objective of this metric is to evaluate the visual per-
ception quality of the object, and not detecting distortions,
like the previous metrics.

3. INTRINSIC METRICS

During a 3D reconstruction process a reference model is, in
general, not available; it is thus necessary to define intrinsic
metrics that only rely on characteristics of the reconstructed
model. Methods to blindly assess the quality of a 3D model
are usually based on intrinsic properties of the model, such
as curvature [21], dihedral angles [22], multiscale saliency
maps [23], or local roughness [24]. These methods often use
a training dataset whose models are distorted (e.g. by adding
noise or applying smoothing) and then evaluated by the users,
creating a subjective and global measure for each model that
correlates [21] or aggregates [25] multiple intrinsic measures



into a Mean Opinion Score. These kind of metrics are in-
teresting but are not adapted for our NBV context since they
generally output a global numerical value for the model qual-
ity, whereas we are interested in a local score to determine the
parts of the mesh that are potentially poorly reconstructed.

In the following, we consider intrinsic measures used to
compose the global score of blind methods and we study how
suitable they are for detecting distortions introduced by the
3D reconstruction algorithms (non-uniform point density or
local noises). All those metrics are defined according to a k-
ring neighborhood that will define the different scales of our
metrics. As in MSDM2, we combine the different scales us-
ing a simple sum, that is, the arithmetic mean of the measure
values on the successive k-neighborhoods.

3.1. Plane Local Roughness

Rodriguez et al. [26] propose a local roughness measure as
the distance between the considered point and the best fit-
ting plane to the point and its neighbors. Similarly, we intro-
duce the Plane Local Roughness (PLR) for each vertex as the
distance to the local tangent plane estimated over its k-ring
neighborhood, instead of a r-radius sphere neighborhood. We
consider the mean, respectively the median, of the PLR over
its k-ring neighborhood. The PLR gives us an information on
a first order local approximation.

3.2. Mean curvature

Meynet et al. [27] introduced a mean curvature measure at
vertices of a 3D mesh. For each vertex v of the mesh we
consider its k-ring neighborhood ṽ and we compute the least
square fitting of a quadric Qṽ(v) : zi = ax2

i + by2i + cxiyi +
dxi + eyi + f , where vi = (xi, yi, zi) ∈ ṽ. This equation
is computed in a local orthonormal frame whose origin is the
barycenter of the k-ring neighborhood and such that Z is in
the direction of the underlying surface normal computed us-
ing a Principal Components Analysis (PCA). The mean cur-
vature is then defined by the derivatives of Q as

C(v) =
(1 + d2)a+ (1 + e2)b− 4abc

(1 + e2 + d2)
3
2

. (3)

3.3. Quadric Local Roughness

Similarly to the PLR, after the estimation of the best fitting
quadric of the neighborhood, we defined the Quadric Local
Roughness (QLR) for a vertex of the mesh as the fitting error
of the quadrics computed for the mean curvature.

QLR(v) = |Qṽ(v)− f |, (4)

We consider the mean, respectively the median, of the
QLR over its k-ring neighborhood ṽ. The QLR gives us
an information on a second order local approximation.

4. EXPERIMENTS AND RESULTS

We conduct our experiment on various 3D models (see Fig-
ure 3) on which we have applied 37 deformations of different
nature (decimation, global noise, local noises), frequency, in-
tensities and support, leading to an experimental dataset of
304 models [28] (see Figure 3).

Fig. 3: At the top, 3D models used for the study and, at the
bottom, from left to right, a reference model, a noisy model,
a local noisy model, and a reconstructed model.

In order to compare metrics results on a modified model,
we use the global definition of MSDM and MSDM2 [17] ob-
tained by using a Minkowski pooling; this choice is relevant
for perceptual data. We thus also apply Minkowski pooling
for having a global score for the proposed intrinsic metrics
(PLR, QLR and mean curvature). We have validated (not
shown here) our implementation of the extrinsic metrics by
assessing their value monotonously decreases on a gradually
decimated model.
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Fig. 4: Extrinsic metrics evolution, for a fixed number of
noise germs: 0.5% of the number of vertices of the mesh.

The extrinsic measures have the expected behavior, i.e.
the responses are correlated to the level of noise on the model
(see Figure 4 and 5). Moreover, MSDM2 is not only able to
highlight reconstruction defaults as the scores given by this
metric increases monotonously both, with the augmentation



of the noise level, and with the augmentation of the number
of corrupted regions (see Figure 6); moreover, MSDM2 has
been shown to be correlated to perception [17]. On the other
hand, DAME (see Figure 5) does not respond as expected as
it is not strictly monotonic.
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Fig. 5: Extrinsic metrics evolution. All of them are strictly
monotonic, except for DAME and completeness.
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Fig. 6: MSDM2 evolution according to the percentage of
noises (colored curves).

In order to assess if the intrinsic measures give a good re-
sponse in corrupted areas, we compute the difference between
the measure response on the deformed and the reference mod-
els. These difference maps (see Figure 7) show that high re-
sponses are located in the regions corrupted by noise. The
intrinsic global difference measures associated with PLR and
QLR also vary monotonously with the variation of both num-
ber of corrupted regions and their amplitude (see Figure 8).

Fig. 7: From left to right: deformation zones of the model
and the difference maps for the median QLR and mean PLR
response.

Mean curvature gives an information of the local geome-
try and enables to detect high curved zones that are known to
be difficult to reconstruct. Moreover, using the curvature as a
global score is challenging because its range of values is not
bounded and highly dependant of the particular geometry of
each model. In future work, we could rather use the curvature
as a indicator for the required point density.
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Fig. 8: QLR evolution on the dataset models according to the
percentage of local noise (colored curves).

The experiments show that the PLR and QLR metrics
have a greater response on the deformed models than on the
reference one, thus indicating they can detect the presence of
3D reconstruction defaults. The mean and median responses
are quite similar in our experiments because of the nature the
noise we applied, we do not have points that can be consid-
ered as outliers. Besides, the median might hide high values,
that is, a high curvature zones, that represent interesting parts
of the object that the reconstruction should focus on. Note
that, the intrinsic metrics do not respond only on the defaults
but also on sharp and salient zones of the object (e.g. for the
lion’s mane on Figure 9).

Fig. 9: Local responses to the deformations (yellow regions,
leftmost image) of the mean curvature, QLR and PLR on a
3-ring neighborhood, respectively.

5. CONCLUSION AND PERSPECTIVES

Our experiments show that the considered intrinsic metrics
have in general a higher response on the deformed zones of
the objects but their response also focus on the salient and
sharp zones of the object. The next step is to combine these
intrinsic metrics in a NBV pipeline, to guide users in the
choice of the viewpoint that could improve the poorly recon-
structed regions.
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3d point clouds,” in International Conference on Quality of Multimedia
Experience (QoMEX), 2019.

[28] R. Alcouffe, S. Gasparini, G. Morin, and S. Chambon, “Dataset and
deformation scripts,” https://github.com/ralcouff, 2022.

https://github.com/ralcouff

	 Introduction
	 Extrinsic Metrics
	 Asymmetric Hausdorff distances
	 Completeness and Accuracy
	 Mesh Structural Distortion Measures
	 Dihedral Angle based metrics

	 Intrinsic metrics
	 Plane Local Roughness
	 Mean curvature
	 Quadric Local Roughness

	 Experiments and results
	 Conclusion and perspectives
	 References

