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Preface

The material in this volume is based on the Peccot Lecture (Cours Peccot) given by
the author at the Collège de France in March and May 2020. The videos of the lecture
are available at https://www.college-de-france.fr/site/cours-peccot/
guestlecturer-2019-2020__1.htm.

The goal of this volume is to present recent developments regarding the real
homotopy type of configuration spaces of manifolds. Given a space 𝑀 (usually a
manifold) and an integer 𝑟 ≥ 0, the 𝑟th configuration space Conf𝑀 (𝑟) is the space of 𝑟
ordered pairwise distinct points in𝑀 . These are classical objects that already implicitly
appear in the work of Hurwitz [Hur91] (1891) and have been studied in detail since at
least the 1960s [FN62a]. These spaces have appeared since then in numerous contexts:
one can mention braid groups [FN62b], iterated loop spaces [BV68; May72], moduli
spaces of curves [Get95], Gelfand–Fuks cohomology [CT78], Goodwillie–Weiss
manifold calculus [Tur13; BW18], factorization homology [Lur09b; Fra13; AF15;
AFT17], motion planning [Far03], robotics [Ghr01; Far18], etc.

Despite their apparent simplicity, configuration spaces remain intriguing objects
that are ubiquitous in topology and geometry. A basic question is homotopy invariance,
which has remained open for decades: if two spaces 𝑀 and 𝑁 can be continuously
deformed into one another, then can the same be done for their configuration spaces
Conf𝑀 (𝑟) and Conf𝑁 (𝑟)? This is clearly wrong in general, but there is evidence
that this is true for closed manifolds thanks to work of Bödigheimer, Cohen, and
Taylor [BCT89], Bendersky and Gitler [BG91], Levitt [Lev95], Aouina and Klein
[AK04], Kriz [Kri94], Totaro [Tot96], and Lambrechts and Stanley [LS04; LS08a]. A
counterexample due to Longoni and Salvatore [LS05] forces us to restrict to simply
connected manifolds.

In this volume, we plan to explain why this conjecture holds over the reals, i.e. if
we restrict our focus to algebro-topological invariants defined over the field R. We
will also explain how a generalization of this conjecture also holds for manifolds
with boundary. This is achieved by proving a conjecture of Lambrechts and Stanley
[LS08a]. They built a certain commutative differential-graded algebra (CDGA) in
the closed case and they conjectured that is is a model of Conf𝑀 (𝑟) (in the sense of
the real homotopy theory of Sullivan [Sul77]). This CDGA had previously appeared
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viii Preface

in various forms in the works of several authors, in particular Cohen and Taylor
[CT78], Kriz [Kri94], Totaro [Tot96], Berceanu, Markl, and Papadima [BMP05], and
Félix and Thomas [FT04]. One of the main goals of the volume is to show that this
CDGA is a model in the closed case, and moreover that a generalization of the model
exists in the case of manifolds with boundary. Since this CDGA only depends on
the real homotopy type of 𝑀 , this proves that real homotopy invariance holds. The
fact that we have full models also enables one to make concrete computations about
configuration spaces, e.g. their cohomology or their homotopy groups.

The basis for the proof of this result is the proof of Kontsevich [Kon99] of the
formality of the little disks operads. The proof involves many different ingredi-
ents: (i) rational/real homotopy theory of Sullivan models [Sul77]; (ii) the (Axel-
rod–Singer–)Fulton–MacPherson compactifications of configuration spaces [AS94;
FM94; Sin04]; (iii) the theory of piecewise semi-algebraic forms on semi-algebraic
sets [HLTV11]; (iv) the mathematical physics’ notion of a propagator; (v) Kontsevich
integrals, a version of which originally appeared in the study of knot invariants [BC98];
and (vi) combinatorial arguments on graphs complexes. We plan to introduce the
theory behind all these ingredients in an accessible way, and explain how they all
fit together to form the proof. We will also explain how a key point of the proof
is a simple degree-counting argument that works for manifolds that are at least
four-dimensional. This argument can be philosophically explained as the fact that the
partition function of the Poisson-𝜎 model on these manifolds is trivial.

In addition to the ingredients mentioned above, the theory of operads plays an
important role. The notion of an operad was introduced around five decades ago to
study iterated loop spaces [BV68; May72] and has seen, since then, a large number of
uses. Briefly, an operad is an algebraic object which encodes a category of algebras
(e.g. the category of associative algebras, or the category of commutative algebras).
There is an intimate relationship between configuration spaces of manifolds and
certain operads called the little disks operads. The salient point of this relationship is
that the little 𝑛-disks operad acts (up to homotopy) on the configuration spaces of a
framed 𝑛-manifold.

The results we plan to explain are all compatible, in a appropriate way, with the
action of the little disks operads on configuration spaces. This compatibility has
important consequences. In particular, it allows one to compute factorization homol-
ogy, a homology theory for manifolds that classifies all fully extended topological
quantum field theories according to a result of Lurie. (Note that dually, it would also
enable one to compute embedding spaces between manifolds using Goodwillie–Weiss
calculus, as was e.g. recently done by Fresse, Turchin, and Willwacher [FTW17]
for Euclidean spaces using Kontsevich formality.) We also plan to explain how a
result of Knudsen [Knu18b] about factorization homology with coefficients in higher
enveloping algebras of Lie algebras can be recovered using the Lambrechts–Stanley
model.

This volume is intended for graduate students and researchers in algebra, topology,
or geometry. We try not to assume too much of a knowledge from the reader, and
whenever possible we give pointers to the existing literature for background or
further developments. Some background on algebraic topology remains required, and
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Preface ix

some knowledge of (differential) geometry will help understand the finer points of
semi-algebraic theory.

Unless otherwise indicated, the results presented in these notes come from the
two papers [Idr19; CILW18]. Few new results are contained in these notes, although
some new illustrative examples are worked out.
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Chapter 1
Introduction

Abstract In this introduction, we give a broad overview of the lecture. We briefly
introduce configuration spaces, their historical appearances, and their applications.
We then explain the context of the homotopy invariance conjecture and present
the main results of the later chapters. We conclude by a brief explanation of the
relationship between configuration spaces and operads, an algebraic device that
encodes categories of algebras.

1.1 Configuration spaces of manifolds

Let𝑀 be a fixed topological space and 𝑟 ≥ 0 an integer. The 𝑟th (ordered) configuration
space of 𝑀 , denoted by Conf𝑀 (𝑟), consists in the ordered collections of 𝑟 pairwise
distinct points in 𝑀 . See Figure 1.1 for an illustration.

1

2

3

4

Fig. 1.1 An element of ConfΣ2 (4) , where Σ2 is the oriented surface of genus 2.

Configuration spaces are classical objects in algebraic topology, as we will see
in Chapter 2. They have been studied since the 1960’s [FN62a; FN62b], and they
already appeared implicitly in the work of Hurwitz [Hur91] in 1891 (see [Mag74]) as

1
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2 1 Introduction

well as in the work of Artin [Art47]. Although they initially appeared in the study of
braid groups, configuration spaces have proved useful in numerous settings. As an
example of particular interest to us, they can be used to define invariants of manifolds,
i.e. locally Euclidean spaces.

Despite the apparent simplicity of their definition, configuration spaces are
intriguing objects. One of the main questions in the study of configuration spaces is
to know the extent of how the structure of 𝑀 determines the structure of Conf𝑀 (𝑟). It
is clear that two homeomorphic (resp. diffeomorphic) manifolds have homeomorphic
(resp. diffeomorphic) configuration spaces. However, if a manifold 𝑁 can be obtained
from a manifold 𝑀 by a continuous deformation, i.e. a homotopy equivalence, then it
is not clear that the configuration spaces of 𝑁 be obtained from the configuration
spaces of 𝑀 by a continuous deformation. Homotopy equivalences are not always
injective and therefore may not even induce maps between configuration spaces.

If the question is stated in such a naive manner, then it is in fact clear that the answer
is no. For example, the configuration space of two points in the real line, i.e. a plane
with a diagonal removed, does not have the same homotopy type as the configuration
space of two points in a singleton, which is empty. Easy counterexamples given by
open manifolds of the same dimension also exist. It was conjectured for years that,
if this question was restricted to closed manifolds, i.e. compact manifolds without
boundary, then the answer was yes. However, after the discovery of a counterexample
by Longoni and Salvatore [LS05], the conjecture was restricted even further to simply
connected closed manifolds and remains open to this day. An analogous conjecture
about configuration spaces of simply connected manifolds with boundary is also
open.

In this lecture, we will focus on only part of the homotopy types of the spaces
involved: the rational (or real) homotopy types. Rational homotopy theory is the study
of topological spaces modulo torsion, in some sense. This idea goes back to the work
of Serre [Ser53] and was developed by Quillen [Qui69] and Sullivan [Sul77]. In short,
we say that two space have the same rational homotopy type if they can be connected
by a zigzag of maps which induce isomorphisms on rational homotopy groups.
Although one obtains less information on topological spaces in the framework of this
theory, rational homotopy types have the undeniable advantage of being computable.
Indeed, the rational homotopy type of a (nice enough) topological space is completely
determined by purely a algebraic piece of data called a model. A model of a space
𝑋 is a commutative differential-graded algebra (CDGA) with rational coefficients
which is quasi-isomorphic to the CDGA Ω∗PL (𝑋) of piecewise polynomial forms
on 𝑋 . One can show that two spaces have the same rational homotopy type if and
only if they admit quasi-isomorphic models. A model of 𝑋 can be used to perform
numerous computations: the rational cohomology of 𝑋 and its cup product, the
rational homotopy groups of 𝑋 and their Whitehead brackets, the Massey products,
etc. In the framework of real homotopy theory, rational coefficients are replaced by
real coefficients. Real models contain slightly less information than rational models,
because two spaces can have the same real homotopy type but different rational
homotopy types. However, real models remain sufficient for most computations. One
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1.2 Configuration spaces of closed manifolds 3

of our main goals, in this lecture, will be to find models for the real homotopy types
of configuration spaces of manifolds.

Manifolds are all built with the elementary “brick” given by the Euclidean
spaces R𝑛. It is thus natural to start with the study of configuration spaces of
Euclidean spaces. The cohomology of the configuration spaces of R𝑛 have been
known since the work of Arnold [Arn69]. The algebra 𝐻∗ (ConfR𝑛 (𝑟)) admits
a presentation which reflects the fact that ConfR𝑛 (𝑟) is obtained from (R𝑛)𝑟 by
removing the diagonals Δ𝑖 𝑗 B {𝑥 ∈ (R𝑛)𝑟 | 𝑥𝑖 = 𝑥 𝑗 }, whose intersections satisfy
Δ𝑖 𝑗 ∩ Δ 𝑗𝑘 = Δ 𝑗𝑘 ∩ Δ𝑘𝑖 = Δ𝑘𝑖 ∩ Δ𝑖 𝑗 . More precisely, 𝐻∗ (ConfR𝑛 (𝑟)) is generated by
classes 𝜔𝑖 𝑗 (for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟) of degree 𝑛 − 1 which satisfy the relations 𝜔2

𝑖 𝑗
= 0,

𝜔 𝑗𝑖 = (−1)𝑛𝜔𝑖 𝑗 , and, for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖, the three-term relations (commonly called
“Arnold relations”) 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔 𝑗𝑘𝜔𝑘𝑖 + 𝜔𝑘𝑖𝜔𝑖 𝑗 = 0.

Arnold [Arn69] moreover proved that 𝐻∗ (ConfR2 (𝑟)) is a model of ConfR2 (𝑟)
through an ad-hoc argument using complex analysis. This is an instance of a special
situation called formality (a space 𝑋 is called formal if 𝐻∗ (𝑋) is a model of 𝑋).
Arnold’s proof does not easily generalize to higher dimensions. However, a different,
more involved proof of the formality of the spaces ConfR𝑛 (𝑟) (for all 𝑛 ≥ 2 and all
𝑟) was found by Kontsevich [Kon99] (see also Lambrechts and Volić [LV14]). We
thus get a simple, explicit description of the rational homotopy type of ConfR𝑛 (𝑟).
This more general proof will be used as a basis for the determination of models of
configuration spaces of manifolds.

1.2 Configuration spaces of closed manifolds

Let us now turn our attention to closed manifolds, i.e. compact manifolds without
boundary. We also restrict ourselves to simply connected manifolds, i.e. ones in which
closed loops can all be contracted continuously to a point.

The model of ConfR𝑛 (𝑟) found above was used as a foundation to build candidate
models for configuration spaces of simply connected closed manifolds. These
candidates appeared in various shapes in the works of several authors [CT78; Kri94;
Tot96; BG91; LS04; FT04; BMP05; LS08a; Cor15] (see Remark 3.16 for historical
remarks). They are built in the following way. Let 𝑀 be a simply connected closed
manifold of dimension 𝑛. We can find a model 𝐴 of 𝑀 which satisfies Poincaré duality
at the level of cochains thanks to a theorem of Lambrechts and Stanley [LS08b].
The candidate model of Conf𝑀 (𝑟), denoted G𝐴(𝑟), is built from 𝐻∗ (ConfR𝑛 (𝑟)) by
adding a tensor factor 𝐴⊗𝑟 and by modding out by the relations 𝑝∗

𝑖
(𝑎)𝜔𝑖 𝑗 = 𝑝∗𝑗 (𝑎)𝜔𝑖 𝑗

(for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟 and 𝑎 ∈ 𝐴). These relations reflect the fact that the two canonical
projections 𝑝𝑖 , 𝑝 𝑗 : 𝑀𝑟 ⇒ 𝑀 are equal when they are restricted to the diagonal Δ𝑖 𝑗 .

Unlike ConfR𝑛 (𝑟), the spaces Conf𝑀 (𝑟) are rarely formal for closed manifolds 𝑀 .
The model G𝐴(𝑟) must thus have a nonzero differential. This differential is the sum
of the internal differential (induced by 𝑑𝐴) and the unique derivation which maps 𝜔𝑖 𝑗
to the class corresponding to the diagonal Δ𝑖 𝑗 , also (abusing notation) denoted by
Δ𝑖 𝑗 ∈ 𝐴 ⊗ 𝐴.
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4 1 Introduction

This model G𝐴(𝑟) is conjectured to be a rational model of Conf𝑀 (𝑟) [FOT08,
Conjecture 9.9]. Since it only depends on 𝐴, a positive answer to this conjecture
would lead to a positive answer for the rational homotopy invariance conjecture. The
main result of Chapter 3, which comes from the article [Idr19], is the following.

Theorem 1.1 Let 𝑀 be a smooth simply connected closed manifold and let 𝑟 ≥ 0
be an integer. Let 𝐴 be a Poincaré duality model of 𝑀. The CDGA G𝐴(𝑟) is a real
model of Conf𝑀 (𝑟).

Corollary 1.2 If two smooth simply connected closed manifolds have the same real
homotopy type, then so do their configuration spaces.

Similar results have been obtained simultaneously by Campos and Willwacher
[CW16]. The proof, which takes up most of Chapter 3, is an adaptation and a
generalization of the proof of Kontsevich [Kon99] mentioned above. One of the main
ingredients of the proof is the theory of graph complexes. Graph complexes as we use
them were introduced by Kontsevich [Kon93] in the study of invariants of 3-manifolds.
Since then, the interest for graph complexes has been growing considerably. We refer
to Willwacher [Wil18] for a survey. For us, one of the main uses of graph complexes
is that they provide a resolution (in the sense of homological algebra) of the Arnold
and symmetry relations. Indeed, as we will see, the CDGA of graphs is free as a
graded commutative algebra. All the complexity is hidden in the differential. This
can philosophically be interpreted as the fact that the Arnold and symmetry relations
are satisfied up to homotopy.

Let us now quickly describe the graph complexes that we are going to use. As
a vector space, the graph complex is spanned by formal linear combinations of
isomorphism classes of graphs. The graphs have two kind of vertices: numbered
“external” vertices which represent fixed points in 𝑀 , and indistinguishable “internal”
vertices that represent mobile points in 𝑀. Each vertex is decorated by an element
of a model of 𝑀 . The differential consists in three summands: contraction of edges
incident to internal vertices, application of the the internal differential of the model to
decorations, and cutting of edges and replacing them with diagonal classes, just like
in G𝐴(𝑟). The model G𝐴(𝑟) is a quotient of this graph complex by the ideal generated
by graphs containing internal vertices.

To show that graph complexes form a model of Conf𝑀 (𝑟), we use an integration
procedure, on all the possible positions of the mobile points. To ensure that these
integrals converge, it is necessary to compactify configuration spaces. The com-
pactifications that we use, called the Fulton–MacPherson compactifications [AS94;
FM94; Sin04], are obtained by adding a boundary to the open manifold Conf𝑀 (𝑟).
This boundary contains virtual configuration where points are allowed to become
infinitesimally close to one another. The integrals mentioned earlier are computed
along the fibers of the canonical projections that forget the moving points. When
these projections are extended to the compactifications, they are not submersions
anymore, but merely semi-algebraic (SA) fiber bundles. It is thus not possible to
compute the integrals of usual de Rham forms along the fibers of these projections.
To solve this problem, we use piecewise semi-algebraic (PA) forms. The study of
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1.3 Configuration spaces of manifolds with boundary 5

such form was initiated by Kontsevich and Soibelman [KS00] and further developed
by Hardt, Lambrechts, Turchin, and Volić [HLTV11].

The full definition of the graph complex model above depends on similar integrals,
indexed by graphs that only contain internal vertices. These integrals themselves
depend, a priori, on the semi-algebraic structure of the manifold. Two homotopy
equivalent manifolds may not always produce the same integrals. One of the key
points of our proof is the fact that these integrals actually vanish when the manifold
is simply connected and its dimension is at least 4. This allows us to establish the
(real) homotopy invariance of our models.

Remark 1.3 If the dimension of the manifold is less than 4, then the proof is completely
different: the only possible manifolds are sphere, by the classification of surfaces and
the Poincaré conjecture (see Perelman [Per02; Per03]).

1.3 Configuration spaces of manifolds with boundary

In Chapter 4, which mainly relates the results of the article [CILW18] (joint with
Campos, Lambrechts, and Willwacher), we generalize the previous results to manifolds
with boundary. One of the main objectives of this endeavor is to provide a way to
reconstitute the configuration spaces of a complicated manifold from the configuration
spaces of simpler submanifolds. This idea is omnipresent in algebraic topology, and
particularly in topological quantum field theory, which motivates the following. For
example, one can obtain an oriented surface of genus 𝑔 by gluing 𝑔 cylinders on a
sphere with 2𝑔 holes (see Figure 1.2 for 𝑔 = 2). This can classically be used e.g. to
compute the cohomology of that surface.

The classical case is when a manifold is of the form𝑀∪𝑁×R𝑀 ′, obtained by gluing
two submanifolds 𝑀, 𝑀 ′ along a collar of their common boundary 𝑁 = 𝜕𝑀 = 𝜕𝑀

′

(see Figure 4.1). The collection of configuration spaces Conf𝑁×R = {Conf𝑁×R (𝑟)}𝑟 ≥0
is endowed with the structure of a monoid up to homotopy (Figure 4.2). Moreover, the
collection Conf𝑀 (resp. Conf𝑀 ′) is endowed with the structure of a left (resp. right)
module up to homotopy over Conf𝑁×R (Figure 4.3). The “derived tensor product”
Conf𝑀 ⊗LConf𝑁×R Conf𝑀 ′ has the homotopy type of the collection Conf𝑀∪𝑁×R𝑀 ′ .
This procedure allows us to compute homotopy types of configuration spaces in an
inductive manner.

After some preliminaries, in a first part, we will introduce a model for configuration
spaces which reflects these algebraic structure of monoid/module. We will first
describe compactifications of Conf𝑁×R and Conf𝑀 which are similar to the Fulton–
MacPherson compactifications. These compactifications form respectively a strict
monoid and a strict module. Moreover, they enable us to compute integrals along fibers
(although the projections remain semi-algebraic fiber bundles rather than submersions).
Just like in Chapter 3, we will define models for these compactifications based on
graph complexes. These models will be spanned by graphs whose vertices are
decorated by a model of the pair (𝑀, 𝜕𝑀). The monoid/module algebraic structure
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6 1 Introduction

Fig. 1.2 The surface Σ2 obtained by gluing a sphere with four holes (blue) together with two
cylinders (red and green).

is given, on graph complex, by the operations which consist in partitioning a graph in
two and in replacing cut edges by appropriate decorations.

These models still depend on integrals. We can show that the integrals used to
define the model for Conf𝑁×R always vanish up to homotopy. This is consistent with
previous results that show that the homotopy type of Conf𝑁×R only seems to depend
on the homotopy type of 𝑁 (see e.g. Raptis and Salvatore [RS18]). For the model of
Conf𝑀 , we need additional conditions on the dimension and connectivity of 𝑀 , just
like in Chapter 3. In summary, we obtain:

Theorem 1.4 ([CILW18]) Let 𝑀 be a compact manifold with boundary 𝑁 . The
graph complexes models of Chapter 4 are real models of Conf𝑁×R and Conf𝑀 which
are compatible with the algebraic structures of monoid/module.

Corollary 1.5 Let 𝑀 be a compact manifold with boundary 𝑁 . The real homotopy
type of Conf𝑁×R, as monoid in collections of topological spaces, only depends on
the real homotopy type of 𝑁 . If 𝑀 is simply connected and dim𝑀 ≥ 4, then the
real homotopy type of Conf𝑀 , as a right module over Conf𝑁×R in collections of
topological spaces, only depends on the real homotopy type of the pair (𝑀, 𝑁).

If we add the hypothesis that the boundary of 𝑀 is simply connected, then in
dimension ≤ 3 the only possible manifolds are disks by the Poincaré conjecture and
the classification of surfaces. The conclusion of the corollary above thus becomes
true in any dimension.

In the last part of the chapter, we will introduce another model of Conf𝑀 which is
defined analogously to the model G𝐴 of Chapter 3. Let 𝑀 be a compact manifold
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1.4 Configuration spaces and operads 7

with boundary. We start by showing that there exists a model of the pair (𝑀, 𝜕𝑀)
which satisfies Poincaré–Lefschetz duality at the level of cochains if 𝑀 and 𝜕𝑀 are
simply connected and dim𝑀 ≥ 7. We then define a CDGA G𝑃 (where 𝑃 is part of
the Poincaré–Lefschetz duality model) analogously to the closed case. If 𝜕𝑀 = ∅,
this CDGA is identical to the one of Chapter 3. If we assume that 𝑀 and 𝜕𝑀 and
simply connected, then we can reuse arguments of Lambrechts and Stanley [LS08a]
and Cordova Bulens, Lambrechts, and Stanley [CLS18] to show that the cohomology
of G𝑃 (𝑟) is isomorphic, as a graded representation of the symmetric group Σ𝑟 , to the
rational cohomology of Conf𝑀 (𝑟).

However, G𝑃 is not always a model of Conf𝑀 , as one can heuristically check on
simple examples (e.g. 𝑀 = S1 × [0, 1]). We thus define a “perturbed” CDGA G̃𝑃
which is isomorphic to G𝑃 as a cochain complex but not as a CDGA. Our terminology
comes from the fact that, in the relations defining G̃𝑃 , the highest weight part precisely
give the relations defining G𝑃 . In many cases (e.g. if 𝑀 is obtained by removing
a point from a closed manifold) then G̃𝑃 and G𝑃 are actually equal. We can show,
using the results of the first part of the chapter, that G̃𝑃 is a model of Conf𝑀 under
appropriate conditions. We then obtain the following theorem:

Theorem 1.6 ([CILW18]) Let 𝑀 be a smooth simply connected compact manifold
with boundary of dimension at least 5 and assume that 𝑀 admits a Poincaré–Lefschetz
duality model 𝑃. Then for all 𝑟 ≥ 0, the CDGA G̃𝑃 (𝑟) is a real model of Conf𝑀 (𝑟).
The same result is true for dim𝑀 ∈ {4, 5, 6} with 𝑃 = 𝐻∗ (𝑀).

Let us remark that the results above do not provide much information for config-
uration spaces of low-dimensional manifolds. The model of Theorem 1.4 depends
on integrals that we do not always know how to compute, and Theorem 1.6 does
not apply. In the article [CIW19] (joint with Campos and Willwacher), we provide a
model for the configuration spaces of oriented surfaces by different methods.

1.4 Configuration spaces and operads

The proofs of the preceding results are all based on ideas coming from the theory
of operads. Initially introduced at the end of the 1960s in algebraic topology to
study iterated loop spaces [BV68; May72], operads have since then found numerous
applications in several domains of mathematics. We refer to Section 5.2 for more
details. Briefly, an operad in a combinatorial object that encodes a category of
algebras, just like e.g. a group encodes a category of group representations.

The relationship between configuration spaces and operads can be explained in
the following way. For technical reasons, we will restrict our attention to framed
manifolds, i.e. manifolds equipped with a trivialization of the tangent bundle. Let
us now consider a “fattened” version of configuration spaces, where points are
replaced by embedded framed disks with pairwise disjoint interiors. The spaces of all
configurations of such disks, denoted D𝑀 (𝑟), for a framed manifold 𝑀 and an integer
𝑟 ≥ 0, are homotopy equivalent to the configuration spaces Conf𝑀 (𝑟). The homotopy
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8 1 Introduction

equivalence D𝑀 (𝑟) → Conf𝑀 (𝑟) is simply the map which sends a configuration of
disks to the configuration of points formed by the centers of the disks.

These configuration spaces of disks have an extra structure that does not directly
appear on configuration spaces of points. Consider the unit disk D𝑛. The collection
of spaces D𝑛 B DD𝑛 = {DD𝑛 (𝑟)}𝑟 ≥0 is an operad using the following structure
maps. Given two configurations 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ D𝑛 (𝑟) and 𝑑 = (𝑑1, . . . , 𝑑𝑠) ∈
D𝑛 (𝑠), where the 𝑐𝑖 , 𝑑 𝑗 : D𝑛 ↩→ D𝑛 are framed embeddings, we can define new
configurations 𝑐 ◦𝑖 𝑑 ∈ D𝑛 (𝑟 + 𝑠 − 1) (for 1 ≤ 𝑖 ≤ 𝑟) by using the composition of
embeddings (Figure 5.2):

𝑐 ◦𝑖 𝑑 = (𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖 ◦ 𝑑1, . . . , 𝑐𝑖 ◦ 𝑑𝑠 , 𝑐𝑖+1, . . . , 𝑐𝑟 ) ∈ D𝑛 (𝑟 + 𝑠 − 1).

These composition maps satisfy axioms of associativity, unitality, and equivariance
with respect to the action of symmetric groups. Moreover, if 𝑀 is a framed manifold,
then the collection D𝑀 B {D𝑀 (𝑟)}𝑟 ≥0 has the structure of a right module over the
operad D𝑛. Given two configurations 𝑐 ∈ D𝑀 (𝑟) and 𝑑 ∈ D𝑛 (𝑠), we can define new
configurations 𝑐 ◦𝑖 𝑑 ∈ D𝑀 (𝑟 + 𝑠 − 1) (1 ≤ 𝑖 ≤ 𝑟) by formulas analogous to the
previous ones.

It turns out that the proofs of Kontsevich [Kon99] and Lambrechts and Volić
[LV14] of the formality of the spaces ConfR𝑛 (𝑟) ' ConfD𝑛 (𝑟) ' D𝑛 (𝑟) was actually
about more than just the formality of the spaces on their own. In fact, their proofs
show that the operad D𝑛 itself is formal: the cohomology 𝐻∗ (D𝑛) is a model of the
operad D𝑛 in the sense of rational homotopy theory. The formality of the operad has
profound consequences, for example the Deligne conjecture [KS00; MS02] or the
deformation quantization of Poisson manifolds [Kon99; Tam98; Kon03].

In Chapter 5, after having introduced the theory of operads, we will explain how the
results of the previous chapters interact with the operadic structures mentioned above.
We will also show that our models (in graph complexes or à la Lambrechts–Stanley)
have algebraic structures which mirror these operadic structures, and how our proofs
are all compatible with these structures. We will finally conclude with an example of
application of this to the computation of factorization homology.

Conventions

We generally work with cohomologically-graded cochain complexes over R, i.e.
graded vector spaces 𝑉 =

⊕
𝑛∈Z𝑉

𝑛 equipped with a differential of degree +1,
𝑑 : 𝑉𝑛 → 𝑉𝑛+1. We also consider the (de)suspensions, for 𝑘 ∈ Z, to be defined by
(𝑉 [𝑘])𝑛 = 𝑉𝑛+𝑘 .
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Chapter 2
Configuration spaces of manifolds

Abstract In this chapter, we introduce configuration spaces of manifolds more
precisely. We list several of their applications and appearances in mathematics. After
some quick background on homotopy theory, we present the homotopy invariance
conjecture and the counterexample of Longoni and Salvatore. We also recall briefly
Sullivan’s rational homotopy theory and how the conjecture can be refined in that
setting. Finally, we study the basic case of configuration spaces of Euclidean spaces.
As proved by Kontsevich and Lambrechts–Volić, these spaces are formal, which
allows one to make many explicit computations. The proof of that formality serves as
the basis for the proofs in the later chapters.

2.1 Configuration spaces

Let 𝑀 be a topological manifold and 𝑟 ≥ 0 an integer. The following object will be
the central object of study in these notes.

Definition 2.1 The 𝑟th configuration space of 𝑀 is the subspace of 𝑀𝑟 given by:

Conf𝑀 (𝑟) B
{
(𝑥1, . . . , 𝑥𝑟 ) ∈ 𝑀𝑟

�� ∀𝑖 ≠ 𝑗 , 𝑥𝑖 ≠ 𝑥 𝑗
}
. (2.1)

It is topologized as an open submanifold of 𝑀𝑟 .

A point of Conf𝑀 (𝑟) is given by an ordered collection of 𝑟 pairwise distinct points
in 𝑀 . In order to emphasize the various aspects of this definition, these configuration
spaces are sometimes called the ordered configuration spaces, or the configuration
spaces of points, or a combination of both. These spaces have interesting topology.
Before moving on to more complex examples, let us first illustrate the simplest cases
of configuration spaces.

Example 2.2 The configuration space Conf𝑀 (0) is simply a singleton, given by the
empty configuration. The space Conf𝑀 (1) is just 𝑀 itself.

9
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10 2 Configuration spaces of manifolds

Example 2.3 The space Conf𝑀 (2) is given by {(𝑥, 𝑦) ∈ 𝑀2 | 𝑥 ≠ 𝑦}. In other words,
it is the square of 𝑀 with the diagonal {(𝑥, 𝑥) ∈ 𝑀2} removed.

For 𝑟 ≥ 3, the spaces Conf𝑀 (𝑟) become more and more complicated.

Example 2.4 Let 𝑀 = R be the real line. Then the space ConfR (𝑟) has 𝑟! connected
components. Each connected component is represented by a way of ordering the
different points in R.

There are numerous variants of configuration spaces. One example is given by
unordered configuration spaces, which are defined as follows.

Definition 2.5 Let 𝑀 be a manifold and 𝑟 ≥ 0 be an integer. There is an action of the
symmetric group Σ𝑟 on Conf𝑀 (𝑟) by renumbering. A permutation 𝜎 ∈ Σ𝑟 simply
acts by (𝑥1, . . . , 𝑥𝑟 ) · 𝜎 = (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑟 ) ). The unordered configuration space is
the orbit space:

UConf𝑀 (𝑟) B Conf𝑀 (𝑟)/Σ𝑟 , (2.2)

i.e. we consider subsets of 𝑀 of cardinality exactly 𝑟 .

Configuration spaces appear in many contexts. These spaces have been studied
since at least the 1960’s. To the author’s knowledge, the name “configuration space”
was coined by Fadell and Neuwirth [FN62a]. Let us now mention a few examples of
appearances of configuration spaces in the literature. This list is neither exhaustive
nor chronological.

Example 2.6 Let 𝑟 ≥ 0 be an integer. The braid group on 𝑟 strands [Art47] is the
group with the following presentation:

𝐵𝑟 B 〈𝑠1, . . . , 𝑠𝑛−1 | 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖 for |𝑖 − 𝑗 | ≥ 2, 𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1〉. (2.3)

There is a well-defined morphism from 𝐵𝑟 to the symmetric group Σ𝑟 that sends 𝑠𝑖
to the transposition (𝑖, 𝑖 + 1). Its kernel is called the pure braid group on 𝑟 strands
and is denoted 𝑃𝐵𝑟 .

Fox and Neuwirth [FN62b] proved that 𝐵𝑟 is isomorphic to the fundamental
group of the unordered configuration space of 𝑟 points in the plane, i.e. 𝑃𝐵𝑟 �
𝜋1 (UConfR2 (𝑟)). A braid simply corresponds to a path in the configuration space,
and an isotopy corresponds to a homotopy. We refer to Figure 2.1 for an illustration.
The pure braid group 𝐵𝑟 is the fundamental group of the ordered configuration
space, i.e. 𝑃𝐵𝑟 � 𝜋1 (ConfR2 (𝑟)). An element of 𝑃𝐵𝑟 corresponds to a path in the
configuration space such that each strand starts and ends at the same position.

The configuration spaces of the plane are Eilenberg–MacLane spaces, i.e. their
universal cover is trivial. In other words, ConfR2 (𝑟) (resp. UConfR2 (𝑟)) is the
classifying space of the group 𝑃𝐵𝑟 (resp. 𝐵𝑟 ). We can thus compute, for example,
the cohomology – in the algebraic sense – of the braid groups by computing the
cohomology – in the topological sense – of the configuration spaces of the plane.
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2.1 Configuration spaces 11

Fig. 2.1 A braid seen as a path
in ConfR2 .

1 2 3 4

𝑡

Example 2.7 The surface braid groups are a generalization of the previous example.
Given a surface 𝑆 (i.e. a compact manifold of dimension 2) and an integer 𝑟 ≥ 0,
the configuration space Conf𝑆 (𝑟)/Σ𝑟 is also an Eilenberg–MacLane space. Its
fundamental group is called the braid group of the surface 𝑆 on 𝑟 strands and admits
a similar graphical interpretation. Fadell and Neuwirth [FN62a, Theorem 9] have
proved that surfaces are the only case of interest: higher-dimensional manifolds do
not admit braid theories.

Example 2.8 Goodwillie–Weiss manifold calculus [GW99] involves configuration
spaces in a crucial manner (see Boavida de Brito and Weiss [BW18] and Turchin
[Tur13]). One of the purpose of this calculus is to compute the homotopy type of the
embedding spaces Emb(𝑀, 𝑁) between two given manifolds, defined as the set of all
embeddings 𝑀 ↩→ 𝑁 with an appropriate topology. Since an embedding 𝑓 : 𝑀 ↩→ 𝑁

is in particular an injective map, it induces a sequence of maps,

𝑓𝑘 : Conf𝑀 (𝑘) → Conf𝑁 (𝑘), (𝑥1, . . . , 𝑥𝑘 ) ↦→ ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑘 )), (2.4)

that are all compatible in some sense. Most importantly, if two points are close in the
source, then they will be close in the target, and if one forgets a point in the source, then
this corresponds to forgetting a point in the target. In embedding calculus, the space
Emb(𝑀, 𝑁) is approximated as the subspace of

∏
𝑘∈NMap(Conf𝑀 (𝑘),Conf𝑁 (𝑘))

of sequences that are compatible – in the previous sense – up to homotopy. Under
good conditions (in particular dim 𝑁 −dim𝑀 ≥ 3), this process allows one to recover
the homotopy type of the space Emb(𝑀, 𝑁). (To be completely precise, one can
recover the homotopy type of the space of framed embeddings Embfr (𝑀, 𝑁) between
two framed manifolds; to recover Emb(𝑀, 𝑁), one needs to use framed configuration
spaces, see Section 5.3.2.)

Example 2.9 Let 𝑀 be a smooth manifold and let Γ𝑐 (𝑀,𝑇𝑀) be the Lie algebra
(see Definition 2.74) of vector fields with compact support on 𝑀 . The Gelfand–Fuks
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12 2 Configuration spaces of manifolds

Fig. 2.2 Embedding calculus: Emb(𝑀, 𝑁 ) (here, Emb(Σ2, R
3)) is approximated by collections of

maps between configuration spaces with compatibility relations up to homotopy. When the number
of points goes to infinity, this can help recover the “shape” of the embedded submanifold.

cohomology of 𝑀 , given 𝐻∗cont (Γ𝑐 (𝑀,𝑇𝑀)) (where the cohomology is a continuous
version of the Chevalley–Eilenberg cochains, see Definition 5.104), is an invariant
that appears in the study of characteristic classes of foliations see Morita [Mor01].
Cohen and Taylor [CT78] built a spectral sequence which converges to Gelfand–Fuks
cohomology of 𝑀 and whose 𝐸2 page can be expressed in terms of (decorated)
configuration spaces of 𝑀 .

Example 2.10 (Snaith [Sna74]) The space of maps with compact support

Map𝑐 (R𝑑 , 𝑌 ) B { 𝑓 : R𝑑 → 𝑌 | ∃𝐾 ⊂ R𝑑 compact s.t. 𝑓 |R𝑑\𝐾 is constant} (2.5)

splits stably as a wedge sum of terms given by decorated configuration spaces of
R𝑑 . More precisely, if 𝑋 is a compact manifold with boundary, then there is a stable
homotopy equivalence (i.e. a map which induces an isomorphism on homotopy once
enough the suspension functor has been applied enough times) of the form:

Map𝑐 (R𝑑 ,Σ𝑑 (𝑋/𝜕𝑋)) 'st
∨
𝑛≥0

ConfR𝑑 (𝑛; 𝑋). (2.6)

Example 2.11 In classical mechanics, the configuration spaces we have been writing
about are a particular case of the more general notion of the configuration space of
a physical system. We are essentially considering the case of discrete particles that
cannot occupy the same position at the same time.

Example 2.12 Configuration spaces are closely related to iterated loop spaces. We
will give more detail in Chapter 5 (and particularly in the discussion surrounding
Definition 5.41) as this connection has to do with operads. Let us just give the following
intuitive picture, which we took from Segal [Seg73]. Let S𝑛 = R𝑛∪{∞} be the sphere.
There is a map from ConfR𝑛 (𝑟) to the space of maps S𝑛 → S𝑛 which preserve the
base point (i.e. Ω𝑛S𝑛 in the language of Definition 5.41). This map has a description
inspired from physics. We can view a configuration (𝑥1, . . . , 𝑥𝑟 ) ∈ ConfR𝑛 (𝑟) as a
collection of electrically charged particles, each with a unit charge. These particles
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2.1 Configuration spaces 13

generate an electric field, which is a vector field on R𝑛 \ {𝑥𝑖}, or equivalent a smooth
map 𝐸𝑥 : R𝑛 \ {𝑥𝑖} → R𝑛. This map 𝐸𝑥 can be extended as a map 𝐸𝑥 : S𝑛 → S𝑛 by
setting 𝐸𝑥 (𝑥𝑖) = ∞ = 𝐸𝑥 (∞).

Example 2.13 (Motion planning) Assume that we are given a number of robots moving
around in a space 𝑀 and all controlled by a central computer. We wish to move all
the robots at the same time between a starting and a finishing position. The robots
cannot be at the same location at the same time, so we need to find a path inside the
configuration space Conf𝑀 (𝑟), where 𝑟 is the number of robots. More precisely, let us
denote the space of all paths in Conf𝑀 (𝑟) by 𝑃Conf𝑀 (𝑟) = Map( [0, 1],Conf𝑀 (𝑟))
There is a canonical projection defined by:

𝑝 : 𝑃Conf𝑀 (𝑟) → Conf𝑀 (𝑟) × Conf𝑀 (𝑟)
𝛾 ↦→

(
𝛾(0), 𝛾(1)

)
.

(2.7)

We are thus looking for a section of 𝑝, i.e. a map 𝜎 : Conf𝑀 (𝑟) × Conf𝑀 (𝑟) →
𝑃Conf𝑀 (𝑟) that takes a couple of configurations and returns a path between them.
Unless Conf𝑀 (𝑟) is contractible, which rarely happens, such a section can never be
continuous. There exists an invariant, called topological complexity, which is defined
as the minimum number of continuity domains of such a section (cf. Farber [Far03]).
This invariant only depends on the homotopy type of Conf𝑀 (𝑟) and is related to
Lusternik–Schnirelmann category [LS34].

Fig. 2.3 Motion planning:
how to find non-intersecting
paths that depend continuously
on the starting and ending
positions? ♦

♥♣
♠♠
♣

♥ ♦

?

Remark 2.14 Configuration spaces of topological spaces that are not manifolds are
also objects of interest. For example, there is a growing body of literature about
configuration spaces of graphs, see for example [ADK19]. They can be of particular
interest in real-life applications, see e.g. [Ghr01; Far18].

Example 2.15 (Stability) It has long been known that the homology of the unordered
configuration spaces (Definition 2.5) stabilizes. This was first proved by Arnold
[Arn69] for the plane: there are homotopy classes of maps ConfR2 (𝑟) → ConfR2 (𝑟+1)
(intuitively given by “adding a point at infinity”) that induce an isomorphism in
homology for 𝑟 large enough compared to the homological degree. This was later
generalized for open manifolds by McDuff [McD75] and Segal [Seg79]. However,
it is relatively easy to prove that the homology of ordered configuration spaces is
not stable (Corollary 2.87 implies that dim𝐻1 (ConfR2 (𝑟)) =

(𝑟
2
)

is not eventually
constant, for example).
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14 2 Configuration spaces of manifolds

Church [Chu12] has proved that the homology of the ordered configuration
spaces of a closed manifold does stabilize in a different sense. If one decomposes the
homology of Conf𝑀 (𝑟) as a direct sum of irreducible representations of the symmetric
group Σ𝑟 , then there is a canonical (standard) way of indexing the representations
which eventually stabilizes. This immediately implies the stability of the homology
of the unordered configuration space, as this homology corresponds to the summand
given by the trivial representation. This phenomenon, called representation stability
(see Djament and Vespa [DV10] and Church and Farb [CF13]), is the subject an
active area of research, of which we can hardly give a full account.

Let us just note the following, without going into detail. Representation stability
has been observed by Church, Ellenberg, and Farb [CEF15] to be the consequence
of another result. The collection Conf𝑀 = {Conf𝑀 (𝑟)}𝑟 ≥0 has the structure of an
FIop-module, where FI is the category of finite sets and injections; concretely, this
means that one can renumber and/or forget points in a configuration. The cohomology
of Conf𝑀 in a given degree thus forms an FI-module by functoriality. It turns out
that this FI-module is finitely generated (i.e. it contains a finite subspace 𝑆 such that
the smallest FI-module containing 𝑆 is the whole FI-module). Finitely generated FI-
modules automatically satisfy representation stability thanks to the result of [CEF15].
This has an interpretation in terms of polynomial functors (see Djament and Vespa
[DV17]). Let us finally note that the FI-module structure is part of the natural action
of the little disks operad on configuration spaces, see Chapter 5 (forgetting a point is
just inserting an empty configuration).

There are many generalizations of configuration spaces. Let us list a couple.

Example 2.16 Let 𝑘 ≥ 2. Given a manifold 𝑀 and an integer 𝑟 ≥ 0, one can define
the non-𝑘-equal configuration space of 𝑟 points on 𝑀 by:

Conf<𝑘𝑀 (𝑀) B {(𝑥1, . . . , 𝑥𝑟 ) ∈ 𝑀𝑟 | �𝑖1 < · · · < 𝑖𝑘 s.t. 𝑥𝑖1 = · · · = 𝑥𝑖𝑘 }. (2.8)

In other words, the space Conf<𝑘
𝑀
(𝑟) is the space of collections of 𝑟 points in 𝑀

such that at most 𝑘 − 1 points can collide at once. Of course, the space of non-2-
equal configurations, Conf<2

𝑀 (𝑟) is simply the usual configuration space Conf𝑀 (𝑟).
By contrast, for 𝑟 < 𝑘 , one gets Conf<𝑘

𝑀
(𝑟) = 𝑀𝑟 . As soon as 𝑘 ≥ 3, then the

fundamental group of Conf<𝑘
𝑀
(𝑟) becomes abelian, unlike the braid groups (see

Kallel and Saihi [KS16]). These spaces have also applications in Goodwillie–Weiss
embedding calculus: instead of computing spaces of embeddings, they can be used to
compute spaces of non-𝑘-equal immersions (i.e. immersions 𝑓 : 𝑀 → 𝑁 such that
the preimages 𝑓 −1 (𝑦) have cardinality at most 𝑘 − 1 for all 𝑦 ∈ 𝑁), see Dobrinskaya
and Turchin [DT15] and Grossnickle [Gro19].

Example 2.17 Let Γ be a simple graph (i.e. a graph without loops or double edges)
on with set of vertices {1, . . . , 𝑟}, where 𝑟 ≥ 0 is some integer. Then one can defined
the generalized configuration space Conf𝑀 (Γ) by:

Conf𝑀 (Γ) B {(𝑥1, . . . , 𝑥𝑟 ) ∈ 𝑀𝑟 | (𝑖, 𝑗) ∈ Γ =⇒ 𝑥𝑖 ≠ 𝑥 𝑗 }. (2.9)
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2.2 Homotopy invariance 15

The classical configuration space Conf𝑀 (𝑟) simply corresponds to the generalized
configuration space associated to the complete graph on 𝑟 vertices. The cohomology
of such configuration spaces has been computed by Petersen [Pet20] and Bökstedt
and Minuz [BM20].

2.2 Homotopy invariance

In all of the applications mentioned above, knowing the homotopy type of Conf𝑀 (𝑟)
is essential. To set the stage for rational homotopy theory and fix notations, let us
now quickly recall the basics of homotopy theory. All the maps we consider below
are assumed to be continuous.

Definition 2.18 Let 𝐴 and 𝑋 be two spaces. Two maps 𝑓 , 𝑔 : 𝐴→ 𝑋 are homotopic
if there exists a map 𝐻 : 𝐴 × [0, 1] → 𝑋 (called a homotopy) such that 𝐻 (−, 0) = 𝑓

and 𝐻 (−, 1) = 𝑔. If this is the case, we denote it by 𝑓 ' 𝑔.

Definition 2.19 A map 𝑓 : 𝐴→ 𝑋 is a homotopy equivalence if there exists a map
𝑔 : 𝑋 → 𝐴 such that 𝑓 ◦ 𝑔 ' id𝑋 and 𝑔 ◦ 𝑓 ' id𝐴. If such a map exists, we say that
𝐴 and 𝑋 have the same homotopy type, or that they are homotopy equivalent.

Example 2.20 The real line R is homotopy equivalent to a singleton. More generally,
any Euclidean space R𝑛 is homotopy equivalent to a singleton.

Let us now consider configuration spaces. A very natural question is the following:
if two spaces are homotopy equivalent, are their configuration spaces then homotopy
equivalent? In other words, do we have

𝑀 ' 𝑁 ?
=⇒ Conf𝑀 (𝑟) ' Conf𝑁 (𝑟) (2.10)

This is far from obvious. Indeed, nothing indicates that a homotopy equivalence is
injective, so it may not even define a map between configuration spaces. Even if
some homotopy equivalences 𝑓 : 𝑀 � 𝑁 : 𝑔 are injective (and thus induce maps
Conf𝑀 (𝑟) � Conf𝑁 (𝑟)), the homotopies 𝑔 ◦ 𝑓 ' id𝑀 and 𝑓 ◦ 𝑔 ' id𝑁 may not
necessarily be injective at all times, so they may not induce a homotopy at the level
of configuration spaces.

In fact, the question asked above is too naive. There is an obvious counterexample,
given by Example 2.20. Indeed, the space Conf{0} (2) is empty, because it is not
possible to find two distinct points in a singleton. However, ConfR (2), i.e. the plane
with the diagonal removed, is clearly nonempty. Therefore these two configuration
spaces are not homotopy equivalent. More generally, we have the following result,
from which it follows that the homotopy types of the spaces ConfR𝑛 (2) are pairwise
distinct.

Lemma 2.21 The configuration space ConfR𝑛 (2) is homotopy equivalent to the
(𝑛 − 1)-sphere S𝑛−1.
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16 2 Configuration spaces of manifolds

Proof View the sphere S𝑛−1 as the following space:

S𝑛−1 B {𝑥 ∈ R𝑛 | ‖𝑥‖ = 1}. (2.11)

Then we can define an “angle map”, that records the angle between two points in a
configuration:

𝜃 : ConfR𝑛 (2) → S𝑛−1, (𝑥, 𝑦) ↦→ 𝑥 − 𝑦
‖𝑥 − 𝑦‖ . (2.12)

Conversely, we have a map:

𝑖 : S𝑛−1 → ConfR𝑛 (2) 𝑣 ↦→
(
𝑣,−𝑣). (2.13)

Intuitively, the map 𝑖 describes the rotation of two points around a common center
of mass located at the origin, with a unit radius. We can immediately see that
𝜃 ◦ 𝑖 = idS𝑛−1 . Conversely, the following describes a homotopy between 𝑖 ◦ 𝜃 and the
identity of ConfR𝑛 (2):

𝐻 : ConfR𝑛 (2) × [0, 1] → ConfR𝑛 (2)

((𝑥, 𝑦), 𝑡) ↦→
( ‖𝑥 − 𝑦‖

2

)−𝑡
·
(
𝑥 − 𝑡

2
(𝑥 + 𝑦), 𝑦 − 𝑡

2
(𝑥 + 𝑦)

) (2.14)

where 𝑢(𝑥, 𝑦, 𝑡) = 𝑥 − 𝑡
2 (𝑥 + 𝑦) and 𝑣(𝑥, 𝑦, 𝑡) = 𝑦 − 𝑡

2 (𝑥 + 𝑦). �

Remark 2.22 In fact, the space ConfR𝑛 (2) is homeomorphic to the product S𝑛−1 ×
R × (0, +∞). The homeomorphism ConfR𝑛 (2) → S𝑛−1 × R × (0, +∞) is the product
of the map 𝜃 with (𝑥, 𝑦) ↦→ (𝑥 + 𝑦)/2 and (𝑥, 𝑦) ↦→ ‖𝑥 − 𝑦‖. The spaces ConfR𝑛 (𝑟)
for higher 𝑟 have a more complicated homotopy type. They form a special case of
what is known as an hyperplane arrangement complement. We refer to Orlik and
Terao [OT92] for an introduction of the subject.

The counterexample of Lemma 2.21 for the homotopy invariance conjecture mainly
stems from the fact that we are considering manifolds of differing dimensions. However,
even if one restricts the question to manifolds of equal dimension, counterexamples
still exist.

Example 2.23 ([Knu18a, Section 1.1]) Let 𝑀 = (S1 × S1) \ {∗} be the torus with a
point removed, and let 𝑁 = R2 \ {∗, ∗′} be the plane with two points removed. Then
𝑀 ' 𝑁 ' S1 ∨ S1 are homotopy equivalent to a figure-eight graph (i.e. a wedge sum
of two circles). However, Conf𝑀 (2) is not homotopy equivalent to Conf𝑁 (2).

This new counterexample essentially stems from the fact that the manifolds
considered are open (in this case, they are not compact, but if we decide to compactify
them then we must add a nonempty boundary). It is thus natural to restrict the question
even further to closed manifolds, i.e. compact manifolds without boundary.

Up to dimension 2, it is clear that homotopy equivalent closed manifolds have
homotopy equivalent configuration spaces. Indeed, in dimension 0 and 1, there
are only two closed manifolds up to homeomorphism (namely {0} and S1). In
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2.2 Homotopy invariance 17

dimension 2, two homotopy equivalent surfaces are always homeomorphic, thanks to
the classification of surfaces. It is moreover clear that homeomorphic spaces have
homeomorphic (and thus homotopy equivalent) configuration spaces.

Several results led to believe that the homotopy invariance of configuration spaces
of closed manifolds was true in higher dimension:

• Results of Bödigheimer, Cohen, and Taylor [BCT89] and Bendersky and Gitler
[BG91] showed that the homology of Conf𝑀 (𝑟) only depends on the homotopy
type of 𝑀 (up to certain hypotheses on the dimension of 𝑀 or the characteristic
of the base field).

• Levitt [Lev95] showed that the homotopy type of the loop space ΩConf𝑀 (𝑟)
of the configuration space of 𝑀 only depends on the homotopy type of 𝑀. In
particular, this shows that the homotopy groups of Conf𝑀 (𝑟) only depend on the
homotopy type of 𝑀 .

• Aouina and Klein [AK04] proved that the stable homotopy type of Conf𝑀 (𝑟) is
also a homotopy invariant, i.e. if 𝑀 ' 𝑁 then Σ𝑘Conf𝑀 (𝑟) ' Σ𝑘Conf𝑁 (𝑟) for
𝑘 � 0, where Σ𝑋 = (−) ∧ S1 is the suspension.

However, a counterexample was found some years ago by Longoni and Salvatore
[LS05]. This counterexample is given by lens spaces, that we now define.

Definition 2.24 Let 𝑝, 𝑞 be coprime integers. The lens space 𝐿𝑝,𝑞 is the orbit space
of S3 = {(𝑧, 𝑧′) ∈ C2 | |𝑧 |2 + |𝑧′ |2 = 1} under the action of the cyclic group Z/𝑝Z
given by:

(𝑧, 𝑧′) ↦→ (𝑒2𝑖 𝜋/𝑝𝑧, 𝑒2𝑖𝑞𝜋/𝑝𝑧′) (2.15)

Since 𝑝 and 𝑞 are coprime, this action is free and the quotient 𝐿𝑝,𝑞 is a three-
dimensional closed manifold.

Example 2.25 The lens space 𝐿2,1 is the real projective space RP3.

Alternatively, one can see 𝐿𝑝,𝑞 as a quotient of the ball D3, see Figure 2.4. Indeed,
let us start by cutting the boundary 𝜕D3 = S2 into 2𝑝 triangle: the first 𝑝 triangles
start from the north pole, the last 𝑝 from the south pole, and they all join together in
pairs at the equator (divided into 𝑝 segments). To get 𝐿𝑝,𝑞 , one then identifies the 𝑖th
northern triangle with the (𝑖 + 𝑞)th southern triangle.

Theorem 2.26 (Longoni and Salvatore [LS05]) The two closed manifolds 𝐿7,1 and
𝐿7,2 have the same homotopy type but their configuration spaces are not homotopy
equivalent.

The proof of Longoni and Salvatore of the fact that Conf𝐿7,1 (𝑟) ; Conf𝐿7,2 (𝑟) for
𝑟 ≥ 2 involves Massey products, that we now define.

Notation 2.27 We will denote the homology of a space 𝑋 with coefficients in a
ring k by 𝐻∗ (𝑋; k) B

⊕∞
𝑛=0 𝐻𝑛 (𝑋; k). Cohomology will similarly be denoted by

𝐻∗ (𝑋; k) B
⊕∞

𝑛=0 𝐻
𝑛 (𝑋; k). Usually, the ring will be implicit from the context

(often Q or R) and will be omitted from the notations.
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18 2 Configuration spaces of manifolds

Fig. 2.4 Identifications of
triangles in 𝜕D3 = S2 to
obtain 𝐿5,2.

Remark 2.28 Generally speaking, we will consider all degrees to be cohomological,
so that cohomology is concentrated in nonnegative degrees while homology is
concentrated in nonpositive degrees (with (𝐻∗ (𝑋; k))−𝑛 B 𝐻𝑛 (𝑋; k)).

Definition 2.29 Let 𝑋 be a topological space and let [𝛼], [𝛽], [𝛾] ∈ 𝐻∗ (𝑋) be three
cohomology classes satisfying [𝛼 ⌣ 𝛽] = 0 = [𝛽 ⌣ 𝛾]. There exists cochains 𝜆, 𝜇
such that 𝑑𝜆 = 𝛼 ⌣ 𝛽 and 𝑑𝜇 = 𝛽 ⌣ 𝛾. The Massey product 〈[𝛼], [𝛽], [𝛾]〉 is
the cohomology class [𝜆𝛾 − (−1) |𝛼 |𝛼𝜇]. This class is well-defined up to the ideal
( [𝛼], [𝛾]) ⊂ 𝐻∗ (𝑋).

Longoni and Salvatore [LS05] have shown that the universal covering space
of Conf𝐿7,1 (2) has the same homotopy type as the wedge sum (S2)∨6 ∨ S3. The
Massey products of this space all vanish thanks to the fact this space is formal (see
Definition 2.89). However, Longoni and Salvatore have found an explicit nonzero
Massey product in the universal covering space of Conf𝐿7,2 (2). This thus shows
that Conf𝐿7,1 (2) and Conf𝐿7,2 (2) cannot have the same homotopy type, even though
𝐿7,1 ' 𝐿7,2. A similar proof works to show that Conf𝐿7,1 (𝑟) ; Conf𝐿7,2 (𝑟) for 𝑟 ≥ 2.

Despite this counterexample, there is still hope regarding the homotopy invariance
conjecture. Indeed, the lens spaces are not simply connected: there exists loops that
cannot be contracted to a point. In fact, their fundamental group is clearly given by
𝜋1 (𝐿𝑝,𝑞) = Z/𝑝Z (see Notation 2.33). Moreover, the proof of Longoni and Salvatore
deals with Massey products in the universal cover, which needs nontrivial fundamental
group to be nontrivial. The following conjecture thus remains open:

Conjecture 2.30 Let 𝑀 and 𝑁 be two simply connected closed manifolds. If 𝑀 and
𝑁 have the same homotopy type, then so do Conf𝑀 (𝑟) and Conf𝑁 (𝑟) for all 𝑟 ≥ 0.

Remark 2.31 Two simply connected closed manifolds have the same homotopy type
if and only if they have the same simple homotopy type (i.e. they are related by a
sequence of collapses and expansions of CW cells, see [Coh73b]). A more general
conjecture thus states that if two closed manifolds have the same simple homotopy
type, then so do their configuration spaces.
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2.3 Rational homotopy invariance 19

2.3 Rational homotopy invariance

In this lecture, we will focus on the rational part of homotopy types (then, later
on, on the real part). In summary, this means that we study homotopy types up to
torsion. While this point of view loses information about spaces, it has the important
advantage of being computable. The rational homotopy type of a space is completely
described by some purely algebraic data called a (rational) model of the space. Let us
now introduce this theory. In order to fix notations, we start again with some basic
reminders on homotopy theory.

Remark 2.32 We cannot claim any kind of exhaustiveness about the field of rational
homotopy theory in these notes. We refer to Félix, Halperin, and Thomas [FHT01],
Félix, Halperin, and Thomas [FHT15], Félix, Oprea, and Tanré [FOT08], Hess
[Hes07], and Griffiths and Morgan [GM13] for wider texts on the subject.

In order to motivate the definition of rational equivalences, let us first introduce
the notion of weak homotopy equivalence.

Notation 2.33 For a topological space 𝑋 , we let 𝜋0 (𝑋) (called the 0th homotopy
group) be the set of all path components of 𝑋 . For 𝑛 ≥ 1 and 𝑥0 ∈ 𝑋 a base point,
𝜋𝑛 (𝑋, 𝑥0) (called the 𝑛th homotopy group) is the group of all based homotopy classes
of maps (S𝑛, ∗) → (𝑋, 𝑥0).

Definition 2.34 A weak homotopy equivalence is a map 𝑓 : 𝑋 → 𝑌 such that 𝜋0 ( 𝑓 )
is a bijection and, for all 𝑥0 ∈ 𝑋 and 𝑛 ≥ 1, 𝜋𝑛 ( 𝑓 , 𝑥0) is an isomorphism.

We will denote weak equivalences with the symbol ∼ above the arrow, as in
𝑓 : 𝑋

∼−→ 𝑌 .

Remark 2.35 A homotopy equivalence is obviously a weak homotopy equivalence.

Remark 2.36 If 𝑋 and 𝑌 are related by a weak homotopy equivalence, then we say
that they have the same weak homotopy type. Note that this is not symmetric: a weak
homotopy equivalence 𝑓 : 𝑋 → 𝑌 does not necessarily admit a weak inverse. To
obtain an equivalence relation on topological spaces, it is thus necessary to consider
zigzags of weak homotopy equivalences. More precisely, we will say that 𝑋 and 𝑌
have the same weak homotopy type if there exists a diagram of the form:

𝑋
∼←− 𝑋1

∼−→ 𝑋2
∼←− . . . ∼−→ 𝑌 . (2.16)

Theorem 2.37 (Whitehead [Whi49]) If 𝑋 and 𝑌 are two CW-complexes, then they
have the same homotopy type if and only if they have the same weak homotopy type.

Since we will generally focus on manifolds, and any manifold is homotopy
equivalent to a CW-complex, we will generally omit the adjective “weak”.

Definition 2.38 A space 𝑋 is said to be simply connected if it is path-connected and
𝜋1 (𝑋, 𝑥0) = 0 for any base point.
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20 2 Configuration spaces of manifolds

From now on, we will focus on simply connected spaces. Rational homotopy
theory can be worked out in a more general setting. The “classical” theory applies to
nilpotent spaces of finite type (see Sullivan [Sul77] for the foundations and Félix,
Halperin, and Thomas [FHT01] for a reference). Recently, the theory was extended to
path-connected spaces by Félix, Halperin, and Thomas [FHT15]. The case of simply
connected spaces is simpler, and the theorems we need are easier to state in this
setting. For example, we do not need to concern ourselves with base points, and we
will generally drop them from the notation of homotopy groups.

Definition 2.39 A topological space 𝑋 is said to be of finite k-type (or simply finite
type if the field is understood) if the k-modules 𝐻𝑛 (𝑋; k) are finitely generated for all
𝑛 ≥ 0.

Example 2.40 A closed manifold is of finite type over Z.

The higher homotopy groups 𝜋𝑛 (𝑋) of a space 𝑋 are abelian, so they can all be
seen as Z-modules. The following definition, which is inspired by Definition 2.34, is
at the basis of rational homotopy theory.

Definition 2.41 Let 𝑋 and 𝑌 be two simply connected spaces of finite Q-type. A
rational (homotopy) equivalence from 𝑋 to 𝑌 is a map 𝑓 : 𝑋 → 𝑌 such that
𝜋𝑛 ( 𝑓 ) ⊗Z Q is an isomorphism for all 𝑛 ≥ 2.

Example 2.42 A map S𝑛 → S𝑛 of degree 𝑘 is not a weak equivalence unless 𝑘 = ±1,
but it is a rational equivalence as soon as 𝑘 ≠ 0.

Definition 2.43 We say that 𝑋 and 𝑌 have the same rational homotopy type if they
are connected by a zigzag of rational equivalences (see Remark 2.36) and we denote
this by 𝑋 'Q 𝑌 .

Theorem 2.44 (Serre [Ser53]) Let 𝑋 and 𝑌 be two simply connected spaces of finite
type and let 𝑓 : 𝑋 → 𝑌 be a map. Then 𝑓 is a rational equivalence if and only if
𝐻∗ ( 𝑓 ;Q) is an isomorphism, if and only if 𝐻∗ ( 𝑓 ;Q) is an isomorphism.

Conjecture 2.30 can be adapted to rational homotopy theory as follows (see e.g.
Félix, Halperin, and Thomas [FHT01, Section 39, Problem 8]):

Conjecture 2.45 Let 𝑀 and 𝑁 be two simply connected closed manifolds. If 𝑀 'Q 𝑁
then Conf𝑀 (𝑟) 'Q Conf𝑁 (𝑟) for all 𝑟 ≥ 0.

Remark 2.46 Even if Conjecture 2.30 turns out to be true, this would not automatically
settle Conjecture 2.45. Indeed, while the conclusion of the second conjecture
(Conf𝑀 (𝑟) 'Q Conf𝑁 (𝑟)) is weaker, so is its hypothesis (𝑀 'Q 𝑁).

Let us now introduce the algebraic part of rational homotopy theory, which will
allow us to refine the above conjecture. The founding idea of Sullivan [Sul77] is that
the rational homotopy type of a (simply connected) space is encoded by a purely
algebraic data, namely, a commutative differential-graded algebra.
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2.3 Rational homotopy invariance 21

Remark 2.47 There is a theory due to Quillen [Qui69] which encodes rational
homotopy types via differential-graded Lie algebras (see Definition 2.74). This theory
is, in a sense, dual – as in Koszul duality or Eckmann–Hilton duality – to Sullivan’s
theory.

Definition 2.48 A commutative differential graded algebra (CDGA) is a cochain
complex 𝐴 = {𝐴𝑛}𝑛≥0 with a differential 𝑑 : 𝐴𝑛 → 𝐴𝑛+1, a unit 1 ∈ 𝐴0 and a product
𝐴→ 𝐴 which is unitary, associative and graded-commutative (𝑏𝑎 = (−1) |𝑎 | · |𝑏 |𝑎𝑏)
and satisfies the Leibniz rule (𝑑 (𝑎𝑏) = (𝑑𝑎)𝑏 + (−1) |𝑎 |𝑎(𝑑𝑏)).

Example 2.49 A commutative algebra is a CDGA concentrated in degree zero. The
cohomology of a topological space is a CDGA whose differential is zero.

Example 2.50 The dg-algebra of cochains 𝐶∗ (𝑋) on a space 𝑋 is not a CDGA as it
fails to be graded commutative. It is only graded-commutative up to homotopy. The
construction that we introduce below fixes this is issue, at the cost of needing to work
over a field of characteristic zero.

Definition 2.51 If 𝑉 is a cochain complex, we let 𝑆(𝑉) be the free CDGA on 𝑉 . As
a vector space, it is isomorphic to the quotient of the tensor algebra

⊕
𝑘≥0𝑉

⊗𝑘 by
the bilateral ideal generated by 𝑣 ⊗ 𝑤 − (−1) |𝑣 | · |𝑤 |𝑤 ⊗ 𝑣. The product is given by
concatenation of tensors. The differential extends the differential of 𝑉 through the
Leibniz rule.

Example 2.52 If 𝑉 is a cochain complex concentrated in degree 0 (i.e. just a vector
space), then 𝑆(𝑉) is the polynomial algebra on 𝑉 . If 𝑉 is concentrated in degree 1,
then 𝑆(𝑉) is the exterior algebra on 𝑉 . More generally, 𝑆(𝑉) is isomorphic, as an
algebra, to the tensor product R[𝑉even] ⊗ Λ(𝑉odd) of the polynomial algebra of the
even part of 𝑉 with the exterior algebra of the odd part of 𝑉 .

Notation 2.53 We will generally indicate the degrees of the generators of a free
CDGA by a subscript. For example, 𝑆(𝑥2, 𝑦3) is the free CDGA on two variables of
respective degrees 2 and 3. It has a linear basis formed by the monomials of the form
𝑥𝑘 𝑦𝑙 where 𝑘 ∈ N and 𝑦 ∈ {0, 1}.

Definition 2.54 A quasi-isomorphism of CDGAs is a CDGA morphism that induces
an isomorphism in cohomology. If two CDGAs 𝐴 and 𝐵 are connected through a
zigzag of quasi-isomorphisms, we say that they are quasi-isomorphic and we write
𝐴 ' 𝐵.

We will now define the CDGA of piecewise polynomial forms on a topological
space. The philosophy behind the definition is similar to the philosophe behind the
definition of singular cohomology: we start by first defining polynomial forms on
the standard simplex Δ𝑛 (cf. Figure 2.5), then we define a form on a space 𝑋 by
considering all the ways to map simplices in 𝑋 .

Definition 2.55 The standard simplex Δ𝑛 is the topological space given by :

Δ𝑛 B {(𝑡0, . . . , 𝑡𝑛) ∈ R𝑛+1 | ∀𝑖, 𝑡𝑖 ≥ 0; 𝑡0 + · · · + 𝑡𝑛 = 1}. (2.17)
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22 2 Configuration spaces of manifolds

The relationships between the various ways of including simplices as faces of
others and collapsing simplices onto others are given by the following maps, called
cofaces and codegeneracies (where 0 ≤ 𝑖, 𝑗 ≤ 𝑛):

𝛿𝑖 : Δ𝑛−1 → Δ𝑛

(𝑡0, . . . , 𝑡𝑛−1) ↦→ (𝑡0, . . . , 𝑡𝑖 , 0, 𝑡𝑖+1, . . . , 𝑡𝑛−1), (2.18)

𝜎 𝑗 : Δ𝑛+1 → Δ𝑛

(𝑡0, . . . , 𝑡𝑛+1) ↦→ (𝑡0, . . . , 𝑡 𝑗−1, 𝑡 𝑗 + 𝑡 𝑗+1, 𝑡 𝑗+2, . . . , 𝑡𝑛+1). (2.19)

Fig. 2.5 The first three stan-
dard simplexes Δ𝑛 ⊂ R𝑛+1.

𝑡0

𝑡1

𝑡2

Δ2

Δ1

Δ0

Definition 2.56 The algebra of polynomial forms on Δ𝑛, denoted by Ω𝑛, is
the quotient of the free graded-commutative algebra generated by the symbols
𝑡0, . . . , 𝑡𝑛, 𝑑𝑡0, . . . , 𝑑𝑡𝑛, where deg 𝑡𝑖 = 0, deg 𝑑𝑡𝑖 = 1, by the ideal generated by the
relations 𝑡0 + · · · + 𝑡𝑛 = 1 and 𝑑𝑡0 + · · · + 𝑑𝑡𝑛 = 0. The differential is given on the
generators by 𝑑 (𝑡𝑖) = 𝑑𝑡𝑖 and 𝑑 (𝑑𝑡𝑖) = 0.

The collection Ω• = {Ω𝑛}𝑛≥0 is equipped with operations that are dual to the
operations 𝛿𝑖 and 𝜎 𝑗 above:

𝑑𝑖 : Ω𝑛 → Ω𝑛−1 (0 ≤ 𝑖 ≤ 𝑛) 𝑠 𝑗 : Ω𝑛 → Ω𝑛+1 (0 ≤ 𝑖 ≤ 𝑛)

𝑡𝑘 ↦→


𝑡𝑘 , if 𝑘 < 𝑖,
0, if 𝑘 = 𝑖,

𝑡𝑘−1, if 𝑘 > 𝑖;
𝑡𝑘 ↦→


𝑡𝑘 , if 𝑘 < 𝑖,
𝑡𝑘 + 𝑡𝑘+1, if 𝑘 = 𝑖,

𝑡𝑘+1, if 𝑘 > 𝑖.
(2.20)

Remark 2.57 The operations 𝜕𝑖 and 𝜎 𝑗 satisfy a number of relations that make the
collection {Δ𝑛}𝑛≥0 into what is called a cosimplicial space. Similarly, the operations
𝑑𝑖 and 𝑠 𝑗 satisfy relations that makes {Ω𝑛}𝑛≥0 into a simplicial CDGA. We refer to
e.g. Goerss and Jardine [GJ99] for a more in-depth treatment.
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2.3 Rational homotopy invariance 23

Definition 2.58 Let 𝑋 be any space. The CDGA of piecewise polynomial forms on
𝑋 is denoted by Ω∗PL (𝑋). It is given in degree 𝑘 by

Ω𝑘PL (𝑋) =
{
𝜔 = (𝜔 𝑓 ∈ Ω𝑘𝑛) 𝑓 :Δ𝑛→𝑋

�� 𝑑𝑖 (𝜔 𝑓 ) = 𝜔 𝑓 ◦𝛿𝑖 , 𝑠 𝑗 (𝜔 𝑗 ) = 𝜔 𝑓 ◦𝜎 𝑗 }.
(2.21)

In other words, an elements ofΩ𝑘PL (𝑋) is a collection𝜔 = (𝜔 𝑓 ) indexed by continuous
maps 𝑓 : Δ𝑛 → 𝑋 of forms on the appropriate simplex of degree 𝑘 , subject to the
relations indicated in the definition. The differential and the product are defined
term-wise, i.e. (𝜔𝜔′) 𝑓 = 𝜔 𝑓 𝜔

′
𝑓

and (𝑑𝜔) 𝑓 = 𝑑 (𝜔 𝑓 ).

Remark 2.59 If 𝑋 is triangulated, then one can define a quasi-isomorphic CDGA in a
simpler way. An element of degree 𝑘 is given by a form of degree 𝑘 on each simplex
of 𝑋 , subject to the condition that if two simplices meet along a face, then the two
corresponding forms coincide on that face.

Theorem 2.60 (Sullivan [Sul77]) Let 𝑋 be a simply connected topological space of
finite type. Then Ω∗PL (𝑋) is quasi-isomorphic, as a (non-commutative) DGA, to the
algebra of the singular cochains of 𝑋 with rational coefficients 𝐶∗ (𝑋;Q).

As a corollary, the cohomology of the CDGA Ω∗PL (𝑋) is isomorphic to the
rational cohomology of 𝑋 . The quasi-isomorphism is easy to write down. Given
a 𝑘-form 𝜔 = (𝜔 𝑓 ) ∈ Ω𝑘PL (𝑋), we define a 𝑘-cochain

∫
𝜔 ∈ 𝐶𝑘 (𝑋) as follows.

For any 𝑘-simplex 𝑓 : Δ𝑘 → 𝑋 , which represents a generator of 𝐶𝑘 (𝑋), write
𝜔 𝑓 = 𝑃(𝑡1, . . . , 𝑡𝑘 )𝑑𝑡1 . . . 𝑑𝑡𝑘 where𝑃(𝑡1, . . . , 𝑡𝑘 ) is some polynomial. Then 〈

∫
𝜔, 𝑓 〉

is simply equal to the integral of 𝑃 on the standard 𝑘-simplex.
The following theorem is at the heart of Sullivan’s rational homotopy theory:

Theorem 2.61 (Sullivan [Sul77]) The functor Ω∗PL induces an equivalence between:

• the category of simply connected topological spaces of finite type, localized at
rational equivalences;

• the category of finite type CDGAs 𝐴 such that 𝐴0 = Q and 𝐴1 = 0, localized at
quasi-isomorphisms.

Remark 2.62 To prove this theorem, it is necessary to go through the category of
1-reduced simplicial sets. This is notably due to the fact that even if a space 𝑋 is
simply connected, then one does not necessarily have Ω0

PL (𝑋) = Q and Ω1
PL (𝑋) = 0.

Corollary 2.63 Let 𝑋 and 𝑌 be two simply connected topological spaces of finite
type. Then

𝑋 'Q 𝑌 ⇐⇒ Ω∗PL (𝑋) ' Ω∗PL (𝑌 ). (2.22)

Definition 2.64 Let 𝑋 be a topological space. A model (or rational model if one wants
to emphasize the field of coefficients) of 𝑋 is CDGA 𝐴 which is quasi-isomorphic to
the CDGA Ω∗PL (𝑋).

Thanks to Sullivan’s theorem, a model of 𝑋 “knows” completely the rational
homotopy type of 𝑋 . In particular, if two spaces have the same model, then they are
rationally equivalent.

This is a preprint of the following work: Najib Idrissi, Real Homotopy of Configuration Spaces: Peccot Lecture, Collège de France, March & May 2020, 2022, Springer, 

reproduced with permission of Springer Nature Switzerland AG. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-04428-1  



24 2 Configuration spaces of manifolds

It is possible to make many calculations using a model 𝐴 of 𝑋 . First of all, rational
cohomology can be computed from model thanks to Theorem 2.60.

Corollary 2.65 Let 𝐴 be a model of a space 𝑋 . Then there is an isomorphism of
commutative-graded algebras 𝐻∗ (𝑋;Q) � 𝐻∗ (𝐴).

Moreover, the Massey products (see Definition 2.29) of 𝑋 can be explicitly computed
from the model 𝐴 using a technique known as the homotopy transfer theorem. We
refer to e.g. [LV12, Section 9.4.5].

Second of all, rational homotopy groups can be computed from a model of 𝑋 .
Before stating the result, we first introduce the notion of minimal model.

Definition 2.66 A quasi-free CDGA is a CDGA of the form 𝐴 = (𝑆(𝑉), 𝑑) which
is free as a graded commutative algebra, where 𝑉 is a graded vector space (but the
differential is not necessarily induced by a differential on 𝑉).

Remark 2.67 Let 𝑉 be a graded vector space. The differential of a quasi-free CDGA
of the form 𝐴 = (𝑆(𝑉), 𝑑) is completely determined by its value on the generators,
𝑑 : 𝑉 → 𝑆(𝑉), thanks to the Leibniz rule.

Definition 2.68 A minimal CDGA is a quasi-free CDGA 𝐴 = (𝑆(𝑉), 𝑑) such that
𝑉 = 𝑉 ≥2 and the differential of a generator is at least quadratic, i.e. 𝑑 (𝑉) ⊂ 𝑆≥2 (𝑉).

Example 2.69 The CDGA (𝑆(𝑥2𝑘 , 𝑦4𝑘+1), 𝑑𝑦 = 𝑥2) is minimal (where 𝑥 is some
variable of degree 2𝑘 and 𝑦 some variable of degree 4𝑘 + 1). The CDGA
(𝑆(𝑥2𝑘 , 𝑧2𝑘−1), 𝑑𝑧 = 𝑥) is not minimal, however.

The main interest of minimal model comes from the following results:

Proposition 2.70 Two minimal CDGAs are quasi-isomorphic if and only if they are
isomorphic. Any simply connected CDGA of finite type is quasi-isomorphic to a
minimal CDGA.

Proof (Idea) The proof of the first result is in two steps:

1. Any quasi-isomorphism 𝑓 : 𝐴→ (𝑆(𝑉), 𝑑) into a minimal CDGA admits a right
inverse up to homotopy. This right inverse is built by induction on the degree of
the generators.

2. We can thus assume that were are given a direct quasi-isomorphism 𝑓 :
(𝑆(𝑉), 𝑑) → (𝑆(𝑉 ′), 𝑑 ′) between two minimal CDGAs. One then checks easily
by induction that 𝑓 must be an isomorphism on generators.

For the second result, the minimal model is also built by induction. �

As a consequence, any space 𝑋 admits a unique (up to isomorphism) model which
is minimal as a CDGA.

Definition 2.71 Let 𝑋 be a simply connected space of finite type. The minimal model
of 𝑋 is the model of 𝑋 which is minimal as a CDGA.
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2.3 Rational homotopy invariance 25

Theorem 2.72 ([FHT01, Theorem 15.11]) Let 𝑋 be a simply connected space of
finite type and let (𝑆(𝑉), 𝑑) be its minimal model. Then for all 𝑛 ≥ 2, there is an
isomorphism, natural in 𝑋:

𝜑𝑛 : 𝑉𝑛
�−→ Hom(𝜋𝑛 (𝑋),Q). (2.23)

The knowledge of a model of a space allows one to compute its minimal model
(essentially by induction) and thus to compute the rational homotopy groups of
that space. There is moreover a natural operation on homotopy groups called the
Whitehead product (or bracket). It is defined as follows. For integers 𝑘, 𝑙 ≥ 1, the
product S𝑘 × S𝑙 can be obtained from the wedge sum S𝑘 ∨ S𝑙 by gluing a (𝑘 + 𝑙)-cell
along an attaching map 𝑓𝑘,𝑙 : S𝑘+𝑙−1 → S𝑘 ∨ S𝑙 .

Definition 2.73 Let 𝑋 be a space and 𝛼 ∈ 𝜋𝑘 (𝑋), 𝛽 ∈ 𝜋𝑙 (𝑋). The Whitehead
product [Whi41] is the element [𝛼, 𝛽] ∈ 𝜋𝑘+𝑙−1 (𝑋) represented by:

[𝛼, 𝛽] : S𝑘+𝑙−1 𝑓𝑘,𝑙−−→ S𝑘 ∨ S𝑙
𝛼∨𝛽
−−−→ 𝑋. (2.24)

Note that the Whitehead product make the shifted space
⊕

𝑘≥0 𝜋𝑘+1 (𝑋) into a
Lie algebra:

Definition 2.74 A Lie algebra is a graded vector space 𝔤 equipped with a bilinear
map [−,−] : 𝔤 ⊗ 𝔤→ 𝔤 which is antisymmetric: for all 𝑥, 𝑦 ∈ 𝔤,

∀𝑥, 𝑦 ∈ 𝔤, [𝑦, 𝑥] = −(−1) |𝑥 | · |𝑦 | [𝑥, 𝑦], (2.25)

and which satisfies the Jacobi relation: for all 𝑥, 𝑦, 𝑧 ∈ 𝔤,

(−1) |𝑥 | · |𝑧 | [𝑥, [𝑦, 𝑧]] + (−1) |𝑥 | · |𝑦 | [𝑦, [𝑧, 𝑥]] + (−1) |𝑦 | · |𝑧 | [𝑧, [𝑥, 𝑦]] = 0. (2.26)

Proposition 2.75 Let 𝑋 be a simply connected space of finite type and (𝑆(𝑉), 𝑑) its
minimal model. Let 𝑑2 : 𝑉 → 𝑉 ⊗2/Σ2 be the quadratic part of 𝑑, i.e. the projection
of the restriction of 𝑑 to the generators onto the weight 2 component of 𝑆(𝑉). Then
𝑑2 is dual to the Whitehead product under the isomorphism of Theorem 2.72:

∀𝑣 ∈ 𝑉, ∀𝛼, 𝛽 ∈ 𝜋∗+1 (𝑋),
〈
𝜑(𝑣), [𝛼, 𝛽]

〉
=
〈
(𝜑 ⊗ 𝜑) (𝑑2 (𝑣)), 𝛼 ⊗ 𝛽

〉
. (2.27)

Remark 2.76 There exists higher brackets on 𝜋∗+1 (𝑋) that are dual to the higher
degree parts of the differential. We will not detail how.

Let us now give an example of a model.

Example 2.77 Let us consider the sphere S𝑛 of dimension 𝑛. It can be proved quite
easily that a model of S𝑛 is given by its cohomology, 𝐻∗ (S𝑛) = Q1 ⊕ Q𝑣, where
deg 𝑣 = 𝑛 and 𝑣2 = 0. There are two cases:

• Suppose that 𝑛 is odd. Then 𝐻∗ (S𝑛) is actually the free CDGA on one variable
of degree 𝑛 (as a variable of odd degree anti-commutes with itself and thus
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26 2 Configuration spaces of manifolds

automatically squares to zero). Choose any closed representative volS𝑛 ∈ Ω𝑛PL (S
𝑛)

of the volume form of S𝑛. Then there is a well-defined morphism 𝐻∗ (S𝑛) →
Ω∗PL (S

𝑛) which maps 𝑣 to volS𝑛 . This morphism is obviously surjective in
cohomology, and since both CDGAs have the same cohomology, the claim
follows. Note that 𝐻∗ (S𝑛) is minimal in that case, so it is the minimal model of
S𝑛.

• Suppose now that 𝑛 is even. Choose as before any closed representative volS𝑛 ∈
Ω𝑛PL (S

𝑛) of the volume form of S𝑛. The issue is that now, the square of volS𝑛
may be nonzero. However, thanks to the computation of the cohomology of the
sphere, vol2S𝑛 must be a coboundary, say vol2S𝑛 = 𝑑𝛼. Then we can build a zigzag
of quasi-isomorphisms of CDGAs:

𝐻∗ (S𝑛)
(
𝑆(𝑥𝑛, 𝑦2𝑛+1), 𝑑𝑦 = 𝑥2) Ω∗PL (S

𝑛)

𝑣 𝑥 volS𝑛

0 𝑦 𝛼

(2.28)

The CDGA in the middle is freely generated (as a CGA) by two variables 𝑥 (of
degree 𝑛) and 𝑦 (of degree 2𝑛 + 1). The differential is the unique derivation that
satisfies 𝑑𝑥 = 0 and 𝑑𝑦 = 𝑥2. It can be seen easily that the left-pointing map is a
quasi-isomorphism. Therefore, since the right-pointing map is clearly surjective
in cohomology, the claim follows. Note that the CDGA in the middle is the
minimal model of S𝑛.

The sphere is thus an example of formal space (see Section 2.4). We can also recover
a theorem of Serre:

• if 𝑛 is odd then 𝜋𝑛 (S𝑛) ⊗Z Q = Q and all other homotopy groups are torsion;
• if 𝑛 is even then 𝜋𝑛 (S𝑛) ⊗Z Q = 𝜋2𝑛−1 (S𝑛) ⊗Z Q = Q and all other homotopy

groups are torsion; moreover the Whitehead bracket of the degree 𝑛 with itself is
equal to the degree 2𝑛 − 1 generator.

Returning once again to the configuration spaces, we arrive at a finer version of
Conjecture 2.45:

Conjecture 2.78 Let 𝑀 be a simply connected closed manifold. It is possible to find
an explicit model of Conf𝑀 (𝑟) that depends only on a model of 𝑀 .

If this conjecture holds, then Conjecture 2.45 also holds thanks to Sullivan’s
theorem.

In these notes, we will actually focus on real homotopy types, not rational homotopy
types. While real homotopy types are slightly weaker, they are still sufficient for most
computations.

Definition 2.79 Two simply connected spaces of finite type 𝑋 and 𝑌 have the same
real homotopy type if Ω∗PL (𝑋) ⊗Q R and Ω∗PL (𝑌 ) ⊗Q R are quasi-isomorphic as
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2.3 Rational homotopy invariance 27

CDGAs. A real model of such a space 𝑋 is a CDGA (with real coefficients) which is
quasi-isomorphic to Ω∗PL (𝑋) ⊗Q R.

Remark 2.80 Unlike rational equivalences, real equivalences cannot always be realized
by zigzags of continuous maps that induces isomorphisms on real cohomology.

Example 2.81 ([FOT08, Example 2.38]) Let 𝛼 ∈ Q be a positive rational parameter.
We define a CDGA

𝐴𝛼 =
(
𝑆(𝑒2, 𝑥4, 𝑦7, 𝑧9), 𝑑𝛼

)
, (2.29)

where the indices denote the degree, together with the differential:

𝑑𝛼𝑒 = 0, 𝑑𝛼𝑥 = 0, 𝑑𝛼𝑦 = 𝑥2 + 𝛼𝑒4, 𝑑𝛼𝑧 = 𝑒
5. (2.30)

For two different parameters 𝛼 and 𝛼′, the CDGAs 𝐴𝛼 and 𝐴𝛼′ are quasi-isomorphic
if and only if 𝛼/𝛼′ is a square. They are thus always quasi-isomorphic over R, but
not always over Q.

Example 2.82 ([FOT08, Example 3.7]) The theory is obviously generalizable to C.
Consider the complex projective plane CP2 with its usual orientation and let CP

2

be the same manifold with reverse orientation. The connected sums 𝑋 = CP2 #CP2

and 𝑌 = CP2 #CP
2

have the same complex homotopy type, but not the same real
homotopy type. One can see (with a proof similar to Example 2.77 in the even case)
that a model for 𝑋 is given by:

𝐻∗ (𝑋) = 𝑆(𝑥, 𝑦)/(𝑥2 − 𝑦2, 𝑥𝑦, 𝑥3, 𝑦3), (2.31)

where deg 𝑥 = deg 𝑦 = 2, whereas a model for 𝑌 is given by:

𝐻∗ (𝑌 ) = 𝑆(𝑥, 𝑦)/(𝑥2 + 𝑦2, 𝑥𝑦, 𝑥3, 𝑦3). (2.32)

Then there is an isomorphism over C between these two models given by 𝑥 ↦→ 𝑥,
𝑦 ↦→ 𝑖𝑦. However, these two models are not quasi-isomorphic over R. This can be
seen by considering their intersection forms, which are quadratic forms given by

𝑞𝑋 : 𝐻2 (𝑋) → R
𝛼 ↦→ 〈𝛼2, [𝑋]〉

(2.33)

where [𝑋] ∈ 𝐻4 (𝑋) is an orientation (and similarly for 𝑌 ). The signature of 𝑞𝑋 is
(2, 0) while the signature of 𝑞𝑌 is (1, 1).

Let us now focus on configuration spaces once again. Conjecture 2.45 stated that
the rational homotopy type of Conf𝑀 (𝑟) only depends on the rational homotopy type
of 𝑀 . This conjecture can be modified slightly to yield a different one.

Conjecture 2.83 Let 𝑀 be a simply connected closed manifold. It is possible to find
an explicit real model of Conf𝑀 (𝑟) that depends only on a real model of 𝑀 .
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28 2 Configuration spaces of manifolds

A positive answer to this conjecture would make it possible to make calculations
on the real homotopy of Conf𝑀 (𝑟) (cohomology, homotopy groups, etc.) simply by
knowing the homotopy type of 𝑀 .

2.4 Configuration spaces of Euclidean spaces

The basic building bricks manifolds are the Euclidean spaces R𝑛. Since any manifold
𝑀 can be obtained by gluing copies of R𝑛, the configuration space Conf𝑀 (𝑟) can
thus be obtained by gluing copies of ConfR𝑛 (𝑘) for 𝑘 ≤ 𝑟 in a rather complicated way
(with points potentially in different charts). To understand the homotopy type of the
configuration spaces of 𝑀 , we will therefore start by looking at those of R𝑛.

The cohomology of the configuration spaces of R𝑛 is well known. Let us first
introduce the following notation, that will become clear in Chapter 5 (as ConfR𝑛 (𝑟)
has the cohomology of the little disks operad, 𝐸𝑛).

Definition 2.84 Let 𝑛 ≥ 2 and 𝑟 ≥ 0 be integers. We let e∨𝑛 (𝑟) be the graded-
commutative algebra with the following presentation, where deg𝜔𝑖 𝑗 = 𝑛 − 1:

e∨𝑛 (𝑟) B
𝑆(𝜔𝑖 𝑗 )1≤𝑖≠ 𝑗≤𝑟(

𝜔 𝑗𝑖 = (−1)𝑛𝜔𝑖 𝑗 , 𝜔2
𝑖 𝑗
= 0, 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔 𝑗𝑘𝜔𝑘𝑖 + 𝜔𝑘𝑖𝜔𝑖 𝑗 = 0

) (2.34)

Theorem 2.85 (Arnold [Arn69], Cohen [Coh76]) The cohomology of ConfR𝑛 (𝑟)
is isomorphic to e∨𝑛 (𝑟) as a graded-commutative algebra.

Intuitively, the class𝜔𝑖 𝑗 “counts” how many times the points 𝑖 and 𝑗 revolve around
each other. More formally, recall from Lemma 2.21 that ConfR𝑛 (2) is homotopy
equivalent to a sphere through the map ConfR𝑛 (2) → S𝑛−1, (𝑥, 𝑦) ↦→ (𝑥− 𝑦)/‖𝑥− 𝑦‖.
Let 𝜃𝑖 𝑗 : ConfR𝑛 (𝑟) → ConfR𝑛 (2) → S𝑛−1 be the map given by

𝜃𝑖 𝑗 (𝑥1, . . . , 𝑥𝑛) B
𝑥𝑖 − 𝑥 𝑗
‖𝑥𝑖 − 𝑥 𝑗 ‖

. (2.35)

The class 𝜔𝑖 𝑗 is the pullback of the volume form of the sphere along 𝜃𝑖 𝑗 . The relations
can be interpreted as follows:

• the relation 𝜔𝑖 𝑗 = (−1)𝑛𝜔 𝑗𝑖 says that reversing the orientation of the sphere can
introduce a sign;

• the relation 𝜔2
𝑖 𝑗
= 0 says that the volume form has vanishing square;

• the relation 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔 𝑗𝑘𝜔𝑘𝑖 + 𝜔𝑘𝑖𝜔𝑖 𝑗 = 0 is, in a sense, dual to the Jacobi
relation which describes what happens when three points interact by rotating
around common centers (for example points 1, 2 and 4 in Figure 2.6)

Equation (2.34) can be interpreted as follows. Its elements are linear combinations
of graphs on 𝑟 vertices, without double edges or loops. Such a graph with edges
(𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) corresponds to the word 𝜔𝑖1 𝑗1 . . . 𝜔𝑖𝑙 𝑗𝑙 . If 𝑛 is even then the set
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2.4 Configuration spaces of Euclidean spaces 29

of edges is ordered; if 𝑛 is odd then the edges are oriented. A change of order, resp.
a change of orientation, induces a change of sign. Finally, the space of all linear
combinations is modded out by the following local relation (with appropriate signs
depending on how edges are oriented or ordered):

𝑖

𝑗 𝑘

+
𝑖

𝑗 𝑘

+
𝑖

𝑗 𝑘

= 0 (2.36)

The product of the CDGA consists in gluing two graphs together along their vertices.

Lemma 2.86 Let 𝑟 ≥ 0 be an integer. A basis for e∨𝑛 (𝑟) is given by monomials of the
type:

𝜔𝑖1 𝑗1 . . . 𝜔𝑖𝑘 𝑗𝑘 , (2.37)

where 𝑗1 < · · · < 𝑗𝑘 and 𝑖𝑙 < 𝑗𝑙 for all 𝑙.

Proof It is easy to see that these monomials span the algebra using the previous
graphical description. These monomials correspond exactly to graphs where the
edges are ordered by their targets, the edges are all oriented from lower vertices to
higher ones, and no two edges have the same target. Using the relations 𝜔2

𝑖 𝑗
= 0,

𝜔 𝑗𝑖 = (−1)𝑛𝜔𝑖 𝑗 , and the graded commutativity of the algebra, the first two conditions
can be achieved. Moreover, any graph such that two edges have the same target can
be rewritten in terms of graphs where edges have different targets using the 3-term
Arnold relation of Equation (2.36).

It is harder to show that these monomials are linearly independent. There are
several approaches. One is to use the graphs-trees pairing that we use in the proof of
Theorem 2.85. Another is to use the theory of commutative Poincaré–Birkhoff–Witt
bases, as we now explain very briefly. We refer to e.g. Polishchuk and Positselski
[PP05, Section 4.8] for the general theory.

Thanks to the relation 𝜔 𝑗𝑖 = (−1)𝑛𝜔𝑖 𝑗 , we can take as generators the elements
𝜔𝑖 𝑗 for 𝑖 < 𝑗 . We decide to order these generators by the lexicographic order, i.e.:

𝜔𝑖 𝑗 < 𝜔𝑘𝑙 ⇐⇒ 𝑖 < 𝑘 or (𝑖 = 𝑘 and 𝑗 < 𝑙). (2.38)

We then order monomials lexicographically. Then the remaining two kinds of relations
are quadratic and can be seen as so-called “rewriting rules”, where a higher monomial
is seen as rewritten in terms of lower monomials:

𝜔𝑖 𝑗𝜔𝑖 𝑗 { 0, for 𝑖 < 𝑗 ; (2.39)
𝜔𝑖𝑘𝜔 𝑗𝑘 { 𝜔𝑖 𝑗𝜔 𝑗𝑘 − 𝜔𝑖 𝑗𝜔𝑖𝑘 for 𝑖 < 𝑗 < 𝑘. (2.40)

The first relation simply means that graphs containing double edges are rewritten to
zero. The second relation means that if a graph contains two edges with the same target,
then that graph is rewritten using Equation (2.36). The claimed basis is precisely
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30 2 Configuration spaces of manifolds

given by the monomials that cannot be rewritten in this way. The general theory gives
us a criterion to check whether they are linearly independent. A monomial is called
“critical” if is minimal among monomials containing two overlapping rewriting rules.
The criterion says that if these critical monomials are confluent, i.e. if by applying
either one of the two overlapping rewriting rules and then applying rewriting rules
again, we can get to a common monomial. In our case, since the rewriting rules are
all quadratic, then critical monomials must be cubic. The critical monomials are of
three kinds, and we can check easily by hand that they are confluent.

1. The critical monomial (𝜔2
𝑖 𝑗
)𝜔𝑖 𝑗 = 𝜔𝑖 𝑗 (𝜔2

𝑖 𝑗
) is clearly confluent, as applying the

rewriting rule to either factor yields zero.
2. The critical monomial 𝜔𝑖𝑘 (𝜔 𝑗𝑘𝜔 𝑗𝑘 ) = (𝜔𝑖𝑘𝜔 𝑗𝑘 )𝜔 𝑗𝑘 (where 𝑖 < 𝑗 < 𝑘) is

confluent:

︸  ︷︷  ︸
1

𝜔𝑖𝑘

2︷   ︸︸   ︷
𝜔 𝑗𝑘𝜔 𝑗𝑘 0

𝜔𝑖 𝑗 𝜔 𝑗𝑘𝜔 𝑗𝑘︸   ︷︷   ︸
{0

−𝜔𝑖 𝑗 𝜔𝑖𝑘𝜔 𝑗𝑘︸  ︷︷  ︸
3

−𝜔𝑖 𝑗𝜔𝑖 𝑗︸ ︷︷ ︸
4

𝜔 𝑗𝑘 + 𝜔𝑖 𝑗𝜔𝑖 𝑗︸ ︷︷ ︸
4

𝜔𝑖𝑘

2

1

3

4 (2.41)

3. The critical monomial (𝜔𝑖𝑙𝜔 𝑗𝑙)𝜔𝑘𝑙 = 𝜔𝑖𝑙 (𝜔 𝑗𝑙𝜔𝑘𝑙) (where 𝑖 < 𝑗 < 𝑘 < 𝑙) is also
confluent. It is a straightforward (if long) exercise to check this fact. It is helpful
to draw monomials as graphs; the critical monomial is a graph containing three
edges with the same target. �

This lemma allows us to compute the dimension of e∨𝑛 (𝑟), simply by counting the
degrees of the monomials.

Corollary 2.87 The Poincaré polynomial of e∨𝑛 (𝑟) is given by:∑︁
𝑑∈N

dim(e∨𝑛 (𝑟)𝑑) · 𝑡𝑑 =

𝑟−1∏
𝑖=0
(1 + 𝑖𝑡𝑛−1) ∈ N[𝑡] . (2.42)

Proof Thanks to Lemma 2.86, we see that e∨𝑛 (𝑟) is isomorphic to the tensor product
𝑉1 ⊗ · · · ⊗ 𝑉𝑟 , where 𝑉 𝑗 is the graded vector space spanned by 1, 𝜔1 𝑗 , . . . , 𝜔 ( 𝑗−1) 𝑗 .
The Poincaré polynomial of 𝑉 𝑗 is thus 1 + ( 𝑗 − 1)𝑡𝑛−1 and by multiplicativity of the
Poincaré polynomial, the corollary follows. �

Proof (Sketch of proof of Theorem 2.85) We refer to the presentation given by
Sinha [Sin13] for what follows. Let us consider the projection:

𝑝1,...,𝑟−1 : ConfR𝑛 (𝑟) → ConfR𝑛 (𝑟 − 1) (2.43)
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2.4 Configuration spaces of Euclidean spaces 31

that forgets the last point of a configuration. This map is a locally trivial fiber
bundle thanks to [FN62a, Theorem 3]. Its fiber is R𝑛 \ {𝑥0

1, . . . , 𝑥
0
𝑟−1}, where 𝑥0 ∈

ConfR𝑛 (𝑟 − 1) is any base point. This fiber has the homotopy type of the wedge of
spheres

∨𝑟−1
𝑖=1 S

𝑛−1. Thanks to the Serre spectral sequence (see e.g. Bott and Tu [BT82,
§15]), the Betti numbers of ConfR𝑛 (𝑟) are bounded above by the Betti numbers of
the tensor product:

𝐻∗ (ConfR𝑛 (𝑟−1))⊗𝐻∗
(𝑟−1∨
𝑖=1
S𝑛−1) � 𝐻∗ (ConfR𝑛 (𝑟−1))⊕

𝑟−1⊕
𝑖=1

𝐻∗−𝑛+1 (ConfR𝑛 (𝑟−1)).

(2.44)
We can thus show by induction that the Betti numbers of ConfR𝑛 (𝑟) are at most equal to
the dimensions of the components of e∨𝑛 (𝑟) (which were computed in Corollary 2.87).
Moreover, if equality is reached, then the cohomology group considered is free as an
abelian group.

Let us consider the map between e∨𝑛 (𝑟) and 𝐻∗ (ConfR𝑛 (𝑟)), which sends 𝜔𝑖 𝑗
to the volume form of S𝑛−1 pulled back along 𝜃𝑖 𝑗 . We can check easily that the
relations between the generators are satisfied and that this thus defines a morphism
of commutative graded algebras. Using the result on Betti numbers, it is enough to
show that this map is injective in order to prove the result.

We now use the graphical interpretation of e∨𝑛 (𝑟) in order to prove the result. For
each graph, a matching homology class can be constructed. The method uses the “solar
systems” construction due to Cohen [Coh73a]. We refer to [Sin13, Proposition 2.2]
for a detailed treatment. Let us now quickly sketch it.

Let 𝑇 be a forest of rooted planar binary trees equipped with a bijection between
its leaves and {1, . . . , 𝑛} and an order on its set of roots. For 𝑣 a vertex of 𝑇 (either a
leaf or an internal vertex), we let ℎ(𝑣) be its height, and 𝑝(𝑣) its parent, if it exists.
One can build a homology class from 𝑇 as follows. Let 𝑥 = (𝑥1, . . . , 𝑥𝑟 ) ∈ ConfR𝑛 (𝑟)
be a configuration. We inductively define the “center of mass” 𝑐(𝑥, 𝑣) with respect
to a vertex 𝑣 of 𝑇 as follows. If ℓ𝑖 is a leaf of 𝑇 indexed by 𝑖 ∈ {1, . . . , 𝑛}, then
𝑐(𝑥, ℓ) = 𝑥𝑖 . If 𝑣 is an internal vertex of 𝑇 , and 𝑣′ and 𝑣′′ are its two children, then we
define 𝑐(𝑥, 𝑣) = (𝑐(𝑥, 𝑣′) + 𝑐(𝑥, 𝑣′′))/2. Let (𝑢1 < · · · < 𝑢𝑘 ) be the roots of the trees
in 𝑇 . For any 𝑖 ∈ {1, . . . , 𝑟}, there is a unique path (𝑢𝜌(𝑖) , 𝑣1 (𝑖), . . . , 𝑣ℎ (𝑖) (𝑖) = 𝑖)
from a root to the leaf ℓ𝑖 . Then there is a map, where 𝑉 (𝑇) is the set of internal
vertices of 𝑇 and 0 < 𝜏 < 1/3 is an arbitrary radius:

𝑃𝑇 : (S𝑛−1)𝑉 (𝑇 ) → ConfR𝑛 (𝑟)

(𝜉𝑣 )𝑣∈𝑉 (𝑇 ) ↦→ (𝜌(𝑖), 0, . . . , 0) +
ℎ (𝑖)∑︁
𝑗=1
±𝜏 𝑗𝜉𝑣𝑗 (𝑖) ,

(2.45)

where the sign ± is +1 if 𝑣 𝑗 (𝑖) is the left child of its parent, and −1 otherwise.
Concretely, we can view the image of 𝑃𝑇 as several orbital systems such that the
roots are fixed at the points (1, 0, . . . , 0), . . . , (𝑘, 0, . . . , 0), and two children of an
internal vertex orbit a common center of mass located at their parent (with a radius
depending on the height). We refer to Figure 2.6 for an example.
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32 2 Configuration spaces of manifolds

The fundamental class of the product of spheres (oriented correctly) thus yields
a homology class in ConfR𝑛 (𝑟) by pushing it forward along 𝑃𝑇 . The homology-
cohomology pairing induces a pairing between graphs (i.e. the elements of e∨𝑛 (𝑟))
and rooted binary forests. One can show combinatorially that this pairing is not
degenerate [Sin13, Theorem 4.7], from which the result follows. �

1

2 4

3 5
{ 1

2

4

3

5

Fig. 2.6 Solar systems: a tree with 5 leaves and 3 internal vertices induces a homology class in
𝐻3(2−1) (ConfR2 (5)) . The left system is centered at (1, 0) and the right system is centered at (2, 0) .

Remark 2.88 In the previous proof, we saw appearing a fundamental object of interest
for configuration spaces, the Fadell–Neuwirth fibration [FN62a]. In general, if 𝑀 is
an arbitrary manifold, 𝑄𝑚 ⊂ 𝑀 is a subset of cardinality 𝑚, and 𝑄𝑚+𝑟 is a subset of
cardinality 𝑚 + 𝑟 that contains 𝑄𝑚, then there is a locally trivial fiber bundle:

𝑝1,...,𝑟 : Conf𝑀\𝑄𝑚 (𝑛) → Conf𝑀\𝑄𝑚 (𝑟) (2.46)

with fiber Conf𝑀\𝑄𝑚+𝑟 (𝑛− 𝑟). When 𝑚 ≥ 1, this fibration splits: there exists a section
𝜎 of 𝑝1,...,𝑟 which can visually be understood as adding a point at infinity (i.e. close
to the missing point 𝑞1). When 𝑀 is a Lie group and 𝑚 = 0, then the fibration is
actually trivial, as there is a homeomorphism:

𝑀 × Conf𝑀\{1} (𝑟)
�−→ Conf𝑀 (𝑟 + 1)

(𝑥0, (𝑥1, . . . , 𝑥𝑟 )) ↦→ (𝑥0, 𝑥
−1
0 𝑥1, . . . , 𝑥

−1
0 𝑥𝑟 ).

(2.47)

In general, though, the fibration is not trivial. There is a tower of fibrations:
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2.4 Configuration spaces of Euclidean spaces 33

𝑀 \ {𝑞1, . . . , 𝑞𝑟 } Conf𝑀 (𝑟 + 1)

𝑀 \ {𝑞1, . . . , 𝑞𝑟−1} Conf𝑀 (𝑟)

. . .

𝑀 \ {𝑞1, 𝑞2} Conf𝑀 (3)

𝑀 \ {𝑞1} Conf𝑀 (2)

𝑀

(2.48)

which is extremely useful to study configuration spaces by induction. In particular, as
one can see from the long exact sequence of a fibration, if 𝑀 is a simply connected
manifold of dimension at least 3, then Conf𝑀 (𝑟) is simply connected for all 𝑟
(see [FN62a, Theorem 9]).

In general, the cohomology of a topological space gives only partial information
about the space in question. However, for a certain class of spaces, this information is
sufficient to recover the full rational homotopy type.

Definition 2.89 A space 𝑋 is said to be formal if 𝐻∗ (𝑋;Q) is a model of 𝑋 .

Example 2.90 The spheres are formal, see Example 2.77.

Example 2.91 ([FOT08, Theorem 1.34]) An H-space is a space 𝑋 equipped with a map
𝜇 : 𝑋 ×𝑋 → 𝑋 which is associative and unitary up to homotopy, i.e. 𝜇(𝜇(−,−),−) '
𝜇(−, 𝜇(−,−)) and there is an element 𝑒 ∈ 𝑋 such as 𝜇(−, 𝑒) ' 𝜇(𝑒,−) ' id𝑋 . Such
a space is always automatically formal. Indeed, the cohomology of an H-space is
an exterior algebra Λ(𝑧1, . . . , 𝑧𝑘 ) on several variables of odd degrees. We can thus
define a quasi-isomorphism Λ(𝑧1, . . . , 𝑧𝑘 ) → Ω∗PL (𝑋) simply by choosing any closed
representatives of the 𝑧𝑖 .

Example 2.92 ([FOT08, Proposition 2.99]) If 𝑀 is a (𝑝 − 1)-connected closed
manifold of dimension dim𝑀 ≤ 4𝑝 − 2, then 𝑀 is formal.

Although we saw earlier that two spaces can have the same real homotopy types
but different rational homotopy types, this cannot occur when the spaces are formal.

Theorem 2.93 (Consequence of [Sul77, Theorem 12.1]) Formality overQ is equiv-
alent to formality over any field of characteristic zero.

An important class of examples of formal spaces is the following, which illustrates
a deep connection between geometry and topology:
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34 2 Configuration spaces of manifolds

Definition 2.94 A Kähler manifold is a complex variety with a Hermitian metric ℎ
whose associated 2-form 𝜔 = −=ℎ is closed.

Theorem 2.95 (Deligne, Griffiths, Morgan, and Sullivan [DGMS75]) Compact
Kähler manifolds are formal. (More generally, any spaces satisfying the 𝑑𝑑𝑐 lemma,
e.g. Moišezon manifolds, are formal).

Proof (Idea) Let us consider the real-valued de Rham complex Ω∗dR (𝑀) on a Kähler
manifold 𝑀 . Note this this CDGA is quasi-isomorphic to Ω∗PL (𝑋) ⊗Q R. Thanks to
Theorem 2.93, it suffices to show that Ω∗dR (𝑀) ' 𝐻

∗ (𝑀;R).
The de Rham complex is equipped with the exterior differential 𝑑, which splits as

the sum 𝑑 = 𝜕 + 𝜕, where 𝜕 differentiates with respect to holomorphic coordinates
and 𝜕 with respect to anti-holomorphic coordinates. There is another differential
𝑑𝑐 = 𝑖(𝜕 − 𝜕) which preserves real-valued forms. These two differentials satisfy:

𝑑2 = (𝑑𝑐)2 = 𝑑𝑑𝑐 + 𝑑𝑐𝑑 = 0. (2.49)

The fact that 𝑀 is Kähler implies that it satisfies the “𝑑𝑑𝑐-lemma”: if 𝛼 ∈ Ω∗dR (𝑀) is
a form which is closed with respect to both differentials (i.e. 𝑑𝛼 = 𝑑𝑐𝛼 = 0) and exact
with respect to 𝑑 (i.e. 𝛼 = 𝑑𝛾 for some 𝛾), then 𝛼 = 𝑑𝑑𝑐𝛽 for some form 𝛽. Given
this lemma, proving formality is a simple matter. One has a zigzag of cochain maps:(

Ω∗dR (𝑀), 𝑑
) (

ker 𝑑𝑐 , 𝑑
) (

ker 𝑑𝑐/im 𝑑𝑐 , 𝑑
)
,

𝑖 𝑝
(2.50)

where 𝑖 is the inclusion of 𝑑𝑐-closed forms and 𝑝 is the projection onto 𝑑𝑐-cohomology.
Then it is a simply exercise to show that 𝑖 and 𝑝 are quasi-isomorphisms, and that
𝑑 induces the zero differential on ker 𝑑𝑐/im 𝑑𝑐 , which is therefore isomorphic to
𝐻∗ (𝑀):

• 𝑖 is injective in cohomology: if 𝑦 ∈ ker 𝑑𝑐 is such that 𝑦 = 𝑑𝑥 for some form 𝑥,
then by the lemma 𝑦 = 𝑑 (𝑑𝑐𝛽) for some 𝛽 and 𝑑𝑐𝛽 is 𝑑𝑐-closed.

• 𝑖 is surjective in cohomology: if 𝑥 is a closed form, then 𝑑𝑐𝑥 = 𝑑𝑑𝑐𝛽 for some
form, thus 𝑥 + 𝑑𝛽 is 𝑑𝑐-closed and 𝑖[𝑦] = [𝑥].

• 𝑑 vanishes on ker 𝑑𝑐/im 𝑑𝑐: if 𝑑𝑐𝑦 = 0, then 𝑑𝑦 = 𝑑𝑑𝑐𝛽 = −𝑑𝑐𝑑𝛽 and thus
[𝑑𝑦] = 0 in the quotient.

• 𝑝 is surjective in cohomology: if 𝑑𝑐𝑦 = 0, then 𝑑𝑦 = 𝑑𝑑𝑐𝛽 and thus 𝑧 = 𝑦 + 𝑑𝑐𝛽
is a 𝑑-closed form mapped to the class of 𝑦 in the quotient.

• 𝑝 is injective in cohomology: if 𝑦 = 𝑑𝑐𝑥 then 𝑦 = 𝑑𝑑𝑐𝛽 and so 𝑦 is also 𝑑-exact
in ker 𝑑𝑐 . �

Let us now go focus on the configuration spaces of R𝑛. We first have the following
result in dimension 2, which uses complex analysis. Although the spaces ConfC (𝑟)
are Kähler manifolds, they are not compact, so Theorem 2.95 does not apply.

Remark 2.96 The compactness assumption is essential in Theorem 2.95. For example,
the configuration spaces ConfΣ𝑔 (𝑟) of surfaces of genus 𝑔 ≥ 2 are open Kähler
manifolds which are not formal for 𝑟 ≥ 2. Results of Morgan [Mor78] give ways of
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2.4 Configuration spaces of Euclidean spaces 35

finding models of complements of divisors with normal crossings in Kähler manifolds,
which can be applied to configuration spaces, see Remark 3.16.

Theorem 2.97 (Arnold [Arn69]) The configuration spaces of C = R2 are formal.

Proof Recall the description of the cohomology of ConfC (𝑟) from Theorem 2.85.
There is a direct morphism from cohomology to forms, defined on generators by:

𝜑 : 𝐻∗ (ConfC (𝑟)) → Ω∗dR (ConfC (𝑟);C)

𝜔𝑖 𝑗 ↦→ 𝑑 log(𝑧𝑖 − 𝑧 𝑗 ) =
𝑑𝑧𝑖 − 𝑑𝑧 𝑗
𝑧𝑖 − 𝑧 𝑗

.
(2.51)

The forms in the target are of course closed. One can easily check that 𝜑(𝜔𝑖 𝑗 )2 = 0
and that 𝜑(𝜔 𝑗𝑖) = 𝜑(𝜔𝑖 𝑗 ). Finally, a small calculation shows that 𝜑(𝜔𝑖 𝑗 )𝜑(𝜔 𝑗𝑘 ) +
𝜑(𝜔 𝑗𝑘 )𝜑(𝜔𝑘𝑖) + 𝜑(𝜔𝑘𝑖)𝜑(𝜔𝑖 𝑗 ) = 0. This map is clearly surjective in cohomology,
as 𝐻∗ (ConfC (𝑟)) is generated in degree 1 and all the generators are in the image.
Since the two CDGAs obviously have the same cohomology, we can thus deduce that
𝜑 is a quasi-isomorphism. This shows that ConfC (𝑟) is formal over C, and thus over
Q thanks to Theorem 2.93. �

This proof does not work for 𝑛 ≥ 3. Indeed, it does not appear possible to
find a direct quasi-isomorphism 𝐻∗ (ConfR𝑛 (𝑟)) → Ω∗dR (ConfR𝑛 (𝑟)) in general.
Kontsevich showed the following theorem, by a more involved method (later refined
by Lambrechts–Volić to take into account the real homotopy type):

Theorem 2.98 (Kontsevich [Kon99] and Lambrechts and Volić [LV14]) The con-
figuration spaces of R𝑛 are formal for any 𝑛 ≥ 2.

We will review the proof in more detail later (Section 5.4). Let us note already
that the proof is much more complicated than for the case 𝑛 = 2. It involves a zigzag:

𝐻∗ (ConfR𝑛 (𝑟)) ← · → Ω∗PA (ConfR𝑛 (𝑟)) (2.52)

where the middle CDGA is an almost free resolution of the cohomology of ConfR𝑛 (𝑟).
Informally, the idea is to create a CDGA where there are no more relations between
generators, but where the differential encodes the relations. To build the application
into the CDGA of forms, we must no longer find forms that strictly satisfy the
relations, but only forms that satisfy the relationship up to homotopy (i.e. the map is
compatible with the differential).

It is this idea that we will use in the next chapter to deal with the case of
configuration spaces of closed manifolds. We will also see that Kontsevich’s result
is much deeper. A certain algebraic (operadic) structure on configuration spaces is
compatible with this formality. This compatibility has many applications, as we will
see in Chapter 5.

Before moving on to the next chapter, let us already note that Theorem 2.98 allows
us to glean a trove of information about the configuration spaces of R𝑛. The explicit
description of 𝐻∗ (ConfR𝑛 (𝑟)) already allowed us to compute the Betti numbers
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36 2 Configuration spaces of manifolds

of ConfR𝑛 (𝑟), and we moreover know the cup product. Since the Massey products
(Definition 2.29) of a formal space vanish (see [FOT08, Proposition 2.90]), we know
that the Massey products of ConfR𝑛 (𝑟) vanish.

Furthermore, we can actually compute the rational homotopy groups of ConfR𝑛 (𝑟)
from the explicit description of Theorem 2.85. It is more convenient to describe these
homotopy groups as a Lie algebra under the Whitehead product (see Definitions 2.73
and 2.74).

Definition 2.99 Let 𝑛 ≥ 2 and 𝑟 ≥ 0 be integers. The Drinfeld–Kohno Lie algebra
𝔭𝑛 (𝑟) is the free Lie algebra generated by symbols 𝑡𝑖 𝑗 of degree 2−𝑛, for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛,
subject to the relations:

1. for distinct 𝑖 and 𝑗 , we have 𝑡 𝑗𝑖 = (−1)𝑛𝑡𝑖 𝑗 ;
2. for pairwise distinct 𝑖, 𝑗 , 𝑘 , we have [𝑡𝑖𝑘 , 𝑡𝑖 𝑗 + 𝑡 𝑗𝑘 ] = 0;
3. for pairwise distinct 𝑖, 𝑗 , 𝑘, 𝑙, we have [𝑡𝑖 𝑗 , 𝑡𝑘𝑙] = 0.

The following result can be seen through an explicit computation starting from
Theorem 2.85, computing the minimal model, and using the isomorphism of Theo-
rem 2.72:

Theorem 2.100 There is an isomorphism of graded Lie algebras, for 𝑛 ≥ 3 and
𝑟 ≥ 0:

𝜋∗+1 (ConfR𝑛 (𝑟)) ⊗Z Q � 𝔭𝑛 (𝑟). (2.53)

Remark 2.101 Consistently with our convention stated at the beginning of the volume,
we consider all degrees to be cohomologically, so that 𝔭𝑛 (𝑟) is non-positively graded
(i.e. non-negatively with homological conventions). Homotopy groups being of dual
nature to cohomology, they are also considered to be placed in negative cohomological
degree.

Remark 2.102 In fact, more than that is true. For 𝑛 ≥ 3, the graded Lie algebra 𝔭𝑛 (𝑟)
actually forms a Quillen model of ConfR𝑛 (𝑟) (in the sense of the rational homotopy
theory of Quillen [Qui69], see Remark 2.47). Since 𝔭𝑛 (𝑟) has no differential, this
can be interpreted as the fact that ConfR𝑛 (𝑟) is coformal, the dual notion of formality
for Quillen models.

Remark 2.103 When 𝑛 = 2 (i.e. we are looking at configurations in the plane), the
elements 𝑡𝑖 𝑗 ∈ 𝜋1 (ConfR2 (𝑟)) have a nice graphical interpretation. Recall that the
fundamental group of ConfR2 (𝑟) is the pure braid group 𝑃𝐵𝑟 (see Example 2.6), i.e.
braids such that every strand starts and ends at the same position. Then 𝑡𝑖 𝑗 can be
represented by a braid such that the strand 𝑗 crosses over the strand 𝑖 exactly once, as
in the following picture:

𝑡𝑖 𝑗 =

𝑖 𝑗1 𝑖 − 1 𝑖 + 1 𝑗 − 1 𝑗 + 1 𝑟. . . . . . . . .

(2.54)
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2.4 Configuration spaces of Euclidean spaces 37

However, in that dimension, the isomorphism of Theorem 2.100 is not an isomorphism
of Lie algebras but merely of graded vector spaces. In order to take the Lie algebra
structure into account, one must take the Malcev completion of the fundamental
group. In some sense, this means that 𝔭2 (𝑟) can be seen as an infinitesimal version of
the pure braid group, see the work of Kohno [Koh85]. We refer to Fresse [Fre17a,
Section 10] for a detailed treatment and a deep connection with the little disks operads
and the Grothendieck–Teichmüller groups, and to Merkulov [Mer21] for a survey.
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Chapter 3
Configuration spaces of closed manifolds

Abstract In this chapter, we present the model conjectured by Lambrechts and Stanley.
We show that their conjecture is true over R for a large class of closed manifolds. The
proof is an adaptation and a generalization of the formality of the configuration spaces
of Euclidean spaces. However, unlike Euclidean spaces, models of configuration
spaces of closed manifolds have a nontrivial differential. We introduce the (Axelrod–
Singer–)Fulton–MacPherson compactifications of configuration spaces, as well as
the theory of piecewise semi-algebraic forms. We explain how graph complex appear
in the proof, and how a simply degree counting argument on graphs is essential. As a
corollary to this result, we obtain real homotopy invariance of configuration spaces
of simply connected closed manifolds.

3.1 The Lambrechts–Stanley model

3.1.1 Definition of the model

We start by introducing the Lambrechts–Stanley model of Conf𝑀 (𝑟). The idea behind
this model is the following. By Poincaré–Lefschetz duality, if𝑊 is an oriented closed
manifold of dimension 𝑛 and 𝐾 ⊂ 𝑊 is a compact subset, then (under some technical
conditions) 𝐻∗ (𝑊 \ 𝐾) � 𝐻𝑛−∗ (𝑊, 𝐾). The exact long sequence in homology tells
us that 𝐻𝑛−∗ (𝑊, 𝐾) is obtained, so to speak, from the homology of𝑊 by “killing”
the classes coming from 𝐾. To obtain the space Conf𝑀 (𝑟), we can start from the
Cartesian product 𝑀𝑟 and remove the diagonals Δ𝑖 𝑗 = {𝑥 ∈ 𝑀𝑟 | 𝑥𝑖 = 𝑥 𝑗 }. The
model we are going to present is essentially built by applying Poincaré–Lefschetz
duality to this description of Conf𝑟 (𝑀).

Let us start with some prerequisites. By Poincaré duality, if 𝑀 is an oriented closed
manifold, then there is a class [𝑀] ∈ 𝐻𝑛 (𝑀) such that for any 𝑘 ∈ Z, the pairing
𝐻𝑛−𝑘 (𝑀) ⊗ 𝐻𝑛−𝑘 (𝑀) → R, 𝛼 ⊗ 𝛽 ↦→

〈
𝛼𝛽, [𝑀]

〉
is non-degenerate. In particular,

𝐻𝑘 (𝑀) = 0 for 𝑘 > 𝑛. We wish to generalize this at the “cochain level”, rather than

39
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40 3 Configuration spaces of closed manifolds

at the cohomology level. The following definition is a differential-graded version of
commutative Frobenius algebras.

Definition 3.1 A Poincaré duality CDGA (of formal dimension 𝑛) is a pair (𝐴, 𝜀𝐴)
where:

• 𝐴 is a CDGA concentrated in nonnegative degrees such that 𝐴0 = R;
• 𝜀𝐴 : 𝐴𝑛 → R is a linear map satisfying 𝜀(𝑑𝑎) = 0 for any 𝑎 ∈ 𝐴𝑛−1 (which

reflects the Stokes formula, as our manifold is boundary-less);
• for any 𝑘 ∈ Z, the pairing

𝐴𝑘 ⊗ 𝐴𝑛−𝑘 → R
𝑎 ⊗ 𝑏 ↦→ 𝜀(𝑎𝑏)

(3.1)

is non-degenerate.

A Poincaré duality model of a closed manifold 𝑀 is a model of 𝑀 with a Poincaré
duality CDGA structure.

Remark 3.2 Since we take 𝑘 ∈ Z in the last statement, and since 𝐴 is concentrated
in nonnegative degrees, it follows that 𝐴𝑘 = 0 for 𝑘 > 𝑛. Moreover, 𝜀𝐴 must be an
isomorphism between the top-degree component 𝐴𝑛 and R.

Remark 3.3 In the notation, one will often forget the 𝜀𝐴.

Example 3.4 If a closed manifold 𝑀 is formal, then 𝐻∗ (𝑀) is a Poincaré duality
model of it.

Example 3.5 There are Poincaré duality CDGAs which have nonzero differential. For
example, consider 𝐴 =

(
𝑆(𝑥2, 𝑦3)/(𝑥3), 𝑑𝑦 = 𝑥2) with 𝜀𝐴(𝑥2𝑦) = 1.

Any model 𝐴 of a manifold satisfies Poincaré duality at the level of cohomology.
However, it does not necessarily satisfy it at the level of cochains. There is a naive idea
to force Poincaré duality to hold at that level. Consider the ideal O ⊂ 𝐴 of elements
𝑎 ∈ 𝐴 (called the orphans) for which the linear map 𝜀(𝑎 · −) : 𝐴 → R vanishes.
Modding out by this ideal always yields a Poincaré duality CDGA 𝐴/O. This naive
idea, however, does not work. The issue is that modding out by orphans can change
the homotopy type of the CDGA, or said differently, the ideal O may fail to be acyclic.
However, Lambrechts and Stanley [LS08b] have managed to refine this idea into a
procedure that works with any simply connected CDGA whose cohomology satisfies
Poincaré duality.

Theorem 3.6 (Lambrechts and Stanley [LS08b]) Let 𝑀 be a simply connected
closed manifold. There exists a model of 𝑀 which is a Poincaré duality CDGA.

Definition 3.7 Let 𝐴 be a Poincaré duality CDGA. Let {𝑎𝑖}𝑖∈𝐼 be a graded basis of
𝐴, and let {𝑎∨

𝑖
}𝑖∈𝐼 be its dual basis (i.e. 𝜀(𝑎𝑖𝑎∨𝑗 ) = 𝛿𝑖 𝑗 for any 𝑖, 𝑗 ∈ 𝐼). The diagonal

class of 𝐴 is the element of (𝐴 ⊗ 𝐴)𝑛 given by:
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3.1 The Lambrechts–Stanley model 41

Δ𝐴 B
∑︁
𝑖∈𝐼
(−1) |𝑎𝑖 |𝑎𝑖 ⊗ 𝑎∨𝑖 . (3.2)

This element is a cocycle of degree 𝑛 and does not depend on the chosen basis. Using
Sweedler’s notation, we will often write Δ𝐴 =

∑
(Δ𝐴) Δ

′
𝐴
⊗ Δ′′

𝐴
.

Remark 3.8 This class has a geometric interpretation. Let [𝑀] ∈ 𝐻𝑛 (𝑀) be the
fundamental class of 𝑀 . We push it forward along the diagonal map 𝛿 : 𝑥 ↦→ (𝑥, 𝑥) to
get 𝛿∗ [𝑀] ∈ 𝐻𝑛 (𝑀 ×𝑀). By Poincaré duality, this class corresponds to the diagonal
class in 𝐻2𝑛−𝑛 (𝑀 × 𝑀).

Example 3.9 Let 𝐴 = 𝐻∗ (Σ𝑔) be the cohomology of an oriented surface of genus
𝑔. It has a basis given by the elements 1 ∈ 𝐴0, 𝛼1, . . . , 𝛼𝑔, 𝛽1, . . . , 𝛽𝑔 ∈ 𝐴1 and
𝜐 = 𝛼𝑖𝛽𝑖 ∈ 𝐴2. The augmentation is given by 𝜀(𝜐) = 1. The diagonal class of 𝐴 is
then:

Δ𝐴 = 1 ⊗ 𝜐 + 𝜐 ⊗ 1 −
𝑔∑︁
𝑖=1
(𝛼𝑖 ⊗ 𝛽𝑖 + 𝛽𝑖𝛼𝑖). (3.3)

Lemma 3.10 The diagonal class satisfies (1 ⊗ 𝑎)Δ𝐴 = (𝑎 ⊗ 1)Δ𝐴 for any 𝑎 ∈ 𝐴.
Furthermore, in Sweedler’s notation, if Δ𝐴 =

∑
(Δ𝐴) Δ

′
𝐴
⊗ Δ′′

𝐴
, then we have, for any

𝑥 ∈ 𝐴: ∑︁
(Δ𝐴)
(−1)degΔ′

𝐴𝜀(𝑥Δ′′𝐴)Δ
′
𝐴 = 𝑥. (3.4)

Remark 3.11 The first property is explained by the fact that one can represent Δ𝐴 by a
form on 𝑀×𝑀 whose support is concentrated along the diagonal 𝑀 ⊂ 𝑀×𝑀 [MS74,
Section 11, p. 125].

Proof Let 𝑎𝑖 be a graded basis of 𝐴 and 𝑎∨
𝑖

be its dual basis as in Definition 3.7. Let
𝑥 ∈ 𝐴 be an arbitrary element. Then 𝑥 =

∑
𝑖 𝜆𝑖𝑎𝑖 for some coefficients 𝜆𝑖 ∈ R, and

𝜆𝑖 = 𝜀𝐴(𝑥𝑎∨𝑖 ). It follows that Equation (3.4) holds. For the other formula, we have
(with signs to write down carefully):

(1 ⊗ 𝑎)Δ𝐴 =
∑︁
𝑖

±𝑎𝑖 ⊗ 𝑎𝑎∨𝑖

=
∑︁
𝑖

±𝑎𝑖 ⊗
(∑︁
𝑗

±𝜀𝐴(𝑎𝑎∨𝑖 𝑎 𝑗 )𝑎∨𝑗
)

=
∑︁
𝑖, 𝑗

±𝜀𝐴(𝑎𝑎∨𝑖 𝑎 𝑗 )𝑎𝑖 ⊗ 𝑎∨𝑗

=
∑︁
𝑗

±𝑎𝑎 𝑗 ⊗ 𝑎∨𝑗

= (𝑎 ⊗ 1)Δ𝐴.

We will need the following notation.

Definition 3.12 Let 𝐴 be a CDGA and 1 ≤ 𝑖, 𝑗 ≤ 𝑟 of integers. We define the
morphism 𝑝∗

𝑖
: 𝐴→ 𝐴⊗𝑟 by:
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42 3 Configuration spaces of closed manifolds

𝑝∗𝑖 (𝑎) B 1 ⊗ · · · ⊗ 1 ⊗ 𝑎︸︷︷︸
position 𝑖

⊗1 ⊗ · · · ⊗ 1. (3.5)

We define moreover 𝑝∗
𝑖 𝑗

: 𝐴 ⊗ 𝐴→ 𝐴⊗𝑟 by 𝑝∗
𝑖 𝑗
(𝑎 ⊗ 𝑏) = 𝑝∗

𝑖
(𝑎) · 𝑝∗

𝑗
(𝑏).

Definition 3.13 (Lambrechts and Stanley [LS08a]) Let 𝐴 be a Poincaré duality
model of a simply connected closed manifold 𝑀. The Lambrechts–Stanley model
associated to 𝐴 is the CDGA:

G𝐴(𝑟) ≔
(
𝐴⊗𝑟 ⊗ 𝑆(𝜔𝑖 𝑗 )1≤ 𝑗≠ 𝑗≤𝑟/𝐼, 𝑑

)
. (3.6)

The dg-ideal 𝐼 is generated by:

• the relations 𝜔2
𝑖 𝑗
= 0, 𝜔 𝑗𝑖 = (−1)𝑛𝜔𝑖 𝑗 , and 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔 𝑗𝑘𝜔𝑘𝑖 + 𝜔𝑘𝑖𝜔𝑖 𝑗 = 0 that

appear in Theorem 2.85;
• and the symmetry relations 𝑝∗

𝑖
(𝑎)𝜔𝑖 𝑗 = 𝑝∗

𝑗
(𝑎)𝜔𝑖 𝑗 for any 𝑎 ∈ 𝐴 and 1 ≤ 𝑖 ≠

𝑗 ≤ 𝑟.
The differential 𝑑 = 𝑑𝐴 + 𝑑split is the sum of the differential induced by that of 𝐴 and
the unique derivation that extends:

𝑑split (𝜔𝑖 𝑗 ) = 𝑝∗𝑖 𝑗 (Δ𝐴). (3.7)

Let us describe G𝐴(𝑟) for small values of 𝑟 . Recall the descriptions of Conf𝑀 (𝑟)
for small values of 𝑟 from Examples 2.2 and 2.3.

Example 3.14 The CDGA G𝐴(0) = Q is actually a model of Conf𝑀 (0) = {∅}.
Moreover, G𝐴(1) = 𝐴 is, by hypothesis, a model of Conf𝑀 (1) = 𝑀 .

Example 3.15 The CDGA G𝐴(2) is given by
(
𝐴 ⊗ 𝑆(𝜔12, 𝜔21)/𝐼, 𝑑

)
. The relation

𝜔21 = (−1)𝑛𝜔12 allows us to get rid of 𝜔21. Thanks to the relation 𝜔2
12 = 0, we find

that G𝐴(2) splits as a direct sum:

G𝐴(2) �
(
(𝐴 ⊗ 𝐴 ⊗ Q1 ⊕ 𝐴 ⊗ 𝐴 ⊗ Q𝜔12)/𝐼, 𝑑

)
. (3.8)

The symmetry relation gives us 𝑎 ⊗ 1 ⊗ 𝜔12 = 1 ⊗ 𝑎 ⊗ 𝜔12 for all 𝑎 ∈ 𝐴. Since we
consider the ideal generated by these relations, we thus have:

G𝐴(2) �
(
𝐴 ⊗ 𝐴 ⊗ 1 ⊕ 𝐴 ⊗𝐴 𝐴 ⊗ 𝜔12, 𝑑

)
�

(
𝐴 ⊗ 𝐴 ⊗ 1 ⊕ 𝐴𝜔12, 𝑑

)
. (3.9)

Finally, the differential is given by the sum of the differential of 𝐴 and 𝑑split (𝑎⊗𝜔12) =
(𝑎 ⊗ 1)Δ𝐴 = (1 ⊗ 𝑎)Δ𝐴. It thus follows that the CDGA G𝐴(2) � cone(𝛿) is the cone
of the map:

𝛿 : 𝐴→𝐴 ⊗ 𝐴
𝑎 ↦→ (𝑎 ⊗ 1)Δ𝐴.

(3.10)

Since 𝛿 is injective, the cone is quasi-isomorphic to the cokernel, i.e. to the quotient
(𝐴 ⊗ 𝐴)/(Δ𝐴). This echoes the classical result that 𝐻∗ (Conf𝑀 (2)) = 𝐻∗ (𝑀2 \Δ) �
𝐻∗ (𝑀)⊗2/(Δ𝑀 ).
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3.1 The Lambrechts–Stanley model 43

Starting from 𝑟 = 3, the CDGA G𝐴(𝑟) no longer has such a simple description.
Not all classes can be represented by elements coming from 𝐴⊗𝑟 . There may be
non-trivial classes that need to involve the 𝜔𝑖 𝑗 .

We can graphically represent the elements of G𝐴(𝑟) just like we did for the
elements of 𝐻∗ (ConfR𝑛 (𝑟)) after Theorem 2.85. A word 𝜔𝑖1 𝑗1 . . . 𝜔𝑖𝑙 𝑗𝑙 corresponds
to graphs with 𝑟 numbered vertices, with edges (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙). Thanks to the
Arnold relations, this graph is without double edges or loops. One can view the edges
as unoriented/unordered but the sign is a priori undefined. The factor 𝐴⊗𝑟 correspond
to decorations of the 𝑟 vertices. The decorations can move along edges thanks to
the symmetry relation. Hence, one can view decorations as decorating connected
components of the graph, rather than vertices.

The CDGA structure fits into this graphical description. The multiplication glues
the graphs along their vertices and multiplies the decorations of the connected
components thus merged. The differential is the sum of the differential of 𝐴 (which
acts as a derivation on the decorations of the connected components) and the sum
of all the ways of cutting an edge in two. When an edge is cut, the decoration of
the corresponding connected component is multiplied by Δ to obtain an element of
𝐴 ⊗ 𝐴.

Remark 3.16 This CDGA has already been extensively studied in one form or another.
Let us quickly review some of its appearances in the literature.

• Cohen and Taylor [CT78] have described a spectral sequence which converges
to the cohomology of Conf𝑀 (𝑟) and whose page 𝐸2 is precisely G𝐻 ∗ (𝑀 ) (𝑟).
This spectral sequence is, in fact, the Leray spectral sequence of the inclusion
Conf𝑀 (𝑟) ⊂ 𝑀𝑟 . Interpreted in a modern way, the subsequent differentials
(informally) encode the difference between 𝐻∗ (𝑀) and a model 𝐴 of 𝑀 .

• Suppose that 𝑀 is a smooth complex projective manifold. It is therefore a
compact Kähler manifold, which is therefore formal according to Theorem 2.95.
Kriz [Kri94] showed that in this case, G𝐻 ∗ (𝑀 ) (𝑟) is indeed a rational model of
Conf𝑀 (𝑟). His work is based on earlier results by Fulton and MacPherson [FM94]
(themselves based on results of Morgan [Mor78] mentioned in Remark 2.96). At
the same time, Totaro [Tot96] proved that, in this case, the Cohen–Taylor spectral
sequence collapses after the page 𝐸2. Thanks to a result of Deligne [Del75], this
results in that 𝐻∗ (Conf𝑟 (𝑀)) is isomorphic to 𝐻∗ (G𝐻 ∗ (𝑀 ) (𝑟)) as an algebra.

• Bendersky and Gitler [BG91] constructed a spectral sequence that converges to
the relative cohomology 𝐻∗ (𝑀𝑟 ,Δ

(𝑟 )
𝑀
), where

Δ
(𝑟 )
𝑀
B {𝑥 ∈ 𝑀𝑟 | ∃𝑖 ≠ 𝑗 s.t. 𝑥𝑖 = 𝑥 𝑗 } = 𝑀𝑟 \ Conf𝑀 (𝑟) (3.11)

is the thick diagonal. By Poincaré–Lefschetz duality, this cohomology is isomor-
phic to the homology of Conf𝑀 (𝑟). Félix and Thomas [FT04] and Berceanu,
Markl, and Papadima [BMP05], showed that the page 𝐸2 of this spectral sequence
is isomorphic to the dual of G𝐻 ∗ (𝑀 ) (𝑟).
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44 3 Configuration spaces of closed manifolds

• Lambrechts and Stanley [LS04] have shown that if 𝑀 is 2-connected, then G𝐴(2)
is indeed a model of Conf𝑀 (2). Cordova Bulens [Cor15] generalized this result
to simply connected manifolds of even dimension.

• Lambrechts and Stanley [LS08a] have shown later on that if 𝑀 is a simply
connected closed manifold, then the cohomology of G𝐴(𝑟) is isomorphic to the
cohomology of Conf𝑀 (𝑟) as a representation of the symmetric group Σ𝑟 , degree
by degree.

3.1.2 Statement of the theorem and proof strategy

The main goal of this chapter is to prove the following theorem:

Theorem 3.17 ([Idr19], see also Campos and Willwacher [CW16]) Let 𝑀 be a
simply connected smooth closed manifold, and let 𝐴 be any Poincaré duality model of
𝑀 . The Lambrechts–Stanley model G𝐴(𝑟) is a real model of Conf𝑀 (𝑟) for any 𝑟 ≥ 0.

This thus settles Conjecture 2.83 for a large class of manifolds. To the authors’
knowledge, little more is known about the non-smooth case.

The proof of Theorem 3.17 is an adaptation and generalization of Kontsevich’s
proof of the formality of configuration spaces of R𝑛. The main steps are as follows.

1. It is (in general) impossible to find forms on Conf𝑀 (𝑟) that strictly verify the
relations of G𝐴(𝑟). We thus start by constructing a resolution of G𝐴(𝑟) which is
free as an algebra. This makes it possible to search only for forms that verify the
relations up to homotopy. This resolution is constructed using decorated graph
complexes as in Kontsevich’s proof.

2. We show in a purely combinatorial way that this resolution is indeed quasi-
isomorphic at G𝐴(𝑟). We proceed exactly as for the computation of the cohomol-
ogy of ConfR𝑛 (𝑟).

3. To define the morphism G𝐴(𝑟) → Ω∗ (Conf𝑀 (𝑟)), we want to use integrals,
as in Kontsevich’s proof. However, Conf𝑀 (𝑟) is not compact for 𝑟 ≥ 2, so
integrals do not necessarily converge. We thus study the compactification of
Axelrod–Singer–Fulton–MacPherson [AS94; FM94] of Conf𝑀 (𝑟).

4. The integrals in Kontsevich’s proof are integrals along the fibers of the projections
Conf𝑀 (𝑟+ 𝑠) → Conf𝑀 (𝑟) that forget some points of the configuration. However,
once the configuration spaces are compactified, these projections are no longer
submersions. This prevents the use of the classical theory of de Rham differential
forms. If 𝑀 is semi-algebraic, these projections are however semi-algebraic
fiber bundles, which allows us to use the theory of piecewise semi-algebraic
forms [KS00; HLTV11]. Not all manifolds are semi-algebraic, but this is the
case for smooth manifolds thanks to the theorem of Nash [Nas52] and Tognoli
[Tog73].

5. A key point in the construction of graph complexes is reduction: it is necessary
to quotient by certain graphs to have the right type of homotopy. However, it is
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3.1 The Lambrechts–Stanley model 45

generally not clear that the integration procedure along the fibers respects this
quotient. An extremely simple counting argument shows that if dim𝑀 ≥ 4, then
this is the case.
Note that in dimension dim𝑀 ≤ 3, there are only three simply connected smooth
closed manifolds: the point {0}, the sphere S2 (classification of surfaces) and S3

(Poincaré conjecture [Per02; Per03; MT07; KL08]). For each of these examples
a different proof allows to show that the Lambrechts–Stanley model is a model
of the configuration space.

6. It only remains to show that if 𝐴 and 𝐵 are two different Poincaré duality models
of 𝑀, then G𝐴(𝑟) ' G𝐵 (𝑟). That proof involves graph complexes but remains
purely algebraic (i.e. no integrals or assumptions about smoothness are needed).

Remark 3.18 In fact, we do not proceed in this order. The complete construction of
the graph complex depends on the integrals, which themselves depend on the chosen
compactification.

We saw in Remark 2.88 that for simply connected manifolds of dimension at least
3, then Conf𝑀 (𝑟) is simply connected. It follows that real models of Conf𝑀 (𝑟) (in
the sense that we have defined here) encode its real homotopy type. The case of
dimension ≤ 2 is trivial in that regard, as homotopy equivalent manifolds are actually
homeomorphic in these dimensions. Therefore, using Theorem 3.17, we obtain the
following corollary:

Corollary 3.19 Let 𝑀 and 𝑁 be two manifolds satisfying the hypotheses of the
theorem. If they have the same real homotopy type, then so do their configuration
spaces.

It is not a priori obvious that if 𝐴 and 𝐵 are two Poincaré duality CDGAs that are
quasi-isomorphic, then G𝐴(𝑟) and G𝐵 (𝑟) are quasi-isomorphic. This is the case if we
can find a direct quasi-isomorphism of CDGA 𝑓 : 𝐴→ 𝐵 such that 𝜀𝐵 ◦ 𝑓 = 𝜀𝐴. It
should be noted, however, that the existence of such a quasi-isomorphism is restrictive,
as can be seen by the following lemma.

Lemma 3.20 Let 𝐴 and 𝐵 be two connected Poincaré duality CDGAs. If 𝑓 : 𝐴→ 𝐵

is a quasi-isomorphism, then 𝑓 is injective.

Proof Let us first note that 𝐴 and 𝐵 must have the same formal dimension 𝑛, as
it is the largest degree for which the cohomology is nonzero. It is moreover easy
to see that 𝐻𝑛 (𝐴) = 𝐴𝑛 = R and 𝐻𝑛 (𝐵) = 𝐵𝑛 = R (with 𝜀 playing the role of an
isomorphism), so 𝑓 : 𝐴𝑛 → 𝐵𝑛 is multiplication by a nonzero scalar 𝜆. Suppose that
𝑎 ∈ 𝐴𝑘 is a nonzero element. Then by Poincaré duality, there exists some 𝑎′ ∈ 𝐴𝑛−𝑘
such that 𝜀𝐴(𝑎𝑎′) = 1. It follows that

𝜀𝐵 ( 𝑓 (𝑎) 𝑓 (𝑎′)) = 𝜀𝐵 ( 𝑓 (𝑎𝑎′)) = 𝜆 ≠ 0, (3.12)

so 𝑓 (𝑎) ≠ 0. �
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46 3 Configuration spaces of closed manifolds

Lambrechts and Stanley [LS08b] have shown that if 𝑛 ≥ 7, 𝐴0 = 𝐵0 = R,
𝐴1 = 𝐴2 = 𝐵1 = 𝐵2 = 0 and 𝐻3 (𝐴) = 𝐻3 (𝐵) = 0, then there is a zigzag of
quasi-isomorphisms of Poincaré duality CDGAs 𝐴 → 𝐶 ← 𝐵. This was recently
improved by Hajek [Haj20] to simply connected CDGAs with vanishing 𝐻2 of any
formal dimension. But these conditions are still restrictive.

3.2 Fulton–MacPherson compactifications

Unless dim𝑀 = 0, the configuration spaces Conf𝑀 (𝑟) are not compact for 𝑟 ≥ 2,
even if 𝑀 is. The proof of Theorem 3.17 involves integrals on configuration spaces. To
ensure that these integrals converge, one possibility is to compactify the configuration
spaces.

In this section, we define a manifold with corners FM𝑀 (𝑟) whose interior is
Conf𝑀 (𝑟). This manifold was initially defined by Fulton and MacPherson [FM94]
in the complex setting (using blowups with projective spaces instead of spheres)
and Axelrod and Singer [AS94] in the real setting (using spherical blowups). It was
then studied in detail in [Sin04]. The boundary points of FM𝑀 (𝑟) informally consist
of “virtual” configurations of points, where some points are infinitesimally close to
each other. To obtain a correct homotopy type, one keeps local information about
these point clusters in these virtual configurations . This local information essentially
consists of a configuration (which can itself be virtual) in the tangent space of 𝑀 .

In what follows, for ease of reasoning, it will be convenient to index the points of
a configuration by elements of any finite set, rather than {1, . . . , 𝑟}.

Definition 3.21 Let 𝑈 be a finite set. We define Conf𝑀 (𝑈) as the set of injections
𝑈 ↩→ 𝑀 , seen as a subset of 𝑀𝑈 .

Remark 3.22 The configuration space Conf𝑀 (𝑟) is simply Conf𝑀 ({1, . . . , 𝑟}). We
will switch between the two notations indiscriminately.

3.2.1 Case of Euclidean spaces

An important ingredient of the proof of Theorem 3.17 will be the Stokes formula,
which will allow us to verify that our integration procedure preserves the differential.
We will therefore describe the boundary of FM𝑀 (𝑟), and more generally the fiberwise
boundary of the canonical projection FM𝑀 (𝑟 + 𝑠) → FM𝑀 (𝑟). This description
involves the compactifications of ConfR𝑛 (𝑟), so this is where we will start. The results
of this section come from [LV14, Chapter 5] unless otherwise indicated.

Definition 3.23 Let 𝑈 be a finite set and 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 ∈ 𝑈 three pairwise distinct
elements. We define maps:
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3.2 Fulton–MacPherson compactifications 47

𝜃𝑖 𝑗 : ConfR𝑛 (𝑈) → S𝑛−1, 𝛿𝑖 𝑗𝑘 : ConfR𝑛 (𝑈) → [0, +∞],

𝑥 ↦→
𝑥𝑖 − 𝑥 𝑗
‖𝑥𝑖 − 𝑥 𝑗 ‖

, 𝑥 ↦→ ‖𝑥𝑖 − 𝑥𝑘 ‖‖𝑥 𝑗 − 𝑥𝑘 ‖
. (3.13)

The group of translations and positive dilations R𝑛 o R>0 acts on ConfR𝑛 (𝑈). If
#𝑈 ≥ 2, this action is free and proper. The quotient ConfR𝑛 (𝑈)/R𝑛oR>0 is thus still a
manifold, of dimension 𝑛#𝑈−𝑛−1. We can represent the elements of the quotient (for
#𝑈 ≥ 2) by normalized configurations, i.e. those whose barycenter is in at the origin
0 ∈ R𝑛 and whose radius is 1. If #𝑈 ≤ 1, the action is transitive and the quotient is thus
reduced to a point. In both cases, the projection ConfR𝑛 (𝑈) → ConfR𝑛 (𝑈)/R𝑛 oR>0
is a homotopy equivalence.

The maps of Definition 3.23 are compatible with the quotient by R𝑛 o R>0. They
define an embedding, where Conf𝑈 (2) = {(𝑖, 𝑗) ∈ 𝑈2 | 𝑖 ≠ 𝑗} and Conf𝑈 (3) =
{(𝑖, 𝑗 , 𝑘) ∈ 𝑈3 | 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖}:

ConfR𝑛 (𝑈)
/
R𝑛 o R>0 ↩→

(
S𝑛−1)Conf𝑈 (2) × [0, +∞]Conf𝑈 (3) . (3.14)

Definition 3.24 The (Axelrod–Singer–)Fulton–MacPherson compactification of
ConfR𝑛 (𝑈), denoted FM𝑛 (𝑈), is the closure of the image of the embedding (3.14).

Proposition 3.25 ([LV14, Proposition 5.2]) The space FM𝑛 (𝑈) is a compact man-
ifold with corners. Its interior is the space ConfR𝑛 (𝑈)/R𝑛 o R>0. Its dimension is
𝑛#𝑈 − 𝑛 − 1 for #𝑈 ≥ 2, and it is zero-dimensional otherwise.

Proof The maps 𝜃𝑖 𝑗 and 𝛿𝑖 𝑗𝑘 are semi-algebraic, therefore their image is an SA set,
and therefore so is the closure FM𝑛 (𝑈). Explicit charts have been described by Sinha
[Sin04] (where FM𝑛 (𝑈) is denoted 𝐶̃#𝑈 (R𝑛) and the charts are the 𝜈R

𝑛 ,x
𝑇

of [Sin04,
Definition 3.33], projected down to FM𝑛 (𝑈)). �

These compactifications have beautiful geometrical descriptions.

Example 3.26 The spaces FM𝑛 (0) and FM𝑛 (1) are singletons. The space FM𝑛 (2) is
just the unit sphere S𝑛−1: up to translations, one of the two points can be fixed at the
origin, and up to rescaling, the radius of the configuration can be fixed to 1.

Example 3.27 ([Hoe12, Figure 2]) The space FM2 (3) is a 3-manifold with boundary.
It is obtained by removing a tubular neighborhood of three interlinked circles from
the 3-sphere S3. Alternatively, it can be describe as a solid torus from which a tubular
neighborhood of a Hopf linked (two interlinked circles) has been removed. See
Figure 3.1.

Example 3.28 Let 𝑟 ≥ 0. The space FM1 (𝑟) has 𝑟! connected components, each
indexed by a permutation of {1, . . . , 𝑟}, which corresponds to the various ways of
ordering a configuration of 𝑟 points on the real lines. The symmetric group (which
acts by renumbering) simply permutes the connected components, so we may study
only one of them, say the component of the identity permutation 𝐾𝑟 ⊂ FM1 (𝑟).
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48 3 Configuration spaces of closed manifolds

Fig. 3.1 The space FM2 (3) is obtained from a solid torus (i.e. the cylinder with two opposite ends
identified) by removing two interlinked solid tori. (Figure adapted from [Hoe12, Figure 2].)

The space 𝐾𝑟 is a compact manifold with corners of dimension 𝑟 − 2 (for 𝑟 ≥ 2)
called the 𝑟th associahedron. Associahedra were introduced by Stasheff [Sta61] after
earlier work of Tamari [Tam51]. The space 𝐾𝑟 can be realized as a convex polyhedron
(and are also called Stasheff polytopes). The vertices of 𝐾𝑟 correspond to possible
parenthesizations of the word 𝑥1 . . . 𝑥𝑟 (where the 𝑥𝑖 are arbitrary variables). Two
parenthesizations are connected by an edge if one can be obtained from the other
by applying the associativity rule exactly once. For example, the space FM1 (3) is a
segment: the two vertices correspond to the two parenthesizations of 𝑥1𝑥2𝑥3, and the
edge to the associativity rule. The space FM1 (4) is a pentagon (see Figure 3.2): the
vertices correspond to the four possible parenthesization of the word 𝑥1𝑥2𝑥3𝑥4, the
edges to the possible applications of the associativity rule, and the interior corresponds
to a coherence relation between the various applications of the associativity. Using
the theory of operads (see Chapter 5), this intuitive idea can be made precise.

Fig. 3.2 The space FM1 (4)
is a disjoint union of 24
pentagons such as this one.

12(
34)

(12)34

(123)4

1(
23
)4

1(234)

1(2(34))

(12) (34)

( (12)3)4 (1(23))4

1( (23)4)

Like all manifolds with corners, FM𝑛 (𝑈) deformation retracts on its interior. It
follows that:
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3.2 Fulton–MacPherson compactifications 49

Corollary 3.29 The map ConfR𝑛 (𝑈) → FM𝑛 (𝑈), given by the composition of the
quotient by the R𝑛 o R>0 action and inclusion, is a homotopy equivalence.

One can also characterize the boundary of that manifold.

Proposition 3.30 The boundary of FM𝑛 (𝑈) is characterized by elements where at
least one of the coordinates 𝛿𝑖 𝑗𝑘 vanishes.

If a configuration 𝑥 ∈ FM𝑛 (𝑈) satisfies 𝛿𝑖 𝑗𝑘 (𝑥) = 0, we will say that 𝑥𝑖 is
infinitesimally close to 𝑥 𝑗 with respect to 𝑥𝑘 .

One can imagine that a point of FM𝑛 (𝑈) is a normalized configuration ofR𝑛 which
is potentially “virtual”: some points can be infinitesimally close to each other. Such
proximity relations can be nested. Figure 3.3 gives an example, where infinitesimal
proximity relations are represented by smaller “zoomed in” disks:

• points 3, 5 and 8 are infinitesimally close to each other in relation to the others
(i.e. we have 𝛿35𝑘 (𝑥) = 0 for 𝑥 ∉ {3, 5, 8}, etc.);

• points 4, 6, and 7 are also infinitesimally close to each other;
• Moreover, points 6 and 7 are infinitesimally close to each other with respect to

point 4.

1

2

3
45

6 7

8

Fig. 3.3 An element of FM2 (8) .

The manifold FM𝑛 (𝑈) is a manifold with corners, so its boundary 𝜕FM𝑛 (𝑈) is
itself a manifold with corners, the boundary of its boundary can itself have a boundary,
etc. Let us now describe the facets of the boundary, i.e. the decomposition of the
boundary into submanifolds of codimension zero which intersect along their own
boundaries.

Definition 3.31 Let𝑈 be a finite set and let𝑊 ( 𝑈 be a subset of cardinality #𝑊 ≥ 2.
We define the subset of virtual configurations such that all points indexed by𝑊 are
infinitesimally close to each other:

𝜕𝑊 FM𝑛 (𝑈) ≔
{
𝑥 ∈ FM𝑛 (𝑈)

�� 𝑖, 𝑘 ∈ 𝑊 ∧ 𝑗 ∉ 𝑊 =⇒ 𝛿𝑖 𝑗𝑘 (𝑥) = 0
}
. (3.15)
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50 3 Configuration spaces of closed manifolds

Definition 3.32 The quotient 𝑈/𝑊 is the finite set 𝑈 \𝑊 t {∗}. Note in particular
that 𝑈/∅ = 𝑈 t {∗}. For 𝑢 ∈ 𝑈, we note [𝑢] ∈ 𝑈/𝑊 its class, given by [𝑢] = 𝑢 if
𝑢 ∈ 𝑊 , and [𝑢] = ∗ if 𝑢 ∈ 𝑊 .

Proposition 3.33 The space 𝜕𝑊 FM𝑛 (𝑈) is homeomorphic to FM𝑛 (𝑈/𝑊) ×FM𝑛 (𝑊).

Example 3.34 Let 𝑈 = {1, 2, 3} and 𝑛 = 2. There are three possible 𝑊 ( 𝑈 of
cardinality ≥ 2. The corresponding facets are hollow tori,

𝜕𝑊 FM2 (3) � S1 × S1 � FM2 (2) × FM2 (2), (3.16)

that correspond to the boundaries of the three solid tori that appear in Figure 3.1.
In this case, the facets are disjoint, but in general the facets can have nonempty
intersection as the next example shows.

Example 3.35 Let 𝑈 = {1, 2, 3, 4} and 𝑛 = 1. Recall from Example 3.28 that
FM1 (𝑟) � Σ𝑟 ×𝐾𝑟 whereΣ𝑟 is the symmetric group and𝐾𝑟 is a connected polyhedron.
In particular, 𝐾2 is a singleton, 𝐾3 = D1 is an interval, and 𝐾4 is a pentagon. There
are ten possible𝑊 ( 𝑈 of cardinality ≥ 2. The facets are either homeomorphic to
FM1 (2) ×FM1 (3) � Σ2 ×Σ3 ×D1 if #𝑊 = 3, or to FM1 (3) ×FM1 (2) � Σ3 ×D1 ×Σ2
if #𝑊 = 2. (Although the two possible kinds of facets are homeomorphic, we view
them as distinct. Precise indexing of points make the matter clearer.) Let us consider
their intersection with the connected component where the four points are in the
natural order (i.e. 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4). Then we find the following intersections, as
represented in Figure 3.2:

• The facet 𝜕{1,2}FM2 (4) intersects as the edge decorated by (12)34;
• The facet 𝜕{2,3}FM2 (4) intersects as the edge decorated by 1(23)4;
• The facet 𝜕{3,4}FM2 (4) intersects as the edge decorated by 12(34);
• The facet 𝜕{1,2,3}FM2 (4) intersects as the edge decorated by (123)4;
• The facet 𝜕{2,3,4}FM2 (4) intersects as the edge decorated by 1(234);
• The other facets have empty intersection with that connected component.

Note on this example that the facets, which are of codimension 1, intersect along
submanifolds of codimension 2 if they intersect at all.

Proof (Proposition 3.33) Let us build a map:

◦𝑊 : FM𝑛 (𝑈/𝑊) × FM𝑛 (𝑊) → FM𝑛 (𝑈). (3.17)

Let 𝑥 = (𝑥𝑢)𝑢∈𝑈/𝑊 ∈ FM𝑛 (𝑈/𝑊) and 𝑦 = (𝑦𝑣 ) ∈ FM𝑛 (𝑊) be two configurations.
We define 𝑥 ◦𝑊 𝑦 ∈ FM𝑛 (𝑈) in the coordinate system (𝜃𝑖 𝑗 , 𝛿𝑖 𝑗𝑘 ) by:
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3.2 Fulton–MacPherson compactifications 51

𝜃𝑖 𝑗 (𝑥 ◦𝑊 𝑦) =
{
𝜃𝑖 𝑗 (𝑦), if 𝑖, 𝑗 ∈ 𝑊 ;
𝜃 [𝑖 ] [ 𝑗 ] (𝑥), otherwise.

(3.18)

𝛿𝑖 𝑗𝑘 (𝑥 ◦𝑊 𝑦) =



𝛿𝑖 𝑗𝑘 (𝑦), if 𝑖, 𝑗 , 𝑘 ∈ 𝑊 ;
1, if 𝑖, 𝑗 ∈ 𝑊 and 𝑘 ∉ 𝑊 ;
+∞, if 𝑖 ∉ 𝑊 and 𝑗 , 𝑘 ∈ 𝑊 ;
0, if 𝑖, 𝑘 ∈ 𝑊 and 𝑗 ∉ 𝑊 ;
𝛿 [𝑖 ] [ 𝑗 ] [𝑘 ] (𝑥), otherwise.

(3.19)

It is easily verified that the image of ◦𝑊 is equal to 𝜕𝑊 FM𝑛 (𝑈) and that the
application is injective. The result can thus be established by appealing to compactness
of FM𝑛 (𝑈/𝑊) × FM𝑛 (𝑊). �

Remark 3.36 The maps appearing in this proof are part of the operadic structure of
FM𝑛, which we will study in Chapter 5.

Proposition 3.37 The boundary of FM𝑛 (𝑈) is the union of the facets 𝜕𝑊 FM𝑛 (𝑈).
More precisely, if we set BF (𝑈) = {𝑊 ( 𝑈 | #𝑊 ≥ 2}, we then have:

𝜕FM𝑛 (𝑈) =
⋃

𝑊 ∈BF(𝑈 )
𝜕𝑊 FM𝑛 (𝑈). (3.20)

Moreover, codim 𝜕𝑊 FM𝑛 (𝑈) = 1, and, if 𝑊 ≠ 𝑊 ′, then codim 𝜕𝑊 FM𝑛 (𝑈) ∩
𝜕𝑊 ′FM𝑛 (𝑈) > 1.

Proof The fact that the boundary is equal to the union is immediate thanks to the
fact that 𝑥 ∈ 𝜕FM𝑛 (𝑈) ⇐⇒ ∃𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 such that 𝛿𝑖 𝑗𝑘 (𝑥) = 0. The fact that
codim 𝜕𝑊 FM𝑛 (𝑈) = 1 comes from the fact that ◦ is a homeomorphism and from the
computation of the dimension of FM𝑛 (𝑈/𝑊) × FM𝑛 (𝑊). Finally, the computation
of the codimension of the intersection is a small exercise (there are several cases to
check:𝑊 ∩𝑊 ′ = ∅,𝑊 ⊂ 𝑊 ′ or the reverse, or𝑊 ∩𝑊 ′ ≠ ∅ but no inclusion). �

Recall that our goal is to apply the Stokes formula. To do this, we need to know
the fiberwise boundary of the canonical projections.

Definition 3.38 Let 𝜋 : 𝐸 → 𝐵 an oriented fiber bundle (i.e. the fibers are compact
manifolds with compatible orientations). Its fiberwise boundary is the fiber bundle
𝜋𝜕 : 𝐸𝜕 → 𝐵 where 𝐸𝜕 is defined by:

𝐸𝜕 B
⋃
𝑏∈𝐵

𝜕𝜋−1 (𝑏). (3.21)

Example 3.39 Let us consider the fiber bundle 𝜋 : [0, 1]2 → [0, 1] which projects
on the first coordinate. Its fiberwise boundary is [0, 1] × {0, 1}. We notice that it is
not the boundary of the total space or the pre-image of the boundary of the base.

Proposition 3.40 Let𝑈 ⊂ 𝐴 be a pair of finite sets. The projection 𝜋 : ConfR𝑛 (𝐴) →
ConfR𝑛 (𝑈) which forgets some points extends to an oriented fiber bundle:
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52 3 Configuration spaces of closed manifolds

𝜋 : FM𝑛 (𝐴) → FM𝑛 (𝑈). (3.22)

Proof Let 𝑥 ∈ ConfR𝑛 (𝐴) be some possibly virtual configuration. We simply need
to define 𝜋(𝑥) in the coordinates of Definition 3.23. We can just take, for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠

𝑖 ∈ 𝑈,
𝜃𝑖 𝑗 (𝜋(𝑥)) B 𝜃𝑖 𝑗 (𝑥), 𝛿𝑖 𝑗𝑘 (𝜋(𝑥)) B 𝛿𝑖 𝑗𝑘 (𝑥). (3.23)

Proposition 3.41 Let𝑈 ⊂ 𝐴 be a pair of finite sets. LetBF (𝐴,𝑈) = {𝑊 ∈ BF (𝐴) |
𝑈 ⊂ 𝐴 or #(𝑊 ∩ 𝐴) ≤ 1. Then the fiberwise boundary 𝜋 : FM𝑛 (𝐴) → FM𝑛 (𝑈) is
given by:

FM𝜕
𝑛 (𝐴) =

⋃
𝑊 ∈BF(𝐴,𝑈 )

𝜕𝑊 FM𝑛 (𝐴). (3.24)

Proof As 𝜋 is a fiber bundle, it is simply a matter of checking which facets 𝜕𝑊 FM𝑛 (𝐴)
are sent to the interior of FM𝑛 (𝑈) via the projection. Indeed, FM𝜕

𝑛 (𝐴) is the closure
of 𝜕FM𝑛 (𝐴) ∩ 𝜋−1 ( ˚FM𝑛 (𝑈)). One easily verifies that these are indeed the facets
𝑊 ∈ BF (𝐴,𝑈). �

3.2.2 Case of closed manifolds

We can now do the same work for a closed manifold 𝑀 . Thanks to Whitney’s theorem,
we can embed 𝑀 in some Euclidean space R𝑁 for 𝑁 big enough. In what follows,
we fix such an embedding and we see implicitly any element of 𝑀 as a vector of
R𝑁 . Many of the proofs will be omitted, as they are almost identical to the case of
Euclidean spaces.

Definition 3.42 Let 𝑈 a finite set and 𝑖, 𝑗 , 𝑘 ∈ 𝑈 three pairwise distinct elements.
We define maps (by abuse of notation, we keep the same letters as in the previous
subsection):

𝜃𝑖 𝑗 : Conf𝑀 (𝑈) → S𝑁−1, 𝛿𝑖 𝑗𝑘 : Conf𝑀 (𝑈) → [0, +∞],

(𝑥𝑢)𝑢∈𝑈 ↦→
𝑥𝑖 − 𝑥 𝑗
‖𝑥𝑖 − 𝑥 𝑗 ‖

, (𝑥𝑢)𝑢∈𝑈 ↦→
‖𝑥𝑖 − 𝑥𝑘 ‖
‖𝑥 𝑗 − 𝑥𝑘 ‖

. (3.25)

These map, together with the obvious inclusion (𝑝𝑢)𝑢∈𝑈 : Conf𝑀 (𝑈) ↩→ 𝑀𝑈 ,
define an embedding:

Conf𝑀 (𝑈) ↩→ 𝑀𝑈 × (S𝑁−1)Conf𝑈 (2) × [0, +∞]Conf𝑈 (3) . (3.26)

Definition 3.43 The Fulton–MacPherson compactification of Conf𝑀 (𝑈), denoted by
FM𝑀 (𝑈), is the closure of the image of the embedding (3.26).

We have the following theorem, similar to Proposition 3.25:

Proposition 3.44 Let 𝑀 be a compact smooth 𝑛-manifold and𝑈 be a finite set. The
space FM𝑀 (𝑈) is a compact smooth manifold with corners of dimension 𝑛#𝑈.
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3.3 Semi-algebraic sets and PA forms 53

We define as previously the facets 𝜕𝑊 FM𝑀 (𝑈), for 𝑊 ⊂ 𝑈, as the set of
configurations where the points indexed by𝑊 are infinitesimally close to each other
compared to the points not in𝑊 :

𝜕𝑊 FM𝑀 (𝑈) =
{
𝑥 ∈ FM𝑀 (𝑈)

��� 𝑖, 𝑘 ∈ 𝑊 =⇒ 𝑝𝑖 (𝑥) = 𝑝𝑘 (𝑥), and
𝑗 ∉ 𝑊 =⇒ 𝛿𝑖 𝑗𝑘 (𝑥) = 0

}
. (3.27)

Proposition 3.45 The facet 𝜕𝑊 FM𝑀 (𝑈) is a fiber bundle over FM𝑀 (𝑈/𝑊), with
fiber FM𝑛 (𝑊).

Example 3.46 Let𝑈 = 𝑊 = {1, 2}. Then 𝜕𝑊 FM𝑀 (2) = 𝜕FM𝑀 (2) is a sphere bundle
over FM𝑀 (1). This bundle is, in fact, the sphere bundle associated to the tangent
bundle of 𝑀 .

Proposition 3.47 The boundary of FM𝑀 (𝑈) is given by:

𝜕FM𝑀 (𝑈) =
⋃

𝑊 ∈BF𝑀 (𝑈 )
𝜕𝑊 FM𝑀 (𝑈), (3.28)

where BF 𝑀 (𝑈) = {𝑊 ⊂ 𝑈 | #𝑊 ≥ 2}. These facets are of codimension 1 and the
intersection of two different facets is of codimension > 1.

Remark 3.48 Contrary to the case of R𝑛, the facet 𝜕𝑈FM𝑀 (𝑈) is included in the
boundary. This corresponds to the case where all points are at the same locayion
in 𝑀. This cannot happen in R𝑛 because of the quotient by positive dilations: if all
points converge at the same speed to the same position, then up to dilation they do
not actually move.

Proposition 3.49 Let 𝑈 ⊂ 𝐴 a pair of finite sets. The projection 𝜋 : Conf𝑀 (𝐴) →
Conf𝑀 (𝑈) which forgets some points extends to the compactification.

Proposition 3.50 The fiberwise boundary of 𝜋 : FM𝑀 (𝐴) → FM𝑀 (𝑈) is given by:

FM𝜕
𝑀 (𝐴) =

⋃
𝑊 ∈BF𝑀 (𝐴,𝑈 )

𝜕𝑊 FM𝑀 (𝐴), (3.29)

where BF 𝑀 (𝐴,𝑈) = {𝑊 ∈ BF 𝑀 (𝐴) | #(𝑊 ∩𝑈) ≤ 1}.

3.3 Semi-algebraic sets and PA forms

The canonical projections 𝜋 : FM𝑀 (𝐴) → FM𝑀 (𝑈) are unfortunately not submer-
sions. An example is given by [LV14, Example 5.9.1], which we now quickly describe.
Recall from Example 3.28 that the space FM1 (3) is given by 3! = 6 segments: the
extremities of each segment are the two ways of parenthesizing a permutation of the
word 123, and the path between the extremities is an associator. Moreover, the space
FM1 (4) is given by 4! = 24 pentagons. The vertices of each pentagon are the five
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54 3 Configuration spaces of closed manifolds

ways to parenthesize a permutation of the word 1234, and the edges are paths that
involve an associator. The projection FM1 (4) → FM1 (3) resembles, on the connected
components in question, Figure 3.4. A calculation in a smooth chart shows that 𝜋 is
not a submersion at the point corresponding to 1((23)4).

Fig. 3.4 The projection
FM1 (4) → FM1 (3) is not
a submersion at the vertex
labeled by 1( (23)4) .

( (12)3)4

(12) (34)

1(2(34))

1( (23)4)

(1(23))4

⇓
(12)3 1(23)

As these maps are not submersions, it is not possible to apply the standard theory
of integration along the fibers of differential forms. However, these projections happen
to be semi-algebraic fiber bundles. Initially developed by Kontsevich and Soibelman
[KS00], the theory of piecewise semi-algebraic forms has been refined by Hardt,
Lambrechts, Turchin, and Volić [HLTV11] in order to apply it to the proof of the
formality of the operad of small discs. Let us now quickly recall the main ingredients
of this theory. Unless otherwise indicated, we refer to [HLTV11] for the definitions
and results of this section.

3.3.1 Semi-algebraic sets

Definition 3.51 A semi-algebraic (SA) set is a subset of R𝑁 (for a certain 𝑁) which is
a finite union of finite intersections of sets of solutions of polynomial inequalities. An
SA map is a (continuous) map between two SA sets whose graph is a semi-algebraic
set. An SA manifold (with corners) of dimension 𝑛 is an SA set locally homeomorphic
to R𝑛 or R+ × R𝑛−1.

Proposition 3.52 The Fulton–MacPherson compactifications FM𝑛 (𝑘) and FM𝑀 (𝑘)
are semi-algebraic manifolds for any 𝑛, 𝑘 ≥ 0 and any semi-algebraic manifold 𝑀 .

Proof The embeddings (𝜃𝑖 𝑗 , 𝛿𝑖 𝑗𝑘 ) and (𝜄, 𝜃𝑖 𝑗 , 𝛿𝑖 𝑗𝑘 ) are clearly SA maps, so their
images and thus the closure of their images are SA sets. �

Definition 3.53 An SA fiber bundle is an SA map 𝜋 : 𝐸 → 𝐵 together with an SA set𝐹,
a cover 𝐵 =

⋃{𝑈𝛼} by SA subsets, and SA homeomorphisms ℎ𝛼 : 𝑈𝛼×𝐹 � 𝜋−1 (𝑈𝛼)
compatible with 𝜋.

Theorem 3.54 (Lambrechts and Volić [LV14]) The canonical projection 𝜋 :
FM𝑛 (𝐴) → FM𝑛 (𝑈) is an SA fiber bundle for any pair of finite sets𝑈 ⊂ 𝐴.
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3.3 Semi-algebraic sets and PA forms 55

The proof is relatively difficult. The fibers are represented by discs from which
balls have been removed. The homeomorphisms must then be constructed explicitly,
which is quite technical. The proof of the following result is almost identical to that
of Lambrechts and Volić [LV14]. It is in fact slightly simpler, because there is no
quotient by the group R𝑛 o R>0.

Proposition 3.55 The canonical projection 𝜋 : FM𝑀 (𝐴) → FM𝑀 (𝑈) is an SA fiber
bundle for any pair of finite sets𝑈 ⊂ 𝐴.

3.3.2 Piecewise semi-algebraic forms

We now introduce the notion of piecewise semi-algebraic forms. The definition is
quite involved and goes through differential geometry and two duality steps (from
differential forms to SA chains to a subset of SA cochains). We will skip the most
technical parts of [HLTV11]. The reader might moreover want to skip this section at
first, simply recording Theorem 3.71, Proposition 3.75 and Proposition 3.76.

Definition 3.56 A current of degree 𝑘 on R𝑁 is an element of the dual of the
differential forms of degree 𝑘 on R𝑛 with compact support. The space of all currents
is denoted by 𝐷𝑘 (R𝑁 ) B Ω𝑘𝑐 (R𝑁 )∨. A current of degree 𝑘 on an SA set 𝑋 ⊂ R𝑁 is
a current 𝑇 ∈ 𝐷𝑘 (R𝑁 ) whose support,

supp(𝑇) B
⋂{

𝑍 ⊂ R𝑛
�� 𝜔 ∈ Ω𝑘𝑐 (R𝑁 \ 𝑍) =⇒ 〈𝑇, 𝜔〉 = 0

}
, (3.30)

is included in 𝑋 . We denote by 𝐷𝑘 (𝑋) the set of currents on 𝑋 .

Definition 3.57 Let 𝑀 be a smooth compact SA manifold. A stratification of 𝑀
is a finite partition 𝑀 =

⋃S of 𝑀 such that any 𝑆 ∈ S is a connected smooth
submanifold whose closure 𝑆 = 𝑆 ∪⋃𝑖 𝑇𝑖 is the union of 𝑆 together with elements
𝑇𝑖 ∈ S of dimension dim𝑇𝑖 < dim 𝑆.

Definition 3.58 Let 𝑀 be a compact oriented SA manifold of dimension 𝑘 and let
𝑓 : 𝑀 → R𝑁 be an SA application. There is a stratification 𝑀 =

⋃S such that 𝑓 |𝑆
is a trivial fiber bundle for any 𝑆 ∈ S. Let 𝑆1, . . . , 𝑆𝑙 be the strata such that 𝑓 |𝑆𝑖 is of
rank 𝑘 . We define a current 𝑓∗È𝑀É by:

〈
𝑓∗È𝑀É, 𝜔

〉
B

𝑙∑︁
𝑖=1

∫
𝑆𝑖

𝑓 ∗𝜔. (3.31)

Definition 3.59 An SA chain of degree 𝑘 on an SA set 𝑋 is a current of the form
𝑓∗È𝑀É where dim𝑀 = 𝑘 . We denote by 𝐶SA

𝑘
(𝑋) the set of all these currents.

Proposition 3.60 The set 𝐶SA
𝑘
(𝑋) is a subgroup of 𝐷𝑘 (𝑋). We have 𝐶SA

𝑖
(𝑋) = 0

for 𝑖 > dim 𝑋 and 𝑑 ( 𝑓∗È𝑀É) = 𝑓∗È𝜕𝑀É. The collection 𝐶SA
∗ (𝑋) forms a chain

complex, functorial in 𝑋 with respect to SA applications. There is a canonical natural
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56 3 Configuration spaces of closed manifolds

transformation × : 𝐶SA
∗ (𝑋) ⊗ 𝐶SA

∗ (𝑌 ) → 𝐶SA
∗ (𝑋 × 𝑌 ) that satisfies the Leibniz

formula.

Definition 3.61 Let 𝑋 be an SA set and 𝑓0, . . . , 𝑓𝑘 : 𝑋 → R be SA maps. We define
an SA cochain 𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ) ∈ 𝐶𝑘SA (𝑋) ≔ 𝐶SA

𝑘
(𝑋)∨ by:

∀𝛾 ∈ 𝐶SA
𝑘 (𝑋),

〈
𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ), 𝛾

〉
B

〈
( 𝑓0, . . . , 𝑓𝑘 )∗𝛾, 𝑥0𝑑𝑥1 . . . 𝑑𝑥𝑘

〉
. (3.32)

The minimal forms on 𝑋 are the elements of the subgroup Ω𝑘min (𝑋) ⊂ 𝐶𝑘SA (𝑋)
generated by all the elements of the form 𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ).

One should think of the element 𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ) as of the form 𝑓0 · 𝑑𝑓1∧· · ·∧𝑑𝑓𝑘 .

Proposition 3.62 Minimal forms define a sub-complex of 𝐶∗SA (𝑋). We have:

𝑑𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ) = 𝜆(1; 𝑓0, . . . , 𝑓𝑘 ). (3.33)

There is a family of maps × : Ω𝑘min (𝑋) ⊗ Ω𝑙min (𝑌 ) → Ω𝑘+𝑙min (𝑋 × 𝑌 ) which induce a
CDGA structure on Ω∗min (𝑋) using the diagonal Δ : 𝑋 → 𝑋 × 𝑋, 𝑥 ↦→ (𝑥, 𝑥):

𝜆1 · 𝜆2 B Δ∗ (𝜆1𝜆2). (3.34)

Minimal forms do not define a model of 𝑋 in general, as the next example shows.

Example 3.63 Consider the space 𝑋 = [1, 2] and the minimal 1-form 𝑑𝑡/𝑡 =

𝜆( 𝑓0; 𝑓1) ∈ Ω1
min ( [1, 2]) where 𝑓0 (𝑡) = 1/𝑡 and 𝑓1 (𝑡) = 𝑡. That form is of course

closed, as dim 𝑋 = 1. As we have 𝐻1 ( [1, 2]) = 0, this form would have to be exact.
But it is not the coboundary of any form of degree 0, as the logarithm is not an SA
map.

To solve this problem, formal integrals along fibers of SA bundles must be
introduced. More generally, one must be able to integrate along any continuous family
of chains.

Definition 3.64 Let 𝑓 : 𝑌 → 𝑋 an SA application. A strongly continuous family of
chains of degree 𝑙 on over 𝑋 is a map Φ : 𝑋 → 𝐶𝑙 (𝑌 ) such that there exists:

• a finite SA stratification 𝑋 =
⋃
𝛼∈𝐼 𝑆𝛼;

• closed manifolds oriented SA 𝐹𝛼 of dimension 𝑙;
• SA maps 𝑔𝛼 : 𝑆𝛼 × 𝐹𝛼 → 𝑌 such that:

– the following diagram commutes:

𝑆𝛼 × 𝐹𝛼 𝑌

𝑆𝛼 𝑋,

𝑝𝑆̄𝛼

𝑔𝛼

𝑓 (3.35)

– for all 𝛼, for all 𝑥 ∈ 𝑆𝛼, one has Φ(𝑥) = (𝑔𝛼)∗È{𝑥} × 𝐹𝛼É.
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3.3 Semi-algebraic sets and PA forms 57

Remark 3.65 As explained in [HLTV11, Remark 5.14], it is crucial to consider the
closure of 𝑆𝛼 in the previous definition, rather than just 𝑆𝛼, as it represents a kind of
continuity condition. The definition given by Kontsevich and Soibelman [KS00] was
weaker.

Example 3.66 Let 𝜋 : 𝐸 → 𝐵 be an SA fiber bundle of rank 𝑙. One can define a
strongly continuous family of chains Φ : 𝐵→ 𝐶𝑙 (𝐸) by taking Φ(𝑏) ≔ È𝜋−1 (𝑏)É.

Proposition 3.67 Let 𝛾 ∈ 𝐶SA
𝑘
(𝑋) be an SA chain and Φ : 𝑋 → 𝐶𝑙 (𝑌 ) be a strongly

continuous family of chains, with the notations above. We can refine the stratification
to have 𝛾 =

∑
𝑛𝛼 · È𝑆𝛼É. We can then define a new SA chain 𝛾 nΦ ∈ 𝐶SA

𝑘+𝑙 (𝑌 ) by:

𝛾 nΦ ≔
∑︁
𝛼

𝑛𝛼 (𝑔𝛼)∗È𝑆𝛼 × 𝐹𝛼É. (3.36)

Definition 3.68 Let 𝜆 ∈ Ω𝑘+𝑙min (𝑌 ) be a minimal form on 𝑌 and let Φ : 𝑋 → 𝐶SA
𝑙
(𝑌 )

be a strongly continuous family of chains. We define an SA cochain
∫
Φ
𝜆 by:〈∫

Φ

𝜆, 𝛾

〉
B

〈
𝜆, 𝛾 nΦ

〉
. (3.37)

The piecewise semi-algebraic (PA) forms of degree 𝑘 over 𝑋 are the cochains of the
form

∫
Φ
𝜆. One notes Ω𝑘PA (𝑋) ⊂ 𝐶

𝑘
SA the submodule that they span.

Remark 3.69 A minimal form is in particular a PA form. Indeed, if 𝜔 ∈ Ω𝑘min (𝑋) is a
minimal form, one can take Φ : 𝑋 → 𝐶0 (𝑋), 𝑥 ↦→ È{𝑥}É. Then

∫
Φ
𝜔 = 𝜔.

Note that the proof of the second part of the following proposition is nontrivial.

Proposition 3.70 The collection Ω∗PA (𝑋) is a sub-complex of𝐶∗SA (𝑋) which vanishes
in degree > dim 𝑋 . There is a multiplication on Ω∗PA (𝑋) which extends that of
Ω∗min (𝑋) and makes it a CDGA.

One of the main results of [HLTV11] is the following:

Theorem 3.71 ([HLTV11, Theorems 6.1, 7.1]) There is a zigzag of natural trans-
formations, natural in SA sets 𝑋 and SA maps:

Ω∗PA (𝑋) ← · → Ω∗PL (𝑋) ⊗Q R (3.38)

which are quasi-isomorphisms if 𝑋 is a compact SA set. This zigzag is moreover
compatible with Künneth morphisms.

Remark 3.72 Hardt, Lambrechts, Turchin, and Volić [HLTV11, Section 9.1] conjec-
ture that the result remains true if 𝑋 is not compact.

Example 3.73 The form 𝑑𝑡/𝑡 ∈ Ω1
min ( [1, 2]) of Example 3.63 is the coboundary of

a PA form. Let 𝜆 = 𝜆( 𝑓0; 𝑓1) ∈ Ω1
min ( [1, 2]

2) be the minimal form associated to
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58 3 Configuration spaces of closed manifolds

𝑓0 (𝑠, 𝑡) = 1/𝑠 · 𝜒𝑡<𝑠 and 𝑓1 (𝑠, 𝑡) = 𝑠, where 𝜒𝑡<𝑠 is the indicator function. Consider
the strongly continuous family of chains Φ : [1, 2] → 𝐶SA

1 ( [1, 2]
2) associated to the

projection on the second factor. Then we can define:

log 𝑡 B
∫
Φ

𝜆 =

∫ 2

1
𝜒𝑠<𝑡𝑑𝑠 ∈ Ω0

PA ( [1, 2]), (3.39)

for 𝑡 ∈ [1, 2] and we have 𝑑 (log 𝑡) = 𝑑𝑡/𝑡.

The proof of Theorem 3.71 (that we are not going to detail as it is highly technical)
essentially involves three ingredients:

• the Poincaré lemma: Ω∗PA (Δ
𝑛) is acyclic for fixed 𝑛;

• the simplicial sets Ω𝑘PA (Δ
•) are “extendable” for fixed 𝑘 , i.e. for any subset

𝐼 ⊂ {0, . . . , 𝑛}, for any collection {𝛽𝑖 ∈ Ω𝑘PA (Δ
𝑛−1)}𝑖∈𝐼 of forms verifying

𝑑𝑖𝛽 𝑗 = 𝑑 𝑗−1𝛽𝑖 , there is a 𝑘 form 𝛽 ∈ Ω𝑘PA (Δ
𝑛) checking 𝑑𝑖𝛽 = 𝛽𝑖 .

• the Mayer–Vietoris property, i.e. Ω∗PA (𝑈 ∪ 𝑉) can be computed from Ω∗PA (𝑈),
Ω∗PA (𝑉), and Ω∗PA (𝑈 ∩𝑉).

Using these three properties, the proof of the theorem follows from categorical
reasons.

Let us now turn to integration along fibers of PA forms. Recall that an SA
fiber bundle 𝜋 : 𝐸 → 𝐵 of rank 𝑙 defines a strongly continuous family of chains
Φ : 𝐵→ 𝐶𝑙 (𝐸).

Definition 3.74 Given a minimal form𝜔 ∈ Ω𝑘+𝑙min (𝐸) and an SA fiber bundle 𝜋 : 𝐸 →
𝐵 of rank 𝑙, one defines the integral of 𝜔 along the fibers of 𝜋 by:

𝜋∗ (𝜔) =
∫
𝜋:𝐸→𝐵

𝜔 ≔

∫
Φ

𝜔 ∈ Ω𝑘PA (𝐵). (3.40)

This procedure has many properties similar to those of the conventional integrals
along fibers. The property that will interest us the most is Stokes’ formula. We recall
that 𝜋𝜕 : 𝐸𝜕 → 𝐵 is the SA fiber bundle of rank 𝑙 −1 given by the fiberwise boundary
of 𝐸 , see Definition 3.38

Proposition 3.75 ([HLTV11, Proposition 8.12]) Let 𝜋 : 𝐸 → 𝐵 be an oriented SA
bundle of rank 𝑙 and let 𝜔 ∈ Ω𝑘+𝑙min (𝐸) be a minimal form. The Stokes formula holds:

𝑑 (𝜋∗ (𝜔)) = 𝜋∗ (𝑑𝜔) + (−1)deg 𝜔−𝑙𝜋𝜕∗ (𝜔 |𝐸𝜕 ). (3.41)

Let us also record the following fact, which will be useful in what follows.

Proposition 3.76 ([HLTV11, Proposition 8.11]) Let 𝜋 : 𝐸 → 𝐵 be an oriented SA
fiber bundle of rank 𝑙. Suppose that 𝐸 =

⋃
𝑖∈𝐼 𝐸𝑖 is a union of SA subsets such that

𝜋 |𝐸𝑖 remains an SA bundle of rank 𝑙 and that dim 𝜋 |−1
𝐸𝑖
(𝑥) ∩ 𝜋 |−1

𝐸 𝑗
(𝑥) < 𝑙 for all 𝑖 ≠ 𝑗

and all 𝑥 ∈ 𝐵. Then one has 𝜋∗ (𝜔) =
∑
𝑖∈𝐼 (𝜋 |𝐸𝑖 )∗ (𝜔 |𝐸𝑖 ).
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3.4 Graph complexes 59

3.4 Graph complexes

In this section, we introduce one of the main constructions of the chapter, the graph
complexes. These graph complexes are used to bridge the Lambrechts–Stanley model
to the forms on the configuration spaces. These graph complexes depend on analytic
data called the partition function (see Section 3.4.4). A key step of the proof will
be the fact that this partition function is trivial up to homotopy, which we show in
Section 3.4.5.

As in Section 3.2, we will consider that our CDGA collections are no longer indexed
by integers but by any finite set. In particular, we have G𝐴(𝑟) = G𝐴({1, . . . , 𝑟}).

3.4.1 Informal idea

Let 𝑀 be a simply connected closed SA manifold and let 𝐴 be a Poincaré duality
model of 𝐴. Our objective is to show that the CDGAs G𝐴(𝑈) and Ω∗PA (FM𝑀 (𝑈))
are quasi-isomorphic. Finding a direct quasi-isomorphism would be a miracle: since
the CDGA G𝐴(𝑈) has many relations, one would have to find PA forms on FM𝑀 (𝑈)
that strictly satisfy these relations.

As often in homological algebra, we will define a resolution of G𝐴(𝑈), i.e. a
quasi-free CDGA which is quasi-isomorphic to G𝐴(𝑈). All the complexity of the
relations is then transferred into the differential. Finding a morphism from this
resolution to Ω∗PA (FM𝑀 (𝑈)) then only requires finding forms that are compatible
with the differential. This will essentially consist in finding forms that satisfy the
relations up to homotopy.

Let us now explain the general philosophy behind the graph complexes that we
use. The relations in the CDGA G𝐴(𝑈) are of three types:

1. the relations that exist in 𝐴 ;
2. the Arnold relations, and especially the three-term relation;
3. the symmetry relation 𝑝∗

𝑖
(𝑎)𝜔𝑖 𝑗 = 𝑝∗𝑗 (𝑎)𝜔𝑖 𝑗 .

The first type of relation depends on the manifold 𝑀 . Given a simply connected
manifold, we can find a quasi-free resolution 𝑅 → Ω∗PA (𝑀) and apply the procedure
of Lambrechts and Stanley [LS08b] to find a quasi-isomorphism 𝑅 → 𝐴, where 𝐴 is
a Poincaré duality CDGA.

For the second type of relations, we will use an idea due to Kontsevich. Recall the
graphical description of G𝐴(𝑈) found after Definition 3.13. Kontsevich’s idea is to
replace the three-term relation 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔𝑘𝑖 + 𝜔𝑘𝑖𝜔𝑖 𝑗 by a differential in a graph
complex. This graph complex is a vector space spanned by graphs whose vertices are
of two types: “external” vertices, which are in bijection with a fixed finite set𝑈; and
“internal” vertices that cannot be distinguished. The differential consists in contracting
the edges incident to the internal vertices. We can then graphically represent the
three-term relation by:
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60 3 Configuration spaces of closed manifolds

𝑖

𝑗 𝑘

𝑑↦−→
𝑖

𝑗 𝑘

+
𝑖

𝑗 𝑘

+
𝑖

𝑗 𝑘

.

(3.42)
The connection between this differential and configuration spaces is the following.

A graph with external vertices 𝑈 and internal vertices 𝐼 corresponds to a form on
FM𝑀 (𝑈) obtained by taking a form on FM𝑀 (𝑈t 𝐼) and integrating it along the fibers
of the projection FM𝑀 (𝑈t 𝐼) → FM𝑀 (𝑈). The internal vertex in (3.42) corresponds
to an extra temporary point in a possible configuration on 𝑀. The integral along
the fibers of the projection is an “average” over all possible positions of this extra
point. When the Stokes formula is applied, one considers the fiberwise boundary.
This boundary has three faces of maximal dimension: when the fourth point becomes
infinitely close to one of the other three points with respect to the other two. These
three faces correspond exactly to the three terms of Arnold’s relation.

Remark 3.77 This idea of adding internal vertices to solve a three-term relation of the
previous type (which can be seen as the dual of a Jacobi relation) has been formalized
and generalized by the notion of “operadic twisting”, see Willwacher [Wil14] and
Dolgushev and Willwacher [DW15].

The last type of relation, symmetry, is managed in a similar way to Kontsevich’s
idea. More precisely, this symmetric relation becomes a boundary as shown in the
following figure which depicts how the symmetry relation is obtained as part of a
coboundary:

𝑖

𝑎
𝑗

𝑑↦−→ 𝑖

𝑎

𝑗 ± 𝑖 𝑗

𝑎
. (3.43)

Of course, in the complete graph complex, these two differentials are mixed with
the cutting part of the differential that reflects 𝑑𝜔𝑖 𝑗 = Δ𝑖 𝑗 . This will lead us to
introduce various filtrations to separate them.

Remark 3.78 In this lecture, we will mainly consider the simplest possible version of
graph complexes. Despite the apparently simple definition, graph complexes hide deep
complexity, and the full structure of the graph complex, even in the undecorated case,
is still largely a mystery and constitutes a current subject of research. Moreover, there
are many variants: ribbon graphs (where the twist of a ribbon can be used to model a
framing, see Definition 5.53), undirected graphs, oriented graphs [Živ20], graphs
equipped with sources or sinks [Živ21], Swiss-Cheese-type graphs (see Section 5.4.3
and [Idr20]), graphs with external legs called “hairs” (see e.g. [AT15; FTW17]), and
so on.
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3.4 Graph complexes 61

3.4.2 Definition of the unreduced graph complex

We now fix a zigzag of quasi-isomorphisms

𝐴← 𝑅 → Ω∗PA (𝑀), (3.44)

where 𝐴 is a Poincaré duality CDGA and 𝑅 is a quasi-free CDGA generated in
degrees ≥ 2. This zigzag exists thanks to a theorem of Lambrechts and Stanley
[LS08b].

We also fix a cocycle Δ𝑅 ∈ 𝑅 ⊗ 𝑅 of degree 𝑛 which is (anti)symmetric and
is mapped to Δ𝐴 by the application 𝑅 → 𝐴. Such a cocycle exists by elementary
arguments. It should be noted, however, that it is necessary to assume that 𝐴 = 𝐻∗ (𝑀)
if 𝑛 ≤ 6 (any simply connected manifold of dimension ≤ 6 is formal), or that the above
zigzag verifies a compatibility relation between the integration

∫
𝑀

: Ω𝑛PA (𝑀) → R
and the Poincaré duality augmentation 𝜀 : 𝐴𝑛 → R. This means that a priori, we
cannot use any Poincaré duality model of 𝑀. However, we will prove at the end
of the chapter that if 𝐵 is another Poincaré duality model, then G𝐵 ' G𝐴 (see
Proposition 3.119).

We are going to build a first graph complex, which will however have the wrong
homotopy type. This will be solved in Section 3.4.4.

Definition 3.79 The graph complex Graphs′𝑅 (𝑈) is the vector space generated by
equivalence classes of graphs of the following type:

• there are no double edges or loops (more precisely, a graph containing a double
edge or a loop is identified with 0);

• the graph has vertices called “external” and which are in bijection with𝑈;
• the rest of the vertices are said to be “internal” and cannot be distinguished

(formally, one quotients by the action of the symmetric group permuting these
vertices, up to a sign);

• each vertex is decorated by an element of 𝑅;
• if 𝑛 is odd, the edges are oriented, but a graph is identified with the opposite of

the graph where the direction of an edge has been swapped;
• if 𝑛 is even, the edges are ordered, but a graph is identified with the opposite of a

graph that differs from it by an edge transposition.

See Figure 3.5 for an example. The degree of a graph is calculated by adding the
degrees of all the decorations, adding 𝑛 − 1 for each edge, and subtracting 𝑛 for each
internal vertex.

If Γ, Γ′ ∈ Graphs′𝑅 (𝑈) are two such graphs, then their product Γ · Γ′ is the graph
obtained by gluing Γ and Γ′ along their external vertices. The decorations of the
corresponding external vertices are multiplied during the operation. For example, we
have the following equation in Graphs′𝑅 ({𝑖, 𝑗 , 𝑘}):
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62 3 Configuration spaces of closed manifolds

Fig. 3.5 Example of a graph
in Graphs′𝑅 ( {1, 2, 3}) where
𝑥, 𝑦, 𝑧, 𝑎, 𝑏 ∈ 𝑅.

1
𝑥 𝑎

3

𝑦

2

𝑧

𝑏

𝑖

𝑥

𝑗

𝑦

𝑘

𝑧 ·

𝑖

𝑥 ′

𝑗

𝑦′

𝑘

𝑧′ =

𝑖

𝑥𝑥 ′

𝑗

𝑦𝑦′

𝑘

𝑧𝑧′ (3.45)

Finally, the differential 𝑑 = 𝑑𝑅 + 𝑑split + 𝑑contr is the sum of three terms:

• the internal differential 𝑑𝑅 of 𝑅, which acts on each decoration like a derivation;
• a “splitting” part 𝑑split, which is the sum of all possible ways to cut an edge and

multiply the end decorations by Δ𝑅 as in the following picture (the gray vertices
can be internal or external):

𝑥 𝑦 𝑑split↦−−−−→
∑︁
(Δ𝑅)

𝑥Δ′
𝑅

𝑦Δ′′
𝑅

; (3.46)

• a “contracting” part 𝑑contr, which is the sum of all possible ways to contract an
edge incident to an internal vertex by multiplying the decorations (if the two
vertices incident to the edge are internal, the result is an internal vertex, otherwise
it is an external vertex of the same number as the only external vertex incident to
the edge), see the Equation (3.42).

Checking the following proposition can be done easily “by hand” (but one has
to be careful of the signs). One can also use operadic twisting theory to reduce the
amount of calculations required.

Proposition 3.80 This graph complex Graphs′𝑅 (𝑈) with this differential and this
product forms a CDGA.

This graph complex unfortunately has the wrong homotopy type. The problem
comes from the internal components of the graphs, i.e. the connected components
consisting exclusively of internal vertices.

Example 3.81 In the undecorated case (i.e. 𝑅 = R) and for 𝑛 = 2, the cohomology of
the internal part of the graph complex contains 𝔤𝔯𝔱1, the Grothendieck–Teichmüller
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3.4 Graph complexes 63

Lie algebra, see Willwacher [Wil14], which is infinite-dimensional. This is very
different from 𝐻∗ (ConfR2 (0)) = R.

Unfortunately, one cannot simply mod out these internal components, as the
following example shows:(

1
𝑥
)

𝑑↦−−→
(

1
𝑑𝑅𝑥

)
±

∑︁
(Δ𝑅)

(
1

Δ′
𝑅 𝑥Δ′′

𝑅
)
± 1

𝑥

. (3.47)

If one killed all graphs with internal components, then all graphs with a single
external vertex of Graphs′𝑅 (1) would become zero in cohomology. But these graphs
correspond to the elements of 𝑅, thus to the cohomology classes of 𝑀 . It would of
course be absurd to mod out by all these classes.

However, if we remember Lemma (3.10), we see that it would be enough to
identify an isolated internal vertex decorated by 𝑥 ∈ 𝑅 with the number 𝜀(𝑥) to have
coherent relations. All that remains then is to deal with the internal components
containing at least two vertices. One could choose to simply kill them, as they cannot
cause an issue similar to the one of Equation (3.47). If we do so, then we can build a
quotient map Graphs′𝑅 (𝑈)/∼ → G𝐴(𝑈) and prove in a combinatorial way that it is
a quasi-isomorphism (Section 3.5). However, it will then not be possible to build a
map Graphs′𝑅 (𝑈)/∼ → Ω∗PA (FM𝑀 (𝑈)) that preserves the differential. Indeed, the
splitting part of the differential can create graphs with internal components, and the
Stokes formula forces to identify them with integrals on FM𝑀 (𝑈). We will explain
in the next sections a way around this issue.

3.4.3 Propagator

We will now define a morphism 𝜔 : Graphs′𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)). As announced
earlier, the idea will be to consider the external vertices as “fixed” points in a
configuration, while the internal vertices will correspond to moving points that will
be averaged over all possible positions.

We will simply use the fixed morphism 𝑅 → Ω∗PA (𝑀) fixed at the beginning to
know where to send the vertices decorations. It then remains to know where to send
the edges. We must thus find a form 𝜑 ∈ Ω𝑛−1

PA (FM𝑀 (2)) which must satisfy several
conditions so that the morphism Graphs′𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)) is well defined. In
mathematical physics, such a form 𝜑 is called a propagator. One finds the conditions
that 𝜑must check by reasoning about the properties of the edges in the graph complex,
and by trying to derive the compatibility 𝜔𝑑 = 𝑑𝜔 from Stokes’ formula.

Let us note that the two fiber bundles 𝑝1, 𝑝2 : FM𝑀 (2) → 𝑀 restrict to the same
bundle 𝑝 : 𝜕FM𝑀 (2) → 𝑀. This fiber bundle 𝑝 is the sphere bundle of rank 𝑛 − 1
associated with the tangent bundle of 𝑀 (see Example 3.46).

Proposition 3.82 ([CM10; CW16]) There exists a form 𝜑 ∈ Ω𝑛−1
PA (FM𝑀 (2)), called

the propagator, satisfying the following conditions.
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64 3 Configuration spaces of closed manifolds

• The form is (anti)symmetric: if 𝜎 is the automorphism of FM𝑀 (2) which
exchanges the two points, then 𝜎∗𝜑 = (−1)𝑛𝜑.

• The differential of 𝜑 is the diagonal class: 𝑑𝜑 = (𝑝1, 𝑝2)∗ (Δ𝑀 ), where Δ𝑀 is the
image of Δ𝑅 by the fixed map 𝑅 → Ω∗PA (𝑀) and (𝑝1, 𝑝2) : FM𝑀 (2) → 𝑀 × 𝑀
is the product of the two projections.

• The restriction of 𝜑 to 𝜕FM𝑀 (2) is a global angular form: on each fiber of
𝑝 : 𝜕FM𝑀 (2) → 𝑀 , the form 𝜑 restricts to a volume form.

Proof The existence of such a 𝜑 in our framework has been proved by Campos
and Willwacher [CW16], based on calculations previously made by Cattaneo and
Mnëv [CM10]. To construct 𝜑, one starts by choosing a global angular form 𝜓 ∈
Ω𝑛−1

PA (𝜕FM𝑀 (2)), which exists in general (see for example Bott and Tu [BT82]). The
standard proof is in the smooth setting, but it can be easily adapted to the SA setting.
One can furthermore choose 𝜓 such that 𝑑𝜓 is basic, i.e. it is the pullback of a form on
𝑀 (namely, the Euler class of 𝑀). By considering the (anti)symmetrization, we can
assume that 𝜎∗𝜓 = (−1)𝑛𝜓. We can find a tubular neighborhood 𝜌 : 𝑇 � 𝜕FM𝑀 (2)
inside FM𝑀 (2), which allows us to extend 𝜓 into 𝜌∗𝜓. Taking an approximation of the
indicator function of 𝜕FM𝑀 (2), we can extend 𝜌∗𝜓 to a form 𝜓 ′ ∈ Ω𝑛−1 (FM𝑀 (2))
which is equal to 𝜓 on 𝜕FM𝑀 (2), and which vanishes outside 𝑇 . As 𝑑𝜓 ′ |𝜕FM𝑀 (2) is
basic, the form 𝑑𝜓 ′ is the pullback of a form 𝛼 ∈ Ω𝑛PA (𝑀 × 𝑀) which is closed but
not (necessarily) exact. We can compute that [𝛼] ∈ 𝐻𝑛 (𝑀 ×𝑀) is the diagonal class.
Indeed, if 𝛽 is any other closed form, then:∫
𝑀×𝑀

𝛼∧𝛽 =

∫
FM𝑀 (2)

𝑑𝜓 ′∧(𝑝1, 𝑝2)∗ (𝛽) =
∫
𝜕FM𝑀 (2)

𝜓∧(𝑝1, 𝑝2)∗ (𝛽) |𝜕𝑀 =

∫
Δ𝑀

𝛽Δ𝑀 ,

(3.48)
where Δ𝑀 = {(𝑥, 𝑥) ∈ 𝑀2} � 𝑀 . There is therefore a form 𝛾 such that 𝛼−Δ𝑀 = 𝑑𝛾

on𝑀×𝑀 . We can then define 𝜑 ≔ 𝜓 ′−(𝑝1, 𝑝2)∗𝛾. We then have 𝜑 = (𝑝1, 𝑝2)∗ (Δ𝑀 ).
As 𝑝∗𝛾 |𝜕FM𝑀 (2) is basic, the form 𝜑 remains (anti)symmetric and its restriction to
the boundary remains a global angular form. �

We can now define the morphism 𝜔 : Graphs′𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)).

Definition 3.83 Let Γ ∈ Graphs′𝑅 (𝑈) be a graph whose set of edges is 𝐸 and whose
set of internal vertices is 𝐼. We define 𝜔′(Γ) ∈ Ω∗PA (FM𝑀 (𝑈 t 𝐼)) by:

𝜔′(Γ) B
∧

𝑣∈𝑈t𝐼
𝑝∗𝑣 (𝛼𝑣 ) ∧

∧
𝑒∈𝐸

𝑝∗𝑒 (𝜑). (3.49)

In this formula, 𝛼𝑣 ∈ 𝑅 is the vertex decoration of 𝑣 ∈ 𝑈 t 𝐼, the map 𝑝𝑣 :
FM𝑀 (𝑈 t 𝐼) → 𝑀 is the projection that forgets all points except 𝑣, and the map
𝑝𝑒 : FM𝑀 (𝑈) → FM𝑀 (2) is the projection that forgets all points except the
extremities of the edge 𝑒. Let 𝜋 : FM𝑀 (𝑈 t 𝐼) → FM𝑀 (𝑈) the canonical projection.
Then we also define:

𝜔(Γ) ≔ 𝜋∗ (𝜔′(Γ)) =
∫

FM𝑀 (𝑈t𝐼 )→FM𝑀 (𝑈 )
𝜔′(Γ). (3.50)
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3.4 Graph complexes 65

Remark 3.84 There is something to be said at this point. The form 𝜔′(Γ) is not
minimal in general. We thus cannot compute, a priori, its integral along the fibers
of 𝜋. Campos and Willwacher [CW16] have defined a sub-CDGA of Ω∗PA (−) made
up of “trivial” forms, i.e. the forms that are obtained by integrating minimal forms
along trivial fiber bundles. They showed that this sub-CDGA is quasi-isomorphic to
Ω∗PA (−) and that a trivial form can be integrated along the fibers of any fiber bundle.
They also showed that one can make 𝑅 → Ω∗PA (𝑀) factors through the trivial forms
and that one can choose a propagator that is a trivial form.

Proposition 3.85 The map 𝜔 : Graphs′𝑅 (𝑈) → FM𝑀 (𝑈) is a CDGA morphism.

Proof It is easily verified that 𝜔′ is compatible with the identifications (permutations
of edges or orientation reversals) that define Graphs′𝑅 (𝑈).

Let Γ, Γ′ ∈ Graphs′𝑅 (𝑈) be two graphs, with respective sets of internal vertices 𝐼
and 𝐼 ′. Let us compare 𝜔(Γ′ · Γ′) with 𝜔(Γ) ∧𝜔(Γ′). There is a commutative square:

FM𝑀 (𝑈 t 𝐼 t 𝐼 ′) FM𝑀 (𝑈 t 𝐼)

FM𝑀 (𝑈 t 𝐼 ′) FM𝑀 (𝑈)

𝑞

𝑞′
𝜋

𝑝

𝑝′

(3.51)

This square is unfortunately not Cartesian, as FM𝑀 (𝑈t 𝐼 t 𝐼 ′) is not the fiber product
𝑃 = FM𝑀 (𝑈 t 𝐼) ×FM𝑀 (𝑈 ) FM𝑀 (𝑈 t 𝐼 ′) of the other three spaces. We can interpret
𝑃 as a “virtual” configuration space, where the points of𝑈 t 𝐼 form a configuration,
those of𝑈 t 𝐼 ′ form a configuration, but the points of 𝐼 and 𝐼 ′ can collide. We have an
induced map 𝜌 : FM𝑀 (𝑈 t 𝐼 t 𝐼 ′) → 𝑃 which is a morphism of SA bundles above
FM𝑀 (𝑈). This map is of degree 1 on the fibers (i.e. it sends the fundamental class to
the fundamental class). As a consequence, if 𝛼 ∈ Ω∗PA (𝑃) is any form, the integral
along the fibers of 𝜌∗ (𝛼) is equal to the integral along the fibers of 𝛼. The form
𝜔′(Γ · Γ′) is of the type 𝜌∗ (𝑞∗ (𝛼) ∧ 𝑞′∗ (𝛼′)), where 𝛼 = 𝜔′(Γ) and 𝛼′ = 𝜔′(Γ′). It
follows that the integral 𝜔(Γ · Γ′) separates into two factors 𝑝∗ (𝛼) ∧ 𝑝′∗ (𝛼′) thanks
to a general theorem on integrals along the fibers. These two factors can be identified
respectively with 𝜔(Γ) and 𝜔(Γ′). This shows that 𝜔 is a morphism of algebras.

It then only remains to show that 𝜔 is compatible with the differential. This follows
from Stokes’ formula and from the description of the fiberwise boundary of the
projection FM𝑀 (𝑈 t 𝐼) → FM𝑀 (𝑈) from Proposition 3.50. By the Stokes formula
(Proposition 3.75), we have:

𝑑 (𝜋∗ (𝜔′(Γ))))) = 𝜋∗ (𝑑 (𝜔′(Γ)))) ± 𝜋𝜕∗ (𝜔′(Γ) |FM𝜕
𝑀
(𝑈t𝐼 ) ). (3.52)

The first term corresponds to the internal differential of 𝑅 (acting on the decorations)
and to the splitting part 𝑑split (thanks to 𝑑𝜑 = Δ𝑀 ). We can identify the second term
to the contracting part of the differential. Let us set 𝐴 = 𝑈 t 𝐼 and let us recall that
the fiberwise boundary can be expressed as (Proposition 3.50):

FM𝜕
𝑀 (𝐴) =

⋃
𝑊 ∈BF𝑀 (𝐴,𝑈 )

𝜕𝑊 FM𝑀 (𝐴), (3.53)
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66 3 Configuration spaces of closed manifolds

where BF 𝑀 (𝐴,𝑈) = {𝑊 ⊂ 𝐴 | #𝑊 ≥ 2 and #(𝑊 ∩𝑈) ≤ 1}. The fiberwise integral
𝜋𝜕∗ (𝜔′(Γ) |FM𝜕

𝑀
(𝑈t𝐼 ) ) splits as a sum of fiberwise integrals over these facets thanks

to Proposition 3.76.
The facet 𝜕𝑊 FM𝑀 (𝐴) is given by the set of configurations where the points

indexed by 𝑊 are infinitesimally close to each other with respect to the points
that are not in 𝑊 . This facet is the total space of a fiber bundle of the form
FM𝑛 (𝑊) ↩→ 𝜕𝑊 FM𝑀 (𝐴) � FM𝑀 (𝐴/𝑊). Thanks to the condition #(𝑊 ∩𝑈) ≤ 1,
we can identify 𝐴/𝑊 with𝑈 t 𝐽 for a certain subset 𝐽 ⊂ 𝐼 of internal. Let Γ𝑊 ⊂ Γ

be the full subgraph on the vertices of𝑊 . We see that
∫
𝜕𝑊 FM𝑀 (𝐴)→FM𝑀 (𝑈 )

𝜔′(Γ) is
equal to 𝑐Γ𝑊𝜔(Γ/Γ𝑊 ), where 𝑐Γ𝑊 is either the form given by the integral of 𝜔′(Γ𝑊 )
along the fibers of the bundle 𝜕𝑊 FM𝑀 (𝑊) → FM𝑀 (𝑈 ∩𝑊), if #(𝑊 ∩𝑈) = 1, or
the number given by the integral of 𝜔′(Γ𝑊 ) on 𝜕𝑊 FM𝑀 (𝑊) otherwise.

We can show that 𝑐Γ𝑊 vanishes unless #𝑊 = 2 and the two points are connected
by a single edge. Indeed, we can show that 𝑐Γ𝑊 vanishes if:

• Γ𝑊 is disconnected, by an argument on the dimension and an argument similar
to the one that shows that 𝜔 is a morphism of algebras;

• Γ𝑊 contains a univalent vertex, unless it is the graph with exactly two vertices
(again by a similar argument);

• Γ𝑊 contains a bivalent vertex by a symmetric argument (and also by a similar
argument to the one that shows that 𝜔 preserves the product);

• or Γ𝑊 contains at least three vertices: in general by a degree counting argument
(if 𝑒 is the number of edges and 𝑣 the number of vertices, then 𝑒 ≥ 3𝑣/2, the form
to be integrated is of degree (𝑛 − 1)𝑒 ≥ 3𝑣(𝑛 − 1)/2 = 𝑛𝑣 + (𝑛 − 3)𝑣/2 ≥ 𝑛𝑣,
and the space FM𝑛 (𝑣) on which it is integrated is of dimension 𝑛𝑣 − 𝑛 − 1 < 𝑛𝑣)
or by an ad-hoc argument due to Kontsevich for 𝑛 = 2.

This leaves only the terms of the form ±Γ/𝑒 for an edge 𝑒. These terms precisely
correspond to 𝜔(𝑑contr (Γ)). �

Remark 3.86 In [Idr19], we had claimed that 𝑐Γ𝑊 was always a number rather than a
form on 𝑀 . We thank Victor Turchin for pointing this out to us. The argument given
in [Idr19] still works, as the degree counting argument in the last item of the previous
proofs shows that deg 𝑐Γ𝑊 is greater than 𝑛𝑣, rather than simply positive.

3.4.4 Partition function as a Maurer–Cartan element

As we already explained, the map 𝜔 : Graphs′𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)) can unfortu-
nately not be a quasi-isomorphism: the complex Graphs′𝑅 (𝑈) is too big. In the extreme
case where 𝑈 = ∅, we have Conf𝑀 (∅) = ∗ so Ω∗PA (FM𝑀 (∅)) = R concentrated in
degree zero. The CDGA Graphs′𝑅 (∅) is however far from being acyclic. It contains
all the graphs composed only of internal vertices, and the cohomology of this complex
is a priori non-trivial. If for example 𝑅 = R (i.e. the graphs are not decorated), then
Willwacher [Wil14] has for example shown that the CDGA contains in degree 0 a
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3.4 Graph complexes 67

copy of the Grothendieck–Teichmüller Lie algebra 𝔤𝔯𝔱 which is of infinite dimension.
A copy of this algebra is included in all Graphs′𝑅 (𝑈).

We must therefore get rid of all internal components (i.e. composed exclusively of
internal vertices). It is not possible to simply quotient by graphs that have internal
components, as this would not be compatible with the integration procedure. In this
section, we explain what the proper way of removing internal components is.

Definition 3.87 Let fGC𝑅 = Graphs′𝑅 (∅) be the CDGA of graphs without external
vertices.

The product on fGC𝑅 is simply the disjoint union of graphs. The CDGA fGC𝑅
is thus quasi-free, i.e. it is freely generated as an algebra, by the sub-module of
connected graphs GC𝑅. It moreover acts on every Graphs′𝑅 (𝑈) by disjoint union.

The differential 𝑑 : fGC𝑅 → fGC𝑅 is quadratic-linear in terms of generators
GC𝑅, i.e. for any 𝛾 ∈ GC𝑅, the differential

𝑑𝛾 = 𝑑1𝛾 + 𝑑2𝛾 ∈ GC𝑅 ⊕ 𝑆2 (GC𝑅). (3.54)

Indeed, the internal differential 𝑑𝑅 and the contracting differential 𝑑contr preserve
the connectedness (i.e. they are linear), while the cutting differential transforms a
connected graph into a linear combination of connected graphs (linear) and graphs
with two connected components (quadratic).

Let us then consider the dual module GC∨𝑅 and its suspension GC∨𝑅 [−1]. Koszul
duality between commutative algebras and Lie algebras leads then to the following
fact:

Proposition 3.88 The dg-module GC∨𝑅 [−1] is a differential-graded Lie algebra. The
differential of GC∨𝑅 [−1] is dual to the linear part of the differential 𝑑, while the Lie
bracket of is dual to the quadratic part of 𝑑.

More precisely, for 𝑥, 𝑦 ∈ GC∨𝑅 [−1] and 𝛾 ∈ GC𝑅, we define the elements of the
dual 𝛿𝑥 ∈ GC∨𝑅 [−1] and [𝑥, 𝑦] ∈ GC∨𝑅 [−1] by :

〈𝛿𝑥, 𝛾〉 B 〈𝑥, 𝑑1𝛾〉, 〈[𝑥, 𝑦], 𝛾〉 B 〈𝑥 ⊗ 𝑦, 𝑑2𝛾〉. (3.55)

Proof This classical result follows from the fact that 𝑑 : fGC𝑅 → fGC𝑅 is a square-
zero derivation implies that 𝛿 and [−,−] verify the relations that define a dg-Lie
algebra. Note that since 𝑑2 = (𝑑1 + 𝑑2)2 = 0, by inspecting in which factors the linear
maps land, we see that 𝑑2

1 = 0, 𝑑1𝑑2 + 𝑑2𝑑1 = 0, and 𝑑2
2 = 0.

• The relation 𝛿2 = 0 simply follows from 𝑑2
1 = 0.

• Graded antisymmetry of the bracket stems from the fact that 𝑑2 lands in the
symmetric product of GC𝑅.

• The Leibniz identity, 𝛿[𝑥, 𝑦] = [𝛿𝑥, 𝑦] + (−1) |𝑥 | [𝑥, 𝛿𝑦], follows from 𝑑1𝑑2 +
𝑑2𝑑1 = 0. The map 𝑥 ⊗ 𝑦 ↦→ 𝛿[𝑥, 𝑦] is dual to 𝑑2𝑑1, while 𝑥 ⊗ 𝑦 ↦→ [𝛿𝑥, 𝑦] +
(−1) |𝑥 | [𝑥, 𝛿𝑦] is dual to 𝑑1𝑑2.

• Finally, the Jacobi identity is dual to the identity 𝑑2
2 = 0. �
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68 3 Configuration spaces of closed manifolds

We can interpret this dg-Lie algebra structure graphically. Elements of GC∨𝑅 [−1]
can be represented as potentially infinite sums of connected graphs decorated by
𝑅∨. These sums be seen as elements of the dual base of GC𝑅 given by the graphs
decorated by 𝑅. The differential 𝛿 : GC∨𝑅 [−1] → GC∨𝑅 [−1] is the sum of several
terms:

• the dual of the internal differential 𝛿𝑅∨ , which acts on the decorations by a
derivation;

• the “de-contracting” differential 𝛿decontr: it is the sum on all the ways to transform
an internal vertex into an edge and to reconnect the edges incident to one or
the other vertices; on the decorations, this differential acts by the co-product
𝑅∨ → 𝑅∨ dual to the product 𝑅 → 𝑅;

• the “connecting” differential 𝛿connec: is the sum on all ways to connect any two
vertices by an edge, sending the decorations 𝛼, 𝛽 from the ends of the edges to
the element of 𝑅∨ ⊗ 𝑅∨ defined by 𝑥 ⊗ 𝑦 ↦→ 〈𝛼 ⊗ 𝛽, (𝑥 ⊗ 𝑦)Δ𝑅〉.

Finally, the bracket [𝛾, 𝛾′] of two graphs 𝛾, 𝛾′ is defined in a similar way to the
connecting differential. It is the sum over all the ways to connect a vertex of 𝛾 with a
vertex of 𝛾′, acting on the decorations as above.

Definition 3.89 The set of Maurer–Cartan elements MC(𝔤) of a Lie algebra 𝔤 is
defined as the set of elements 𝑥 ∈ 𝔤1 satisfying 𝑑𝑥 + 1

2 [𝑥, 𝑥] = 0.

The general theory then leads to the following:

Proposition 3.90 The data of a morphism of CDGAs 𝑓 : fGC𝑅 → R is equivalent to
the data of a Maurer–Cartan element 𝑧 ∈ MC(GC∨𝑅 [−1]).

Proof This element 𝑧 is simply the restriction of 𝑓 to connected graphs. The
compatibility of 𝑓 with the differential and the product is encoded in the Maurer–
Cartan relation. �

Definition 3.91 The partition function of 𝑀 is the morphism 𝑧 : fGC𝑅 → R equal
to 𝜔 : Graphs′𝑅 (∅) → Ω∗PA (FM𝑀 (∅)) = R.

The terminology “partition function” comes from mathematical physics. This
partition function is related to Chern–Simons invariants [AS94; BC98; CM10]. By
Proposition 3.90, the data of the morphism 𝑧 : fGC𝑅 → R is equivalent to the data
of a Maurer–Cartan element, still denoted 𝑧 ∈ MC(GC∨𝑅) by abuse of notation.

Recall that fGC𝑅 acts on Graphs𝑅 (𝑈) by disjoint union. It also acts on R through
the morphism 𝑧. We can thus make the following definition:

Definition 3.92 The reduced graph complex Graphs𝑅 (𝑈) is the tensor product
Graphs′𝑅 (𝑈) ⊗fGC𝑅 R.

Concretely, Graphs𝑅 (𝑈) is the quotient of Graphs′𝑅 (𝑈) by the ideal generated by
the following relations: if Γ ∈ Graphs′𝑅 (𝑈) and 𝛾 ∈ fGC𝑅, then Γ t 𝛾 is identified
with 𝑧(𝛾) · Γ.
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3.4 Graph complexes 69

Proposition 3.93 The map 𝜔 induces a CDGA morphism:

𝜔 : Graphs𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)). (3.56)

Proof Let Γ ∈ Graphs′𝑅 (𝑈) and 𝛾 ∈ fGC𝑅 be two graphs. We must check that
𝜔(Γ t 𝛾) = 𝑧(𝛾)𝜔(Γ). We just have to check that 𝜔(∅ t 𝛾) = 𝑧(𝛾), because
Γ t 𝛾 = Γ · (∅ t 𝛾) and 𝜔 is compatible with the product. This is essentially
derived from Fubini’s theorem: the map from FM𝑀 (𝐼) to the fiber of the projection
FM𝑀 (𝑈 t 𝐼) → FM𝑀 (𝑈) and is of degree 1. �

Remark 3.94 Note that Graphs𝑅 (𝑈) is good from a homological point of view. Indeed,
it is free as a graded commutative algebra. Generators are the internally connected
graphs, i.e. the graphs that remain connected when all external vertices (but not their
incident edges) are deleted.

3.4.5 Simplification of the partition function

We now want to define a morphism Graphs𝑅 (𝑈) → G𝐴(𝑈) in order to complete
the zigzag between G𝐴(𝑈) and Ω∗PA (FM𝑀 (𝑈)). The natural idea would be to simply
quotient by the graphs having internal vertices. Unfortunately, this operation is not
compatible with the differential. Indeed, the cutting part can disconnect an internal
component, which is then evaluated by the partition function to give a number. This
number is usually not zero.

However, a part of the partition function is compatible with the differential.
On a 𝛾 graph with a single vertex indexed by 𝑥 ∈ 𝑅, the partition function is
𝑧(𝛾) =

∫
𝑀
𝑥 = 𝜀(𝑥). Combined with Lemma 3.10 and Equation (3.47), we see that

this identification is compatible with the quotient. Only terms where graphs with
more than two vertices appear are problematic. This leads to the following definition:

Definition 3.95 The trivial partition function is the map 𝑧0 : fGC𝑅 → R given on
generators by:

𝑧0 (𝛾) B

∫
𝑀
𝑥 = 𝜀(𝑥), if 𝛾 =

𝑥
;

0, otherwise.
(3.57)

We will show that the partition function 𝑧 is homotopic to 𝑧0 in the following
sense.

Definition 3.96 Let 𝐴 be a CDGA. Its path CDGA is the CDGA 𝐴⊗ 𝑆(𝑡, 𝑑𝑡) obtained
by adjoining two variables 𝑡 (of degree 0) and 𝑑𝑡 (of degree 1) with 𝑑 (𝑡) = 𝑑𝑡 and
𝑑 (𝑑𝑡) = 0. There are two canonical morphisms ev0, ev1 : 𝐴 ⊗ 𝑆(𝑡, 𝑑𝑡) → 𝐴 defined
by:

ev𝑖
(
𝑎 ⊗ 𝑃(𝑡)

)
= 𝑃(𝑖) · 𝑎 ev𝑖

(
𝑎 ⊗ 𝑃(𝑡)𝑑𝑡

)
= 0 (3.58)
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70 3 Configuration spaces of closed manifolds

Definition 3.97 Two morphisms 𝑓 , 𝑔 : 𝐴 → 𝐵 of CDGAs are homotopic if there
exists a morphism of CDGAs 𝐻 : 𝐴 → 𝐵 ⊗ 𝑆(𝑡, 𝑑𝑡) such that ev0 ◦𝐻 = 𝑓 and
ev1 ◦𝐻 = 𝑔.

Remark 3.98 Concretely, a homotopy 𝐻 : 𝐴→ 𝐵 ⊗ 𝑆(𝑡, 𝑑𝑡) is of the form:

𝐻 (𝑎) = 𝐻0 (𝑎)+𝐻1 (𝑎)𝑡+𝐻2 (𝑎)𝑡2+· · ·+𝐻 ′0 (𝑎)𝑑𝑡+𝐻
′
1 (𝑎)𝑡𝑑𝑡+𝐻

′
2 (𝑎)𝑡

2𝑑𝑡+. . . (3.59)

where 𝐻0 (𝑎) = 𝑓 (𝑎), ∑𝑖≥0 𝐻𝑖 (𝑎) = 𝑔(𝑎), and 𝐻 satisfies a number of relations such
that 𝐻 (𝑎𝑏) = 𝐻 (𝑎)𝐻 (𝑏) and 𝐻 ◦ 𝑑 = 𝑑 ◦ 𝐻 (for example 𝐻1 (𝑎𝑏) = 𝑓 (𝑎)𝐻1 (𝑏) +
𝐻1 (𝑎) 𝑓 (𝑏), 𝐻 ′0 (𝑑𝑎) = 𝑓 (𝑎), etc).

Remark 3.99 Morphisms fGC𝑅 → R are in bijection with Maurer–Cartan elements
in the Lie algebra GC∨𝑅 [−1] thanks to Proposition 3.88. The notion of homotopy
of morphisms fGC𝑅 → R is equivalent to the notion of gauge equivalence of
Maurer–Cartan elements. If we unpack the definition, we see that two Maurer–Cartan
elements 𝑧0, 𝑧1 ∈ GC∨𝑅 [−1] are gauge equivalent if there exists an element 𝜉 such
that:

𝑧1 = 𝑒ad 𝜉 𝑧0 −
𝑒ad 𝜉 − id

ad 𝜉
(𝑑𝜉), (3.60)

where ad 𝜉 = [𝜉,−] is the adjoint action of GC∨𝑅 [−1] on itself.

In order to show that 𝑧 is homotopic to 𝑧0, we will need the following property of
the propagator.

Proposition 3.100 ([CM10, Lemma 3]) . The propagator 𝜑 can be chosen so that
the following equation is true for any 𝑥 ∈ 𝑅:

𝜔

(
1

𝑥 )
= 0. (3.61)

Proof We simply replace 𝜑 by

𝜑−
∫

3
𝑝∗13 (𝜑)𝑝

∗
23 (Δ𝑅) −

∫
3
𝑝∗23 (𝜑)𝑝

∗
13 (Δ𝑅) +

∫
3,4
𝑝∗34 (𝜑)𝑝

∗
13 (Δ𝑅)𝑝

∗
14 (Δ𝑅), (3.62)

where the notation
∫
𝑖, 𝑗 ,𝑘...

represents the integral along the fibers of the application
FM𝑀 (𝑛) → FM𝑀 (𝑟) that forgets the points 𝑖, 𝑗 , 𝑘 . . . . �

From now on, we assume that the propagator has been chosen so that this equation
holds. This will have the following effect on the partition function:

Corollary 3.101 The partition function 𝑧 vanishes on all graphs containing a univa-
lent vertex.

Proof Let 𝛾 be such a graph, and let 𝑖 be its univalent vertex, 𝑥 ∈ 𝑅 its decoration, and
𝑗 the only vertex adjacent to 𝑖. The partition function 𝑧(𝛾) is calculated as the integral
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3.4 Graph complexes 71∫
FM𝑀 (𝐼 )

𝜔′(𝛾). The form 𝜔′(𝛾) splits into 𝜔′(𝛾′) ∧ 𝑝∗
𝑖 𝑗
(𝜑) ∧ 𝑝∗

𝑖
(𝑥). The integral

on FM𝑀 (𝐼) can be computed (thanks to a classical formula) by first computing the
integral along the fibers of the bundle FM𝑀 (𝐼) → FM𝑀 (𝐼 \ {𝑖}) then by computing
the integral on FM𝑀 (𝐼 \ {𝑖}). The integral along the fibers in question is exactly the
one that appears in Proposition 3.100 and is therefore zero. �

The article [CM10] contains an additional property: they claim that the propagator
𝜑 can be chosen so that the partition function vanishes on any graph having a bivalent
vertex decorated by 1 ∈ 𝑅. This would allow to conclude that the partition function is
equal to the trivial function for 𝑛 ≥ 4.

Proposition 3.102 Let 𝛾 ∈ GC𝑅 be a graph having at least two vertices and con-
taining no bivalent vertices decorated by the unit 1 ∈ 𝑅0. Suppose that 𝑛 ≥ 4. Then
𝑧(𝛾) = 0.

Proof If 𝛾 contains a univalent vertex then we conclude with the previous corollary.
Let us thus assume that 𝛾 contains no such vertex. Let 𝑖 + 𝑗 be the number of vertices
of 𝛾, where 𝑗 is the number of bivalent vertices (necessarily decorated by an element
of degree ≥ 2, because 𝑅 is 1-connected) and 𝑖 the number of vertices at least trivalent.
The number of edges of 𝛾 is at least equal to 3𝑖+2 𝑗

2 . These edges are all of degree
𝑛 − 1. Moreover, the decorations of the bivalent vertices contribute at least 2 to the
degree each. It follows that the form 𝜔′(𝛾) is of degree at least 3𝑖+2 𝑗

2 (𝑛 − 1) + 2 𝑗 .
This form is integrated on the space FM𝑀 (𝑖 + 𝑗), which is of dimension (𝑖 + 𝑗)𝑛. The
difference between these two numbers satisfies:

deg𝜔′(𝛾) − dim FM𝑀 (𝑖 + 𝑗) ≥
3𝑖 + 2 𝑗

2
(𝑛 − 1) + 2 𝑗 − (𝑖 + 𝑗)𝑛

=
1
2
(
(𝑖 + 𝑗) (𝑛 − 3) − 𝑗 (𝑛 − 5)

)
.

(3.63)

This last expression is strictly positive if 𝑛 ≥ 4 and 𝑖 + 𝑗 ≥ 2. The form 𝜔′(𝛾) is thus
of degree higher than the dimension of the space on which it is integrated, it is thus
necessarily zero. �

Unfortunately, the result of [CM10] does not apply to the SA framework. They
use an operation 𝑑𝑀 : Ω∗PA (𝑀 × 𝑁) → Ω∗PA (𝑀 × 𝑁) which only differentiates the
𝑀 coordinates (with 𝑑 = 𝑑𝑀 + 𝑑𝑁 and 𝑑𝑁 ). This operation is easily defined for de
Rham forms, as it is enough to express it in local coordinates. But it would seem
that it does not exist for PA forms. More precisely, it would be necessary to find an
operation 𝑑𝑀 : Ω∗PA (𝑀 × 𝑁) → Ω∗+1PA (𝑀 × 𝑁) such that if 𝜋 : 𝑀 × 𝑁 → 𝑀 is the
projection, then 𝑑 (𝜋∗𝛼) = 𝜋∗ (𝑑𝑀𝛼). This does not seem possible based on some
examples, e.g. (𝑥2 + 𝑦2)1/2 ∈ Ω0

PA ( [0, 1]).
However, we can get around this difficulty in the following manner. The rough

idea is that graphs containing bivalent vertices indexed by 1𝑅 do not contribute to the
cohomology of GC𝑅.

Definition 3.103 Let fGC0
𝑅 be the quotient of fGC𝑅 by the relation 𝛾 ∼ 𝑧(𝛾) for 𝛾 a

graph with a single vertex.
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72 3 Configuration spaces of closed manifolds

Note that 𝑧 ∈ GC∨𝑅 obviously factors through GC0
𝑅, since 𝑧 : fGC𝑅 → R is a

morphism of CDGAs. This factorization produces an element 𝑧 ∈ (GC0
𝑅)∨.

Definition 3.104 Let 𝐼 ⊂ fGC0
𝑅 be the dg-ideal generated by graphs having at least

one bivalent vertex decorated by 1 ∈ 𝑅, an fLoop𝑅 ⊂ 𝐼 be the dg-ideal generated
by circular graphs, i.e. connected graphs without decorations whose vertices are all
bivalent.

Proposition 3.105 The inclusion fLoop𝑅 ⊂ 𝐼 is a quasi-isomorphism.

Proof (Sketch) This follows from a classical argument in the theory of graph
complexes, see [Wil14, Proposition 3.4]. The idea is that given a graph 𝛾 ∈ 𝐼, one can
defines its “core” as the (≥ 3)-valent graph obtained by forgetting all undecorated
bivalent vertices and all antennas, i.e. sequences of undecorated bivalent vertices that
terminates with a univalent vertex. See Figure 3.6 for an example of a graph and its
core.

𝑥 ∈ 𝐴>0
𝑦

𝑧

Fig. 3.6 A graph and its core (in black).

One can then set up a spectral sequence (essentially by filtering with respect to
the number of undecorated bivalent vertices) to show that only the circular graphs
contribute to the cohomology of 𝐼. We refer to [Wil14, Proposition 3.4] for details.�

Proposition 3.106 The CDGA morphisms associated with 𝑧 and 𝑧0 are homotopic.

Proof The partition function cancels on circular graphs for degree reasons. By the
previous proposition, 𝑧 is thus homotopic to a morphism that vanishes on 𝐼, which
can equivalently be interpreted as the fact that 𝑧 is gauge equivalent to an element in
(GC0

𝑅/𝐼)∨. Thanks to the argument of Proposition 3.102, this dg-Lie algebra vanishes
in degree zero. It follows that 𝑧 is homotopic to zero, i.e. 𝑧 is homotopic to 𝑧0. �

We defined Graphs𝑅 (𝑈) as the tensor product Graphs′𝑅 (𝑈) ⊗fGC𝑅 R. We also
know that the CDGA fGC𝑅 is quasi-free and that the fGC𝑅-module Graphs′𝑅 (𝑈)
is quasi-free. So if two morphisms fGC𝑅 → R are homotopic, then the associated
CDGAs Graphs′𝑅 (𝑈) ⊗fGC𝑅 R are quasi-isomorphic. This allows us to deduce the
following from general arguments:
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3.5 End of the proof 73

Proposition 3.107 The CDGA Graphs𝑅 (𝑈) is quasi-isomorphic to Graphs0
𝑅
(𝑈), the

CDGA which is constructed in the same way as Graphs𝑅 (𝑈) but using 𝑧0 instead of
𝑧 in the tensor product.

3.5 End of the proof

We can now tackle the last part of the proof. We first show easily that the quotient
map Graphs0

𝑅
(𝑈) → G𝐴(𝑈) is compatible with the differential and the product. We

will then show that it is a quasi-isomorphism. Thanks to the theorem of Lambrechts
and Stanley [LS08a], we know that the Betti numbers of G𝐴(𝑈) are the same as those
of FM𝑀 (𝑈). It will then be enough to show that Graphs𝑅 (𝑈) → Ω∗PA (FM𝑀 (𝑈)) is
surjective in cohomology.

Remark 3.108 In this section, we use spectral sequences extensively. We refer to
e.g. McCleary [McC01] for a survey. In short, we are mainly going to use the
following approach. Let 𝐶 and 𝐷 be filtered complexes, i.e. 𝐶 =

⋃
𝑠 𝐹𝑠𝐶 where

· · · ⊂ 𝐹𝑠𝐶 ⊂ 𝐹𝑠+1𝐶 ⊂ . . . is a sequence of sub-complexes that starts at some 𝑠0 ∈ Z
and which is bounded above in each degree, and similarly for 𝐷. The 𝐸0 page of
the spectral sequence associated to 𝐶 is 𝐸0𝐶 =

⊕
𝑠 𝐹𝑠𝐶/𝐹𝑠−1𝐶 equipped with the

differential induced by the differential of 𝐶, and similarly for 𝐷. Let 𝑓 : 𝐶 → 𝐷

be a cochain map which preserves the filtration, so that it induces a cochain map
𝐸0 𝑓 : 𝐸0𝐶 → 𝐸0𝐷. If 𝐸0 𝑓 is a quasi-isomorphism, then so is 𝑓 .

Definition 3.109 Let Graphs0
𝐴
(𝑈) be the quotient of Graphs0

𝑅
(𝑈) obtained by re-

placing all the decorations by elements of 𝐴.

Lemma 3.110 There is a morphism of CDGAs 𝜋 : Graphs0
𝐴
(𝑈) → G𝐴(𝑈) given

by modding out all internal vertices (where we use the graphical interpretation of
G𝐴(𝑈) written after Definition 3.13).

Proof It is not hard to see that this is a morphism of algebras. We can also see that
𝜋 vanishes on the image of the contracting differential. It can remove at most one
internal vertex, so we need only to check this on graphs with exactly one internal
vertex. There are three cases:

• If that internal vertex is univalent, then the contracting part of the differential
cancels out with the cutting part of the differential, thanks to Equation (3.47) and
Lemma 3.10.

• If that internal vertex is bivalent, the contracting part of the differential appears
twice, and the two terms cancel out thanks to the symmetry relations that define
G𝐴(𝑈).

• Finally, if that internal vertex is at least trivalent, then 𝜋 vanishes on the image of
the differential thanks to a combination of the Arnold relations and the symmetry
relations.
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74 3 Configuration spaces of closed manifolds

Finally, we must check that 𝜋 is compatible with the cutting part of the differential.
For edges between external vertices, this is clear by definition. For edges incident to
internal vertices, this is also clear, except if cutting that edge completely separates an
internal vertex from the rest of the graph. But since we now use 𝑧0 instead of 𝑧 to
define Graphs0

𝐴
(𝑈), this is zero except if that internal component consists of a single

vertex, in which case we saw above that this cancels out with part of the contracting
part of the differential. �

Lemma 3.111 The map Graphs0
𝑅
(𝑈) → Graphs0

𝐴
(𝑈) is a quasi-isomorphism.

Proof The two complexes are filtered by the number of edges. On the page 𝐸0 of the
associated spectral sequence, only the internal differentials of 𝑅 and 𝐴 remain. The
two pages 𝐸1 are thus given by Graphs0

𝐻 ∗ (𝑀 ) (𝑈) and the map between the two is the
identity. By classical theorems on spectral sequences (see McCleary [McC01]), the
initial morphism is thus a quasi-isomorphism. �

The following proposition will occupy us almost until the end of the section:

Proposition 3.112 The quotient map 𝜋 : Graphs0
𝐴
(𝑈) → G𝐴(𝑈) is a quasi-

isomorphism.

Let us filter the two complexes. We consider the filtration by the number of edges
minus the number of vertices, that is to say, for some integer 𝑠:

𝐹𝑠Graphs0
𝐴(𝑈) B R

〈
Γ
�� #𝐸Γ − #𝑉Γ ≤ 𝑠

〉
. (3.64)

We can consider a similar filtration 𝐹𝑠G𝐴(𝑈) of G𝐴(𝑈), with the graphical inter-
pretation of G𝐴(𝑈) written after Definition 3.13. More concretely, a monomial
𝜔𝑖1 𝑗1 . . . 𝜔𝑖𝑘 𝑗𝑘 ∈ G𝐴(𝑈) is said to live in filtration level 𝑠 = 𝑘 − #𝑈. The relations of
G𝐴(𝑈) preserve filtration, i.e. they are homogeneous. Moreover, it is clear that the
quotient map preserves the filtration.

We consider the spectral sequence associated to these filtered complexes. The
complex 𝐸0G𝐴(𝑈) is the quotient complex

⊕
𝑠 𝐹𝑠G𝐴(𝑈). Only the part of the

differential which preserves the filtration level is thus kept. The cutting part of the
differential (𝑑𝜔𝑖 𝑗 = Δ𝑖 𝑗 ) strictly decreases the filtration, so we are only left with the
internal differential of 𝐴.

Similarly, on the complex 𝐸0Graphs0
𝐴
(𝑈), we need to find out which parts of the

differential preserve the filtration. Upon inspection, there only remains the internal
differential, the contracting differential, and the cutting part of the differential which
disconnects a univalent internal vertex. This cutting part cancels with the part of the
differential that contracts the edge in question thanks to Lemma 3.10.

We can therefore split the two complexes 𝐸0G𝐴(𝑈) and 𝐸0Graphs0
𝐴
(𝑈) in terms

of the partition of 𝑈 by connected components. Indeed, the remaining parts of the
differential preserve connectedness.

Definition 3.113 Let 𝐸0Graphs0
𝐴
〈𝑈〉 (resp. 𝐸0G𝐴〈𝑈〉) be the sub-complex consti-

tuted by connected graphs.
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3.5 End of the proof 75

Lemma 3.114 There is a splitting, where the sum runs over all partitions 𝜋 of𝑈:

𝐸0Graphs0
𝐴(𝑈) �

⊕
𝜋

⊗
𝑉 ∈𝜋

𝐸0Graphs0
𝐴〈𝑉〉. (3.65)

A similar splitting exists for 𝐸0G𝐴(𝑈). The quotient map 𝐸0Graphs0
𝐴
(𝑈) →

𝐸0G𝐴(𝑈) preserves the splitting.

Using all this, we just have to show that:

Lemma 3.115 The map 𝐸0Graphs0
𝐴
〈𝑈〉 → 𝐸0G𝐴〈𝑈〉 is a quasi-isomorphism.

Recall that we have a graphical interpretation of𝐻∗ (ConfR𝑛 (𝑈)), see Theorem 2.85.
Thanks to the symmetry relation, the CDGA 𝐸0G𝐴〈𝑈〉 is isomorphic to the tensor
product of 𝐴with the connected part of𝐻∗ (ConfR𝑛 (𝑈)). The notation in the following
proposition will be clear in Chapter 5.

Proposition 3.116 Let e∨𝑛 〈𝑈〉 be the submodule of 𝐻∗ (ConfR𝑛 (𝑈)) spanned by
connected graphs. Then we have the following:

dim e∨𝑛 〈𝑈〉𝑖 =
{
(#𝑈 − 1)!, if 𝑖 = (𝑛 − 1) (#𝑈 − 1);
0, otherwise.

(3.66)

Proof This is a classical result. A simple connected graph on #𝑈 vertices must have
at least #𝑈 − 1 edges. If such a graph has at least #𝑈 edges, then there is a cycle, and
using the Arnold relations repeatedly we arrive at a double edge, which vanishes due
to the relations in Theorem 2.85. The graded module e∨𝑛 〈𝑈〉 is thus only nonzero in
degree (𝑛 − 1) (#𝑈 − 1). In that degree, it is easily seen that a basis is given by the
words 𝜔1𝑖1 . . . 𝜔1𝑖𝑛−1 , where (𝑖1, . . . , 𝑖𝑛−1) is a permutation of {2, . . . , 𝑛}. �

The morphism 𝐸0Graphs0
𝐴
〈𝑈〉 → 𝐸0G𝐴〈𝑈〉 is clearly surjective in cohomology,

as we can represent 𝑎 ⊗ [Γ] by 𝑝∗1 (𝑎)Γ for any closed representative of Γ. So we
just have to show that Betti numbers coincide. We can compute these numbers by
recurrence on #𝑈:

• if𝑈 is a singleton then dim𝐻𝑖 (𝐸0G𝐴〈𝑈〉) = dim𝐻𝑖 (𝐴);
• if #𝑈 ≥ 2 and 𝑢 ∈ 𝑈, then

dim𝐻𝑖 (𝐸0G𝐴〈𝑈〉) = (#𝑈 − 1) · dim𝐻𝑖−𝑛+1 (𝐸0G𝐴〈𝑈 \ {𝑢}〉). (3.67)

Lemma 3.117 The Betti numbers of 𝐸0Graphs0
𝐴
〈𝑈〉 satisfies the same relations as

Equation (3.66).

Proof Let us start with the case #𝑈 =1. There is an explicit homotopy which shows
that the complex 𝐸0Graphs0

𝐴
〈𝑈〉 has the same cohomology as 𝐴. It can be represented

graphically by :
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76 3 Configuration spaces of closed manifolds

𝑢

𝑥
ℎ↦−−−−−−→ 𝑢

1𝐴 𝑥
(3.68)

Then a small calculation shows that (𝑑ℎ + ℎ𝑑) (Γ) = Γ unless Γ has no internal
vertices, in which case (𝑑ℎ + ℎ𝑑) (Γ) = 0. This shows that cohomology classes
of 𝐸0Graphs0

𝐴
〈𝑈〉 are exactly the cohomology classes of graphs with no internal

vertices, which form a complex isomorphic to 𝐴.
Now, let 𝑈 be a finite set with at least two elements and let us fix 𝑢 ∈ 𝑈. Let us

denote by 𝐶𝑢 ⊂ 𝐸0Graphs0
𝐴
〈𝑈〉 the sub-complex generated by graphs such that 𝑢 is

univalent, decorated by 1 ∈ 𝐴 and connected to another external vertex. Clearly,

𝐶𝑢 �
⊗

𝑣∈𝑈, 𝑣≠𝑢
𝑒𝑢𝑣 · 𝐸0Graphs0

𝐴〈𝑈 \ {𝑢}〉. (3.69)

This subcomplex satisfies the correct relations on Betti numbers. Moreover, the
inclusion 𝐶𝑢 ⊂ 𝐸0Graphs0

𝐴
〈𝑈〉 is a quasi-isomorphism. Indeed, if we let 𝑄 be the

quotient 𝐸0Graphs0
𝐴
〈𝑈〉/𝐶𝑢 , we have 𝑄 = 𝑄1 ⊕ 𝑄2 where

• 𝑄1 is the sub-module generated by graphs where 𝑢 is univalent, decorated by 1,
and connected to an internal vertex,

• 𝑄2 is generated by the other kinds of graphs, i.e. 𝑢 is either at least bivalent or
decorated by some 𝑎 ∈ 𝐴≥2.

We can filter 𝑄 by 𝐹𝑠𝑄1 = {Γ | #𝐸Γ ≤ 𝑠 + 1} and 𝐹𝑠𝑄2 = {Γ | #𝐸Γ ≤ 𝑠}. Then the
differential on the page 𝐸0 of the associated spectral sequence maps 𝐸0𝑄1 to 𝐸0𝑄2
by an isomorphism. This shows that𝑄 is acyclic. It follows that𝐶𝑢 ' 𝐸0Graphs0

𝐴
〈𝑈〉,

which concludes the proof. �

Proof (End of the proof of Proposition 3.112) The morphism 𝐸0Graphs𝐴〈𝑈〉 →
𝐸0G𝐴〈𝑈〉 is clearly surjective in cohomology. It follows that the quotient map induces
a quasi-isomorphism on the page 𝐸0 and therefore that it is a quasi-isomorphism. �

It only remains to show that:

Lemma 3.118 The application Graphs𝐴(𝑈) → Ω∗PA (FM𝑀 (𝑈)) is surjective in
homology

Proof This simply requires to represent any class by a graph, which is easily done.�

We have almost finished proving the theorem. However, so far, we have set the
model to Poincaré duality. We are thus left with proving the following proposition:

Proposition 3.119 If 𝐴 and 𝐵 are two quasi-isomorphic Poincaré duality CDGAs,
then G𝐴(𝑈) and G𝐵 (𝑈) are as well.

Proof The proof still involves graph complexes, but does not use transcendental
methods (i.e. integrals). Let us fix a zigzag of quasi-isomorphisms 𝐴 ← 𝑅 → 𝐵.
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3.5 End of the proof 77

We then have two maps 𝜀𝐴, 𝜀𝐵 : 𝑅𝑛 → R using the augmentations of 𝐴 and 𝐵.
One thus obtains two graph complexes Graphs𝜀𝐴

𝑅
(𝑈) and Graphs𝜀𝐵

𝑅
(𝑈) defined as

Graphs0
𝑅
(𝑈) was defined previously but using 𝜀𝐴 and 𝜀𝐵 instead. The quotient maps

Graphs𝜀𝐴
𝑅
(𝑈) → G𝐴(𝑈) and Graphs𝜀𝐵

𝑅
(𝑈) → G𝐵 (𝑈) are quasi-isomorphisms from

the of Proposition 3.112 (which did not involve integrals). It is therefore simply
enough to show that the two graph complexes are quasi-isomorphic. Up to multiplying
one of the two augmentations by a scalar (which induces an automorphism of the
associated graph complex), we can assume that 𝜀𝐴 and 𝜀𝐵 induce the same application
in cohomology. The two maps are thus homotopic as chain maps 𝑅 → R[−𝑛]. That
homotopy induces a homotopy between the CDGA morphisms 𝑧𝐴, 𝑧𝐵 : fGC𝑅 → R.
By reusing the techniques developed earlier, we deduce that Graphs𝜀𝐴

𝑅
and Graphs𝜀𝐵

𝑅

are quasi-isomorphic. �

Combining everything we have just seen, we have finished demonstrating Theo-
rem 3.17 for dim𝑀 ≥ 4. The case dim𝑀 < 4 is treated completely differently. Note
that two homotopy equivalent closed manifolds have the same dimension.

• In dimension 0, the only simply connected closed manifold is the singleton
R0 = {0}. The result is then rather clear (or perhaps badly defined because
G𝐴(𝑈) contains elements of negative degree). Indeed, ConfR0 (𝑈) is empty for
#𝑈 ≥ 2. One chooses the CDGA 𝐻∗ (R0) = (R, 𝑑 = 0) as Poincaré duality model
of R0, with ΔR = 1 ⊗ 1. The Lambrechts–Stanley model then becomes

𝐺𝐻 ∗ (R0) (𝑈) =
(
𝑆(𝜔𝑖 𝑗 )𝑖≠ 𝑗∈𝑈/𝐼, 𝑑𝜔𝑖 𝑗 = 1

)
.

This CDGA is clearly acyclic for #𝑈 ≥ 2. Indeed, if 𝛼 is a cocycle, then
𝛼 = 𝑑 (𝜔𝑖 𝑗𝛼) is automatically a coboundary (where 𝑖 ≠ 𝑗 ∈ 𝑈).

• In dimension 1, there is no simply connected closed manifold.
• In dimension 2, the only simply connected closed manifold is the sphere S2.

This sphere is also the complex projective line CP1, which is a smooth complex
projective manifold. We can therefore apply the result of Kriz [Kri94], which
says that for a smooth complex projective manifold 𝑀, G𝐻 ∗ (𝑀 ) (𝑈) is indeed
a rational (thus real) model of Conf𝑀 (𝑈). Campos and Willwacher [CW16,
Appendix B] have also explicitly computed the partition function in this case and
shown that it is trivial by analytical methods.

• In dimension 3, thanks to the Poincaré conjecture (now a theorem of Perelman
[Per02; Per03], see also Morgan and Tian [MT07] and Kleiner and Lott [KL08])
the only simply connected closed manifold is the sphere S3. This sphere is a Lie
group. Specifically, it is the unitary special group SU(2). Recall that for a Lie
group 𝐺, the Fadell–Neuwirth fibration:

Conf𝐺\∗ (𝑟) ↩→ Conf𝐺 (𝑟 + 1) � 𝐺 (3.70)

which keeps only the first point splits thanks to a result of Fadell and Neuwirth
[FN62a], see Remark 2.88.
As the sphere is formal, one can choose its cohomology 𝐴 = 𝐻∗ (S3) = 𝑆(𝜐)/(𝜐2)
(with deg 𝜐 = 3) to take the role of Poincaré duality model. In our case, S3\∗ = R3,
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78 3 Configuration spaces of closed manifolds

and we know that the configuration spaces of R3 are formal (Section 2.4).
Combined with the previous splitting, it is thus enough to show that G𝐴(𝑈 t {0})
is a model of S3 × ConfR3 (𝑈) for any𝑈. There is an explicit quasi-isomorphism
(we thank Thomas Willwacher for pointing this out):

𝜋 : 𝐴 ⊗ 𝐻∗ (ConfR3 (𝑈)) → G𝐴(𝑈 t {0}),
𝜐 ⊗ 1 ↦→ 𝑝∗0 (𝜐),

1 ⊗ 𝜔𝑖 𝑗 ↦→ 𝜔𝑖 𝑗 − 𝜔0𝑖 − 𝜔0 𝑗 . (3.71)

Since the two CDGAs have the same cohomology, it is sufficient to verify that 𝜋
is surjective in cohomology. As the cohomology of the CDGA at the target is
generated in degrees 2 and 3, it is sufficient to verify that 𝜋 is surjective in these
degrees. It is clear in degree 3: indeed, if 𝑝∗0 (𝜐) were not a generator, we would
have 𝑝∗0 (𝜐) = 𝑑𝜔 where𝜔 is a sum of𝜔𝑖 𝑗 , but all the 𝑝∗

𝑖
(𝜐) come in pairs in 𝑑𝜔𝑖 𝑗 .

In degree 2, it is a matter of a little diagram chase, considering the quotient maps
G𝐴(𝑈 t {∗}) → 𝐻∗ (ConfR3 (𝑈)) and 𝐴 ⊗ 𝐻∗ (ConfR3 (𝑈)) → 𝐻∗ (ConfR3 (𝑈)).
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Chapter 4
Configuration spaces of manifolds with
boundary

Abstract In this chapter, we extend the results of the previous chapter to manifolds
with boundary. We start with the motivation, namely the computation of homotopy
types of configuration spaces “by induction”. If a manifold is obtained by gluing two
submanifolds along their boundaries, then its configuration spaces can be obtained
from the configuration spaces of the submanifolds. We then present two different
models. The first is one based on graph complexes and is appropriate for inductive
computations. The second one is inspired by the Lambrechts–Stanley model, although
relations must be perturbed to account for the boundary.

4.1 Motivation

A very common idea in algebraic topology is to cut a large manifold into simpler
submanifolds, study those simpler manifolds separately, and glue back the information
obtain to recover information about the larger manifold. This idea can apply to
configuration spaces. To simplify, assume that a manifold 𝑋 is given by the union of
two submanifolds 𝑀 and 𝑀 ′ along their common boundary 𝜕𝑀 = 𝜕𝑀 ′ = 𝑁 . There
is then a formula that allows to express the configuration spaces of 𝑋 in terms of
those of 𝑀, 𝑀 ′ and 𝑁 , as we now explain. In order to deal with smoothness, let us
also assume that we have chosen a tubular neighborhood 𝑁 × R ↩→ 𝑋 = 𝑀 ∪𝑁 𝑀 ′

such that 𝑁 × {0} is the common boundary of 𝑀 and 𝑀 ′, 𝑁 × R>0 is included in 𝑀 ,
and 𝑁 × R<0 is included in 𝑀 ′ (see Figure 4.1).

Under these hypotheses, the collection Conf𝑁×R = {Conf𝑁×R (𝑈)}𝑈 , where 𝑈
ranges over all finite sets, is a monoid up to homotopy. To see this, let us choose an
embedding R t R ↩→ R, for example by identifying the first factor with R<0 and the
second with R>0. Then we have an induced embedding 𝑁 × R t 𝑁 × R ↩→ 𝑁 × R,
which induces, for finite sets𝑈 and 𝑉 , an embedding:

Conf𝑁×R (𝑈) × Conf𝑁×R (𝑉) ↩→ Conf𝑁×R (𝑈 t𝑉). (4.1)
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80 4 Configuration spaces of manifolds with boundary

Fig. 4.1 The surface Σ2 seen as Σ1,1 ∪S1×R Σ1,1.

This operation can be represented by Figure 4.2. The collection of all such maps
(as 𝑈 and 𝑉 range over all finite sets) satisfies compatibility relations with respect
to bijections (𝑈,𝑉) � (𝑈,𝑉). In addition, it satisfies an associativity relation up to
homotopy, and a unit relation up to homotopy (the unit being the empty configuration).

𝑢1

𝑢2

· 𝑣1

𝑣2

𝑣3
↦→

𝑢1

𝑢2

𝑣1

𝑣2

𝑣3

Fig. 4.2 The collection Conf𝑁×R is a monoid.

Remark 4.1 The collection Conf𝑁×R does not form a strict monoid: associativity and
unit are valid only up to homotopy (as in a loop space, for example). It is possible
to use a point of view that solves this problem thanks to the theory of operads
(see Proposition 5.47). In Section 4.3, we will define compactifications aFM𝑁 (𝑈)
of Conf𝑁×R (𝑈) such that aFM𝑁 = {aFM𝑁 (𝑈)} is a strictly associative and unital
monoid.

Let us now describe how the monoid Conf𝑁×R interacts with the configuration
spaces of𝑀 . The collection Conf𝑀 = {Conf𝑀 (𝑈)} is a right module (up to homotopy)
over the monoid Conf𝑁×R (Figure 4.3). To see this, recall the collar chosen above
around 𝑁 = 𝑁×{0} ⊂ 𝑁×R≥0 ⊂ 𝑀 . By using this collar, we obtain maps, illustrated
in Figure 4.3:

Conf𝑀 (𝑈) × Conf𝑁×R>0 (𝑉) → Conf𝑀 (𝑈 t𝑉). (4.2)

The collection of all such maps endows Conf𝑀 with the structure of a right module
over Conf𝑁×R>0 � Conf𝑁×R.
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4.2 Poincaré–Lefschetz duality models 81

𝑢1

𝑢2

· 𝑣1
𝑣2

𝑣3 ↦→
𝑢1

𝑢2

𝑣1
𝑣2

𝑣3

Fig. 4.3 The collection Conf𝑀 is a right module over Conf𝑁×R.

Finally, in a similar manner, Conf𝑀 ′ is a left module (up to homotopy) over
the monoid Conf𝑁×𝑅. The configuration spaces of 𝑋 = 𝑀 ∪𝑁 𝑀 ′ then satisfy the
following formula, which uses the algebraic structures we have just defined:

Conf𝑋 (𝑈) '
(
Conf𝑀 ⊗Conf𝑁×R Conf𝑀 ′

)
(𝑈)

B

( ⊔
𝑈=𝑉t𝑉 ′

Conf𝑀 (𝑉) × Conf𝑀 ′ (𝑉 ′)
)
/∼, (4.3)

where the relation ∼ is given by (𝑥 · 𝑦, 𝑧) ∼ (𝑥, 𝑦 · 𝑧) for any 𝑥 ∈ Conf𝑀 , 𝑦 ∈ Conf𝑁×R
and 𝑧 ∈ Conf𝑀 ′ , just like in a classical tensor product.

In this chapter, we will to define models for the real homotopy type of the objects
Conf𝑁×R and Conf𝑀 that take into account the above algebraic structures. The end
goal is to be able to compute the configuration spaces of large manifolds using
Equation (4.3).

Remark 4.2 The results below mostly concern simply connected manifolds and thus do
not apply to closed surfaces other than S2. In [CIW19], with Campos and Willwacher,
we have generalized the result of Section 4.4.2 to framed configuration spaces (cf.
Section 5.3.2) of oriented surfaces.

Let us now give an outline of this chapter. In Section 4.2, we review Poincaré–
Lefschetz duality models, a generalization of Poincaré duality models that apply to
compact manifolds with boundary. In Section 4.3, we define models for the collection
Conf𝑁×R and Conf𝑀 as above, using the theory of graph complexes. In Section 4.4,
we will simplify the model for Conf𝑀 to obtain a “Lambrechts–Stanley”-like model.
Unless otherwise stated, the results come from the article [CILW18], written in
collaboration with Campos, Lambrechts, and Willwacher.

4.2 Poincaré–Lefschetz duality models

For closed manifolds, the construction of the Lambrechts–Stanley model of Chapter 3
was based on the notion of Poincaré duality CDGAs. These were defined through the
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82 4 Configuration spaces of manifolds with boundary

means of non-degenerate pairings 𝐴𝑘 ⊗ 𝐴𝑛−𝑘 → R for 𝑘 ∈ Z. For compact manifolds
with nonempty boundary, no such pairing can exist, as even the cohomology does not
satisfy Poincaré duality. Instead, Poincaré duality is replaced by Poincaré–Lefschetz
duality. Recall that if (𝑀, 𝜕𝑀) is an oriented compact manifold with boundary of
dimension 𝑛, then the evaluation on the fundamental class and the cup-product induce
together non-degenerate pairings 𝐻𝑘 (𝑀) ⊗ 𝐻𝑛−𝑘 (𝑀, 𝜕𝑀) → R, for all 𝑘 ∈ Z. In
this section, we will explain how to adapt the definition of Poincaré duality CDGAs
to this framework. We will start by some informal motivation and then introduce the
precise definitions.

Let (𝑀, 𝜕𝑀) be an oriented compact manifold with boundary of dimension 𝑛.
Suppose that we find a real model of the inclusion 𝑖 : 𝜕𝑀 → 𝑀, i.e. a CDGA
morphism 𝜆 : 𝐵→ 𝐵𝜕 such that there is a zigzag of quasi-isomorphisms:

𝐵 · Ω∗PA (𝑀)

𝐵𝜕 · Ω∗PA (𝜕𝑀)

𝜆

∼ ∼

𝑖∗

∼ ∼

. (4.4)

Then Ω∗PA (𝑀, 𝜕𝑀) B ker(𝑖∗) is quasi-isomorphic (as a mere cochain complex) to
the homotopy kernel hoker𝜆, defined as follows.

Definition 4.3 Let 𝑓 : 𝑋 → 𝑌 be a cochain map. The homotopy kernel of 𝑓 is the
cochain complex:

hoker( 𝑓 ) B
(
𝑋∗ ⊕ 𝑌 ∗−1, 𝑑 (𝑥, 𝑦) = (𝑑𝑥, 𝑓 (𝑥) + 𝑑𝑦)

)
. (4.5)

By general arguments, one can always find a model 𝜆 that is surjective. The
following proposition is classical:

Proposition 4.4 Let 𝑓 be a cochain map. The kernel ker 𝑓 embeds in hoker 𝑓 through
𝑥 ↦→ (𝑥, 0). If 𝑓 is a surjection, then the inclusion 𝑖 : ker 𝑓 ↩→ hoker 𝑓 is a
quasi-isomorphism.

Proof Let 𝑥 ∈ 𝑋 be a cocycle such that 𝑖(𝑥) = 𝑑 (𝑥 ′, 𝑦′) for some 𝑥 ′, 𝑦′. Then 𝑥 = 𝑑𝑥 ′,
from which we see that 𝑖 is injective in cohomology. Moreover, let (𝑥, 𝑦) ∈ hoker( 𝑓 )
be a cocycle, i.e. 𝑑𝑥 = 0 and 𝑓 (𝑥) + 𝑑𝑦 = 0. Since 𝑓 is surjective, there exists 𝑥 ′ ∈ 𝑋
such that 𝑓 (𝑥 ′) = 𝑦. Then 𝑥 is a cocycle, and 𝑖(𝑥) = (𝑥, 0) = (𝑥, 𝑦) − 𝑑 (𝑥 ′, 0). Hence
𝑖 is surjective in cohomology. �

Moreover, we have the following classical result, which, together with the previous
proposition, we can interpret as the fact that the homotopy kernel is a homotopy
invariant version of the kernel.

Proposition 4.5 Let 𝑓 : 𝑋 → 𝑌 be a cochain map. There is a functorial long exact
sequence, where 𝜋 : hoker( 𝑓 ) → 𝑋 is the projection and 𝜕 : 𝑌 [−1] → hoker( 𝑓 ) is
the inclusion:

· · · → 𝐻𝑛 (hoker( 𝑓 )) 𝜋−→ 𝐻𝑛 (𝑋)
𝑓
−→ 𝐻𝑛 (𝑌 ) 𝜕−→ 𝐻𝑛+1 (hoker( 𝑓 )) → . . . (4.6)
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4.2 Poincaré–Lefschetz duality models 83

Corollary 4.6 Suppose we are given a commutative square:

𝑋 𝑋 ′

𝑌 𝑌 ′

∼
𝛼

𝑓 𝑓 ′

∼
𝛽

(4.7)

where𝛼 and 𝛽 are quasi-isomorphisms. Then the induced map hoker( 𝑓 ) → hoker( 𝑓 ′)
is a quasi-isomorphism.

It thus follows from these two results that given Equation 4.4, if we choose a
surjective model 𝜆, then Ω∗ (𝑀, 𝜕𝑀) is quasi-isomorphic to 𝐾 B ker𝜆. Poincaré–
Lefschetz duality then tells us that the cohomology of 𝐵 and that of 𝐾 are dual to
each other. If the boundary is non-empty, then it is not reasonable to look for a non-
degenerate pairing between 𝐵 and 𝐾 . Indeed, as dim𝐾 = dim 𝐵 − dim 𝐵𝜕 < dim 𝐵,
it is impossible for 𝐾 and 𝐵 to be paired in a non-degenerate manner. Let us find
out what we could replace this pairing with. In a CDGA with Poincaré duality, the
pairing is induced by a form 𝜀 : 𝐴𝑛 → R which is compatible with the differential, i.e.
𝜀 ◦ 𝑑 = 0. This 𝜀 represents the evaluation on the fundamental class [𝑀] ∈ 𝐻𝑛 (𝑀),
or the integral on 𝑀. In a manifold with boundary, the integral of an exact form is
not necessarily zero: by Stokes’ formula, we know that

∫
𝑀
𝑑𝛼 =

∫
𝜕𝑀

𝛼 |𝜕𝑀 . A part
of the Poincaré–Lefschetz duality structure of CDGA thus becomes the data of two
forms, 𝜀 : 𝐵𝑛 → R and 𝜀𝜕 : 𝐵𝑛−1

𝜕
→ R, which represent respectively the integrals

on 𝑀 and 𝜕𝑀 , and which must satisfy the relation 𝜀 ◦ 𝑑 = 𝜀𝜕 ◦ 𝜆.
The form 𝜀𝜕 induces pairings 𝐵𝑘

𝜕
⊗ 𝐵𝑛−1−𝑘

𝜕
→ R. We will ask that they be

non-degenerate for any 𝑘 ∈ Z. Moreover, the form 𝜀 induces pairings 𝐵𝑖 ⊗ 𝐵𝑛−𝑖 → R,
but these are not compatible with the differential (i.e. 〈𝑑𝑎, 𝑏〉 may not equal 〈𝑎, 𝑑𝑏〉
up to sign). One can, however, restrict one of the two factors to the kernel to obtain
pairings 𝐵𝑖 ⊗ 𝐾𝑛−𝑖 → R which are compatible with the differential. By dimension
reasons, these pairings are necessarily degenerate for some 𝑖. We are then led to
consider the quotient 𝑃 B 𝐵/𝐼 where 𝐼 is the ideal of orphans, i.e.

𝐼 = {𝑏 ∈ 𝐵 | 〈𝑏, 𝑘〉 = 0, ∀𝑘 ∈ 𝐾}. (4.8)

The previous pairings go through the quotient, by definition, and induce new
pairings 𝑃𝑖 ⊗ 𝐾𝑛−𝑖 → R. The next condition for a Poincaré–Lefschetz duality pair
is that these new pairings are non-degenerate for all 𝑖, which mirrors the fact that
𝐻𝑖 (𝑀) ⊗ 𝐻𝑛−𝑖 (𝑀, 𝜕𝑀) → 𝑀 is non-degenerate. The last condition requires that 𝑃
remains a real model of 𝑀 . We thus obtain the following definition:

Definition 4.7 A Poincaré–Lefschetz duality pair (PLD pair) is the data of a surjective
CDGA morphism 𝐵

𝜆−→ 𝐵𝜕 and two linear maps (called “orientations”) 𝜀 : 𝐵𝑛 → R,
𝜀𝜕 : 𝐵𝑛−1

𝜕
→ R, satisfying the following properties:

• the pair (𝐵𝜕, 𝜀𝜕) is a Poincaré duality CDGA (in particular 𝜀𝜕 ◦ 𝑑 = 0);
• Stokes’ formula is satisfied, i.e. 𝜀 ◦ 𝑑 = 𝜀𝜕 ◦ 𝜆;
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84 4 Configuration spaces of manifolds with boundary

• let 𝐾 = ker(𝜆), then the morphism 𝜃𝐵 : 𝐵 → 𝐾∨ [−𝑛] defined by 𝜃𝐵 (𝑏) (𝑘) B
𝜀(𝑏𝑘) is a surjective quasi-isomorphism.

A PLD model of a manifold with boundary 𝑀 is a PLD pair as above such that the
morphism 𝜆 is a model of the inclusion 𝜕𝑀 ↩→ 𝑀 .

Remark 4.8 Poincaré–Lefschetz duality pairs are inspired by (and generalize) the
surjective “pretty models” of Cordova Bulens, Lambrechts, and Stanley [CLS19].

The following proposition is obvious from the definition:

Proposition 4.9 Let (𝐵 𝜆−→ 𝐵𝜕, 𝜀, 𝜀𝜕) be a PLD pair. Let 𝑃 = 𝐵/𝐼 where 𝐼 = ker 𝜃𝐵.
Then the quotient map 𝐵 → 𝑃 is a quasi-isomorphism. Moreover, the pairings
𝐵𝑖 ⊗ 𝐾𝑛−𝑖 → R (for 𝑖 ∈ Z) go through the quotient and induces non-degenerate
pairings 𝑃𝑖 ⊗ 𝐾𝑛−𝑖 → R.

This proposition can be represented by the following diagram:

𝐾 B ker𝜆 Ω∗ (𝑀, 𝜕𝑀)

𝑃 B 𝐵/𝐼 𝐵 Ω∗ (𝑀)

𝐵𝜕 Ω∗ (𝜕𝑀)

non-dege
n.

pairi
ng

∼

𝜆

𝜋

∼ ∼

𝑖∗

∼

(4.9)

Example 4.10 Let 𝑀 = D𝑛 be the disk of dimension 𝑛. A surjective model of the
inclusion 𝜕𝑀 = S𝑛−1 ↩→ D𝑛 is given by the pair 𝜆 : 𝐵→ 𝐵𝜕 where

• the CDGA 𝐵𝜕 = R〈1, 𝑣〉 is of dimension 2 with deg 𝑣 = 𝑛 − 1 and 𝑣2 = 0;
• the CDGA 𝐵 = R〈1, 𝑣, 𝑤〉 is of dimension 3 with deg𝑤 = 𝑛 and 𝑑𝑣 = 𝑤 and all

non-trivial products vanish;
• the morphism 𝜆 : 𝐵→ 𝐵𝜕 is defined by 𝜆(1) = 1, 𝜆(𝑣) = 𝑣 and 𝜆(𝑤) = 0.

The orientations 𝜀 : 𝐵𝑛 → R and 𝜀𝜕 : 𝐵𝑛−1
𝜕
→ R are respectively given by 𝜀(𝑤) = 1

and 𝜀𝜕 (𝑣) = 1. This defines a Poincaré–Lefschetz duality pair. The kernel 𝐾 = ker𝜆
is simply given by R〈𝑤〉 concentrated in degree 𝑛. The map 𝜃𝐵 : 𝐵 → 𝐾∨ [−𝑛]
is given by 𝜃𝐵 (1) = 𝑤∨ and 𝜃𝐵 (𝑣) = 𝜃𝐵 (𝑤) = 0. We thus have 𝐼 = R〈𝑣, 𝑤〉 and
𝑃 = 𝐵/𝐼 = R〈1〉. The pairing 𝐾 ⊗ 𝑃→ R simply pairs 1 and 𝑤.

Example 4.11 This example can be generalized to any manifold obtained by removing
a disk from a closed variety. If 𝐴 is a Poincaré duality CDGA, then one can define
a Poincaré–Lefschetz duality pair by 𝐵𝜕 = R〈1, 𝑣𝑛−1〉 and 𝐵 = 𝐴 ⊕ R〈𝑣𝑛−1〉 with
𝑑𝑣 = vol𝐴 = 𝜀−1 (1).

We now get to the main result of this section.

Proposition 4.12 ([CILW18, Proposition 2.5]) Any simply connected compact man-
ifold with simply connected boundary of dimension at least 7 admits a Poincaré–
Lefschetz duality model.
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4.2 Poincaré–Lefschetz duality models 85

Proof The proof is inspired by that of the main theorem of [LS08b]. The idea is
the following. Using standard arguments in rational homotopy theory, we can find a
surjective morphism of CDGAs 𝜌 : 𝑅 → 𝑅𝜕 which fits into a commutative diagram
as follows:

𝑅 Ω∗ (𝑀)

𝑅𝜕 Ω∗ (𝜕𝑀).

𝜌

∼

restriction

∼

(4.10)

We can also assume that 𝑅 and 𝑅𝜕 are simply connected (𝑅0 = 𝑅0
𝜕
= R and

𝑅1 = 𝑅1
𝜕
= 0), that 𝑅2

𝜕
⊂ ker 𝑑, and that (ker 𝜌)2 ⊂ ker 𝑑.

The orientations are defined by:

𝜀 : 𝑅
∼−→ Ω∗ (𝑀)

∫
𝑀−−→ R, (4.11)

𝜀𝜕 : 𝑅𝜕
∼−→ Ω∗ (𝜕𝑀)

∫
𝜕𝑀−−−→ R. (4.12)

These orientations satisfy the Stokes formula because the integrals on 𝑀 and 𝜕𝑀
satisfy it, and they induce Poincaré–Lefschetz duality in cohomology. In general,
though, they do not induce a duality at the level of cochains: there may exist elements
𝑥 ∈ 𝑅 (resp. 𝑦 ∈ 𝑅𝜕) such that 𝜀(𝑥 · −) = 0 (resp. 𝜀𝜕 (𝑦 · −) = 0). These elements
are called orphans. Thanks to the theorem of [LS08b], we can also replace 𝑅𝜕 up to
quasi-isomorphism by a Poincaré duality CDGA of dimension, so we may assume
that there are not orphans in 𝑅𝜕.

The set of orphans forms an ideal. If we kill the orphans, then the quotient satisfies
Poincaré–Lefschetz duality. However, the ideal of orphans is not generally acyclic,
so the quotient does not necessarily have the right homotopy type. Indeed, if 𝑜 is an
orphan cycle, we know (by Poincaré–Lefschetz duality in cohomology) that it is the
boundary of a certain 𝑧. But that 𝑧 may not itself be an orphan. The idea of [LS08b]
is to add a new formal variable for each orphan, degree by degree, in a way that does
not change the homotopy type but that makes the ideal of orphans acyclic in the
extended algebra.

Let us proceed with the same idea. Let 𝐾𝑅 = ker 𝜌 and 𝜃𝑅 : 𝑅 → 𝐾∨ [−𝑛] be the
morphism given by 𝜃𝑅 (𝑟) (𝑘) = 𝜀(𝑟𝑘). The ideal of orphans is given by:

O B ker 𝜃∨𝑅 = {𝑦 ∈ 𝐾𝑅 | ∀𝑥 ∈ 𝑅, 𝜀𝑅 (𝑥𝑦) = 0} ⊂ 𝐾𝑅 . (4.13)

Let 𝑘 ≥ 0 be an integer. Orphans are said to be 𝑘-semi-acyclic if 𝐻𝑖 (O) = 0 for
𝑛/2 + 1 ≤ 𝑖 ≤ 𝑘 . Note that this condition is empty if 𝑘 = 𝑛/2. Moreover, Poincaré–
Lefschetz duality in cohomology implies that if O is (𝑛 + 1)-semi-acyclic, then it is
completely acyclic.

Let us work by induction and assume that O is (𝑘 − 1)-semi-acyclic for 𝑛/2 ≤
𝑘 − 1 < 𝑛 + 1. Let us show that we can replace (𝑅, 𝑅𝜕) by a new model whose
orphans are 𝑘-semi-acyclic. The objective will be to build an extension of the exact
short sequence:
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86 4 Configuration spaces of manifolds with boundary

0 𝐾𝑅 𝑅 𝑅𝜕 0

0 𝐾̂𝑅 𝑅̂ 𝑅𝜕 0

(4.14)

as well as an extension 𝜀 of 𝜀 (which still satisfies Stokes’ formula) so that the orphans
of (𝑅̂, 𝑅̂𝜕) are 𝑘-semi-acyclic. Going up to 𝑘 = 𝑛 + 1 will allow us to conclude the
proof.

Let 𝑙 = dim(O𝑘 ∩ ker 𝑑) − dim(𝑑 (O𝑘−1)) and choose cycles 𝛼1, . . . , 𝛼𝑙 ∈ O𝑘
which form a complementary subspace of 𝑑 (O𝑘−1) in ker 𝑑, i.e.:

O𝑘 ∩ ker 𝑑 = 𝑑 (O𝑘−1) ⊕ 〈𝛼1, . . . , 𝛼𝑙〉. (4.15)

These cycles are the obstructions to the 𝑘-semi-acyclicity of O. Note that by definition,
𝜃∨
𝑅
(𝛼𝑖) = 0. As 𝜃∨

𝑅
is a quasi-isomorphism (the pair (𝑅, 𝑅𝜕) verifies Poincaré–

Lefschetz duality in cohomology), we can thus find 𝛾′
𝑖
∈ 𝐾 𝑘−1

𝑅
such that 𝑑𝛾′

𝑖
= 𝛼𝑖 .

Let 𝑚 be the total dimension of 𝐻∗ (𝑅) = 𝐻∗ (𝑀), which is (by duality) also the
total dimension of 𝐻∗ (𝐾𝑅) = 𝐻∗ (𝑀, 𝜕𝑀). Choose cycles ℎ1, . . . , ℎ𝑚 ∈ 𝑅 which
form a basis in cohomology. By duality, we can find ℎ′1, . . . , ℎ

′
𝑚 ∈ 𝐾𝑅 which form a

basis in cohomology and such that 𝜀(ℎ𝑖ℎ′𝑗 ) = 𝛿𝑖 𝑗 . We then define:

𝛾𝑖 B 𝛾′𝑖 −
∑︁
𝑗

𝜀(𝛾′𝑗ℎ 𝑗 )ℎ′𝑗 ∈ 𝐾𝑘−1. (4.16)

A small calculation shows that 𝑑𝛾𝑖 = 𝑑𝛾′𝑖 = 𝛼𝑖 and that for any cycle 𝑦𝑖𝑛𝑅, 𝜀(𝛾𝑖𝑦) = 0.
We can then extend 𝑅 by defining:

𝑅̂ B
(
𝑅 ⊗ 𝑆(𝑐1, . . . , 𝑐𝑙︸     ︷︷     ︸

deg=𝑘−1

, 𝑤1, . . . , 𝑤𝑙︸       ︷︷       ︸
deg=𝑘−2

), 𝑑𝑐𝑖 = 𝛼𝑖 , 𝑑𝑤𝑖 = 𝑐𝑖 − 𝛾𝑖
)
. (4.17)

We can check easily that the inclusion 𝑅 ⊂ 𝑅̂ is a quasi-isomorphism, and that 𝜌
extends into 𝜌̂ : 𝑅̂ → R per 𝜌̂(𝑐𝑖) = 𝜌̂(𝑤𝑖) = 0. Let 𝑇 be a linear complement of
𝑑 (𝐴) in 𝐴. Then 𝜀 extends (where 𝑥 ∈ 𝐴 and 𝑡 ∈ 𝑇) with:

• 𝜀(𝑥) = 𝜀(𝑥) ;
• 𝜀(𝑤𝑖𝑑𝑥) = (−1)𝑘𝜀(𝛾𝑖𝑥) ;
• 𝜀(𝑐𝑖𝑐 𝑗 ) = −𝜀(𝛾𝑖𝛾 𝑗 ) ;
• 𝜀(𝑤𝑖) = 𝜀(𝑤𝑖𝑡) = 𝜀(𝑐𝑖) = 𝜀(𝑐𝑖𝑥) = 𝜀(𝑐𝑖𝑐 𝑗𝑥) = 𝜀(𝑐𝑖𝑤 𝑗 ) = 𝜀(𝑐𝑖𝑤 𝑗𝑥) =

𝜀(𝑤𝑖𝑤 𝑗 ) = 𝜀(𝑤𝑖𝑤 𝑗𝑥) = 0,
• 𝜀 vanish on elements of degree different from 𝑛.

It only remains to show that (𝑅̂, 𝑅𝜕) is such that its ideal of orphans is 𝑘-semi-acyclic,
which is an easy exercise. �

Remark 4.13 The proof above follows pretty closely the proof given by Lambrechts
and Stanley [LS08b] for the boundary-free case. Recently, a different approach based
on Hodge decompositions has been developed by Hajek [Haj20].
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4.3 Graphical models 87

In order to define the Lambrechts–Stanley model, we needed diagonal classes. We
also have an analog of the diagonal class in PLD pair.

Definition 4.14 Let (𝐵, 𝐵𝜕, 𝜆) be a PLD pair, 𝐾 = ker𝜆, 𝐼 be the orphans, and
𝑃 = 𝐵/𝐼. If {𝑥𝑖} is a graded basis of 𝐾 and {𝑥∨

𝑖
} is the dual basis of 𝑃, then we define

a cocycle of degree 𝑛 by:

Δ𝐾𝑃 B
∑︁
𝑖

(−1)deg 𝑥𝑖𝑥𝑖 ⊗ 𝑥∨𝑖 ∈ 𝐾 ⊗ 𝑃. (4.18)

For simplicity we also define Δ𝑃 as the image of Δ𝐾𝑃 by the map 𝐾 ⊗ 𝑃 ↩→ 𝐵⊗ 𝑃 �
𝑃 ⊗ 𝑃.

One can also interpret Δ𝑃 by dualizing the multiplication 𝐾 ⊗ 𝐾 → 𝐾 into a
coproduct 𝑃[−𝑛] → 𝑃[−𝑛] ⊗ 𝑃[−𝑛]. Then Δ𝑃 is the image of 1 ∈ 𝑃 under this
coproduct. In particular, we have the following property, which is easily checked (cf.
Lemma 3.10):

Proposition 4.15 Let (𝐵, 𝐵𝜕, 𝜆) be a PLD pair, 𝐼 be the orphans, and 𝑃 = 𝐵/𝐼. Then,
for any 𝑥 ∈ 𝑃:

(𝑥 ⊗ 1)Δ𝑃 = (1 ⊗ 𝑥)Δ𝑃 . (4.19)

We will also need a particular element, the “section”. Let 𝑠 : 𝐵𝜕 → 𝐵 be
a (linear) section of 𝜆, which is of course generally not an algebra morphism
nor a chain map. However, we have 𝑠(𝑑𝑥) − 𝑑𝑠(𝑥) ∈ 𝐾 for all 𝑥 ∈ 𝐵𝜕 (because
𝜆(𝑠(𝑑𝑥)) = 𝑑𝑥 = 𝑑𝜆(𝑠(𝑥)) = 𝜆(𝑑𝑠(𝑥))).

Definition 4.16 Let (𝐵, 𝐵𝜕, 𝜆) be a PLD pair and let 𝑠 : 𝐵𝜕 → 𝑏 be a linear section
of 𝜆. The element 𝑠 ∈ 𝐵 ⊗ 𝐵∨

𝜕
corresponds to an element 𝜎𝐵 ∈ 𝐵 ⊗ 𝐵𝜕 (of degree

𝑛 − 1) by the Poincaré duality of 𝐵𝜕 and called the section of the PLD pair.

The following proposition is also a small exercise:

Proposition 4.17 Let (𝐵, 𝐵𝜕, 𝜆) be a PLD pair, 𝐾 = ker𝜆, 𝐼 be the orphans, and
𝑃 = 𝐵/𝐼. Then one 𝑑𝜎𝐵 belongs to 𝐾 ⊗ 𝐵𝜕, and we have (id ⊗𝜋) (𝑑𝜎𝐵) = Δ𝐾𝑃 .

Example 4.18 Let us consider again Example 4.10. In this example, the diagonal class
is Δ𝐾𝑃 = 𝑤 ⊗ 1 and the only possible choice of 𝜎𝐵 is 1 ⊗ 𝑣 + 𝑣 ⊗ 1. The differential
of 𝜎𝐵 is 1 ⊗ 𝑤 + 𝑤 ⊗ 1 which projects to Δ𝐾𝑃 via id ⊗ 𝜋 : 𝐾 ⊗ 𝐵→ 𝐾 ⊗ 𝑃.

4.3 Graphical models

Let 𝑀 be a compact manifold with boundary 𝜕𝑀 = 𝑁 . Our objective, in the section,
will be to define a model for the monoid Conf𝑁×R and its module Conf𝑀 in terms
of graph complexes (as in Section 3.4). For reasons of contravariance, the model
of Conf𝑁×R will be a comonoid in the category of symmetric collections of CDGA
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88 4 Configuration spaces of manifolds with boundary

(see Chapter 5 for a precise definition), and the model of Conf𝑀 will be a comodule
over this comonoid. We will start by describing compactifications of Conf𝑁×R and
Conf𝑀 inspired by the Fulton–MacPherson compactifications. We will then define
propagators on these compactifications, and then the aforementioned graph complexes
together with their algebraic structures. We will then explain how to simplify these
graph complexes up to homotopy and finally prove that they are real models of the
configuration spaces that we consider.

4.3.1 Compactifications

Let us first deal with compactifications of configuration spaces of collars around
boundaries. Let 𝑁 be a compact manifold without boundary, of dimension 𝑛 − 1.
Informally, we will think of 𝑁 as the boundary of an 𝑛-dimensional manifold.

There is a natural action of R>0 on Conf𝑁×R>0 by multiplication on the second
factor. We will define a compactification aFM𝑁 (𝑈) (the symbol “a” is for “algebra”)
of the space Conf𝑁×R>0 (𝑈)/R>0 such that the aFM𝑁 collection forms a strictly
associative and unitary monoid in the category of symmetric sequences of topological
spaces. Assume that 𝑁 is embedded as an SA submanifold of R𝐷 , for 𝐷 large enough.
Then we define several maps:

• For 𝑖 ∈ 𝑈,
𝑝𝑖 : Conf𝑁×R>0 (𝑈) → 𝑁 (4.20)

is simply the projection on the 𝑖th point in 𝑁 × R>0 followed by the projection
on 𝑁 .

• Consider the relation on S𝐷−1 × [0,∞] generated by (𝑥, 0) ∼ (𝑦, 0) and (𝑥,∞) ∼
(𝑦,∞) for all 𝑥, 𝑦 ∈ S𝐷−1 (i.e. the quotient is the the unreduced suspension of
S𝐷−1). Then we define, for 𝑖 ≠ 𝑗 , a map 𝜃𝑖 𝑗 : Conf𝑁×R>0 (𝑈) → S𝐷−1× [0,∞]/∼
on an element (𝑥, ℎ) = (𝑥𝑖 , ℎ𝑖)𝑖∈𝑈 ∈ Conf𝑁×R>0 (𝑈) by:

𝜃𝑖 𝑗 (𝑥, ℎ) B
(
𝑥𝑖 − 𝑥 𝑗
‖𝑥𝑖 − 𝑥 𝑗 ‖

,
ℎ𝑖

ℎ 𝑗

)
, (4.21)

where by convention 1
0 = ∞ and 0∞ = ∞.

• Finally, for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖, we define 𝛿𝑖 𝑗𝑘 : Conf𝑁×R>0 (𝑈) → [0, +∞] × [0, +∞]
by:

𝛿𝑖 𝑗𝑘 (𝑥, ℎ) B
(
‖𝑥𝑖 − 𝑥𝑘 ‖
‖𝑥 𝑗 − 𝑥𝑘 ‖

,
|ℎ𝑖 − ℎ𝑘 |
|ℎ 𝑗 − ℎ𝑘 |

)
(4.22)

These maps are clearly invariant under the action of R>0. Together, they define an
embedding of the space Conf𝑁×R>0 (𝑈)/R>0 into the product:

𝑁𝑈 ×
(
S𝐷−2 × [0,∞]/∼

)Conf𝑈 (2) × ([0, +∞] × [0, +∞])Conf𝑈 (3) . (4.23)
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4.3 Graphical models 89

Definition 4.19 The space aFM𝑁 (𝑈) is the closure of the embedding defined by the
maps (4.20), (4.21) and (4.22).

The following proposition can be checked in the same way as it can be checked
for the Fulton–MacPherson compactification FM𝑀 in Chapter 3.

Proposition 4.20 The space aFM𝑁 (𝑈) is a compact SA manifold with boundary of
dimension 𝑛#𝑈 − 1, with interior Conf𝑁×R>0 (𝑈)/R>0.

Example 4.21 It is instructive to study the case where𝑈 = {1, 2} has two elements.
We will moreover have a need for an explicit description in order to define the
propagator in Section 4.3.2. The space aFM𝑁 (𝑈) then has four “strata”, which we
will number from I to IV (see Figure 4.4).

I. (codimension 0) The interior of the manifold, which is homeomorphic to
Conf𝑁×R>0 (𝑈)/R>0. It contains the “classical” configurations, i.e. the one where
points have not collided.

II. (codimension 1) The set of configurations ((𝑥1, ℎ1), (𝑥2, ℎ2)) such that ℎ2/ℎ1 =

∞, that is, the second point is infinitesimally close to 𝑁 × {∞} (and thus the first
is infinitesimally close to 𝑁 × {0}). This stratum is homeomorphic to 𝑁 × 𝑁 .

III. (codimension 1) The set of configurations ((𝑥1, ℎ1), (𝑥2, ℎ2)) such that ℎ2/ℎ1 = 0,
that is, the first point is infinitesimally close to 𝑁 × {∞} (and thus the second is
infinitesimally close to 𝑁 × {0}). This stratum is also homeomorphic to 𝑁 × 𝑁 .

IV. (codimension 1) The set of configurations ((𝑥1, ℎ1), (𝑥2, ℎ2)) such that (𝑥1, ℎ1) ≈
(𝑥2, ℎ2), i.e. the two points are infinitesimally close to each other. The two points
are somewhere in 𝑁 × R>0, but because of the quotient by the action of R>0,
the only remaining information is their position in 𝑁 . This stratum is then
homeomorphic to the normal fiber bundle of Δ𝑁 × {1} ⊂ 𝑁2 × R>0, where
Δ𝑁 ⊂ 𝑁2 is the diagonal.

Proposition 4.22 The collection of all the spaces aFM𝑁 forms a monoid, i.e. given
two finite sets𝑈 and 𝑉 , we have a map:

aFM𝑁 (𝑈) × aFM𝑁 (𝑉) → aFM𝑁 (𝑈 t𝑉) (4.24)

and the collection of all such maps satisfies associativity and unitality conditions.

Let us now explain the monoid structure. The map of Equation (4.24) is obtained by
gluing the component 𝑁 × {∞} of the first configuration with the 𝑁 × {0} component
of the second. This can be defined explicitly in terms of the coordinates (𝑝𝑖 , 𝜃𝑖 𝑗 , 𝛿𝑖 𝑗𝑘 )
by considering that the points of the second configuration are infinitely far away from
the points of the first one (with ℎ𝑖/ℎ 𝑗 = ∞ if 𝑖 ∈ 𝑈 and 𝑗 ∈ 𝑉). This is easily seen
to be a strictly associative product, with a unit given by the empty configuration
∅ ∈ aFM𝑁 (∅).

Let us now turn to compactification of configuration spaces of manifolds with
boundary. Suppose that 𝜕𝑀 = 𝑁 . We can define a compactification mFM𝑀 (𝑈) of
Conf𝑀 (𝑈) which is a module on the right on the monoid aFM𝑁 (the symbol “m”
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1
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1

2

1

2

1 2

Fig. 4.4 Strata of aFM𝑁 (2) , where 𝑁 = S1. From top to bottom and left to right: I, II, III, IV. The
stratum at the target of an arrow is included in the boundary of the stratum at the source of an arrow
(e.g. stratum II is included in the boundary of stratum I).

is for “module”). In the interior of 𝑀, the compactification is constructed as the
compactification FM𝑀 of Section 3.2. On the boundary, it is constructed by gluing
aFM𝑁 along a collar 𝑁 × R≥0 ↩→ 𝑀 . We then get the following results:

Proposition 4.23 The spaces mFM𝑀 (𝑈) are compact SA manifold with boundary of
dimension 𝑛#𝑈, with interior Conf𝑀̊ (𝑈).
Proposition 4.24 The collection of all the spaces mFM𝑀 (𝑈) forms a right module
over the monoid aFM𝑁 (𝑈), i.e. given two finite sets𝑈 and 𝑉 , we have mapsto

mFM𝑀 (𝑈) × aFM𝑁 (𝑉) → mFM𝑀 (𝑈 t𝑉) (4.25)

that satisfy associativity and unitality conditions.

Example 4.25 Just like in Example 4.21, it is interesting to describe the decomposition
in strata of the manifold mFM𝑀 ({1, 2}). The space mFM𝑀 ({1, 2}) has eight strata,
numbered from I to VIII (see Figure 4.5):

I. (codimension 0) The interior of the manifold, which is homeomorphic to
Conf𝑀̊ (2). The two points remain within 𝑀 and stay distant from each other.

II. (codimension 1) The configurations where the second point is infinitesimally
close to the boundary. This stratum is homeomorphic to 𝑀̊ × 𝜕𝑀 .

III. (codimension 1) The configurations where the first point is infinitesimally close
to the boundary. This stratum is homeomorphic to 𝜕𝑀 × 𝑀̊;

IV. (codimension 1) The configurations where the two points are infinitesimally
close to each other but far from the boundary. This stratum is homeomorphic to
𝜕FM𝑀̊ (2);

V. (codimension 1) The configurations where the two points are infinitesimally
close to the boundary, but far from each other. This stratum is homeomorphic to
Conf𝑁×R (2)/R>0, i.e. stratum I of aFM𝑀 (2).
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Fig. 4.5 Strata of mFM𝑀 (2) . From top to bottom and left to right: I, II, V, III, IV, VI, VII, VIII.

VI. (codimension 2) The configurations where the two points are infinitesimally
close to the boundary and the second is infinitely closer to 𝑁 × {∞} than the first.
This stratum is homeomorphic to 𝑁 × 𝑁 , i.e. stratum II of aFM𝑁 (2).

VII. (codimension 2) The inverse situation of the previous one. This stratum is
homeomorphic to 𝑁 × 𝑁 , i.e. stratum III of aFM𝑁 (2).

VIII. (codimension 2) The configuration where the two points are infinitesimally close
to the boundary and moreover infinitesimally close to each other. This stratum is
homeomorphic to stratum IV of aFM𝑁 (2).

Example 4.26 Generally speaking, it is not easy to represent the spaces aFM𝑁 (𝑈)
and mFM𝑀 (𝑈). Indeed, their dimension increases rapidly: dim aFM𝑁 (𝑈) = 𝑛#𝑈 − 1
and dim mFM𝑀 (𝑈) = 𝑛#𝑈. However, let us look at the case where 𝑀 = [0, 1] and
𝑁 = 𝜕𝑀 = {0, 1}.

We will draw spaces homeomorphic to aFM𝑁 (2) and mFM𝑀 (2) to illustrate how
the previously defined strata intersect. The drawings will of course not be completely
faithful to reality: we project subspaces of R4 on a 2d plane.

Let us first describe aFM𝑁 (2) for 𝑁 = {0, 1}. The space 𝑁 × R>0 is a disjoint
union of two open half-lines. Its square, (𝑁 × R>0)2, is a disjoint union of four open
quarter planes, indexed by 𝑁2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. To obtain the space
Conf𝑁×R>0 (2) ⊂ (𝑁 × R>0)2, one must remove the diagonals of the quarter planes
indexed by (0, 0) and (1, 1). Graphically, this give Figure 4.6, where the dotted lines
represent missing parts of the spaces (which are supposed to extend to infinity in two
directions).

The interior of aFM𝑁 (2) is the quotient of Conf𝑁×R>0 (2) by the action of R>0 on
the second factors, i.e. 𝜆 · ((𝑥, 𝑡), (𝑥 ′, 𝑡 ′)) = ((𝑥, 𝜆𝑡), (𝑥 ′, 𝜆𝑡 ′)). In our case, this space
is the disjoint union of six open intervals, represented for example by configurations
of the type ((𝑥, 1), (𝑥 ′, 𝑡 ′)). This is represented by see the red part of Figure 4.6.
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(0, 0) (0, 1) (1, 0) (1, 1)

�

III

IV

II

Fig. 4.6 The space Conf𝑁R>0 (2) (in black), its quotient by R>0 (in red) and the strata of the
boundary of aFM𝑁 (2) , for 𝑁 = {0, 1}.

The compactification aFM𝑁 (2) is obtained by adding boundary components to
Conf𝑁×R>0 (2)/R>0. Here, it is necessary to add the two extremities of each of the
six intervals which compose Conf𝑁×R>0 (2), for a total of twelve points. Stratum II
corresponds to the case where the second point goes to infinity (𝑡 ′/𝑡 → +∞), stratum
III to the case where the first point goes to infinity (𝑡 ′/𝑡 → 0), and stratum IV to the
case where the two points converge towards the same position (𝑥 = 𝑥 ′ and 𝑡/𝑡 ′→ 1).

Let us now describe mFM𝑀 (2) for 𝑀 = [0, 1]. Its interior, Conf𝑀̊ (2), is an open
square with the diagonal removed. Its boundary 𝜕mFM𝑀 (2) is itself a manifold with
boundary. The inside of the boundary consists of nine intervals:

• the four sides of the square: two for stratum II (the first point converges towards
the boundary) and two for stratum III (the second point converges towards the
boundary);

• two on each “side” of the diagonal, forming stratum IV;
• four intervals which form stratum V (the two points tend towards the boundary at

different speeds so as not to collide) and which connect the preceding intervals
according to a combinatorial encoded in Figure 4.7.

Fig. 4.7 The space
mFM[0,1] (2) and its one-
codimensional strata. The
small segments (in black) are
all part of the stratum V. II

IIIIV

II

III IV
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4.3 Graphical models 93

We have represented a space homeomorphic to mFM𝑀 (2), together with its
decomposition in strata, in Figure 4.7. For the purpose of visualization, we have
represented the two ends of the segments that make up the V stratum as distant from
each other. They are actually projected on the corners of the square 𝑀2 = [0.1]2. In
the same way, the two segments of the diagonal (stratum IV) are projected on the
diagonal Δ𝑀 = {(𝑥, 𝑥) | 𝑥 ∈ 𝑀} ⊂ 𝑀2.

4.3.2 Propagators

Let (𝑀, 𝜕𝑀 = 𝑁) be a manifold with boundary of dimension 𝑛. In this section,
we will define the propagators, i.e. the forms on aFM𝑁 (2) and mFM𝑀 (2), that will
allow us to define maps from graph complexes to the CDGAs of forms on our
compactifications.

Suppose that the pair (𝑀, 𝑁) has a Poincaré–Lefschetz duality model as in
Section 4.2:

𝐾 B ker𝜆

𝑃 B 𝐵/ker 𝜃𝐵 𝐵 𝑅 Ω∗PA (𝑀)

𝐵𝜕 𝑅𝜕 Ω∗PA (𝜕𝑀)

acco
upl.

non dégén.

∼
𝜋

𝜆

𝑓

∼

𝜌

𝑔

∼

res

𝑓𝜕

∼
𝑔𝜕

∼

(4.26)

Remark 4.27 If (𝑀, 𝜕𝑀) does not admit a Poincaré–Lefschetz duality model, it will
still be possible to define graph complexes, by decorating the vertices by elements of
𝑆(𝐻̃∗ (𝑀) ⊕ 𝐻∗ (𝑀, 𝜕𝑀)) and 𝑆(𝐻̃∗ (𝜕𝑀)) instead of 𝐵 and 𝐵𝜕, see [CILW18] for
the details.

Let us denote the diagonal class byΔ𝐾𝑃 ∈ 𝐾⊗𝑃, and letΔ𝑃 ∈ 𝑃⊗𝑃 be its image in
𝑃⊗𝑃 and𝜎𝐵 ∈ 𝐵⊗𝐵𝜕 the “section” (which satisfies (𝜋⊗ id) (𝑑𝜎𝐵) = (1⊗𝜆) (Δ𝐾𝑃)),
see Definitions 4.14 and 4.16. Thanks to rather simple arguments, we can lift Δ𝑃 and
𝜎𝐵 into elements Δ𝑅 ∈ 𝑅 ⊗ 𝑅 and 𝜎𝑅 ∈ 𝑅𝜕R satisfying 𝑑𝜎𝑅 ∈ 𝑅𝜕 ⊗ ker 𝜌. From
now on, we fix these lifts.

Let us first define the propagator on aFM𝑁 (2).

Proposition 4.28 There is a form 𝜑𝜕 ∈ Ω𝑛−1
PA (aFM𝑁 (2)), called the propagator, such

that:

• the form is closed: 𝑑𝜑𝜕∗ = 0;
• the restriction of 𝜑𝜕 to stratum IV of aFM𝑁 (2) (i.e. the two points are infinitesi-

mally close, 𝑥1 ≈ 𝑥2) is a global angular form;
• the restriction of 𝜑𝜕 to stratum II of aFM𝑁 (2) (i.e. the second point goes to

infinity, 𝑥2 →∞) is equal to the image of 𝜎𝜕 B (id ⊗𝜌) (𝜎𝑅) ;
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94 4 Configuration spaces of manifolds with boundary

• the restriction of 𝜑𝜕 to stratum III of aFM𝑁 (2) (i.e. the first point goes to infinity,
𝑥1 →∞) vanishes;

• for any element 𝛼 ∈ 𝑅𝜕, we have
∫
𝑦
𝜑𝜕 (𝑥, 𝑦)𝛼(𝑦) = 0.

Proof The proof is similar to the one of Proposition 3.82. For the sake of this
argument, we will define the propagator on Conf𝑁×[0,1] , and then apply a rescaling
of the form 𝑡 ↦→ 𝑡/(𝑡 − 1) on the second coordinate. Let 𝜓 be a global angular form
on the fiber bundle over 𝑁 defined by stratum IV. This extends into a form whose
support is contained in a neighborhood of this stratum. Its differential 𝑑𝜓 is closed
and its support is disjoint from the stratum IV and the diagonal. It thus represents a
class in:

𝐻∗ (𝑁 × 𝑁 × [0, 1], 𝑁 × 𝑁 × {0, 1}) � (𝐻∗ (𝑀) ⊗ 𝐻∗ (𝑀)) [−1] . (4.27)

We check with Stokes’ formula that 𝑑𝜓 ± 𝜎𝜕 ∧ 𝑑 (1 − 𝑡) is the boundary of a form 𝛾

on 𝑀 × 𝑀 × [0, 1]. We thus set 𝜓 ′ B 𝜓 − 𝛾 ± 𝜎𝜕 ∧ (1 − 𝑡). The form 𝛾 vanishes on
the boundary and thus does not change the behavior on the three strata. Moreover, the
other two forms give exactly what we wanted on strata II and III, where 𝜓 vanishes.
Finally, to obtain the last property, we replace 𝜓 ′ by:

𝜑𝜕 B 𝜓 ±
∫

3
𝜓 ′13 (𝜎𝜕)32𝑑𝑡 ±

∫
3
𝜓 ′23 (𝜎𝜕)31𝑑𝑡 ∓

∫
3,4
𝜓 ′34 (𝜎𝜕)23 (𝜎𝜕)14.

We can moreover define a propagator on mFM𝑀 (2) in a similar manner:

Proposition 4.29 There is a form 𝜑 ∈ Ω𝑛−1
PA (mFM𝑀 (2)), also called the propagator,

such that:

• Its differential is such that 𝑑𝜑 = Δ𝑅 ;
• On strata II (𝑥2 → 𝜕𝑀), III (𝑥1 → 𝜕𝑀) and V (𝑥1, 𝑥2 → 𝜕𝑀), we have

respectively:
𝜑|II = 𝜎𝑅, 𝜑|III = 0, 𝜑|IV = 𝜑𝜕. (4.28)

• on stratum IV (𝑥1 ≈ 𝑥2), 𝜑 is a global angular form ;
• for all 𝛼 ∈ 𝑅, we have

∫
𝑦
𝜑(𝑥, 𝑦)𝛼(𝑦) = 0.

Proof The proof is similar to the previous one. We just take into account more
strata. �

4.3.3 Graph complexes

We will now define models of aFM𝑁 and mFM𝑀 . These models will be given by
graph complexes, in the line of Section 3.4.

Definition 4.30 Let𝑈 be a finite set. The graph complex aGraphs𝑅𝜕 (𝑈) is generated
by equivalence classes of graphs of the following type:
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4.3 Graphical models 95

• the graph has a set of vertices called “external”, in bijection with 𝑈, and an
arbitrary finite set 𝐼 of vertices called “internal”;

• internal vertices are made undistinguishable using the action of the symmetric
group;

• each vertex is decorated by an element of 𝑅𝜕;
• the edges are directed;
• the edges are of degree 𝑛−1, the internal vertices of degree−𝑛, and the decorations

have the same degree as in 𝑅𝜕;
• the integration procedure described in Section 3.4.3 allows us to define a number
𝑤(𝛾) – the partition function of 𝑁 × R>0 on 𝛾 – associated to a connected graph
𝛾 containing only internal vertices, and we set the relation Γ t 𝛾 ≡ 𝑤(𝛾).

The product on the CDGA aGraphs𝑅𝜕 consists in gluing two graphs together
along their external vertices. Its differential is the sum of two terms:

• the internal differential 𝑑𝑅𝜕 which acts on the decorations as a derivation;
• the contracting differential 𝑑contr, which is the sum over all the ways to contract

an edge of the graph and multiplying the decorations of its extremities.

Finally, the coproduct Δ : aGraphs𝑅𝜕 (𝑈 t 𝑉) → aGraphs𝑅𝜕 (𝑈) ⊗ aGraphs𝑅𝜕 (𝑉),
which reflects the monoid structure of the collection aFM𝑁 , is given as follows. It
consists in cutting the graph in two components, with𝑈 on the left, 𝑉 on the right,
and summing on all the possible ways to distribute the internal vertices on the left
and on the right. We then replace the edges that connect vertices of two different
components by 𝜎𝜕 if they go from left to right, and by 0 otherwise. See Figure 4.8
for an example.

𝑢

𝑥 𝑦

𝑣

𝑧
Δ↦−−→

∑︁
(𝜎)

𝑢

𝑥𝜎′

⊗
𝑦𝜎′′

𝑣

𝑧

Fig. 4.8 The coproduct aGraphs𝑅𝜕 ( {𝑢, 𝑣 }) → aGraphs𝑅𝜕 ( {𝑢 }) ⊗ aGraphs𝑅𝜕 ( {𝑣 }) , where
𝑥, 𝑦, 𝑧 ∈ 𝑅𝜕.

Proposition 4.31 There are morphisms aGraphs𝑅𝜕 (𝑈) → Ω∗PA (aFM𝑁 (𝑈)) for all
finite sets𝑈 which are compatible with the monoid structure of aFM𝑁 .

Proof Very similar to that of Section 3.4. �

Definition 4.32 The graph complex mGraphs𝑅 (𝑈) is generated by equivalence
classes of graphs of the following type:

• the graph has a set of external vertices, in bijection with𝑈, and an arbitrary finite
set 𝐼 of internal vertices;

• using the action of the symmetric group, internal vertices are made undistin-
guishable;
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96 4 Configuration spaces of manifolds with boundary

• each vertex is decorated by an element of 𝑅;
• each edge is directed;
• the edges are of degree 𝑛−1, the internal vertices of degree−𝑛, and the decorations

have the same degree as in 𝑅𝜕;
• the integration procedure described in Section 3.4.3 allows to define a number
𝑊 (𝛾) – the partition function of 𝑀 on 𝛾 – associated with a connected 𝛾 graph
containing only internal vertices, and we set the relation Γ t 𝛾 ≡ 𝑊 (𝛾)Γ.

The product on mGraphs𝑅 consists of pasting two graphs together along their external
vertices. The coaction Δ : mGraphs𝑅 (𝑈 t 𝑉) → mGraphs𝑅 (𝑈) ⊗ aGraphs𝑅𝜕 (𝑉)
that reflects the module structure of mFM𝑀 over aFM𝑁 is defined as follows. It
consists in cutting the graph in two parts, with 𝑈 on the left, 𝑉 on the right, and
summing over all the possible ways to distribute the internal vertices on the left and
on the right. We then replace the edges that connect vertices of two different parts by
𝜎 if they go from left to right, and by 0 if not. Finally, we apply 𝜌 : 𝑅 → 𝑅𝜕 on all
the decorations of the graph on the right. See Figure 4.8, where we would apply 𝜌 to
the decorations of the vertices of the second tensor factor.

Finally, the differential is the sum of four terms:

• the internal differential 𝑑𝑅𝜕 , which acts on the decorations as a derivation;
• the cutting differential 𝑑split, which is the sum of all the ways to cut an edge and

multiply the decoration of its extremities by Δ𝑅;
• the contracting differential 𝑑contr, which is the sum over all the ways of contracting

an edge in the graph and multiplying the decoration of its extremities;
• the twist by 𝑤, defined similarly to the coaction Δ for 𝑉 = ∅, i.e. we cut off

graphs consisting only of internal vertices, and we apply the partition function 𝑤
to the part that has been cut off.

Proposition 4.33 There are morphisms mGraphs𝑅 (𝑈) → Ω∗PA (mFM𝑀 (𝑈)) for all
finite sets𝑈 which are compatible with the coaction of aFM𝑁 .

4.3.4 Simplification of the partition functions

The definitions of the above graph complexes depend on integrals, the partition
functions 𝑤 and𝑊 , that are difficult to compute. As in Section 3.4.5, we would like
to simplify the expressions of 𝑤 and𝑊 . Unfortunately, there is no argument as simple
as in the case without a boundary to show that these functions are trivial to within
a homotopy. More sophisticated techniques, that we are now going to explain, are
needed.

4.3.4.1 Partition function of the cylinder on the boundary

As in Section 3.4.4, we can define a differential graded algebras in which our partition
functions live.
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4.3 Graphical models 97

Definition 4.34 Let aGC𝑅𝜕 be the module of graphs of type aGraphs𝑅𝜕 with only
internal vertices (before the identification of the last item of Definition 4.30, i.e. the
modding out of internal components, is applied).

The free graded algebra on aGC𝑅𝜕 is equipped with a differential of the type of
aGraphs𝑅𝜕 . The element 𝑤 mentioned in Definition 4.30 defines a morphism of
CDGAs from this quasi-free algebra to R. We have the following point of view, just
like in Chapter 3:

Proposition 4.35 The module aGC∨𝑅𝜕 [−1] is equipped with a dg-Lie algebra structure
such that morphism of CDGAs (𝑆(aGC𝑅𝜕 ), 𝑑) → R are in bijection with Maurer–
Cartan elements of aGC∨𝑅𝜕 [−1].

Proof This follows from the general arguments of Section 3.4.4. As in Section 3.4.4,
the differential of aGraphs𝑅𝜕 is quadratic-linear in terms of the elements of aGC𝑅.
It thus induces a differential and a Lie bracket on the dual space aGC∨𝑅𝜕 [−1]. The
differential of aGC∨𝑅𝜕 [−1] is the dual of the linear part, while the Lie bracket is
the dual of the quadratic part. Concretely, the differential is a sum of two terms:
the internal differential, which acts on decorations, and the connecting differential,
which connects two vertices in all possible ways (and precomposes decorations
by multiplication with Δ𝑅𝜕). The Lie bracket is the sum of all possible ways of
connecting two graphs by an edge (de-multiplying decorations too). �

Applied to the present case, this correspondence tells us that the morphism 𝑤

corresponds to a Maurer–Cartan element 𝑤 ∈ aGC∨𝑅𝜕 [−1]. In the dual basis of the
graphs base, one can write 𝑤 =

∑
Γ 𝑤(Γ)Γ. This point of view allows us to apply

classical theorems about Maurer–Cartan elements. Let us now simplify 𝑤 up to
homotopy.

Definition 4.36 Denote by𝑤0 ∈ aGC∨𝑅𝜕 [−1] the partition function, i.e. the restriction
of 𝑤 to singleton graphs (cf. Definition 3.95).

Proposition 4.37 The Maurer–Cartan elements 𝑤 and 𝑤0 are homotopic.

Proof This is done in several steps. Note that in the following discussion, we take
the convention that the valence of a vertex is increased by 1 if the decoration of this
vertex is of positive degree.

We start by showing that aGC∨𝑅𝜕 is quasi-isomorphic to its Lie sub-dg-algebra
aGC≥2,∨

𝑅𝜕
generated by graphs whose vertices are at least bivalent. This results from a

classical argument in the theory of graph complexes (cf. [Wil16], compare with the
discussion after Definition 3.103). The element 𝑤 − 𝑤0 is therefore homotopic to an
element of aGC≥2,∨

𝑅𝜕
.

We then show that the cohomology of aGC≥2,∨
𝑅𝜕

differs from the cohomology of
aGC≥3,∨

𝑅𝜕
only for those with one loop (i.e. the loop-shaped graphs). We moreover show

that this one-loop part is generated by the circular graphs as defined in Section 3.4.5.
This results from another classical argument, counting the bivalent vertices. All
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98 4 Configuration spaces of manifolds with boundary

circular graphs are of negative degree, so 𝑤 − 𝑤0 cancels on them. It follows that
𝑤 − 𝑤0 is homotopic to an element of aGC≥3,∨

𝑅𝜕
.

Finally, a simple degree counting argument shows that the cohomology of aGC≥3,∨
𝑅𝜕

cancels in degree 1 if 𝑛 ≥ 3 ⇐⇒ dim 𝑁 ≥ 2. Indeed, let Γ ∈ aGC≥3,∨
𝑅𝜕

be a graph
with 𝑙 loops (i.e. dim𝐻1 (Γ) = 𝑙 if we see it as a CW-complex of dimension 1). Let
us show that degΓ ≤ −(𝑙 − 1) (𝑛 − 3). In the worst case, all the vertices of Γ are
exactly trivalent (otherwise, we decompress a vertex ≥ 4-valent to obtain a graph
of higher degree). If the graph has a bivalent vertex with a decoration of positive
degree, then removing this vertex and replacing it by an edge can only increase
the degree, so we can suppose that all vertices have at least three incident edges.
Finally, in the worst case, all decorations are of degree 0. The degree of Γ is then
𝑛(2𝑙 − 2) − (𝑛 − 1) (3𝑙 − 3) = −(𝑙 − 1) (𝑛 − 3), which is negative if 𝑙 ≥ 2 and 𝑛 ≥ 3.
However, the degree of a graph must be equal to 1 for the corresponding integral to
be non-zero (because of the quotient by R>0 in the definition of aFM𝑁 ). The cases
𝑙 = 0 and 𝑙 = 1 correspond respectively to 𝑤0 and to the loops, which we have already
treated.

We conclude from the above that 𝑤 − 𝑤0 is homotopic to zero for 𝑛 ≥ 3, so 𝑤 is
homotopic to 𝑤0. For 𝑛 = 2, the boundary 𝑁 is a union of circles and the result was
previously obtained by Willwacher [Wil16]. The result is even clearer if 𝑛 = 1, in
which case 𝑁 is discrete. �

We thus get the following result:

Definition 4.38 We define a new graph complex aGraphs0
𝑅𝜕

, exactly as aGraphs𝑅𝜕
except that we use 𝑤0 instead of 𝑤 to identify an internal component with a number.

Corollary 4.39 The two comonoids in symmetric collections of CDGAs aGraphs𝑅𝜕
and aGraphs0

𝑅𝜕
are quasi-isomorphic.

The model aGraphs0
𝑅𝜕

depends only on the CDGA 𝑅𝜕, i.e. on the actual homotopy
type of 𝑁 . Once we prove that aGraphs𝑅𝜕 is a model of aFM𝑁 , we can deduce the
real homotopic invariance of Conf𝑁×R, without any condition on 𝑁 . This echoes
a result of Raptis and Salvatore [RS18], who showed that the homotopy type of
Conf𝑁×𝑋 (2), where 𝑋 is a contractile space different from the singleton, depends
only on the homotopic type of 𝑁 .

4.3.4.2 Partition function of the full manifold

We now move on to the simplification of 𝑊 . We obtain exactly the same kind of
result, but with conditions on 𝑀 .

Definition 4.40 Let mGC𝑅 be the module of graphs of type mGraphs𝑅 with only
internal vertices (before the identification of the last item of Definition 4.32, i.e. the
modding out of internal components, is applied). Its differential is given by the first
three summands of the description of Definition 4.32.
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4.3 Graphical models 99

The dual, mGC∨𝑅, is a dg-Lie algebra. The Lie algebra aGC∨𝑅𝜕 [−1] acts on
mGC∨𝑅 [−1] by derivations, in a way which is dual to the coaction of aGraphs on
mGraphs. Since the element 𝑤 ∈ aGC∨𝑅 [−1] is a Maurer–Cartan element, the twisted
differential,

𝑑𝑤 B 𝑑 + [𝑤,−] : mGC∨𝑅 [−1] → mGC∨𝑅 [−1], (4.29)

squares to zero, as one can easily check from the Maurer–Cartan equation. One can
then check the following, using the Stokes formula:

Proposition 4.41 The element𝑊 defines a Maurer–Cartan element in (mGC∨𝑅, 𝑑 +
[𝑤,−]).

We can verify that, in fact, if we restrict 𝑤 to the trivial partition function, we still
have a Maurer–Cartan element:

Proposition 4.42 The element 𝑊 is a Maurer–Cartan element in mGC∨,𝑤0
𝑅

B(
mGC∨𝑅, 𝑑 + [𝑤0,−]

)
.

Definition 4.43 Denote by 𝑊0 ∈ mGC∨𝑅𝜕 the trivial partition function (i.e. the
restriction of𝑊 to singleton graphs), which is a Maurer–Cartan element in mGC∨,𝑤0

𝑅
.

Proposition 4.44 If dim𝑀 ≥ 4 and 𝑀 is simply connected, then the Maurer–Cartan
elements𝑊 and𝑊0 are homotopic.

Proof Our goal is to show that𝑊 −𝑊0 is homotopic to zero in the twisted Lie algebra
mGC∨,𝑤0+𝑊0

𝑅
B (mGC∨,𝑤0

𝑅
, [𝑊0,−]). The steps are similar to the proof of 𝑤 ' 𝑤0.

We show that we can restrict ourselves to (≥ 3)-valent graphs, and mod out the
circular graphs. A degree-counting argument similar to the one for aGC∨𝑅𝜕 is used to
show that if 𝑅1 = 0, then the degree of a graph with 𝑙 loops is less than −(𝑙−1) (𝑛−3).
Hence, there could potentially be elements of degree 0 for 𝑙 ∈ {0, 1}. However, if we
go through the degree-counting argument carefully, we see that one-loop graphs of
highest degree have decorations of degree 1. This cannot happen because 𝑅1 = 0.

We therefore deduce that 𝑊 is homotopic to 𝑊0 (relative to 𝑤0) under the
assumption that dim𝑀 ≥ 4 and that 𝑀 is simply connected (by choosing a model
such as 𝑅1 = 0). �

Definition 4.45 We define a new graph complex mGraphs0
𝑅

, exactly as aGraphs𝑅
but replacing 𝑤 by 𝑤0 and𝑊 by𝑊0.

Corollary 4.46 The two comodules in symmetric collections of CDGAs mGraphs𝑅
and mGraphs0

𝑅
are quasi-isomorphic.

This allows us to build a model mGraphs0
𝑅

that depends only on the type of real
homotopic of 𝑀 , under dimension and connectivity assumptions.
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100 4 Configuration spaces of manifolds with boundary

4.3.5 Quasi-isomorphism

In this section, we show the following:

Proposition 4.47 The maps aGraphs𝑅𝜕 (𝑈) → Ω∗PA (aFM𝑁 ) and mGraphs𝑅 (𝑈) →
Ω∗PA (mFM𝑀 ) defined using our integration procedures are quasi-isomorphisms.

Proof The proofs are similar to the one in Section 3.5. Let us deal with aGraphs𝑅𝜕 ,
as the case of mGraphs𝑅 is almost identical. We work by induction. The result
is clear for #𝑈 = 0 and the case #𝑈 = 1 is proved by an explicit homotopy (see
the homotopy ℎ in the proof of Lemma 3.117). For the induction step, assume
that aGraphs𝑅𝜕 (𝑈) → Ω∗PA (aFM𝑁 ) is a quasi-isomorphism and let us assume
𝑈+ = 𝑈 t {𝑢}. Consider the diagram (where the bottom line is the homotopy cofiber):

aGraphs𝑅𝜕 (𝑈) Ω∗PA (aFM𝑁 (𝑈))

aGraphs𝑅𝜕 (𝑈+) Ω∗PA (aFM𝑁 (𝑈+))

aGraphs𝑅𝜕 (𝑈+) ⊗
L
aGraphs𝑅𝜕 (𝑈 )

R Ω∗PA (aFM𝑁 (𝑈+)) ⊗LΩ∗PA (aFM𝑁 (𝑈 )) R

∼

(4.30)
By the five lemma, it is enough to show that the top and bottom lines are quasi-

isomorphisms to show that the middle line is one as well. For the top line, this is
precisely the induction hypothesis, so let us focus on the bottom line. The CDGA on
the RHS is a model for the fiber of the fiber bundle aFM𝑁 (𝑈+) → aFM𝑁 (𝑈) thanks
to classical results in rational homotopy theory (see [FHT01, Theorem 15.3]). The
fiber is homeomorphic to (𝑁 ×R) \𝑈, i.e. the cylinder on 𝑁 with #𝑈 points removed.
The cohomology of this fiber is simply 𝐻∗ (𝑁) ⊕ R[1 − 𝑛]⊕𝑈 .

Moreover, since aGraphs𝑅𝜕 (𝑈+) is a quasi-free aGraphs𝑅𝜕 (𝑈)-module, the de-
rived tensor product in the LHS is quasi-isomorphic to the usual tensor product. This
tensor product can be identified to graphs whose internally connected components
touch 𝑢 ∈ 𝑈+. This complex can be filtered by the number of edges incident to the
vertex 𝑢, denoting the several components (with obvious notations) 𝑉0 ⊕ 𝑉1 ⊕ 𝑉≥1.
We have of course 𝑉0 = R. On the first page of the spectral sequence, the differential
𝑑 : 𝑉1 → 𝑉≥1 is surjective. Its kernel consists of the graphs whose vertex 𝑢 is either
decorated by 𝑅>0

𝜕
, or of valence 1 and is connected to another external vertex. The

cohomology of 𝑁 ×R \𝑈 can be found on the next page, and as the map in the forms
is surjective in cohomology, none of these classes can disappear, which allows us to
conclude that the next morphism in the induction step is also a quasi-isomorphism.�

This allows us to establish the following theorem:

Theorem 4.48 ([CILW18]) Let 𝑀 be a simply connected compact SA manifold with
boundary, of dimension at least 4. Let (𝜆 : 𝐵 → 𝐵𝜕) be a Poincaré–Lefschetz
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4.4 Perturbed Lambrechts–Stanley model 101

duality model of the pair (𝑀, 𝜕𝑀). Then a model for the monoid and its module
(mFM𝑀 , aFM𝑁 ) is given by (mGraphs0

𝐵
, aGraphs0

𝐵𝜕
).

We also have the following homotopy invariance results:

Corollary 4.49 If 𝑁 is a closed oriented SA manifold, then the real homotopy type of
Conf𝑁×R (𝑟) only depends on the real homotopy type of 𝑁 , for all 𝑟 ≥ 0.

Corollary 4.50 If 𝑀 is simply connected compact SA manifold with boundary of
dimension at least 4, then the real homotopy type of Conf𝑀 (𝑟) only depends on the
real homotopy type of (𝑀, 𝜕𝑀), for all 𝑟 ≥ 0.

Remark 4.51 As Example 2.23 shows, it is not reasonable to expect the homotopy
type of Conf𝑀 (𝑟) to only depend on the homotopy type of 𝑀 for open manifolds.

4.4 Perturbed Lambrechts–Stanley model

In this section, we will define an analogue of the Lambrechts–Stanley model for
configuration spaces of compact manifolds with boundary. We first start by defining
a first naive version as a direct adaptation of the Lambrechts–Stanley model, and we
show that it has the correct Betti numbers. Then we define a perturbed version of that
naive adaptation, and we show that it is, in fact, a real model for the configuration
spaces.

Let (𝑀, 𝜕𝑀) be such a manifold. Let (𝐵 𝜆−→ 𝐵𝜕) be a Poincaré–Lefschetz duality
model of (𝑀, 𝜕𝑀), and write 𝐾 = ker𝜆 and 𝑃 = 𝐵/𝐼 (with the notations of
Section 4.2). We recall that we have a diagonal class Δ𝑃 ∈ 𝑃 ⊗ 𝑃 which is the image
of the class Δ𝐾𝑃 induced by the duality between 𝐾 and 𝑃.

4.4.1 Calculation of the homology

We can first generalize the definition of the Lambrechts–Stanley model in an obvious
way.

Definition 4.52 The Lambrechts–Stanley CDGA associated with 𝐵
𝜆−→ 𝐵𝜕 is:

G𝑃 (𝑈) B
(
𝑃𝑈 ⊗ (𝑆(𝜔𝑖 𝑗 )𝑖≠ 𝑗∈𝑈/𝐼, 𝑑

)
(4.31)

with 𝑑𝜔𝑖 𝑗 = 𝑝∗𝑖 𝑗 (Δ𝑃) and 𝐼 =
(
𝜔2
𝑖 𝑗
, 𝜔 𝑗𝑖 − (−1)𝑛𝜔𝑖 𝑗 , 𝜔𝑖 𝑗𝜔 𝑗𝑘 + 𝜔 𝑗𝑘𝜔𝑘𝑖 + 𝜔𝑖 𝑗

)
.

The goal of this section is to prove the following theorem.

Theorem 4.53 ([CILW18]) The cohomology of G𝑃 (𝑈) is isomorphic to the coho-
mology of Conf𝑀 (𝑈) as a graded vector space.
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102 4 Configuration spaces of manifolds with boundary

Example 4.54 Let 𝑀 = D𝑛 and 𝜕𝑀 = S𝑛−1. A Poincaré–Lefschetz duality model of
(𝑀, 𝜕𝑀) is given in Example 4.10. In particular, we have 𝑃 = R and Δ𝑃 = 0. We then
find G𝑃 (𝑈) = 𝐻∗ (ConfR𝑛 (𝑈)). This is consistent with the fact that ConfD𝑛 (𝑈) '
ConfR𝑛 (𝑈).

Example 4.55 This construction can also be applied to a closed manifold 𝑊 with
a point removed, 𝑀 = 𝑊 \ ∗. Let 𝐴 be a Poincaré duality model of 𝑊 . We saw
in Example 4.11 that a PLD model for (𝑀, 𝜕𝑀) is given by 𝐵 = 𝐴 ⊕ R〈𝑣𝑛−1〉,
𝐵𝜕 = R ⊕ R〈𝑣〉. The kernel 𝐾 is the augmentation ideal 𝐴̄ = ker(𝐴 → R), and
the quotient 𝑃 is 𝐴/(vol𝐴). The diagonal class Δ𝑃 is just the image of Δ𝐴 in the
quotient. We thus find on the one hand a small CDGA G𝑃 (𝑈) whose cohomology is
the cohomology of Conf𝑀 (𝑈).

On the other hand, we know, using the Fadell–Neuwirth fibration (see Remark 2.88),
that Conf𝑀 (𝑈) is the fiber of the projection 𝑝∗ : Conf𝑊 (𝑈+) → 𝑊 , where 𝑈+ =

𝑈 t {∗}. We know that a model of Conf𝑊 (𝑈+) is G𝐴(𝑈+), and it is clear that a
model of 𝑝∗ is the inclusion 𝐴→ G𝐴(𝑈+) in position ∗. By general considerations
about Sullivan models (see e.g. [FOT08, Theorem 2.64]), a model for the fiber of 𝑝∗
is thus given by the tensor product G𝐴(𝑈+) ⊗𝐴 R. Note that in this tensor product,
𝑑𝜔∗𝑖 = 𝑝∗

𝑖
(vol𝐴). This is consistent with the previous result, as we thus have an

obvious quasi-isomorphism G𝐴(𝑈+) ⊗𝐴 R→ G𝑃 (𝑈).

The proof of Theorem 4.53 rests on two other theorems. On the one hand, we
will use a theorem of Lambrechts and Stanley [LS08a], which allows us to compute
the homology of a “configuration space”-type space, i.e. one that is obtained by
removing subspaces indexed by pairs of integers and which intersect as diagonals do.
On the other hand, we will use a theorem of Cordova Bulens, Lambrechts, and Stanley
[CLS18], which allows to compute the homology of the complement of a subspace
in a manifold with boundary. More concretely, the main result of [CLS18] tells us
that if𝑊 is a compact manifold with boundary and that 𝑋 ⊂ 𝑊 is a sub-polyhedron,
then we can compute the rational homology of𝑊 \ 𝑋 if we know a rational model of
the following square:

𝜕𝑊 𝑊

𝜕𝑊 𝑋 B 𝑋 ∩ 𝜕𝑊 𝑋

(4.32)

In our case, 𝑊 = 𝑀𝑈 and 𝑋 =
⋃
𝑖≠ 𝑗∈𝑈 Δ𝑖 𝑗 , where Δ𝑖 𝑗 = {𝑥 ∈ 𝑀𝑈 | 𝑥𝑖 = 𝑥 𝑗 }.

The methods used in [LS08a] allow to simplify the computation of a model of the
previous square by expressing it as the “total cofiber”. The idea is to write 𝑋 as the
colimit of a diagram indexed by graphs. To simplify notations let us put 𝑟 = #𝑈. Let
𝐸 = {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑟} and let P be the set of subsets of 𝐸 , ordered by reverse
inclusion. An element 𝛾 ∈ P can be seen as a graph with 𝑟 vertices, with an edge
between 𝑖 and 𝑗 if and only if (𝑖, 𝑗) ∈ 𝛾. We then have a functor ∇ : P → Top given
by

∇(𝛾) B
⋂

(𝑖, 𝑗) ∈𝐸𝛾

Δ𝑖 𝑗 . (4.33)
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4.4 Perturbed Lambrechts–Stanley model 103

In particular, we have ∇(∅) = 𝑀𝑟 and 𝛾′ ⊃ 𝛾 =⇒ ∇(𝛾′) ⊂ ∇(𝛾). The space ∇(𝛾)
is homeomorphic to the product 𝑀 𝜋0 (𝛾) , where we now see 𝛾 as a graph and 𝜋0 (𝛾)
is its set of connected components. We can easily see that 𝑋 =

⋃
1≤𝑖< 𝑗≤𝑟 Δ𝑖 𝑗 is given

by the following colimit (i.e. union):

𝑋 = colim
𝛾∈P

∇(𝛾) = colim
𝛾∈P

𝑀 𝜋0 (𝛾) . (4.34)

All the maps in the diagram defining this colimit are cofibrations, as they are induced
by the diagonal map 𝑀 ↩→ 𝑀2, 𝑥 ↦→ (𝑥, 𝑥). It follows that this colimit is in fact
a homotopy colimit (which means, among other things, that maps 𝑀 𝜋0 (𝛾) → 𝑍

that commute up to homotopy define a map 𝑋 → 𝑍 , not necessarily unique up to
homotopy). It is a general fact that homotopy colimits of topological spaces are
modeled by limits of CDGAs. We thus deduce that:
Lemma 4.56 Let 𝑀 be a compact manifold with boundary, (𝐵, 𝐵𝜕) a model of
(𝑀, 𝜕𝑀), and 𝑋 ⊂ 𝑀𝑟 the fat diagonal. A rational model for 𝑋 is given by
lim𝛾∈Pop 𝐵⊗𝜋0 (𝛾) with the notations as above.

In order to apply the theorem of [CLS18], all that remains to do is find a model
for 𝜕𝑀𝑟 𝑋 = 𝑋 ∩ 𝜕𝑀𝑟 .
Lemma 4.57 We have:

𝑋 ∩ 𝜕𝑀𝑟 = colim
𝛾∈P

colim
∅(𝑆⊂𝜋0 (𝛾)

(𝜕𝑀)𝑆 × 𝑀 𝜋0 (𝛾)\𝑆 . (4.35)

Proof This follows from the fact that the boundary of 𝜕𝑀𝑟 is characterized as
𝑟-uples where at least one point is in the boundary. In the decomposition of 𝑋 of
Equation (4.34), if 𝑥 ∈ ∇(𝛾) is such that 𝑥𝑖 ∈ 𝜕𝑀, then 𝑥 𝑗 = 𝑥𝑖 ∈ 𝜕𝑀 for any 𝑗 in
the same component as 𝑖 in the graph 𝛾. �

Lemma 4.58 With the notations as above, the square on the left is a model for the
square on the right:

𝐵 𝐵⊗𝑖

𝐵/𝐾 𝐵⊗𝑖/𝐾 ⊗𝑖

𝜇
(𝑖)
𝐵

𝜇
(𝑖)
𝐵

is a model of
𝑀 𝑀 𝑖

𝜕𝑀 𝜕
(
𝑀 𝑖

)
𝛿

𝛿

. (4.36)

Proof The proof is by induction. It is obvious for 𝑖 = 1, because 𝐵𝜕 = 𝐵/𝐾 and we
have assumed that 𝜆 : 𝐵→ 𝐵𝜕 is a model of 𝜕𝑀 ↩→ 𝑀 . For the induction step from
𝑖 to 𝑖 + 1, we consider the following diagram:

𝑀 × 𝑀 𝑖 𝑀

𝜕 (𝑀 × 𝑀 𝑖) 𝑀 × 𝜕 (𝑀 𝑖)

(𝜕𝑀) × 𝑀 𝑖 (𝜕𝑀) × (𝜕 (𝑀 𝑖)) 𝜕𝑀

. (4.37)
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104 4 Configuration spaces of manifolds with boundary

The square in the bottom left is a pushout, i.e. a point belong to the boundary of
the product if and only if at least one of its factors belongs to the boundary. Since the
inclusion 𝜕𝑀 ↩→ 𝑀 is a cofibration, the square is actually a homotopy pushout. Let
us thus denote by 𝑃 the pullback:

𝑃 𝐵 ⊗ (𝐵⊗𝑖/𝐾 ⊗𝑖)

𝐵𝜕 ⊗ 𝐵⊗𝑖 𝐵𝜕 ⊗ (𝐵⊗𝑖/𝐾 ⊗𝑖)

y (4.38)

Since models of homotopy colimits (which include homotopy pushouts) are limits
(which include pullbacks), we find that a model of the diagram of Equation (4.37) is
given by:

𝐵 ⊗ 𝐵⊗𝑖 𝐵

𝑃 𝐵 ⊗ (𝐵⊗𝑖/𝐾 ⊗𝑖)

𝐵𝜕 ⊗ 𝐵⊗𝑖 𝐵𝜕 ⊗ (𝐵⊗𝑖/𝐾 ⊗𝑖) 𝐵𝜕

y

. (4.39)

Concretely, we have that:

𝑃 =
{
(𝑥, 𝑦) ∈ (𝐵𝜕 ⊗ 𝐵⊗𝑖) × (𝐵 ⊗ (𝐵⊗𝑖/𝐾 ⊗𝑖))

�� (id⊗ 𝜋𝑖) (𝑥) = (𝜆 ⊗ id) (𝑦)
}
, (4.40)

where 𝜋𝑖 : 𝐵⊗𝑖 → 𝐵⊗𝑖/𝐾 ⊗𝑖 is the quotient map. It is not hard to see that the
natural map 𝐵⊗(𝑖+1) → 𝑃 is surjective, with kernel 𝐾 ⊗(𝑖+1) . It follows that 𝑃 �
𝐵⊗(𝑖+1)/𝐾 ⊗(𝑖+1) and we obtain the result. �

Corollary 4.59 A model for the square of the Equation (4.32) is given by:

𝐵⊗𝑘 𝐵⊗𝑘/𝐾 ⊗𝑘

lim𝛾∈Pop 𝐵⊗𝜋0 (𝛾) lim𝛾∈Pop 𝐵⊗𝜋0 (𝛾)/𝐾 ⊗𝜋0 (𝛾)

𝛼𝑘

𝜉𝑘

𝛽𝑘

. (4.41)

Proof (Sketch of Theorem 4.53) Applying the main theorem of [CLS18], we find
that the cohomology (as graded vector space) of𝑊 \ 𝑋 = Conf𝑀 (𝑟) is calculated by
the homology of the cone of the induced map:

cone
(
(hoker 𝛽𝑟 )∨ [−𝑛𝑟]

𝜉𝑟−−→ (𝐾 ⊗𝑘 )∨ [−𝑛𝑟]
)
, (4.42)

where the homotopy kernel was defined in Definition 4.3. Using the duality between
𝐾 and 𝑃, the space (𝐾 ⊗𝑟 )∨ [−𝑛𝑟] is isomorphic to 𝑃⊗𝑟 , which is a model for
𝑀𝑘 . Moreover, a careful application of Poincaré–Lefschetz duality shows that
(hoker 𝛽𝑟 )∨ [−𝑛𝑟] is a model for

⋃
Δ𝑖 𝑗 . The cone thus has the homology of the

complement, which is Conf𝑀 (𝑟). �
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4.4 Perturbed Lambrechts–Stanley model 105

4.4.2 Perturbed model

Unfortunately, the Lambrechts–Stanley CDGA G𝑃 (𝑈) is generally not a model of
Conf𝑀 (𝑈). In this section, we explain how to fix this issue. The following example
gives an idea of why (although it does not satisfy our connectedness assumptions).

Example 4.60 Let 𝑀 = S1 × [0, 1] the cylinder, with boundary S1 × {0, 1}. The pair
(𝑀, 𝜕𝑀) admits a Poincaré–Lefschetz duality model with the following data:

• 𝐵𝜕𝑀 = 𝐻∗ (𝜕𝑀) is linearly generated by 1, 𝑡, 𝑑𝜑, 𝑡 𝑑𝜑, with 𝑡2 = 𝑡;
• 𝐵 = 〈1, 𝑡, 𝑑𝑡, 𝑑𝜑, 𝑡, 𝑑𝑡, 𝑑𝜑, 𝑑𝑡 ∧ 𝑑𝜑〉, so in particular 2𝑡 𝑑𝑡 = 𝑑𝑡.
• 𝑃 = 𝐻∗ (𝑀) = 〈1, 𝑑𝜑〉;
• 𝐾 = 𝐻∗ (𝑀, 𝜕𝑀) = 〈𝑑𝑡, 𝑑𝑡 ∧ 𝑑𝜑〉.

Then the symmetry relations imply that (𝑑𝜑 ⊗ 1)𝜔12 = (1𝜑⊗)𝜔12. However, this
relation is intuitively not correct. Indeed, 𝑀 is a plane from which we have removed
a point, so we have a Fadell–Neuwirth fibration:

Conf𝑀 (2) ConfR2 (3) R2 (4.43)

from which one deduces Conf𝑀 (2) ' ConfR2 (3). The class 𝑑𝜑 ⊗ 1 corresponds to
𝜔13 and 1 ⊗ 𝑑𝜑 corresponds to 𝜔23. The previous relation is therefore not the usual
Arnold relation: we have to add the term 𝑑𝜑 ⊗ 𝑑𝜑 to correct it.

Fortunately, there is a way to modify G𝑃 (𝑟) to overcome this problem. We
consider the quotient of mGraphs0

𝐴
(𝑟) by the dg-ideal generated by graphs containing

at least one internal vertex. More concretely, consider the section 𝜎 ∈ 𝐵 ⊗ 𝐵𝜕 (see
Definition 4.16), which is projected into an element 𝜎𝑃 ∈ 𝑃 ⊗ 𝐵𝜕. Let us write
𝜎𝑃 =

∑
𝑖 𝜎
′
𝑖
⊗ 𝜎′′

𝑖
in terms of elementary tensors.

Definition 4.61 The perturbed Lambrechts–Stanley model associated to the previous
data is:

G̃𝑃 (𝑈) B
(
𝑃⊗𝑈 ⊗ 𝑆(𝜔̃𝑖 𝑗 )𝑖, 𝑗∈𝑢/𝐼, 𝑑

)
(4.44)

where the ideal 𝐼 is generated by the relations 𝜔̃2
𝑖 𝑗
= 𝜔̃𝑖𝑖 = 0, and, for every 𝑇 ⊂ 𝑈 of

cardinal 2 or 3:∑︁
𝑣∈𝑇
±
(
𝜄𝑣 (𝜋(𝑏)) ·

∏
𝑣≠𝑣′∈𝑇

𝜔̃𝑣𝑣′
)
+

∑︁
𝑖1 ,...,𝑖𝑘

±𝜀𝜕
(
𝜌(𝑏)

∏
𝑣∈𝑇

𝜎′′𝑖𝑣
) ∏
𝑣∈𝑇

𝜄𝑣 (𝜎′𝑖𝑣 ). (4.45)

The last relations are simply the images of the differential in aGraphs𝐵 (𝑈) of
graphs with a single internal vertex. Let us now make these relations more explicit.
For #𝑇 = 2, this relation becomes, for 𝑏 ∈ 𝐵:

(𝑏 ⊗ 1)𝜔̃12 − (−1)𝑛 (1 ⊗ 𝑏)𝜔̃21 +
∑︁
𝑖, 𝑗

±𝜀𝜕 (𝜎′′𝑖 𝜎′′𝑗 )𝜎′𝑖 ⊗ 𝜎′𝑗 = 0 ∈ G̃𝑃 (2). (4.46)

In particular, for 𝑏 = 1, we see that 𝜔̃ is symmetric up to terms of weight 0, and
that similarly the symmetry relation holds up to terms of weight 0 (where by weight
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106 4 Configuration spaces of manifolds with boundary

we mean the degree of a monomial in 𝑆(𝜔̃𝑖 𝑗 )). For #𝑇 = 3 and 𝑏 = 1, we get a
perturbation of Arnold’s relation, i.e. the Arnold relation up to terms of weight ≤ 2.
For #𝑇 = 3 and a generic element 𝑏 ∈ 𝐵, we get a mix of the perturbed Arnold and
symmetry relations.

Lemma 4.62 There is an isomorphism of dg-modules G̃𝑃 (𝑈) � G𝑃 (𝑈). In particular,
the cohomologies 𝐻∗ (G̃𝑃 (𝑈)) and 𝐻∗ (Conf𝑀 (𝑈)) are isomorphic as graded vector
spaces.

Proof The standard basis of 𝐻∗ (ConfR𝑛 (𝑟)) is given by words of the type
𝜔𝑖1 𝑗1 . . . 𝜔𝑖𝑘 𝑗𝑘 , with 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ 𝑟 and 𝑖𝑙 < 𝑗𝑙 for all 𝑙 (see Lemma 2.86). By
choosing a basis of 𝑃, we thus get a basis of G𝑃 (𝑟). One checks without difficulty
that by replacing the 𝜔 by 𝜔̃ in that basis, we obtain a basis of G̃𝑃 (𝑟). Moreover, the
map G𝑃 (𝑟) → G̃𝑃 (𝑟) thus obtained clearly preserves the differential. �

Remark 4.63 In many cases, we have G𝑃 = G̃𝑃 . It is for example the case if𝑀 = 𝑁\D𝑛
where 𝑁 is a closed manifold. Indeed, in this case, 𝜎𝑃 = 1 ⊗ 𝑣 and 𝑣2 = 0 so all the
terms with a lower number of 𝜔𝑖 𝑗 vanish in the perturbed relations.

Proposition 4.64 The quotient map mGraphs0
𝐵
(𝑟) → G̃𝑃 (𝑟) is a quasi-isomorphism

of CDGA.

Proof The proof is almost the same as the proof of Proposition 3.112 in the case
without a boundary. Indeed, as soon as we filter by #𝐸 − #𝑉 , the perturbed relations
coincide with the usual relations. �

We thus get the following theorem immediately, thanks to Theorem 4.48.

Theorem 4.65 ([CILW18]) Let 𝑀 be a smooth compact simply connected manifold
of dimension at least 7. Suppose that (𝑀, 𝜕𝑀) admits a duality model of Poincaré–
Lefschetz 𝑃. Then G̃𝑃 (𝑟) is a real model of Conf𝑀 (𝑟).

Remark 4.66 In dimension ≤ 6, if the manifold and its boundary are both simply
connected, then both are formal. (Note however that the inclusion 𝜕𝑀 ⊂ 𝑀 may
not be formal.) We can then show in the same way that G̃𝐻 ∗ (𝑀 ) (𝑟) is a model of
Conf𝑀 (𝑟).

This is a preprint of the following work: Najib Idrissi, Real Homotopy of Configuration Spaces: Peccot Lecture, Collège de France, March & May 2020, 2022, Springer, 

reproduced with permission of Springer Nature Switzerland AG. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-04428-1  



Chapter 5
Configuration spaces and operads

Abstract In this final chapter, we present some of the connections that exist between
configuration spaces and operads. We will start with the motivation, which is the
computation of factorization homology, a kind of extended topological quantum field
theory. We will introduce the theory of operads and its historical background. We
will then study in more detail the relationship between configuration spaces and a
particular class of operads called the little disks operads. The results we have obtained
in the previous chapters are all compatible with certain operadic structures that exist
on fattened configuration spaces, as we will explain. In the final section, we will
show that this compatibility can be used to compute some instances of factorization
homology.

5.1 Motivation: factorization homology

The homotopy types of configuration spaces can be used to define homeomorphism
invariants of manifolds. Indeed, it is clear that if two manifolds are homeomorphic,
then their configuration spaces are also homeomorphic and therefore have the
same homotopy type. For a manifold 𝑀, one can therefore study the homotopy
invariants (homology, homotopy groups, etc) of Conf𝑀 (𝑟) to produce invariants that
are generally finer than homotopy invariants of 𝑀. These invariants are moreover
functorial with respect to manifold embeddings, as an embedding of manifolds
𝑀 ↩→ 𝑁 produces maps Conf𝑀 (𝑟) → Conf𝑁 (𝑟) that induce themselves morphisms
between homotopy invariants.

The objective of this section is to explain how to produce another kind of manifold
invariants from configuration spaces. This new invariant, called “factorization
homology” of the manifold, is motivated by physical considerations. More precisely,
its idea comes from topological quantum field theory.

Informally, the idea behind factorization homology is to add decorations to the
points in a configuration. One can for example think of the electric charge: in this
case, the decorations are numerical invariants, that represents the electric charge of

107
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108 5 Configuration spaces and operads

a particle. Calculating the factorization homology on 𝑀 with coefficients in some
space of decorations 𝐴 consists in averaging over all possible positions of the points,
with the rule that if points collide in a configuration, then their decorations (e.g. the
electrical charge) are added. If we only have numerical decorations for our points, then
we get invariants related to higher Hochschild homology [Pir00], which is in general
a coarse invariant. However, the space of decorations 𝐴 can be more complicated,
and in particular the operation used to merge decorations (when two particles collide)
can be non-commutative.

An important question is thus the structure of the coefficients: how to add the
decorations of points that meet each other? In dimension 1, there are only two ways
for a pair of points to meet (up to homotopy): from left to right or from right to left.
In higher dimension, though, things become much more complicated. Two given
points can meet in an infinite number of different ways, even up to homotopy. For
example, in dimension 2, all that matters (up to homotopy) is the angle with which
the points meet, so we get a whole circle worth of possibilities of collisions. More
generally, in dimension 𝑛 ∈ N, the possibilities of collisions take the shape of S𝑛−1.
All these ways of colliding are homotopic (because S𝑛−1 is connected for 𝑛 ≥ 2), but
there can be several essentially different homotopies between two ways of colliding.
For example with 𝑛 = 2, two points can meet from left to right, or from right to
left on the horizontal axis. These two ways of colliding are homotopic through two
different homotopies: we can rotate the configuration clockwise, or we can rotate it
counter-clockwise. In higher dimensions still, we get even more subtle behavior: in e.g.
dimension 3, all homotopies between two different ways of colliding are homotopic,
but the homotopies between the homotopies themselves can differ (summarized by
the fact that 𝜋2 (S2) ≠ 0).

The picture becomes even more complicated when more than two points collide
at once. The axiomatization of the relations that the different multiplications must
verify is encoded by the theory of operads. We will briefly introduce this theory
in Section 5.2. We will then see how to give a precise definition of factorization
homology using Fulton–MacPherson compactifications.

Factorization homology has properties reminiscent of the Eilenberg–Steenrod
axioms of usual homology, which explains the name. Let us denote by

∫
𝑀
𝐴 the

factorization homology of 𝑀 with coefficients in 𝐴. Factorization homology satisfies
the following axioms:

1. The homology of R𝑛 is simply the space of coefficients, i.e.
∫
R𝑛
𝐴 ' 𝐴. Indeed,

since R𝑛 is contractible, we can bring all the points of a configuration back to the
origin, adding their decorations as we go along. This mirrors the classical axiom
that 𝐻∗ (pt) = 𝑅 where 𝑅 is the ring of coefficients.

2. If 𝑀 = 𝑀 ′ t 𝑀 ′ is the disjoint union of two manifolds, then the homology
of 𝑀 is the tensor product of the homologies of 𝑀 ′ and 𝑀 ′′, i.e.

∫
𝑀 ′t𝑀 ′′ 𝐴 '∫

𝑀 ′
𝐴 ⊗

∫
𝑀 ′′

𝐴. This mirrors 𝐻∗ (𝑈 t𝑉) � 𝐻∗ (𝑈) ⊕ 𝐻∗ (𝑉) (and also explains
why factorization homology can be seen as a non-linear version of homology, as
the tensor product replaces direct sum).
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5.2 Introduction to operads 109

3. Finally, factorization homology satisfies an axiom of the Mayer–Vietoris kind. If
𝑀 = 𝑀 ′ ∪𝑁×R 𝑀 ′′ is obtained by gluing two manifolds with common boundary
𝑁 along a collar around their boundary, then one gets a formula that expresses∫
𝑀
𝐴 in terms of

∫
𝑀 ′
𝐴,

∫
𝑀 ′′

𝐴, and
∫
𝑁×R 𝐴. This essentially follows from the

formula which allows the calculation of the configuration spaces of a manifold
obtained by joining two manifolds along their boundary, see Equation (4.3).

In fact, thanks to a theorem of Francis [Fra13], factorization homology is (up to
homotopy) the unique functor that satisfies these axioms.

Historical remarks

Factorization homology has been studied by many authors, in different frameworks
and under different names. It was introduced under this name by Francis [Fra13]
and developed in particular by Ayala and Francis [AF15] and Ayala, Francis, and
Tanaka [AFT17]. It is notably inspired by the topological chiral homology of Lurie
[Lur09a; Lur09b], which is itself a homotopical analogue of the chiral homology of
Beilinson and Drinfeld [BD04] and influenced by the work of Segal [Seg73; Seg04].
It is also linked to the blob homology of Morrison and Walker [MW12]. The idea
of factorization homology is close to that of the decorated configuration spaces of
Salvatore [Sal01], who has also proved the link with the compactifications of Fulton–
MacPherson. Finally, factorization homology is strongly related to factorization
algebras, which are a kind of cosheaf version of factorization homology; see in
particular Costello and Gwilliam [CG17a; CG17b]. One may refer to Ginot [Gin15]
for a broad overview.

Remark 5.1 In Chapter 2, we mentioned another application of configuration spaces:
Goodwillie–Weiss embedding calculus (see Example 2.8). This calculus is in some
sense “adjoint” to factorization homology. While factorization homology is encoded
by a derived tensor product (see Definition 5.99 below), theorems of Boavida de
Brito and Weiss [BW18] and Turchin [Tur13] imply that the space of embeddings
Emb(𝑀, 𝑁) can be expressed as a derived mapping space.

5.2 Introduction to operads

In this section, we will briefly introduce the theory of operads. One may refer to Loday
and Vallette [LV12] and Fresse [Fre17a, Part I(a)] for more complete references.

An operad is an object that governs a category of “algebras” in a wide sense, e.g.
associative algebras, commutative algebras, or Lie algebras. If we work by analogy
with group theory, an operad is to its category of algebras what a group is to its
category of representations. Historically, categories of algebras have often been
defined by generators and relations. For example, an associative algebra is the data
of a vector space equipped with a binary product which must verify the relation
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110 5 Configuration spaces and operads

of associativity. The idea of the theory of operads is that, just like there is a group
that can be studied on its own when we are given a category of representations,
there is an operad that can be studied on its own when we are given a category of
algebras, without necessarily being concerned with a fixed presentation. This allows
the introduction of numerous notions whose interest in group theory is not to be
demonstrated: morphisms, sub-objects, quotients, extensions, etc. Just like for groups,
these notions inform us about the categories of algebras associated to the operads
that we study.

The theory of operads goes back a long way. An operad is a special case of PROP,
a notion introduced by Mac Lane [Mac65] in the 1960s, and they are also a special
case of the analyzers of Lazard [Laz55]. The notion of operad itself was initially
introduced in algebraic topology to study iterated loop spaces as the end of the
1960s by Boardman and Vogt [BV68; BV73] and May [May72]. The term “operad”
itself was introduced by May [May72] and is a contraction of the words operation
monad. The operads that appeared in [BV68; May72] are the little disks operads D𝑛
that we are going to study in Section 5.3.1. The operad of little intervals D1 (see
below) already appeared implicitly in the works of Stasheff [Sta61] in the form of
associahedra. After this initial introduction, and particularly since the mid-1990s,
interest in operads has grown considerably. This stems from the discovery made by
Ginzburg and Kapranov [GK94], following ideas of Kontsevich [Kon93], who have
shown that some phenomena of duality in algebra had an operadic interpretation
via Koszul duality. Since then, many applications of operads in several fields of
mathematics have been discovered.

5.2.1 Definition of operads

The algebraic structures encoded by operads are of a very specific type. They are
structures that can be described using operations with several inputs and exactly one
output, and the relations between these operations cannot involve repeated input
variables. Let us start by illustrating operads with a fundamental example.

Remark 5.2 What we are going to define are single-colored symmetric operads. There
are many other variants of the notion of operad, see e.g. [LV12, Section 13.14] for an
overview.

Remark 5.3 Most of what follows can be written within any symmetric monoidal
category (C, ⊗, I). Typical examples include sets, topological spaces, vector spaces,
etc. We will often write “pointwise” formulas, as if we were working in a concrete
category. These formulas can always be translated in terms of morphisms. For
example, 𝑥 ⊗ 𝑦 ⊗ 𝑧 ↦→ 𝑦 ⊗ 𝑓 (𝑥) ⊗ 𝑧 is obtained by composing the associators, the
braiding, and the morphism 𝑓 in a certain way. All ways of doing so are isomorphic
thanks to the coherence axioms of symmetric monoidal categories.

The prototype of an operad is the endomorphism operad End𝑋 of an object 𝑋 ∈ C.
This operad is given by a collection of operations, graded by the number of inputs. In
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5.2 Introduction to operads 111

more detail, we set:

End𝑋 = {End𝑋 (𝑘)}𝑘≥0 B {Hom(𝑋 ⊗𝑘 , 𝑋)}𝑘≥0. (5.1)

This collection is equipped with the following structure, which stems from composition
of morphisms and will form the template for defining operads.

• The collection has a unit id𝑋 ∈ End𝑋 (1).
• For each integer 𝑘 ≥ 0, the symmetric group Σ𝑘 acts on End𝑋 (𝑘) by permuting

the inputs. If 𝑓 ∈ End𝑋 (𝑘) and 𝜎 ∈ Σ𝑘 , then we can define 𝑓 · 𝜎 ∈ End𝑋 (𝑘) by:

( 𝑓 · 𝜎) (𝑥1, . . . , 𝑥𝑘 ) B 𝑓 (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑘) ). (5.2)

• For all integers 0 ≤ 𝑖 ≤ 𝑘 and 𝑙 ≥ 0, one can compose the operations using the
map ◦𝑖 : End𝑋 (𝑘) ⊗ End𝑋 (𝑙) → End𝑋 (𝑘 + 𝑙 − 1) defined, for 𝑓 ∈ End𝑋 (𝑘) and
𝑔 ∈ End𝑋 (𝑙), by:

( 𝑓 ◦𝑖 𝑔) (𝑥1, . . . , 𝑥𝑘+𝑙−1) B 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑔(𝑥𝑖 , . . . , 𝑥𝑖+𝑙−1), 𝑥𝑖+𝑙 , . . . , 𝑥𝑘+𝑙−1).
(5.3)

Note that it is often useful to represent this operation graphically, using rooted
trees as in the following picture:

𝑓

1 . . . 𝑘

◦𝑖 𝑔

1 . . . 𝑙

= 𝑓

1 . . . 𝑔

𝑖 . . . 𝑖 + 𝑙 − 1

. . . 𝑘

(5.4)

These operations are part of the structure of an operad and verify a certain
number of relations, see Definition 5.5. These relations all arise from the associativity,
unitality, and equivariance of the composition of functions. They imply that any
rooted tree whose vertices are decorated by elements of End𝑋 (a vertex with 𝑘

children being decorated by an element End𝑋 (𝑘)) and whose leaves are decorated by
a permutation of integers defines a new element of End𝑋 . For example, the following
tree corresponds to the operation (𝑥1, . . . , 𝑥5) ↦→ 𝑓 (𝑥2, 𝑔(𝑥1, 𝑥3, 𝑥4), 𝑥5):

𝑓

2 𝑔

1 3 4

id𝑋

5

(5.5)

Based on these preliminaries, let us now define operads using the endomorphism
operad as a template.
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112 5 Configuration spaces and operads

Definition 5.4 A symmetric sequence is an N-graded collection of objects P =

{P(𝑘)}𝑘≥0 equipped, for all 𝑘 ≥ 0, with an action of the symmetric group Σ𝑘 on
P(𝑘).
Definition 5.5 An operad is a symmetric sequence P = {P(𝑘)}𝑘≥0 equipped with:

• a unit 𝜂 : I → P(𝑘), where I is the monoidal unit (whose image in pointwise
notation will be denoted by idP = 𝜂(1));

• a set of composition operations, for all 𝑘 ≥ 0 and 1 ≤ 𝑖 ≤ 𝑘:

◦𝑖 : P(𝑘) ⊗ P(𝑙) → P(𝑘 + 𝑙 − 1). (5.6)

These operations should satisfy the following properties:

(Equivariance) For all permutations 𝜎 ∈ Σ𝑘 , 𝜏 ∈ Σ𝑙 ,

(𝑝 · 𝜎) ◦𝜎 (𝑘) (𝑞 · 𝜏) = (𝑝 ◦𝑘 𝑞) · (𝜎 ◦𝜎 (𝑘) 𝜏), (5.7)

where 𝜎 ◦𝜎 (𝑘) 𝜏 is the partial composition of the permutations 𝜎 and 𝜏 (see
Example 5.7 for a concrete definition).

(Unitality) For any 𝑝 ∈ P(𝑘) and any 1 ≤ 𝑖 ≤ 𝑘 ,

𝑝 ◦𝑖 idP = 𝑝 = idP ◦1 𝑝. (5.8)

(Associativity) for 𝑝 ∈ P(𝑘), 𝑞 ∈ P(𝑙), 𝑟 ∈ P(𝑚):

(𝑝 ◦𝑖 𝑞) ◦𝑖+ 𝑗−1 𝑟 = 𝑝 ◦𝑖 (𝑞 ◦ 𝑗 𝑟), for 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑙; ; (5.9)
(𝑝 ◦𝑖 𝑞) ◦ 𝑗+𝑙−1 𝑟 = (𝑝 ◦ 𝑗 𝑟) ◦𝑖 𝑞, pour 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. (5.10)

A morphism of operads 𝑓 : P → Q is defined as a collection of Σ-equivariant
morphism { 𝑓𝑘 : P(𝑘) → Q(𝑘)}𝑘≥0 that commute with the structure maps, i.e.
𝑓1 (idP) = idQ and 𝑓𝑘+𝑙−1 (𝑝 ◦𝑖 𝑝′) = 𝑓𝑘 (𝑝) ◦𝑖 𝑓𝑙 (𝑝′).

The following example is obvious, as the definition of operads was custom-tailored
for the endomorphism operad:

Example 5.6 The endomorphism operad End𝑋 of an object 𝑋 is an operad.

Let us now describe classical examples of operads.

Example 5.7 We define an operad in sets denoted Ass by setting Ass(𝑘) = Σ𝑘 for all
𝑘 ≥ 0. The action of the symmetric group is obvious. The unit is the trivial permutation
(1) ∈ Σ1. The composition is defined as follows. For 𝜎 = (𝜎1, . . . , 𝜎𝑘 ) ∈ Σ𝑘 ,
𝜏 = (𝜏1, . . . , 𝜏𝑙) ∈ Σ𝑙 and 1 ≤ 𝑖 ≤ 𝑘 , we set:

𝜎 ◦𝜎 (𝑖) 𝜏 B (𝜎′(1), . . . , 𝜎′(𝑖 − 1), 𝜏′(1), . . . , 𝜏′(𝑙), 𝜎′(𝑖), . . . , 𝜎′(𝑘)), (5.11)

where:

𝜎′( 𝑗) =
{
𝜎( 𝑗), if 𝜎( 𝑗) < 𝜎(𝑖),
𝜎( 𝑗) + 𝑘 − 1, otherwise;

𝜏′( 𝑗) = 𝜏( 𝑗) + 𝑘 − 1. (5.12)
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5.2 Introduction to operads 113

Example 5.8 We can define an operad Com by setting Com(𝑘) to be a singleton
for all 𝑘 ≥ 0. The action of the symmetric group is trivial. The unit 𝜂 = id is
the unique element of Com(1). Finally, the composition is the unique bijection
Com(𝑘) × Com(𝑙) � Com(𝑘 + 𝑙 − 1).
Remark 5.9 Definition 5.5 is the definition of an operad in terms of partial com-
positions. Operads can also be defined using total compositions (with adapted
axioms):

𝛾 : P(𝑘) ⊗ P(𝑟1) ⊗ . . . . . . P(𝑟𝑘 ) → P(𝑟1 + · · · + 𝑟𝑘 ). (5.13)

Given the partial composition operations, total compositions can be defined by:

𝛾(𝑝; 𝑞1, . . . , 𝑞𝑘 ) B (. . . ((𝑝 ◦𝑘 𝑞𝑘 ) ◦𝑘−1 𝑞𝑘−1) · · · ◦1 𝑞1). (5.14)

Conversely, if one knows the total compositions, then one can find the partial
compositions by considering:

𝑝 ◦𝑖 𝑞 B 𝛾(𝑝; idP, . . . , idP, 𝑞︸︷︷︸
position 𝑖

, idP, . . . , idP). (5.15)

Remark 5.10 Instead of using symmetric sequences, one can use symmetric collec-
tions, i.e. the contravariant functors Bijop → C from the opposite of the category
of finite sets and bijections to C. Concretely, these are collections P = {P(𝑈)}𝑈finit
indexed by the finished sets, provided, for any bijection 𝑓 : 𝑈 → 𝑉 , with a morphism
𝑓 ∗ : P(𝑉) → P(𝑈) with (𝑔 ◦ 𝑓 )∗ = 𝑓 ∗ ◦ 𝑔∗. The correspondence with the symmetric
sequences is very simple: one can simply put P(𝑛) = P({1, . . . , 𝑛}), and letting
Σ𝑛 act through the identification Σ𝑛 = HomBij ({1, . . . , 𝑛}, {1, . . . , 𝑛}). An operadic
structure on a symmetric collection P can then be described as a unit idP ∈ P({∗})
and, for any pair 𝑇 ⊂ 𝑈 of finite sets, composition operations:

◦𝑇 : P(𝑈/𝑇) ⊗ P(𝑇) → P(𝑈), (5.16)

where𝑈/𝑇 = 𝑈 \ 𝑇 t {∗} is the quotient (see Definition 3.32).

Remark 5.11 There is yet another, more compact definition of operads. Let P and Q
be two symmetric collections. Their composition product is defined as the symmetric
collection P ◦ Q given by:

(P ◦Q) (𝑈) B
⊕
𝑟 ≥0

P({1, . . . , 𝑟}) ⊗Σ𝑟
( ⊕
𝑊1t···t𝑊𝑟=𝑈

Q(𝑊1) ⊗ · · · ⊗Q(𝑊𝑟 )
)
, (5.17)

where − ⊗Σ𝑟 − denotes the coinvariants, i.e. the quotient of the tensor product by the
ideal generated by the relations 𝑥 · 𝜎 ⊗ 𝑦 = 𝑥 ⊗ 𝜎 · 𝑦 for 𝜎 ∈ Σ𝑟 . The unit of this
operation is the symmetric sequence I given by I(1) = I (the unit of the monoidal
product ⊗) and I(𝑘) = 0 for 𝑘 ≠ 1. Then an operad is a monoid with respect to this
monoidal structure. In other words, an operad is a symmetric collection P equipped
with a product 𝛾 : P◦P→ P and a unit 𝜂 : I→ P verifying conditions of associativity
and unitality.
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114 5 Configuration spaces and operads

5.2.2 Algebras over an operad

As in group theory, a central notion in operad theory is that of representations. These
representations are called “algebras” in the context of operads, for a reason that will
quickly become clear from the examples. Let us now define them.

Definition 5.12 Let P be an operad. An algebra over P (or P-algebra) is an object 𝐴
equipped with a morphism of operads P→ End𝐴.

If we unpack the definition, we see that an algebra on P is an object 𝐴 equipped
with morphisms, for all 𝑘 ≥ 0:

𝛾𝐴 : P(𝑘) ⊗ 𝐴⊗𝑘 → 𝐴 (5.18)

which are equivariant, unitary and associative. For 𝑝 ∈ P(𝑘) and 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴, let
us write down:

𝑝(𝑎1, . . . , 𝑎𝑘 ) B 𝛾(𝑝 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑘 ). (5.19)

Then the axioms state that (𝑝·𝜎) (𝑎1, . . . , 𝑎𝑘 ) = 𝑝(𝑎𝜎 (1) , . . . , 𝑎𝜎 (𝑘) ), that idP (𝑎) = 𝑎,
and finally that:

(𝑝 ◦𝑖 𝑞) (𝑎1, . . . , 𝑎𝑘+𝑙−1) = 𝑝(𝑎1, . . . , 𝑎𝑖−1, 𝑞(𝑎𝑖 , . . . , 𝑎𝑖+𝑙−1), 𝑎𝑖+𝑙 , . . . , 𝑎𝑘+𝑙−1).
(5.20)

These axioms are such that if we are given a tree as in Equation (5.5) where the leaves
are decorated with elements of 𝐴, then we can uniquely evaluate the tree and obtain a
new element of 𝐴.

Definition 5.13 Let P be an operad and 𝐴, 𝐵 two algebras on P. A morphism of
algebras over P is a map 𝑓 : 𝐴→ 𝐵 such that for any 𝑝 ∈ P(𝑘) and 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴:

𝑓 (𝑝(𝑎1, . . . , 𝑎𝑘 )) = 𝑝( 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑘 )). (5.21)

Example 5.14 Let us now describe algebras over the operad Ass from Example 5.7. If
𝐴 is such an algebra, then for any𝜎 ∈ Σ𝑘 we have to define a map𝜎 : 𝐴⊗𝑘 → 𝐴. Given
the equivariance relation, one obtains that 𝜎(𝑎1, . . . , 𝑎𝑘 ) = 1𝑘 (𝑎𝜎 (1) , . . . , 𝑎𝜎 (𝑘) )
where 1𝑘 ∈ Σ𝑘 is the unit of the group. From the unitality assumption, we must
have 11 (𝑎) = 𝑎. Moreover, the operad structure is given by 1𝑘 ◦𝑖 1𝑙 = 1𝑘+𝑙−1 for any
𝑖 ∈ {1, . . . , 𝑘}. Applying the associativity relation several times, we thus find that for
any 𝑘 ≥ 2,

1𝑘 (𝑎1, . . . , 𝑎𝑘 ) = 12 (𝑎1, 12 (𝑎2, . . . , 12 (𝑎𝑘−1, 𝑎𝑘 ))), (5.22)

Moreover, if we choose any way of parenthesizing the variables 𝑎1, . . . , 𝑎𝑘 with the
binary product 12, then we obtain the same element 1𝑘 (𝑎1, . . . , 𝑎𝑘 ). The product 12
thus defines an associative product on 𝐴. The elements 1𝑘 are simply given by the
iterated product. Finally, from the relation 12 ◦1 10 = 12 ◦2 10 = 11 = idAss, we find
that the image of the element 10 in 𝐴 defines a unit for this associative product. In
summary, the the data of an algebra over Ass is equivalent to the data of a unital
associative algebra (or monoid depending on the category).
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5.2 Introduction to operads 115

Example 5.15 We can give a similar description of the operad Com. The only
difference is that the associative product is invariant under permutations. Therefore,
an algebra on the operad Com is a unital commutative algebra (or commutative
monoid). The single element of Com(𝑘) acts on algebras by multiplying 𝑘 elements
in any order.

Let us now get back to the general theory. As with groups, it may be useful to
define an operad using a presentation by generators and relations. Informally, such a
presentation is the data of: generators in each arity 𝑘 ≥ 0; an action of the symmetric
group Σ𝑘 on the operations of arity 𝑘; and a certain number of relations between
the operadic compounds of the generators (formally, an ideal in the free operad on
generators). It is often more convenient to describe these presentations by describing
the category of associated algebras.

Example 5.16 The operad Lie is an operad in the category of vector spaces which is
generated by a binary operation 𝜆 that is antisymmetric (𝜆 · (12) = −𝜆) and verifies
the Jacobi relation (𝜆 ◦1 𝜆 + (𝜆 ◦1 𝜆) · (123) + (𝜆 ◦1 𝜆) · (132) = 0). An algebra on
this operad is precisely a Lie algebra (see Definition 2.74).

Example 5.17 The operad Com has a presentation with a single binary generator
𝜇 ∈ Com(2) which is symmetric (𝜇 · (12) = 𝜇) and associative (𝜇 ◦1 𝜇 = 𝜇 ◦2 𝜇).

Example 5.18 The operad Ass has a presentation with two binary generators 𝜇, 𝜇̄ ∈
Ass(2) which are exchanged by the action of the symmetric group (𝜇 · (12) = 𝜇̄) and
such that 𝜇 is associative (𝜇 ◦1 𝜇 = 𝜇 ◦2 𝜇).

Definition 5.19 Let P be an operad and 𝑋 an object. The free P-algebra on 𝑋 is the
object given by:

P(𝑋) B
⊕
𝑟 ≥0

P(𝑟) ⊗Σ𝑟 𝑋 ⊗𝑟 . (5.23)

The algebra structure on P of P(𝑋) is induced by the operadic structure of 𝑋 .

The terminology is justified by the following property:

Proposition 5.20 Let P be an operad, 𝑋 an object, and 𝐴 an algebra. Then for any
map 𝑋 → 𝐴 in the underlying category 𝑓 : 𝑋 → 𝐴, there exists a unique morphism
of P-algebras P(𝑋) → 𝐴 which coincides with 𝑓 when restricted on generators.

Example 5.21 Let 𝑉 be a vector space. Then we have the following identifications:

• Ass(𝑉) = 𝑇 (𝑉) is free associative algebra on 𝑉 , also called the tensor algebra.
• Com(𝑉) = 𝑆(𝑉) is the free commutative algebra on 𝑉 , also called the symmetric

algebra;
• Lie(𝑉) is the free Lie algebra on 𝑉 , generated by Lie words on 𝑉 .

Remark 5.22 Not all algebraic structures are encoded by operads. For example, there
is no operad whose algebras are groups, and no operad whose algebras are fields.
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116 5 Configuration spaces and operads

The problem comes from the axiom 𝑥 · 𝑥−1 = 1: the variable 𝑥 is repeated. It is not
possible to represent such a relation with the structure of an operad.

One could wonder if this is an artefact of the standard definition and if it could be
possible to find an operad P such that the category of P-algebras are groups or fields.
But this is not the case. For fields, note there exists free P-algebras for any operad P
according to Definition 5.19. But there can be no free fields. Indeed, suppose that 𝐹
were the free field on one variable 𝑥. Then there should exist a unique morphism of
fields 𝑓 : 𝐹 → Q such that 𝑓 (𝑥) = 1, so 𝑥 ≠ 0 and there should also exist a unique
morphism 𝑔 : 𝐹 → Q such that 𝑔(𝑥) = 0. This is absurd, as then 0 = 𝑔(𝑥𝑥−1) = 1.
For groups, more elaborate arguments are needed, see e.g. [Lin13].

5.2.3 Modules over operads

Let us now introduce the notion of modules over operads. Modules will play an
important role in the study of configuration spaces. This concept generalizes the
concept of algebra over an operad, in two ways: the action can be on the right (instead
of always on the left for an algebra) and the elements of a module can themselves
have several “inputs”. Algebras are, in fact, special cases of (left) modules where
all the operations have zero inputs. These modules can be used to describe functors
between categories of algebras on operads (see Fresse [Fre09] and Proposition 5.37
below).

We first deal with left modules.

Definition 5.23 A left module over an operad P is a symmetric sequence M =

{M(𝑘)}𝑘≥0 with structural morphisms, for all 𝑘, 𝑟1, . . . , 𝑟𝑘 ≥ 0:

P(𝑘) ⊗ M(𝑟1) ⊗ . . .M(𝑟𝑘 ) → M(𝑟1 + · · · + 𝑟𝑘 ). (5.24)

These structural morphisms must verify axioms of equivariance, unity and associativ-
ity similar to those of operads.

One can interpret this definition in terms of trees, just like operads: if one decorate
the vertices of a tree by elements of P and the topmost vertices (i.e. those that touch
leaves) by elements of M, then one can uniquely evaluate the tree and get back an
element of M. Let us now give several examples of left modules.

Example 5.24 Let P be an operad and 𝐴 an algebra on P. One can define a left module
M𝐴 on P by putting M𝐴(0) = 𝐴 and M𝐴(𝑟) = ∅ for 𝑟 ≥ 0. The structural morphisms:

P(𝑘) ⊗ M𝐴(0) ⊗ . . .M𝐴(0) → M𝐴(0) (5.25)

are simply the action of the operad P on its algebra 𝐴. In fact, all left modules
concentrated in arity 0 are obtained as such. Moreover, the data of a left module
is equivalent to the data of an algebra in the category of symmetric collections,
there symmetric collections are endowed with the monoidal product (M ⊗ M′) (𝑈) =
M(𝑈) ⊗ M′(𝑈).
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5.2 Introduction to operads 117

Example 5.25 Let 𝑋 and 𝑌 be any two objects. One can define a left End𝑌 -module
by End𝑋,𝑌 (𝑘) = Hom(𝑋 ⊗𝑟 , 𝑌 ). The structural morphisms:

Hom(𝑌 ⊗𝑘 , 𝑌 ) × Hom(𝑋 ⊗𝑟1 , 𝑌 ) × · · · × Hom(𝑋 ⊗𝑟𝑘 , 𝑌 ) → Hom(𝑋 ⊗(𝑘1+···+𝑘𝑟 ) , 𝑌 )
(5.26)

are given by composition of morphisms.

Example 5.26 If 𝑓 : P→ Q is an operadic morphism, then Q is a P-left module. The
structural morphisms:

P(𝑘) ⊗ Q(𝑟1) ⊗ . . .Q(𝑟𝑘 ) → Q(𝑟1 + · · · + 𝑟𝑘 ) (5.27)

are obtained by applying the morphism 𝑓 to the factor P(𝑘) and then using the
operadic structure of Q.

Example 5.27 A left module over the unit operad I is simply a symmetric sequence.

The definition of a right module over an operad is similar, and we have dual kinds
of examples.

Definition 5.28 A right module over an operad P is a symmetric sequence M =

{M(𝑘)}𝑘≥0 provided with of structural morphisms, for all 𝑘, 𝑟1, . . . , 𝑟𝑘 ≥ 0:

M(𝑘) ⊗ P(𝑟1) ⊗ . . . P(𝑟𝑘 ) → M(𝑟1 + · · · + 𝑟𝑘 ). (5.28)

This structure must verify axioms of equivariance, unity and associativity similar to
those of operads.

Example 5.29 Let 𝑋 and 𝑌 be any two objects. Then End𝑋,𝑌 (see Example 5.25) is a
right End𝑋 -module.

Example 5.30 If 𝑓 : P→ Q is an operadic morphism, then Q is a P-right module.

Example 5.31 A right module over the unit operad I is simply a symmetric sequence.

Remark 5.32 Note that right modules have another definition in terms of partial
compositions. Thanks to the identity of P, the notion of right module can be defined
in an equivalent way using partial compositions (compare with Remark 5.9):

◦𝑖 : M(𝑘) ⊗ P(𝑙) → M(𝑘 + 𝑙 − 1), for 1 ≤ 𝑖 ≤ 𝑘, 𝑙 ≥ 0. (5.29)

On the other hand, left modules cannot be defined using partial compositions, because
that would require a unit in the left module rather than in the operad. The notion defined
using partial compositions for the left modules is that of “infinitesimal” [MV09,
Section 3.1], “weak” [Tur10, Definition 4.1] or “abelian” [Fre17b, Section 2.1.1]
modules.

Remark 5.33 Consider the composition product defined in Remark 5.11. If we see
an operad P as a monoid for this composition product, then a left module over the
operad P is a left module on this monoid (in the classical sense), and a right module
is a right module on this monoid.
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118 5 Configuration spaces and operads

One can also define bimodules over operads, which can be used to define functors
between categories of algebras:

Definition 5.34 Let P and Q be two operads. A (P,Q)-bimodule is a symmetric
collection M endowed with a left P-module structure and a right Q-module structure
that commute.

The prototypical example of bimodule is the following:

Example 5.35 Let 𝑋 and 𝑌 be any two objects. Then End𝑋,𝑌 (see Example 5.25) is
an (End𝑌 ,End𝑋 )-bimodule.

Example 5.36 Let 𝑓 : P→ Q be a morphism of operads. Then 𝑓 induces a (P,P)-
bimodule structure on Q.

Of course, bimodules can be more complicated, as Remark 5.58 illustrates. One
of the most interesting uses of bimodules is that they can be used to define functors
between categories of algebras. We refer to Fresse [Fre09] for an extensive treatment
of this point of view. We will just need the following proposition:

Proposition 5.37 Let P and Q be two operads, and M be a (P,Q)-bimodule. There
is an induced functor M ◦Q − from the category of Q-algebras to the category of
P-algebras, defined by:

M ◦Q 𝐴 B
⊕
𝑟 ≥0

M(𝑟) ⊗ 𝐴⊗𝑟/∼. (5.30)

The equivalence relation is generated by the following relation, where 𝑚 ∈ M(𝑟1 +
· · · + 𝑟𝑘 ), 𝑞𝑖 ∈ Q(𝑟𝑖), and 𝑎𝑖, 𝑗 ∈ 𝐴 (see Figure 5.1):

𝑚(𝑞1, . . . , 𝑞𝑘 ) ⊗
( 𝑘⊗
𝑖=1

𝑟𝑖⊗
𝑗=1

𝑎𝑖, 𝑗

)
∼ 𝑚 ⊗

( 𝑘⊗
𝑖=1

𝑞𝑖 (𝑎𝑖,1, . . . , 𝑎𝑖,𝑟𝑖 )
)
. (5.31)

The P-algebra structure on M ◦Q 𝐴 is induced by the left P-action on M.

Fig. 5.1 The relations in the
composition product M ◦Q 𝐴:
any tree such as this one, where
𝑚 ∈ 𝑀 (𝑘) , 𝑞𝑖 ∈ Q(𝑟𝑖) , and
𝑎𝑖, 𝑗 ∈ 𝐴, corresponds to a
unique element obtained by
letting the 𝑞𝑖’s acting either on
𝑚 or on the 𝑎𝑖, 𝑗 ’s.

𝑚

𝑞1

𝑎1,1 . . . 𝑎1,𝑟1

. . . 𝑞𝑘

𝑎𝑘,1 . . . 𝑎𝑘,𝑟𝑘

Remark 5.38 This definition extends easily to the case where 𝐴 has more than one
input, i.e. is itself a symmetric sequence or a module. Given a (P,Q)-bimodule M
and a (Q,R)-bimodule N, we obtain a (P,R)-bimodule M ◦Q N in the obvious way.
This includes the case where one of the operads is the unit operad I (in which case we
can simply forget about the corresponding action, which is unique).
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5.3 Configuration spaces and operads 119

5.3 Configuration spaces and operads

5.3.1 Little disks operads

The operads of the little disks are a family of operads that play a central role in the
theory of operads. They appeared in the first application of operads, the recognition
principle (see below). Since then, they have proved useful in many other applications.
They also have a very strong connection with configuration spaces, as we will explain
later in this section.

Definition 5.39 For each dimension 𝑛, we define the little 𝑛-disks operad, D𝑛, as
follows. An element 𝑐 = (𝑐1, . . . , 𝑐𝑘 ) ∈ D𝑛 (𝑘) is a configuration of 𝑘 small 𝑛-disks,
with disjoint interiors, embedded in the unit 𝑛-diskD𝑛. Each disk of this configuration
is the image of the composite of a translation and a rescaling 𝑐𝑖 : D𝑛 ↩→ D𝑛. The
space of all these embedding is equipped with the compact-open topology. The
action of the symmetric group reorders the disks of a configuration, and the operadic
composition is given by the composition of the embeddings, as in Figure 5.2.

1

2
3

◦2

1

2 =

1

4

2
3

Fig. 5.2 Composition in the operad of little disks.

Remark 5.40 An operad weakly equivalent to D𝑛 can be defined using parallelepipeds
instead of disks. We thus obtain an operad called the small 𝑛-cubes operad. More
generally, any operad weakly equivalent to D𝑛 is called an 𝐸𝑛-operad. There are many
such operads, and we will present one in Section 5.3.3.

As mentioned earlier, the first application of these operads was the recognition
principle of iterated loop spaces, as we now explain.

Definition 5.41 Let 𝑋 3 ∗ be a pointed topological space. Its 𝑛th iterated loop space
of 𝑋 is the space:

Ω𝑛𝑋 B
{
𝛾 : D𝑛 → 𝑋

�� 𝛾(𝜕D𝑛) = ∗}. (5.32)

Proposition 5.42 The space Ω𝑛𝑋 is an algebra over the operad D𝑛.

Proof This is almost immediate by construction. Consider a configuration 𝑐 =

(𝑐1, . . . , 𝑐𝑘 ) ∈ D𝑛 (𝑘) and 𝑛-loops 𝛾1, . . . , 𝛾𝑘 ∈ Ω𝑛𝑋 . We can define 𝑐(𝛾1, . . . , 𝛾𝑘 ) ∈
Ω𝑛𝑋 by the following formula:
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120 5 Configuration spaces and operads

𝑐(𝛾1, . . . , 𝛾𝑘 ) : D𝑛 → 𝑋

𝑥 ↦→
{
𝛾𝑖 (𝑦), if 𝑥 = 𝑐𝑖 (𝑦) ;
∗, otherwise.

(5.33)

It is then an easy exercise to check that the axioms of an algebra over D𝑛 are satisfied.�

The recognition principle says that the converse is partially true. It allows one to
recognize when a space is homotopy equivalent to an iterated loop space, simply
by looking at its structure. Before being able to state the theorem, we need a small
preliminary.

Lemma 5.43 Let 𝑌 be an algebra over D𝑛. The set 𝜋0𝑌 naturally forms a monoid,
which is abelian if 𝑛 ≥ 2.

Proof Choose any base point 𝑐 ∈ D𝑛 (2), for example this one (for 𝑛 = 2):

1 2 (5.34)

Using the D𝑛-algebra structure on 𝑌 , we get a map:

𝑌 × 𝑌 𝑐×1×1
↩−−−−→ D𝑛 (2) × 𝑌 × 𝑌

𝛾𝑌−−→ 𝑌 . (5.35)

This map induces a product 𝜇 : 𝜋0𝑌 × 𝜋0𝑌 → 𝜋0𝑌 . We need to check that it is
associative and unital. Using the compatibility of the D𝑛-algebra structure on 𝑌 with
the operad structure of D𝑛, this amounts to checking two conditions.

1. For associativity, we need to check that 𝑐 ◦1 𝑐 and 𝑐 ◦2 𝑐 are in the same path
component. This is clear:

𝑐 ◦1 𝑐 = 1 2 3 , 𝑐 ◦2 𝑐 = 1 2 3 (5.36)
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5.3 Configuration spaces and operads 121

2. For unitality, we need to check that 𝑐 ◦1∅ ∈ D𝑛 (1) and 𝑐 ◦2∅ ∈ D𝑛 (1) are both in
the path component of the identity, where ∅ ∈ D𝑛 (0) is the empty configuration.
This is also obvious, as D𝑛 (1) is contractible. �

Definition 5.44 A D𝑛-algebra 𝑌 is called group-like if the natural monoid structure
on 𝜋0𝑌 is actually a group structure.

Remark 5.45 Any path-connected D𝑛-algebra is obviously group-like.

Theorem 5.46 (Recognition principle, May [May72] and Boardman and Vogt
[BV73]) If 𝑌 is an algebra over D𝑛 which is group-like, then 𝑌 has the homotopy type
of an 𝑛-fold loop space.

Since this first application, little disks operads have had many other uses. Let
us mention the Deligne conjecture [KS00; MS02], which says that the Hochschild
cochains 𝐶∗ (𝐴; 𝐴) of an associative algebra have an action of D2; the formality
theorem of Hochschild cochains and its applications to quantization of Poisson
manifolds [Kon99; Tam98; Kon03]; Goodwillie–Weiss manifold calculus and the
calculus of embedding spaces and long knots [Sin06; LTV10; AT14; DH12; BW13;
FTW17; FTW20]; factorization homology [BD04; Lur09b; Lur17; AF15; CG17a]
(see Section 5.1).

We have already seen another example of algebra on the operad of little disks in
Section 4.1, namely, the configuration spaces on a cylinder.

Proposition 5.47 Let 𝑋 be a topological space. The collection Conf𝑋×R forms an
algebra on the operad D1 in the category of symmetric collections (or equivalent, a
left D1-module).

Proof Let𝑈 be a finite set and 𝐼 ∈ D1 (𝑈) an element of the operad of small intervals
(1-disks). This element is the data of affine embeddings 𝐼𝑢 : [0, 1] ↩→ [0, 1] indexed
by the elements of𝑈, with pairwise disjoint interiors.

For each 𝑢 ∈ 𝑈, consider a finite set 𝑉𝑢 and a configuration 𝑐𝑢 ∈ Conf𝑋×R (𝑉𝑢).
This configuration is the data, for each 𝑣 ∈ 𝑉𝑢 , of a point 𝑐𝑢𝑣 = (𝑥𝑢𝑣 , 𝑡𝑢𝑣 ) ∈ 𝑋 × R,
that we suppose pairwise distinct. Let 𝑉 =

⊔
𝑢∈𝑈 𝑉𝑢 . We can then define a new

configuration 𝐼 ({𝑐𝑢}𝑢∈𝑈 ) ∈ Conf𝑋×R (𝑉) in the following way. The point 𝐼 ({𝑐𝑢})𝑣
of 𝑋 × R indexed by 𝑣 ∈ 𝑉𝑢 ⊂ 𝑉 in this configuration is given by (𝑥𝑢𝑣 , 𝐼𝑢 (𝑡𝑢𝑣 )).
Visually, this operation is given by Figure 4.2. In this picture, we would have 𝑋 = S1,
𝑈 = {1, 2}, 𝐼1 = [0, 1/2], 𝐼2 = [1/2, 1],𝑉1 = {𝑢1, 𝑢1},𝑉2 = {𝑣1, 𝑣2, 𝑣3}. The axioms
of an algebra on the operad D1 (in the category of symmetric collections) are easily
verified. �

The following proposition then justifies the terminology “monoid up to homotopy”
that we used in Section 4.1:
Proposition 5.48 The operad D1 is weakly equivalent to the operad Ass of Exam-
ple 5.7 (seen as a topological operad with discrete components).
Proof Each connected component of D1 (𝑟) is easily seen to be contractible. The
quotient map D1 → Ass which sends a configuration of intervals to the order of the
intervals’ indices from left to right is a homotopy equivalence on each component.�
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122 5 Configuration spaces and operads

5.3.2 Relationship with configuration spaces

The little disks operads are linked to the configuration spaces in the following way.

Lemma 5.49 There is a homotopy equivalence 𝜋 : D𝑛 (𝑟) → ConfD̊𝑛 (𝑟).

Proof The map is defined by 𝜋 : 𝑐 ↦→ (𝑐1 (0), . . . , 𝑐𝑟 (0)), i.e. we forget the radii
of the disks of a configuration and we keep only their centers. There is a map 𝜄
in the reverse direction, which takes a configuration (𝑥1, . . . , 𝑥𝑟 ) ∈ ConfD̊𝑛 (𝑟) to
the configuration of disks (𝑐1, . . . , 𝑐𝑟 ) whose centers are the 𝑥𝑖 , and such that the
radius of 𝑐𝑖 is a third of the smallest distance between 𝑥𝑖 and the other points of the
configuration. It is clear that the composition 𝜋 ◦ 𝜄 is the identity. Conversely, 𝜄 ◦ 𝜋 is
homotopic to the identity: we can simply rescale the disks continuously. �

Up to homotopy, the collection of configuration spaces of D𝑛 thus has an operadic
structure. In what follows, we extend this to obtain a similar statement for configuration
spaces of arbitrary manifolds.

Definition 5.50 Let 𝑀 be a smooth compact manifold. We denote by:

D′𝑀 (𝑟) ⊂ Map
(
(D𝑛)t𝑟 , 𝑀

)
(5.37)

the space of maps that are embedding when they are restricted to each disk and such
that the images of the interiors of the disks are pairwise disjoint.

Lemma 5.51 The collection D′
𝑀

forms a right module over D𝑛.

Proof The operadic module structure is defined using composition of embeddings.
If 𝑐 = (𝑐1, . . . , 𝑐𝑘 ) ∈ D′

𝑀
(𝑘) is a collection of embeddings 𝑐𝑖 : D𝑛 ↩→ 𝑀, and

(𝑑1, . . . , 𝑑𝑙) ∈ D𝑛 (𝑙) is another collection of embeddings 𝑑𝑖 : D𝑛 ↩→ D𝑛, then we
can define a new collection of embeddings by:

𝑐 ◦𝑖 𝑑 B
(
𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖 ◦ 𝑑1, . . . , 𝑐𝑖 ◦ 𝑑𝑙 , 𝑐𝑖+1, . . . , 𝑐𝑘

)
∈ D′𝑀 (𝑘 + 𝑙 − 1). (5.38)

One easily checks that this satisfies the axioms of a right module (compare with
Example 5.25). �

The space D′
𝑀
(𝑘) does not, however, have the homotopy type of Conf𝑀 (𝑘). The

essential difference with D𝑛 is that disks are allowed to rotate. For example, the space
D𝑀 (1) has the homotopy type of the frame bundle over 𝑀 .

Definition 5.52 Let 𝑀 be a smooth manifold and let us note 𝑇𝑀 =
⋃
𝑥∈𝑀 𝑇𝑥𝑀 the

tangent space of 𝑀 . Then the frame bundle of 𝑀 , Fr𝑀 , is a 𝐺𝐿𝑛 (R)-principal fiber
bundle on 𝑀 defined by:

Fr𝑀 B {(𝑥, 𝜉) | 𝑥 ∈ 𝑀, 𝜉 basis of 𝑇𝑥𝑀} ⊂ 𝑀 × (𝑇𝑀)𝑛. (5.39)
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5.3 Configuration spaces and operads 123

The homotopy equivalence 𝜋 : D′
𝑀
(1) → Fr𝑀 is given by

𝜋(𝑐) =
(
𝑐(0), (𝑑𝑐(0) (1, 0, . . . , 0), . . . , 𝑑𝑐(0) (0, . . . , 0, 1))

)
, (5.40)

where 𝑑𝑐 : 𝑇D𝑛 � D𝑛 ×R𝑛 → 𝑇𝑀 is the differential of the embedding 𝑐 : D𝑛 ↩→ 𝑀 .
More generally, we have the following statement.

Definition 5.53 Let 𝑀 be a smooth manifold. The 𝑟th framed configuration space of
𝑀 is the space given by the pullback (see Figure 5.3):

Conffr𝑀 (𝑟) Fr𝑟𝑀

Conf𝑀 (𝑟) 𝑀𝑟 .

y (5.41)

Concretely, an element of Conffr𝑀 (𝑟) is the data of a configuration 𝑥 ∈ Conf𝑀 (𝑟)
and a trivialization of the tangent space 𝑇𝑥𝑖𝑀 , see Figure 5.3.

Lemma 5.54 Let 𝑀 be a smooth manifold, and 𝑟 ≥ 0 an integer. The space D′
𝑀
(𝑟)

has the homotopy type of the space Conffr𝑀 (𝑟).

1

2

3

4

Fig. 5.3 Conffr𝑀 : the pairs of arrows represent a basis in the tangent space at the given point.

Remark 5.55 With Campos, Ducoulombier and Willwacher [CDIW18], we have
obtained a real model of the framed configuration spaces of an oriented smooth
compact manifold 𝑀 . This model is based on decorated graph complexes, as in the
previous chapters. However, it is not as explicit as the Lambrechts–Stanley model: it
depends on integrals (the partition function) that we do not know how to compute at
the moment.

To obtain spaces that have the same homotopy type as the configuration spaces of
𝑀 , it is therefore necessary to trivialize the tangent information.

Definition 5.56 Let 𝑀 be a smooth manifold. Let us assume that 𝑀 is parallelized, i.e.
that its tangent fiber bundle is trivial, and let us fix an isomorphism 𝜏 : 𝑇𝑀 � 𝑀 ×R𝑛.
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124 5 Configuration spaces and operads

We can then define the subspace of the disk embeddings that respect the original
parallelization:

D𝑀 (𝑟) B
{
𝑐 ∈ D′𝑀 (𝑟) | ∀𝑖, ∃𝜆 > 0 s.t. 𝜏(𝑐𝑖 (0)) ◦ 𝑑𝑐𝑖 (0) = 𝜆 idR𝑛

}
. (5.42)

Proposition 5.57 The space D𝑀 (𝑟) has the homotopy type of Conf𝑀 (𝑟), and the
right D𝑛-module structure on D′

𝑀
restricts to D𝑀 .

However, this definition is not very practical. Indeed, D𝑀 (𝑟) is not a manifold, for
example, and the spaces D𝑛 (𝑟) and D𝑀 (𝑟) are not compact. In the next section, we’ll
see that we can use Fulton–MacPherson compactifications instead of D𝑛 and D𝑀 .

Remark 5.58 Many types of configuration spaces have links with operads. For
example, consider the non-𝑘-equal configuration spaces of Example 2.16, for some
𝑘 ≥ 2. They can be fattened to obtain a bimodule over the little disks operad, which
was studied by Dobrinskaya and Turchin [DT15] and used by Ducoulombier [Duc18]
to obtain delooping results. More precisely, one can introduce spaces D<𝑘𝑛 (𝑟) given
by collections of 𝑟 disks D𝑛 ⊂ D𝑛 (just like in the definition of D𝑛) such that the
intersection of any 𝑘 distinct disks is empty. Then D<𝑘𝑛 (𝑟) has the homotopy type of
Conf<𝑘R𝑛 (𝑟). Moreover, the collection D<𝑘𝑛 forms a (D𝑛,D𝑛)-bimodule using insertion
of disks. See Figure 5.4 for an example. This can be generalized to any framed
manifold, and one obtains a right D𝑛-module.

Fig. 5.4 An element of
D<3

2 (4) .

1

2

3
4

5.3.3 Operadic structures on compactifications

Remember that the configuration spaces of R𝑛 have the same homotopy type as their
Fulton–MacPherson compactifications (see Section 3.2). In this section, we describe
an operadic structure on these compactifications, see Figure 5.5. The operad thus
obtained is moreover weakly equivalent to the operad of little 𝑛-disks, as we will see.

Proposition 5.59 . Let 𝑛 ≥ 1 be an integer. The symmetric collection FM𝑛 =

{FM𝑛 (𝑈)} has an operadic structure defined as follows. Let 𝑥 ∈ FM𝑛 (𝑈/𝑇) and
𝑦 ∈ FM𝑛 (𝑇) be two configurations. Then the configuration 𝑥 ◦𝑇 𝑦 ∈ FM𝑛 (𝑈) is
defined by:
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5.3 Configuration spaces and operads 125

𝜃𝑖 𝑗 (𝑥 ◦𝑇 𝑦) B
{
𝜃𝑖 𝑗 (𝑦), if 𝑖, 𝑗 ∈ 𝑇 ;
𝜃 [𝑖 ] [ 𝑗 ] (𝑥), otherwise.

(5.43)

𝛿𝑖 𝑗𝑘 (𝑥 ◦𝑇 𝑦) B



𝛿𝑖 𝑗𝑘 (𝑦), if 𝑖, 𝑗 , 𝑘 ∈ 𝑇 ;
0, if 𝑖, 𝑘 ∈ 𝑇 et 𝑗 ∉ 𝑇 ;
1, if 𝑖, 𝑗 ∈ 𝑇 et 𝑘 ∉ 𝑇 ;
∞, if 𝑗 , 𝑘 ∈ 𝑇 et 𝑖 ∉ 𝑇 ;
𝛿 [𝑖 ] [ 𝑗 ] [𝑘 ] (𝑥), otherwise.

(5.44)

Remark 5.60 These are precisely the maps that appeared in the proof of Proposi-
tion 3.33. See Figure 5.5 for an example.

𝑢1 ∗ ◦∗
𝑢2 𝑢3

=
𝑢1

𝑢2 𝑢3

Fig. 5.5 Example of composition in FM2.

One can easily verify that these operations induce the same operations in coho-
mology as those of the Theorem 5.69, but this is of course not sufficient to prove that
FM𝑛 and D𝑛 have the same homotopy type. We do have the following result, though.

Theorem 5.61 (Salvatore [Sal01, Proposition 3.9]) The operads D𝑛 and FM𝑛 have
the same homotopy type, i.e. there exists a zigzag of operadic morphisms:

D𝑛
∼←− · ∼−→ FM𝑛 (5.45)

which are weak homotopy equivalences on each component.

Proof (Sketch) We begin by constructing an explicit “resolution” of the operad D𝑛
using the Boardman–Vogt construction. Let us define a new operad𝑊D𝑛. The points
of𝑊D𝑛 (𝑘) are rooted decorated planar trees with 𝑘 leaves. The internal vertices of
these trees are decorated by elements of D𝑛, with an arity equal to the number of
edges entering at this vertex. The inner edges of these trees are decorated by elements
of the segment [0, 1]. We can refer to Figure 5.6 for an example of an element.

The set of these trees is modded out by the equivalence relation generated by the
following identifications, illustrated in Figure 5.7.

• If a vertex is decorated by 𝑥 · 𝜎 for 𝜎 ∈ Σ𝑘 , then the tree is identified with the
same tree where the vertex is decorated by 𝑥 and the sub-trees starting from 𝑥 are
reordered according to 𝜎.
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126 5 Configuration spaces and operads

Fig. 5.6 An element of𝑊D𝑛,
where 𝑥 ∈ D𝑛 (3) , 𝑦 ∈ D𝑛 (2) ,
and 𝑡 ∈ [0, 1].

𝑥

3 1 𝑦

2 4

𝑡

• If an inner edge is decorated by 𝑡 = 0, then the tree is identified with the same tree
where the edge is contracted and the decorations of the corresponding vertices
are composed using the operadic structure of D𝑛.

• If a vertex is decorated by idD𝑛 , then the tree is identified with the same tree where
this vertex is removed. If this vertex was between two inner edges decorated
respectively by 𝑠 and 𝑡, then the decoration of the new edge is 𝑠 + 𝑡 − 𝑠𝑡.

𝑥 · (13)

3 1 𝑦

2 4

𝑡

≡

𝑥

𝑦

2 4

𝑡

1 3 ,

𝑥

3 1 𝑦

2 4

0
≡ 𝑥 ◦3 𝑦

3 1 2 4

,

𝑥

3 1 id

2

𝑡

≡ 𝑥

3 1 2

Fig. 5.7 Relations in𝑊D𝑛.

This collection𝑊D𝑛 has an operadic structure. To compose two trees, the second
one is grafted on one of the leaves of the first one and the new inner edge is decorated
with 𝑡 = 1. For example, the tree of Figure 5.7 would be obtained as the operadic
composition of two elements if 𝑡 = 1.

There is an operadic morphism𝑊D𝑛 → D𝑛 which consists simply in forgetting the
decorations of the edges and using the operadic structure to compose the decorations
of the vertices according to the rooted tree. One can show that this morphism is a
deformation retract of topological spaces in each arity, which proves that𝑊D𝑛 and
FM𝑛 have the same homotopy type.

It then remains only to build a weak equivalence 𝜋̄ : 𝑊D𝑛 → FM𝑛. This
equivalence extends the maps 𝜋 : D𝑛 → ConfR𝑛 → FM𝑛 obtained by composing the
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5.3 Configuration spaces and operads 127

map that forgets the disk radii with the quotient map onto the interior of FM𝑛. Let us
now describe it.

Let T be an element of 𝑊D𝑛. We can represent T by a tree whose inner edges
are decorated by positive time parameters. Let us start with the case where all 𝑡 are
different from 1. Then each internal edge corresponds uniquely to an affine embedding
D𝑛 → D𝑛 (which corresponds to a disk in the element of D𝑛 that decorates the vertex
coming out of the edge). We apply a rescaling of ratio 1 − 𝑡, where 𝑡 is the edge
decoration, to all these embedding. We then compose them all according to the tree
to get a new element of D𝑛 from T . This element does not depend on the equivalence
class of T ∈ 𝑊D𝑛. We then define an element of FM𝑛 forgetting the radii of this
configuration. We can refer to the Figure 5.8 for an example.

T =

𝑥

𝑦

1 2

1/3

3 , 𝑥 =

2

1
, 𝑦 =

1

2 {

+

+
+

×2/3

{ 𝜋̄ (T) =

3

1
2

Fig. 5.8 Construction of the morphism 𝜋̄ : 𝑊D𝑛 → FM𝑛.

If T has inner edges decorated by 1, we cut the tree along these edges. We then
apply the above procedure to each of the sub-trees thus obtained, to construct several
elements of FM𝑛. These components are then composed using the operadic structure
of FM𝑛, according to the starting tree. One can check that this procedure is well defined
and continuous. It is by definition a morphism of operads 𝜋̄ : 𝑊D𝑛 → FM𝑛. Since 𝜋̄
extends 𝜋, since 𝜋 is a homotopy equivalence, and since the inclusion D𝑛 → 𝑊D𝑛 is
a homotopy equivalence, we deduce that 𝜋̄ is a homotopy equivalence. �

Remark 5.62 The same construction can be applied to FM𝑛 to obtain an operad𝑊FM𝑛.
Salvatore [Sal01; Sal19b] has shown that𝑊FM𝑛 is in fact isomorphic to FM𝑛, rather
than merely homotopy equivalent. This means that the operad FM𝑛 is cofibrant, i.e. it
has an lifting property with respect to certain operadic morphisms (namely, acyclic
fibrations).
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128 5 Configuration spaces and operads

Remark 5.63 In collaboration with Campos and Ducoulombier [CDI19], we have
developed “leveled” versions of the Boardman–Vogt construction for operads, their
modules, Hopf cooperads, and their cobimodules.

Let us now consider the configuration spaces of a fixed compact manifold 𝑀
without boundary. As in Section 3.2, we choose an embedding 𝜄 : 𝑀 ↩→ R𝑁 for 𝑁
large, which allows to define the compactification FM𝑀 . It is further assumed that 𝑀
is parallelizable, i.e. that its tangent bundle 𝑇𝑀 is trivial. Let us fix a trivialization of
𝑇𝑀 . This trivialization induces a continuous function 𝜏 : 𝑀 → Emb(R𝑛,R𝑁 ) which
represents the differential of 𝜄. The map 𝜏 is such that 𝜏′ : (𝑥, 𝑣) ↦→ (𝜄(𝑥), 𝜏(𝑥) (𝑣))
makes the following diagram commute:

𝑇𝑀 𝑇R𝑁

𝑀 × R𝑛 R𝑁 × R𝑁 .

𝑑 𝜄

� �canon.

𝜏′

(5.46)

With this data, we can define a right FM𝑛-module structure on the collection
FM𝑀 as follows. Let 𝑥 ∈ FM𝑀 (𝑈/𝑇) and 𝑦 ∈ FM𝑛 (𝑇). We consider the point
𝑝∗ (𝑥) ∈ R𝑛 (where ∗ ∈ 𝑈/𝑇 is the base point), which induces an embedding
𝜏(𝑝∗ (𝑥)) : R𝑛 ↩→ R𝑁 via our parallelization 𝜏. This embedding induces a new
embedding FM𝑛 ↩→ FM𝑁 that is still denoted 𝜏(𝑝∗ (𝑥)) by abuse of notation. We can
therefore consider the configuration 𝜏(𝑝∗ (𝑥)) (𝑦) ∈ FM𝑁 (𝑇). We then define a new
configuration 𝑥 ◦𝑇 𝑦 ∈ FM𝑀 (𝑈) in the coordinates of Equation (3.26) by:

• 𝑝𝑢 (𝑥 ◦𝑇 𝑦) B 𝑝 [𝑢 ] (𝑥) ;

• 𝜃𝑖 𝑗 (𝑥 ◦𝑇 𝑦) B
{
𝜃𝑖 𝑗

(
𝜏(𝑝∗ (𝑥)) (𝑦)

)
, if 𝑖, 𝑗 ∈ 𝑇 ;

𝜃 [𝑖 ] [ 𝑗 ] (𝑥), otherwise;

• 𝛿𝑖 𝑗𝑘 (𝑥 ◦𝑇 𝑦) B



𝛿𝑖 𝑗𝑘
(
𝜏(𝑝 [𝑇 ] (𝑥)) (𝑦)

)
, if 𝑖, 𝑗 , 𝑘 ∈ 𝑇 ;

0, if 𝑖, 𝑘 ∈ 𝑇 and 𝑗 ∉ 𝑇 ;
1, if 𝑖, 𝑗 ∈ 𝑇 and 𝑘 ∉ 𝑇 ;
∞, if 𝑗 , 𝑘 ∈ 𝑇 and 𝑖 ∉ 𝑇 ;
𝛿 [𝑖 ] [ 𝑗 ] [𝑘 ] (𝑥), otherwise.

Roughly speaking, the virtual configuration 𝑥 ◦𝑇 𝑦 is obtained by inserting the
configuration 𝑦 ∈ FM𝑛 (𝑇) at the position of 𝑝∗ (𝑥) ∈ 𝑀 in the tangent space. The
parallelization is necessary to obtain coherent insertion maps at every possible
position. The proof of the following proposition is similar to that of Theorem 5.61.

Proposition 5.64 The collection FM𝑀 with this structure forms a right FM𝑛-module.
The pair (FM𝑀 , FM𝑛) is weakly equivalent to the pair (D𝑀 ,D𝑛).

Remark 5.65 The right module structure of FM𝑀 depends on the choice of the
parallelization 𝜏. In [CDIW18, Section 5.2], with Campos, Ducoulombier, and
Willwacher, we have studied the effect of a change of parallelization on graph
complex models.
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5.4 Models for configuration spaces and their operadic structure 129

5.4 Models for configuration spaces and their operadic structure

In this section, we prove that the models for configuration spaces obtained in Chapter 3
do not merely model the real homotopy types of the spaces, but that they are also
compatible with the operadic structures described above.

5.4.1 Formality of the little disks operads

Let us first come back to the formality of the configuration spaces of R𝑛, which we
discussed in Section 2.4. We now know that, up to homotopy, these configuration
spaces have an algebraic structure: they form a (topological) operad. According to
rational homotopy theory, spaces are encoded up to rational homotopy by CDGAs. In
order to encode topological operads, we thus consider the following notion.

Definition 5.66 ([Fre17a, Section 3.2]) A Hopf cooperad is a symmetric collection
C = {C(𝑈)} in the opposite category of CDGAs, equipped with a counit 𝜀 : C({∗}) →
R, as well as cocomposition morphisms, for any pair of finite sets𝑊 ⊂ 𝑈:

◦∨𝑊 : C(𝑈) → C(𝑈/𝑊) ⊗ C(𝑊) (5.47)

that verify properties of equivariance, counitality and coassociativity dual to those
that define operads.

Proposition 5.67 Let P be a topological operad. Its homology (over any ring) 𝐻∗ (P)
is a linear operad. Its cohomology over a field 𝐻∗ (P) is a Hopf cooperad.

Proof This stems from the functoriality of (co)homology and, over a field, from the
fact that Künneth morphisms are isomorphisms. The (co)composition operations are
respectively given by:

◦𝑊 : 𝐻∗ (P(𝑈/𝑊)) ⊗ 𝐻∗ (P(𝑊))
𝜅−→ 𝐻∗ (P(𝑈/𝑊) × P(𝑊))

(◦𝑊 )∗−−−−−→ 𝐻∗ (P(𝑈)),
(5.48)

◦∨𝑊 : 𝐻∗ (P(𝑈))
◦∗
𝑊−−→ 𝐻∗ (P(𝑈/𝑊) ×P(𝑊)) 𝜅←−

�
𝐻∗ (P(𝑈/𝑊)) ⊗𝐻∗ (P(𝑊)). (5.49)

It is easy to deduce that all relevant axioms are satisfied from the fact that they are
satisfied for P. �

We can apply this proposition to the operad of little disks. Recall that we saw that D1
is homotopy equivalent to the (discrete) operad Ass that governs topological monoids
(see Proposition 5.48). For higher dimensions, we have the following theorem.

Definition 5.68 Let 𝑛 ≥ 2 be an integer. A Poisson 𝑛-algebra is a cochain complex
𝐴 endowed by a unital commutative product and a Lie bracket of degree 1 − 𝑛 (i.e.
deg[𝑥, 𝑦] = deg 𝑥 + deg 𝑦 + 1 − 𝑛, and the antisymmetry/Jacobi relations have signs
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130 5 Configuration spaces and operads

which reflect this shift) such that the bracket is a biderivation with respect to the
product, i.e. [𝑥𝑦, 𝑧] = 𝑥 [𝑦, 𝑧] ± [𝑥, 𝑧]𝑦. We let Pois𝑛 be the operad governing Poisson
𝑛-algebras.

Theorem 5.69 (Cohen [Coh76]) For 𝑛 ≥ 2, the homology of D𝑛, the operad

e𝑛 B 𝐻∗ (D𝑛;Q) (5.50)

is isomorphic to Pois𝑛. The cooperad structure of its cohomology, e∨𝑛 B 𝐻∗ (D𝑛;Q),
is described as follows in the presentation of Theorem 2.85. For 𝑇 ⊂ 𝑈 a pair of
finite sets, cocomposition is given on generators by:

◦∨𝑇 : e∨𝑛 (𝑈) → e∨𝑛 (𝑈/𝑇) ⊗ e∨𝑛 (𝑇)

𝜔𝑖 𝑗 ↦→
{

1 ⊗ 𝜔𝑖 𝑗 , if 𝑖, 𝑗 ∈ 𝑇 ;
𝜔 [𝑖 ] [ 𝑗 ] ⊗ 1, otherwise.

(5.51)

Remark 5.70 Recall that the algebra e∨𝑛 admits a graphical interpretation (see the
discussion following Theorem 2.85). An element of e∨𝑛 (𝑈) can be represented by a
linear combination of graphs with 𝑈 vertices, modulo orientation and the Arnold
relations. The cooperad structure fits into this graphical interpretation. Given a graph
[Γ] ∈ e∨𝑛 (𝑈) and 𝑇 ⊂ 𝑈, the cocomposition ◦∨

𝑇
(Γ) ∈ e∨𝑛 (𝑈/𝑇) ⊗ e∨𝑛 (𝑇) is the tensor

[Γ/𝑇] ⊗ [Γ𝑇 ], where Γ/𝑇 is the graph obtained from Γ by collapsing 𝑇 to a single
vertex and Γ𝑇 is the full subgraph of Γ on the vertices 𝑇 .

In order to have coherent notations, we also introduce the following notation:

e1 B Ass. (5.52)

We know from Theorem 2.98 that the configuration spaces of R𝑛 are formal, i.e.
their cohomology completely encodes their rational homotopy type. We moreover
know that these spaces have the homotopy type of the spaces that make up the
operad D𝑛. It is therefore natural to ask if the cohomology e∨𝑛 encodes the rational
homotopy type of the operad D𝑛 The question must however already be clarified:
indeed, Künneth morphisms are only quasi-isomorphisms at the level of cochains, not
isomorphisms. So we do not have a cooperad structure on the collection Ω∗PA (FM𝑛),
but merely “cocomposition zigzags”:

Ω∗PA (FM𝑛 (𝑈))
◦∗
𝑊−−→ Ω∗PA (FM𝑛 (𝑈/𝑊) × FM𝑛 (𝑊))

∼←− Ω∗PA (FM𝑛 (𝑈/𝑊)) ⊗ Ω∗PA (FM𝑛 (𝑊)). (5.53)

We therefore introduce the following ad-hoc definition:

Definition 5.71 Let P be an operad in compact SA sets such that P(0) is a point. A
real model of P is a Hopf cooperad C such as there are zigzags of quasi-isomorphisms
of CDGAs:
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5.4 Models for configuration spaces and their operadic structure 131

C(𝑈) ∼←− D(𝑈) ∼−→ Ω∗PA (P(𝑈)), (5.54)

where D is a Hopf cooperad, such that D→ C is a morphism of Hopf cooperads, and
the following diagrams commutes:

C(𝑈) D(𝑈) Ω∗PA (P(𝑈))

Ω∗PA (P(𝑈/𝑊) × P(𝑊))

C(𝑈/𝑊) ⊗ C(𝑊) D(𝑈/𝑊) ⊗ D(𝑊) Ω∗PA (P(𝑈/𝑊)) ⊗ Ω∗PA (P(𝑊))

◦∨
𝑊

◦∨
𝑊

∼ ∼

◦∗
𝑊

∼ ∼

∼ 𝜅

(5.55)

Remark 5.72 This ad-hoc definition has theoretical foundations. Fresse [Fre17b;
Fre18] developed the rational homotopy theory of operads and showed that the
previous definition (with Ω∗PL instead of Ω∗PA) did indeed give a rational homotopy
theory of topological operads which has properties similar to the rational homotopy
theory of topological spaces. This theory can be adapted to the real case by replacing
Ω∗PL with Ω∗PA, thanks to some homotopical properties that Ω∗PA satisfies. There is in
particular an operadic upgrade of the Ω∗ (PL or PA) functor, which produces a true
Hopf cooperad Ω∗#P from a topological or SA operad P. Moreover, if P is a cofibrant
operad, then (Ω∗#P) (𝑟) ' Ω∗ (P(𝑟)). The restriction about P(0) is necessary in order
to obtain a well-behaved homotopy theory.

Definition 5.73 An operad P in compact SA sets is formal (over R) if 𝐻∗ (P;R) is a
real model of P.

Remark 5.74 There is a weaker notion of formality in the literature. Note that 𝐶∗ (P)
always forms a dg-operad thanks to the Künneth morphisms. The formality that we
will call “weak”, as opposed to the “strong” formality defined above, requires that the
dg-operads 𝐶∗ (P) and 𝐻∗ (P) be quasi-isomorphic. If an operad is strongly formal,
then it is weakly formal, simply by dualizing morphisms and forgetting the Hopf
structure.

Theorem 5.75 (Kontsevich [Kon99], Tamarkin [Tam03], Lambrechts and Volić
[LV14], Petersen [Pet14], Fresse and Willwacher [FW20], and Boavida de Brito
and Horel [BH19]) The operad FM𝑛 is formal for any 𝑛.

This formality theorem has important consequences. We can mention in particular
deformation quantization of Poisson manifolds [Kon03] and the Deligne conjec-
ture [KS00; Tam98] (which also has several other demonstrations). It has known
several variants:

• Kontsevich [Kon99] proved the weak formality on R. Thanks to a later result of
Guillén Santos, Navarro, Pascual, and Roig [GNPR05], weak formality onR turns
out to be equivalent to weak formality on Q (a generalization of Theorem 2.93).
We are going to review his proof below.
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132 5 Configuration spaces and operads

• Tamarkin [Tam03] showed weak formality onQ for 𝑛 = 2. His proof is completely
different from Kontsevich’s. As mentioned in Chapter 2, the spaces ConfR2 (𝑟) are
Eilenberg–MacLane spaces and can therefore be studied completely by means of
their fundamental group(oid). These are expressed in terms of braids, on which
there is a “cabling” operation that describes the operadic structure. Using the
existence of Drinfeld [Dri90] associators, Tamarkin deduces the formality of
FM2 on Q. We can also refer to [Fre17b] for a refinement of this proof which
allows us to deduce strong formality.

• Lambrechts and Volić [LV14] have detailed Kontsevich’s proof to prove the
strong formality for 𝑛 ≥ 3. We will quickly recall it below.

• Petersen [Pet14] showed weak formality for FM2 using the action of the
Grothendieck–Teichmüller group that exists on this operad. We refer to Fresse
[Fre17a] for a more in-depth introduction of the Grothendieck–Teichmüller group
and its relationship with the little disks operads, and Merkulov [Mer21] for a
survey and a connection to graph complexes.

• Fresse and Willwacher [FW20] have shown that the operad FM𝑛 is intrinsically
formal on Q for 𝑛 ≥ 3. This means under certain technical assumptions, if P is
any topological operad that has the same cohomology as FM𝑛, then P is formal
over Q, and is therefore rationally equivalent to FM𝑛.

• Boavida de Brito and Horel [BH19] have constructed an action of the Gro-
thendieck–Teichmüller group on FM𝑛 to prove the weak formality over Q for
𝑛 ≥ 2.

Let us now recall the proof of Kontsevich and Lambrechts–Volić. As Chapter 3 is
inspired by this proof, we will settle for a sketch, the definitions and proofs being
analogous.

Proof (Sketch of proof of Theorem 5.75) There exists a graph complex Graphs𝑛 (𝑟)
that fits into a zigzag of quasi-isomorphisms:

e∨𝑛 (𝑈)
∼←− Graphs𝑛 (𝑈)

∼−→ Ω∗PA (FM𝑛 (𝑈)). (5.56)

As a vector space, Graphs𝑛 (𝑟) is generated by isomorphism classes of graphs Γ of
the following type. The graph Γ has external vertices in bijection with 𝑈, and an
arbitrary finite number of internal vertices. Edges are either oriented or oriented, with
sign conventions similar to those in Chapter 3. The degree of Γ is (𝑛 − 1)#𝐸 − 𝑛#𝐼,
where 𝐸 is the set of edges and 𝐼 is the set of internal vertices. The product consists
in gluing graphs along their vertices, and the differential is the sum of all the ways of
contracting an edge incident to an internal vertex (except the “dead ends”, i.e. the
edges incident to a univalent internal vertex). Finally, one mods out by graphs having
components consisting entirely of internal vertices.

The morphism Graphs𝑛 (𝑈) → e∨𝑛 (𝑈) is the quotient map that sends the graphs
containing internal vertices to zero. One checks that it is a quasi-isomorphism in a
purely combinatorial way. The morphism Graphs𝑛 (𝑈) → Ω∗PA (FM𝑛 (𝑈)) is defined
by integrals, as in Chapter 3. The “propagator” 𝜑 on FM𝑛 (2) � S𝑛−1 is simply the
volume form of the sphere, which is indeed a minimal form (where 𝑐𝑛 is a constant
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5.4 Models for configuration spaces and their operadic structure 133

that depends on 𝑛):

𝜑 B 𝑐𝑛

𝑛∑︁
𝑖=1
(−1)𝑖𝑥𝑖𝑑𝑥1 ∧ 𝑑̂𝑥𝑖 ∧ · · · ∧ 𝑑𝑥𝑛. (5.57)

Note in particular that for 𝑛 = 2, 𝜑 = 𝑦𝑑𝑥 − 𝑥𝑑𝑦 = =(𝑑 log 𝑧) where 𝑧 = 𝑥 + 𝑖𝑦.
Compare with the Equation (2.51).

We check that the morphism Graphs𝑛 (𝑈) → Ω∗PA (FM𝑛 (𝑈)) thus defined is a
CDGA morphism, as in Chapter 3. It is clearly surjective in cohomology, so the result
follows.

The new point compared to Chapter 3 is the operadic structure. We have described
the cooperad structure of e∨𝑛 in Theorem 5.69, and that of Ω∗PA (FM𝑛) is defined from
that of FM𝑛 by contravariance. Let us now describe the one of Graphs𝑛. Let𝑊 ⊂ 𝑈
be a pair of sets and Γ ∈ Graphs𝑛 (𝑈) a graph. The cocomposition ◦∨

𝑊
(Γ) is a sum

of several terms, indexed by all the subgraphs Γ′ ⊂ Γ whose set of external vertices
is𝑊 . For such a subgraph, we define a quotient graph Γ/Γ′ whose external vertices
are𝑈/𝑊 and whose internal vertices are those of Γ which are not in Γ′. The edges of
Γ/Γ′ are the edges of Γ that are not in Γ′. If one end of such an edge was a vertex
of Γ′, then its end in Γ/Γ′ becomes the external vertex ∗ ∈ 𝑈/𝑊 . If this procedure
creates multiple edges or loops, then the result is zero. We then define an operation:

◦∨𝑊 : Graphs𝑛 (𝑈) → Graphs𝑛 (𝑈/𝑊) ⊗ Graphs𝑛 (𝑊)

Γ ↦→
∑︁
Γ′⊂Γ

𝑉ext (Γ′)=𝑊

±Γ/Γ′ ⊗ Γ′, (5.58)

where the sign is defined by the Koszul rule. We can refer to Figure 5.9 for an example.

1 2 3
↦→

* 3
⊗

1 2
±

* 2
⊗

1 2

Fig. 5.9 Example of cocomposition of the form ◦∨{1,2} : Graphs𝑛 ( {1, 2, 3}) → Graphs𝑛 ( {∗, 3}) ⊗
Graphs𝑛 ( {1, 2}) .

It is easy to check that the quotient map Graphs𝑛 → e∨𝑛 respects this operadic
structure. The fact that the integration morphism Graphs𝑛 → Ω∗PA (FM𝑛) respects it
also results from a similar calculation at the level of the forms. The key point of proof
lies in the decomposition of the fibered product:

FM𝑛 (𝑈 t 𝐼) ×FM𝑛 (𝑈 )
(
FM𝑛 (𝑈/𝑊) × FM𝑛 (𝑊)

)
, (5.59)

where FM𝑛 (𝑈 t 𝐼) → FM𝑛 (𝑈) is the canonical projection and FM𝑛 (𝑈/𝑊) ×
FM𝑛 (𝑊) → FM𝑛 (𝑈) is the operadic composition. One checks that it decomposes as
the union of submanifolds of FM𝑛 (𝑈 t 𝐼) of codimension 1 which correspond to the
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134 5 Configuration spaces and operads

various ways of deciding whether internal vertices are included in the subgraph or
not. �

Remark 5.76 In Theorem 5.75, the fact that we work over a field of characteristic
zero is crucial. Boavida de Brito and Horel [BH19] have obtained truncated weak
formality results in characteristic 𝑝 > 2: the operad of chains𝐶∗ (D𝑛;F𝑝) is connected
to 𝐻∗ (D𝑛;F𝑝) by a zigzag of maps that induce isomorphisms on homology up to
degree (𝑛 − 1) (𝑝 − 2). This statement is sharp, as the chain complex 𝐶∗ (D𝑛 (𝑝);F𝑝)
is not Σ𝑝-equivariantly formal [CH18, Remark 6.9]. Salvatore [Sal19a] has shown
that the little disks operads is not formal in characteristic 2 even if one forget the
action of the symmetric group.

5.4.2 Operadic module structures on models for configuration spaces

We now turn to configuration spaces of parallelized closed manifolds. Let 𝑀 be such
a manifold. We know that they have the homotopy type of the spaces FM𝑀 (𝑟), which
form a right-hand module on the operad FM𝑛 as we saw in Section 5.3.3.

In this section, we show that the Lambrechts–Stanley model obtained in Chapter 3
is, in fact, a model for the real homotopy type of the module FM𝑀 . We define the
notion of model for a right module on an operad in a similar way to the Definition 5.71:

Definition 5.77 A right Hopf comodule over a Hopf cooperad C is a right comodule
over C such that all the cooperad structure maps are morphisms of CDGAs. A real
model of a pair (M,P) where P is an operad in compact SA set and M is a right
module in compact SA sets is a pair (N,C) consisting of a Hopf cooperad and a right
Hopf comodule such that there exist zigzags of quasi-isomorphisms of CDGAs:

N(𝑈) ← N′(𝑈) → Ω∗PL (N(𝑈)), C(𝑈) ← C′(𝑈) → Ω∗PL (P(𝑈)), (5.60)

such that the second zigzags makes C into a model of P and the first makes a diagram
similar to the one of Definition 5.71 commute.

Proposition 5.78 Let 𝐴 be a Poincaré duality CDGA. Assume that its Euler charac-
teristic 𝜒(𝐴) = ∑

𝑖≥0 (−1)𝑖 dim 𝐴𝑖 vanishes. Then the collection G𝐴 of Lambrechts–
Stanley models associated to 𝐴 is a right Hopf comodule over the Hopf cooperad e∨𝑛 .
It is equipped with the following structure maps, for𝑊 ⊂ 𝑈:

◦∨𝑊 : G𝐴(𝑈) ↦→ G𝐴(𝑈/𝑊) ⊗ e∨𝑛 (𝑊),
𝑝∗𝑖 (𝑎) ↦→ 𝑝∗[𝑖 ] (𝑎) ⊗ 1 for 𝑖 ∈ 𝑈, 𝑎 ∈ 𝐴,

𝜔𝑖 𝑗 ↦→
{

1 ⊗ 𝜔𝑖 𝑗 , if 𝑖, 𝑗 ∈ 𝑊 ;
𝜔 [𝑖 ] [ 𝑗 ] ⊗ 1, otherwise.

(5.61)

Proof Let us first note the following. Let vol𝐴 ∈ 𝐴𝑛 be the form volume of 𝐴,
i.e. the only element satisfying 𝜀𝐴(vol𝐴) = 1. Recall that the diagonal class Δ𝐴 is
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5.4 Models for configuration spaces and their operadic structure 135

given by
∑
𝑖 (−1) |𝑎𝑖 |𝑎𝑖 ⊗ 𝑎∨𝑖 , where {𝑎𝑖} is a graded basis of 𝐴 and {𝑎∨

𝑖
} is the dual

basis, i.e. 𝜀𝐴(𝑎𝑖𝑎∨𝑗 ) = 𝛿𝑖 𝑗 ⇐⇒ 𝑎𝑖𝑎
∨
𝑗
= 𝛿𝑖 𝑗vol𝐴. Therefore, if we apply the product

𝜇 : 𝐴 ⊗ 𝐴→ 𝐴 to the diagonal class Δ𝐴 ∈ (𝐴 ⊗ 𝐴)𝑛, then we obtain the Euler class
𝜒(𝐴) · vol𝐴. By our assumption, this element thus vanishes.

Let us now check that the structure maps written above define a right Hopf comodule.
Compatibility with the product and with the cooperad structure is immediate. It only
remains to check that this structure is compatible with the differential. It is clear
that 𝑑 (◦∨

𝑊
(𝑝∗
𝑖
(𝑎))) = ◦∨

𝑊
(𝑑 (𝑝∗

𝑖
(𝑎))) for 𝑎 ∈ 𝐴 and 𝑖 ∈ 𝑈. If 𝑖 ∉ 𝑊 or 𝑗 ∉ 𝑊 , this

relation is also clear for 𝜔𝑖 𝑗 . Finally, if 𝑖, 𝑗 ∈ 𝑊 , then we have:

𝑑 (◦∨𝑊 (𝜔𝑖 𝑗 )) = 𝑑 (1 ⊗ 𝜔𝑖 𝑗 )
= 0,

◦∨𝑊 (𝑑 (𝜔𝑖 𝑗 )) = ◦∨𝑊 (𝑝∗𝑖 𝑗 (Δ𝐴))

=
∑︁
(Δ𝐴)

𝑝∗[𝑖 ] (Δ
′
𝐴) · 𝑝

∗
[ 𝑗 ] (Δ

′′
𝐴) ⊗ 1

= 𝜒(𝐴) · 𝑝∗∗ (vol𝐴) ⊗ 1
= 0

Theorem 5.79 Let 𝑀 be a closed manifold which simply connected, smooth, paral-
lelizable, and of dimension at least 4. Let 𝐴 be a Poincaré duality model of 𝑀 . The
pair (G𝐴, e∨𝑛) is a real model for the pair (FM𝑀 , FM𝑛).

Proof We simply check that the zigzag built in Chapter 3 is compatible with the
comodule structure defined in Proposition 5.78. One builds a Graphs𝑛-Hopf comodule
structure on the graph complexes which appear in this zigzag by taking as a starting
point the cooperad structure of Graphs𝑛 (see Figure 5.9). In that process, when one
contracts a subgraph, then one multiplies together the decorations of its vertices. It is
easy to check that this structure is compatible with all morphisms of the zigzag. �

In the case of the manifolds with boundary, a similar result is true (with a similar
proof). We first check that we have right module structure in the same manner as in
Section 5.3.3.

Proposition 5.80 Let (𝑀, 𝜕𝑀) a compact manifold with boundary. If𝑀 and 𝑁 = 𝜕𝑀

are parallelized, then aFM𝑁 and mFM𝑀 form right modules on the operad FM𝑛, and
the action of aFM𝑁 on mFM𝑀 is compatible with this right module structure.

One then only needs to check that the morphisms defined in Chapter 4 are
compatibly with the module structure. We then obtain the following theorems.

Theorem 5.81 ([CILW18]) Let 𝑀 be a compact manifold with boundary that sat-
isfies the hypotheses of Theorem 4.48. Suppose furthermore that 𝑀 and 𝑁 = 𝜕𝑀

are parallelized. Then with the notations of this theorem, the collections aGraphs0
𝐴𝜕

and mGraphs0
𝐴

form right Hopf comodules over Graphs𝑛. Moreover, the coaction
of aGraphs0

𝐴𝜕
on mGraphs0

𝐴
is compatible with this comodule structure. The triplet
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136 5 Configuration spaces and operads

(mGraphs0
𝐴
, aGraphs0

𝐴𝜕
) is a real model for (mFM𝑀 , aFM𝑁 , FM𝑛) with their alge-

braic structures.

Theorem 5.82 ([CILW18]) Let 𝑀 be a compact manifold with nonempty boundary
satisfying the hypotheses of Theorem 4.65. With the notations of this theorem, G̃𝑃 is
a Hopf right comodule on e∨𝑛 if 𝜕𝑀 ≠ ∅. If moreover 𝑀 is parallelized, then the pair
(G̃𝑃 , e∨𝑛) is a model for the pair (mFM𝑀 , FM𝑛).

5.4.3 Swiss-Cheese

Before moving on to the computation of factorization, let us say more about manifolds
with boundary. The configuration spaces of such manifolds actually have an even
richer operadic structure, encoded by the Swiss-Cheese operad of Voronov [Vor99].

The Swiss-Cheese operad is an example of a colored operad. Roughly speaking,
a colored operad is an operad where the inputs and the output of any operation are
“colored”, and operations can only be composed if colors match. Colored operads
generalize operads in the same way that categories generalize monoids. In fact, a
colored operad where all the operations are unary is exactly the same thing as a
category.

We will not introduce colored operads in full generality, as we only need a special
case of the notion. We first need the following symmetric monoidal structure on
operadic right modules, which is not to be confused with the composition product of
Remark 5.11.

Definition 5.83 Let P be an operad and M, M′ be right P-modules. Their tensor
product, M ⊗ M′, is defined for any finite set𝑈 by:

(M ⊗ M′) (𝑈) B
⊕

𝑈=𝑉t𝑉 ′
M(𝑉) ⊗ M(𝑉 ′),

where the direct sum runs over all partitions of 𝑈 into two disjoint subsets. The
symmetric collection M ⊗ M′ is a right P-module using the right P-module structures
of M and M′.

We then have the following compact definition that we will explain in a moment.
Recall that operads can be defined in any symmetric monoidal category.

Definition 5.84 Let P be an operad. A relative P-operad is an operad in the category
of right P-modules (for the symmetric monoidal structure of the previous definition).

Remark 5.85 Relative operads are also sometimes called Swiss-Cheese type oper-
ads [Wil16].

Let us now unpack this definition. Let P be an operad and Q be a relative P-operad.
Then, for any finite set𝑈, Q(𝑈) is a right P-module. We denote Q(𝑈,𝑉) B Q(𝑈) (𝑉)
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5.4 Models for configuration spaces and their operadic structure 137

for a finite set 𝑉 . Then we have, for any pair of sets 𝑇 ⊂ 𝑉 , operadic right module
structure maps:

◦𝑇 : Q(𝑈,𝑉/𝑇) ⊗ P(𝑇) → Q(𝑈,𝑉). (5.62)

Moreover, the symmetric collection Q is endowed with an operad structure. This
operad structure is given, for any pair𝑊 ⊂ 𝑈 and any finite sets 𝑉,𝑇 , by operadic
structure maps:

◦𝑊 ,𝑇 : Q(𝑈/𝑊,𝑉) ⊗ Q(𝑊,𝑇) → Q(𝑈,𝑉 t 𝑇). (5.63)

This definition has a graphical interpretation using trees, like in e.g. Equation (5.4).
Let us consider that operations in P(𝑈) are represented by corollas with𝑈 leaves and
full edges, such as this one (for𝑈 = {𝑢1, . . . , 𝑢𝑘 } and 𝑝 ∈ P(𝑘)):

𝑝 = 𝑝

𝑢1 . . . 𝑢𝑘

. (5.64)

Then an element of Q(𝑈,𝑉) can be represented by a corolla with two kinds of
leaves: some of them are in bijection with𝑈 and are attached to full edges, while the
others are in bijection with 𝑉 and are attached to dashed edges. Moreover, the edge
connected to the root is also dashed. We get for example a picture such as this one,
for 𝑞 ∈ Q({𝑢1, 𝑢2}, {𝑣1, 𝑣2, 𝑣3}):

𝑞 = 𝑞

𝑢1 𝑣1 𝑢2 𝑣2 𝑣3

. (5.65)

Then we can graft trees as in Equation (5.4), with the condition that full edges are
grafted to full edges and dashed edges to dashed edges.

Example 5.86 Let 𝑋,𝑌 be three objects in a symmetric monoidal category. Then the
collection

End𝑋,𝑌 (𝑈,𝑉) B Hom(𝑋 ⊗𝑈 ⊗ 𝑌 ⊗𝑉 , 𝑌 ) (5.66)

forms a relative End𝑋 -operad.

Definition 5.87 Let P be an operad and Q be a relative P-operad. A Q-algebra is
a pair (𝑋,𝑌 ) and a morphism of relative operads (in the obvious sense) (Q,P) →
(End𝑋,𝑌 ,End𝑋 ).

More concretely, a Q-algebra is the data of a P-algebra 𝑋 , of a unit idQ ∈ Q(1, 0),
and of maps:

Q(𝑈,𝑉) ⊗ 𝑌 ⊗𝑈 ⊗ 𝑋 ⊗𝑉 → 𝑌 (5.67)
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138 5 Configuration spaces and operads

which satisfy obvious associativity, unitality and equivariance requirements. Note
that the notion of Q-algebra depends, of course, on the operad P. What we call “the
operad Q” should be more accurately called “the operad (Q, P)”, but we only mention
half of the structure for brevity. The context will always make clear what P is.

Let us now turn to one of the main examples of relative operads, the Swiss-Cheese
operad [Vor99]. This operad is a relative D𝑛-operad, where D𝑛 is the little 𝑛-disks
operad of Definition 5.39. For simplicity, we see the (𝑛 − 1)-unit disk D𝑛−1 as
embedded in the unit 𝑛-disk D𝑛 as D𝑛−1 × {0}. We also consider the upper half-disk
to be:

D𝑛+ B D
𝑛 ∩ (D𝑛−1 × R≥0). (5.68)

Definition 5.88 The 𝑛-Swiss-Cheese operad SC𝑛 is the relative D𝑛-operad defined,
for finite sets𝑈,𝑉 , as a subset SC𝑛 (𝑈,𝑉) ⊂ D𝑛 (𝑈 t𝑉) of configurations such that
little disks indexed by 𝑈 are centered on D𝑛−1, and little disks indexed by 𝑉 have
their interior contained in the upper half-disk. The operadic structure is given by
composition of embeddings.

Fig. 5.10 An element of
SC2 ( {𝑢1, 𝑢2 }, {𝑣1, 𝑣2 }) .

𝑢1 𝑢2

𝑣1

𝑣2

We refer to Figure 5.10 for an illustration. It helps to refer to the disks indexed
by 𝑈 as “terrestrial” and the disks indexed by 𝑉 as “aerial”. In that picture, we
represent only the upper half unit disk. Aerial disks are fully contained in that half
disk, and terrestrial disks are centered on the diameter of the disk, so the embedding
is completely determined by its image in the upper part. Composition then becomes
visually clear: one can either insert a configuration of full disks inside a full disk,
or a configuration of full disks and half disks inside a half disk. We have drawn the
second type of composition in Figure 5.11.

∗
◦∗ =

Fig. 5.11 Composition in the Swiss-Cheese operad

The Swiss-Cheese operad also satisfies a kind of recognition principle similar to
the one of Theorem 5.46.

Definition 5.89 Let 𝑌 ⊂ 𝑋 be a pair of topological spaces and ∗ ∈ 𝑌 a base
point.. The relative iterated loop space Ω𝑛 (𝑋,𝑌 ) is the homotopy fiber of the map
Ω𝑛−1𝑌 → Ω𝑛−1𝑋 . More concretely, if D𝑛+ is the upper half-disk, then:
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5.4 Models for configuration spaces and their operadic structure 139

Ω𝑛 (𝑋,𝑌 ) B
{
𝛾 : D𝑛+ → 𝑋

�� 𝛾(D𝑛−1) ⊂ 𝑌 and 𝛾(𝜕D𝑛+ \ D𝑛−1) = {∗}
}
. (5.69)

Example 5.90 For 𝑛 = 1, the space Ω1 (𝑋,𝑌 ) is the homotopy fiber of the inclusion
𝑌 → 𝑋 . It is given by path 𝛾 : [0, 1] → 𝑋 such that 𝛾(0) ∈ 𝑌 and 𝛾(1) = ∗.

The following proposition, which is in the spirit of Proposition 5.42, is rather
clear:

Proposition 5.91 Let ∗ ∈ 𝑌 ⊂ 𝑋 be any pair of pointed topological spaces. Then the
pair (Ω𝑛 (𝑋,𝑌 ),Ω𝑛𝑋) is an SC𝑛-algebra.

The recognition principle states that a kind of converse is true:

Theorem 5.92 (Hoefel, Livernet, and Stasheff [HLS16], Ducoulombier [Duc14],
Quesney [Que15], and Vieira [Vie20]) Let (𝑊, 𝑍) be an SC𝑛-algebra such that𝑊
and 𝑧 are path connected. Then the pair (𝑊, 𝑍) is weakly homotopy equivalent to
(Ω𝑛 (𝑋,𝑌 ),Ω𝑛𝑋) for some 𝑋,𝑌 .

Remark 5.93 The theorem is in fact more general than that, under some technical
assumptions on𝑊 and 𝑍 that we will not detail here.

The Swiss-Cheese operad encodes, in a precise sense, the action of a D𝑛-algebra
on a D𝑛−1-algebra. This notion was essential in, for example, deformation quantiza-
tion [Kon99]. To motivate this imprecise idea into which we will note delve further,
let us just mention the following result. Recall from Theorem 5.69 that an algebra over
the homology of the little 𝑛-disks operad, e𝑛 B 𝐻∗ (D𝑛), is an associative algebra for
𝑛 = 1, and a Poisson 𝑛-algebra for 𝑛 ≥ 2.

Theorem 5.94 (Voronov [Vor99]) Let 𝑛 ≥ 2 be an integer. An algebra over𝐻∗ (SC𝑛)
is a triple (𝐴, 𝐵, 𝑓 ) where 𝐴 is an e𝑛-algebra, 𝐵 is an e𝑛−1-algebra, and 𝑓 : 𝐴→ 𝐵

is a central morphism of unital algebras, where central means that [ 𝑓 (𝑎), 𝑏] = 0 for
all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 and the bracket is either the commutator (for 𝑛 ≥ 2) or part of
the Poisson structure (for 𝑛 ≥ 3).

However, there is the following theorem, which is in contrast with the little disks
operads:

Theorem 5.95 (Livernet [Liv15] and Willwacher [Wil17]) The Swiss-Cheese op-
erad SC𝑛 is not formal for any 𝑛.

The proof of Livernet [Liv15] proof uses operadic Massey products, a generaliza-
tion of the Massey products of Definition 2.29. The proof of Willwacher [Wil17] proof
reduces the non-formality of SC𝑛 to the non-formality of the obvious inclusion of
operads D𝑛−1 → D𝑛, which follows from results of Turchin and Willwacher [TW18]
and Fresse and Willwacher [FW20]. Note that in this theorem, the operation of arity
one, i.e. the 𝑓 in the description of Theorem 5.94 is used. To the author’s knowledge
(non)formality of SC𝑛 is open if the operation of arity one (which was absent from
Voronov’s original definition) is removed.
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140 5 Configuration spaces and operads

Any model of the Swiss-Cheese operad must thus have a nonzero differential.
Willwacher [Wil15] has found such a model, denoted SGraphs𝑛 and based on graph
complexes. Briefly, the component SGraphs𝑛 (𝑈,𝑉) is spanned by graphs with four
types of vertices: terrestrial external vertices (in bijection with𝑈), terrestrial internal
vertices (indistinguishable, of degrees 1 − 𝑛), aerial external vertices (in bijection
with 𝑉), and aerial internal vertices (indistinguishable, of degree −𝑛). In order to
distinguish them, we will draw terrestrial vertices as semicircles. The edges, which
are of degree 𝑛 − 1, are directed, and their source must be aerial. Finally, if 𝑛 = 2,
then the set of terrestrial vertices is ordered. One must also consider a quotient by
graphs containing only internal vertices (with a special case if 𝑛 = 2). The following
is an example of Swiss-Cheese-type graph:

𝑣1 𝑣2

𝑢1 𝑢2

∈ SGraphs𝑛 ({𝑢1, 𝑢2}, {𝑣1, 𝑣2}). (5.70)

The most difficult part of this model is the differential. In addition to the summand
which contracts edges between aerial vertices (at least one being internal), there are
two extra summands, which respectively contract a subgraph containing at most one
terrestrial external vertex, or contract everything outside of a subgraph containing
all external vertices. The coefficients of these summands are numbers given by
integrals which are in general difficult to compute. For 𝑛 = 2, these coefficients are
analogous to the ones appearing in Kontsevich’s deformation quantization of Poisson
manifolds [Kon03].

Now, let (𝑀, 𝜕𝑀) be a manifold with boundary. Instead of plain configuration
spaces, we are going to considered two-colored configuration of points in 𝑀 , where
some points (called terrestrial, indexed by 𝑈) belong to the boundary, and some
points (called aerial, indexed by 𝑉) belong to the interior of 𝑀 . Of course, as a mere
topological space, this is simply the product Conf𝜕𝑀 (𝑈) × Conf𝑀̊ (𝑉). However,
the collection of all these configuration spaces is endowed with a richer algebraic
structure. One can build compactifications SFM𝑀 (𝑈,𝑉) of these configuration spaces
in the spirit of the previous sections. If 𝑀 and 𝜕𝑀 are framed and 𝑇𝑀 |𝜕𝑀 splits as
𝑇𝜕𝑀 ⊕ 𝜈𝜕𝑀 ⊂𝑀 , then the collection SFM𝑀 is endowed with the structure of a right
module over an operad weakly equivalent to SC𝑛. We arrive at the following result:

Theorem 5.96 ([CILW18]) Let 𝑀 be a framed compact manifold with framed
boundary such that 𝑇𝑀 |𝜕𝑀 splits. Then we have a real model for SFM𝑀 based on
graph complexes which is a right Hopf comodule over Willwacher’s SGraphs𝑛. If
both 𝑀 and 𝜕𝑀 are simply connected and dim𝑀 ≥ 5, then this model only depends
on the real homotopy type of the inclusion 𝜕𝑀 ↩→ 𝑀 .

Remark 5.97 In dimension 3, the only possible manifold is the 3-disk up to diffeomor-
phism thanks to the Poincaré conjecture Perelman [Per02; Per03], Morgan and Tian
[MT07], and Kleiner and Lott [KL08]. Real homotopy invariance thus holds vacuously

This is a preprint of the following work: Najib Idrissi, Real Homotopy of Configuration Spaces: Peccot Lecture, Collège de France, March & May 2020, 2022, Springer, 

reproduced with permission of Springer Nature Switzerland AG. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-04428-1  



5.5 Example of calculation 141

in that dimension. In dimension 4, there is only one manifold up to homeomorphism
by a result of Freedman [Fre82], so the real homotopy invariance also holds vacuously
for the spaces (and in fact without even the assumption on the connectivity of 𝜕𝑀
thanks to Corollary 4.50). However, the action of the Swiss-Cheese operad depends
on the smooth structure, and there exist exotic R4. We do not know if real homotopy
invariance of the module holds in dimension 4.

Remark 5.98 There are higher-codimensional variants of the Swiss-Cheese operad.
Given some fixed integers 𝑚 < 𝑛, one can define a variant using unit disks D𝑛 ⊂ D𝑛
of two kinds: terrestrial disks, which are centered on D𝑚 ⊂ D𝑛, and aerial disks,
which, depending on the variant, are either arbitrary [Wil17] or forbidden from
touching D𝑚 [Idr20]. Both variants are formal as soon as 𝑚 ≤ 𝑛 − 2. This formality
is related to the formality of the inclusion of operads D𝑚 → D𝑛.

5.5 Example of calculation

Let us conclude with an example of calculation of factorization homology (see
Section 5.1 for motivation).

We start by giving a more precise definition of factorization homology. We have
defined in Remark 5.11 the composition product P ◦ Q of two symmetric collections
P and Q. Let 𝑀 be a parallelizable closed manifold. The collection FM𝑛 is then a
monoid for the product ◦ (Remark 5.11), and the collection FM𝑀 is a right module
on this monoid (Remark 5.33). So we have two structure maps:

𝜌𝑀 : FM𝑀 ◦ FM𝑛 → FM𝑀 , 𝜆𝐴 : FM𝑛 ◦ 𝐴→ 𝐴. (5.71)

Using these two structure maps, one can form the tensor product FM𝑀 ◦FM𝑛 𝐴, as
defined in Proposition 5.37. This tensor product can be seen as the coequalizer of
two different morphisms FM𝑀 ◦ FM𝑛 ◦ 𝐴 ⇒ FM𝑀 ◦ 𝐴, one given by applying 𝜌𝑀 ,
the other given by applying 𝜆𝐴. Combining results from Salvatore [Sal01], Francis
[Fra13], and Turchin [Tur13], we obtain the following definition:

Definition 5.99 Let 𝑀 be a closed framed manifold and 𝐴 be an FM𝑛-algebra. The
factorization homology of 𝑀 with coefficients in 𝐴 is the topological space given by
the homotopy coequalizer:∫

𝑀

𝐴 B hocoeq
(
FM𝑀 ◦ FM𝑛 ◦ 𝐴 FM𝑀 ◦ 𝐴

𝜌𝑀◦id𝐴

idFM𝑀 ◦𝜆𝐴

)
. (5.72)

Remark 5.100 The right module FM𝑀 is cofibrant [Tur13, Lemma 2.3]. This property
allows us to know that the homotopy coequalizer of the Definition 5.99 is weakly
equivalent to the strict coequalizer, i.e. FM𝑀 ◦FM𝑛 𝐴. It is this strict coequalizer that
we describe below. With other models, however, it is important to ensure that one
works with homotopically correct definitions.
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142 5 Configuration spaces and operads

Remark 5.101 As we mentioned in Remark 5.1, Goodwillie–Weiss embedding cal-
culus is adjoint to this definition of factorization homology. If 𝑀 and 𝑁 are closed
framed manifolds such that dim 𝑁 −dim𝑀 ≥ 3, then Embfr (𝑀, 𝑁) has the homotopy
type of the derived mapping space RMapFMdim𝑀

(FM𝑀 , FM𝑁 ). This result, just like
the definition of factorization homology, can be extended to non-framed manifold by
considering framed versions of configuration spaces (see Definition 5.53).

Let us now describe
∫
𝑀
𝐴 more concretely. This space is a quotient of the space

FM𝑀 ◦ 𝐴. The points of FM𝑀 ◦ 𝐴 are of the type 𝑥(𝑎𝑖)𝑖∈𝑈 , where 𝑈 is a set,
𝑥 ∈ FM𝑀 (𝑈) is a virtual configuration in 𝑀 and the 𝑎𝑖 ∈ 𝐴 are elements of 𝐴.
The quotient is obtained by modding out by the relation generated by the following
identifications.

• First, if 𝜎 : 𝑈 → 𝑉 is a bijection, we have an identification:

(𝑥 · 𝜎) (𝑎𝑖)𝑖∈𝑈 = 𝑥(𝑎𝜎 (𝑖) )𝑖∈𝑈 . (5.73)

This essentially allows us to see the points of FM𝑀 ◦FM𝑛 𝐴 as unordered
configurations decorated with elements of 𝐴.

• Second, we have another identification, which uses the algebra structure of
𝐴 and the right module structure of FM𝑀 . For a configuration 𝑥 ∈ FM𝑀 (𝑈),
configurations 𝑦𝑖 ∈ FM𝑛 (𝑉𝑖) (for 𝑖 ∈ 𝑈) and elements 𝑎𝑖, 𝑗 ∈ 𝐴 for 𝑖 ∈ 𝑈 and
𝑗 ∈ 𝑉𝑖 , we have the identification:

(𝛾(𝑥; 𝑦𝑖)) (𝑎𝑖, 𝑗 )𝑖∈𝑈, 𝑗∈𝑉𝑖 = 𝑥
(
𝑦𝑖 (𝑎𝑖, 𝑗 ) 𝑗∈𝑉𝑖

)
𝑖∈𝑈 . (5.74)

Graphically, this means that if points are infinitesimally close in 𝑀, then we
identify the decorated configuration with the configuration obtained by replacing
these infinitesimally close points by a single point decorated by the action of the
infinitesimally decorated configuration (which lives in FM𝑛) on the corresponding
elements of 𝐴. Two examples are given on Figure 5.12.

As a set, we can thus identify
∫
𝑀
𝐴 with

⋃
𝑘≥0 Conf𝑀 (𝑘) ×Σ𝑘 𝐴𝑘 . The topology

of the space
∫
𝑀
𝐴, however, is more complicated than a simple disjoint union, as we

can see in the following example.

Example 5.102 Take 𝑀 = S1 and let 𝑥0 ∈ S1 be some base point. Let 𝐴 be an
associative algebra and 𝑎, 𝑏 ∈ 𝐴 two elements. The algebra 𝐴 becomes an algebra
on FM1 thanks to the quotient map FM1

∼
↩−→ Ass = 𝜋0FM1. We can thus consider

the space
∫
S1 𝐴. In that space, there is a path between (𝑥0) (𝑎𝑏) ∈ Conf𝑀 (1) × 𝐴

and (𝑥0) (𝑏𝑎) ∈ Conf𝑀 (1) × 𝐴 which passes through ConfS1 (2) ×Σ2 𝐴
2. This path is

represented in Figure 5.12.
The existence of this path is not by chance. It is known that𝐻∗ (

∫
S1 𝐴) is isomorphic

to the Hochschild homology of 𝐴, which can be defined as follows. The vector space
𝐴 admits two actions of the algebra 𝐴, either on the left or on the right. This makes
𝐴 into an (𝐴 ⊗ 𝐴op)-bimodule. The Hochschild homology 𝐻𝐻∗ (𝐴) is then given
by Tor𝐴⊗𝐴op

∗ (𝐴, 𝐴). Seen differently, it is the homology of the complex given by the
derived tensor product 𝐴 ⊗L

𝐴⊗𝐴op 𝐴.
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𝑎𝑏

=

𝑎 𝑏

{

𝑎

𝑏 {

𝑎

𝑏

{

𝑎

𝑏 {

𝑏 𝑎

=

𝑏𝑎

Fig. 5.12 Path in
∫
S1 𝐴, where 𝑎, 𝑏 ∈ 𝐴.

We can easily show that𝐻∗ (
∫
S1 𝐴) ' 𝐻𝐻∗ (𝐴). Indeed, the circle S1 decomposes as

the union𝑈 ∪𝑊×R𝑉 , où𝑈 � 𝑉 � 𝐷1 are two semicircles and𝑊 = 𝑈 ∩𝑉 � S0 ×𝐷1

is the equator (where the two points have opposite orientations). We know that∫
𝐷1 𝐴 ' 𝐴 and that

∫
S0×R 𝐴 '

∫
R
𝐴 ⊗

∫
R̄
𝐴 ' 𝐴 ⊗ 𝐴op. The decomposition formula

of the factorization homology allows us to determine that:∫
S1
𝐴 '

∫
𝑈

𝐴 ⊗L𝑊×R
∫
𝑉

𝐴 ' 𝐴 ⊗L𝐴⊗𝐴op 𝐴.

Calculating the derived tensor product 𝐴 ⊗L
𝐴⊗𝐴op 𝐴 is, so to speak, to identify to up

to homotopy the left action and the right action of 𝐴 on itself. This gives, in degree
zero, the identification between the classes [𝑎𝑏 ⊗ 1] and [𝑏𝑎 ⊗ 1] for 𝑎, 𝑏 ∈ 𝐴. But
this identification is non-trivial and can give rise to non-trivial elements in higher
degree, which is reflected by the existence of non-trivial paths (as above) in

∫
S1 𝐴.

Remark 5.103 If 𝐴 is a commutative algebra (or, more generally, a D∞-algebra
where D∞ = colim𝑛 D𝑛), then it is in particular a D𝑛 algebra using the terminal
morphism D𝑛 → Com (or the canonical inclusion D𝑛 ⊂ D∞). We can thus compute
the factorization homology

∫
𝑀
𝐴 on any parallelized manifold 𝑀 . This factorization

homology is then in fact given by the higher Hochschild homology of 𝑀 with
coefficients in 𝐴 defined Pirashvili [Pir00]. We refer to Lurie [Lur17, Theorem 5.5.3.8]
or Ginot, Tradler, and Zeinalian [GTZ14, Theorem 5] for precise statements.

Let us now move on to a concrete computation using the results obtained in these
notes. Let 𝑀 be a parallelized smooth closed manifold. Let us choose a Poincaré
duality model of 𝑀, which we will denote by 𝑃 to distinguish it from the algebra
𝐴 above. Then we know that the collection G𝑃 formed by the Lambrechts–Stanley
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144 5 Configuration spaces and operads

models of 𝑀 is a model for FM𝑀 as a right module over the operad FM𝑛. In particular,
the pair (G∨

𝑃
, e𝑛) (formed by the dual of G𝑃 and the operad e𝑛, see Theorem 5.69) is

quasi-isomorphic to the pair (𝐶∗ (FM𝑀 ), 𝐶(e𝑛)).
Now, let 𝐴 be an algebra on FM𝑛. Thanks to the Künneth morphism, the collection

of chains𝐶∗ (𝐴) (with real coefficients) forms an algebra over the dg-operad𝐶∗ (FM𝑛).
The formality of FM𝑛 means that the operads𝐶∗ (FM𝑛) and e𝑛 = 𝐻∗ (FM𝑛) are weakly
equivalent. Using general theorems about operads, their categories of algebras thus
have the same homotopy categories. This means that the quasi-isomorphism class
of 𝐶∗ (𝐴) corresponds to a single quasi-isomorphism class of e𝑛-algebras. Denote
this class [ 𝐴̃], where 𝐴̃ is a representative e𝑛-algebra. The fact that the chain functor
commutes with colimits implies that:

𝐶∗
(∫
𝑀

𝐴

)
� 𝐶∗ (FM𝑀 ) ◦𝐶∗ (FM𝑛) 𝐶∗ (𝐴) ' G∨𝑃 ◦Le𝑛 𝐴̃. (5.75)

This new complex, G∨
𝑃
◦e𝑛 𝐴̃, is the homotopy coequalizer of the two maps

G∨
𝑃
◦ e𝑛 ◦ 𝐴̃ ⇒ G∨

𝑃
◦ 𝐴̃ defined respectively using the right action of e𝑛 on G∨

𝑃
, and

the left action of e𝑛 on 𝐴̃. One can explicitly describe G∨
𝑃

as a right module over e𝑛
by dualizing the description of Proposition 5.78. This new complex is therefore much
simpler to compute than 𝐶∗

(∫
𝑀
𝐴

)
.

Let us compute it now in a simple case to recover a theorem of Knudsen [Knu17,
Theorem 3.16]. Let 𝔤 be a dg-Lie algebra. The free commutative graded algebra on
its desuspension,

𝐴̃ B 𝑆
(
𝔤[1 − 𝑛]

)
, (5.76)

is an e𝑛-algebra, i.e. a shifted Poisson algebra (see Theorem 5.69). The commutative
product is simply the product of the free symmetric algebra. The shifted Lie bracket
is extended from that of 𝔤[1 − 𝑛] as a biderivation, i.e. we use the following relations:

[𝑎, 𝑏𝑐] = [𝑎, 𝑏]𝑐 + (−1) |𝑏 | · |𝑎 |𝑏[𝑎, 𝑐],
[𝑎𝑏, 𝑐] = 𝑎[𝑏, 𝑐] + (−1) |𝑏 | · |𝑐 | [𝑎, 𝑐]𝑏.

(5.77)

This e𝑛-algebra is a “strict” version of the universal enveloping 𝑛-algebra defined
by Knudsen [Knu18b]. Indeed, we have an inclusion of operads 𝜄𝑛 : Lie𝑛 → e𝑛,
where Lie𝑛 is the operad whose algebras are Lie algebras with a bracket of degree
1 − 𝑛. Given a Lie algebra 𝔤, the algebra 𝐴̃ = 𝑆(𝔤[1 − 𝑛]) is obtained by applying the
extension functor (𝜄𝑛)∗ = e𝑛 ◦Lie𝑛 − to 𝔤[1−𝑛]. This is the higher dimensional analog
of the extension functor associated with the morphism 𝜄 : Lie = Lie1 → Ass = e1
(which sends the bracket to the commutator). This extension functor 𝜄! = Ass ◦Lie −
sends a Lie algebra 𝔤 on its universal enveloping algebra 𝜄! (𝔤) = 𝑈 (𝔤).

We can now explicitly compute G∨
𝑃
◦e𝑛 𝐴̃. Let us begin by noting that 𝑃−∗, the

chain complex obtained by reversing the graduation of 𝑃, is a commutative graded
algebra in the category of chain complexes. The tensor product 𝑃−∗ ⊗ 𝔤 is thus a
dg-Lie algebra by setting [𝑎 ⊗ 𝑥, 𝑏 ⊗ 𝑦] = (−1) |𝑏 | · |𝑥 |𝑎𝑏 ⊗ [𝑥, 𝑦].
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Definition 5.104 Let 𝔥 be a dg-Lie Its Chevalley–Eilenberg complex𝐶𝐶𝐸∗ (𝔥) is given
as a graded vector space by the free commutative graded algebra 𝑆(𝔥[−1]) on the
suspension of 𝔥. The differential 𝑑𝔥 + 𝑑𝐶𝐸 is the sum of the differential of 𝔥 (extended
as a derivation) and the Chevalley–Eilenberg differential, defined by:

𝑑 (𝑥1 ⊗ · · · ⊗ 𝑥𝑛) =
∑︁
𝑖< 𝑗

±𝑥1 ⊗ · · · ⊗ 𝑥𝑖−1 ⊗ [𝑥𝑖 , 𝑥 𝑗 ] ⊗ 𝑥𝑖+1 ⊗ · · · ⊗ 𝑥 𝑗 ⊗ · · · ⊗ 𝑥𝑛. (5.78)

Remark 5.105 The Chevalley–Eilenberg complex (introduced by Chevalley and
Eilenberg [CE48]) can be used to define Lie algebra homology and cohomology
(by considering the dual complex). If 𝔥 is the Lie algebra of a Lie group 𝐻, then
its Lie cohomology is isomorphic to the de Rham cohomology of 𝐻. A continuous
variant of the dual of the Chevalley–Eilenberg cochains complex is used to define
Gelfand–Fuks cohomology (see Example 2.9).

Proposition 5.106 ([Idr19, Proposition 81]) Let 𝔤 be a dg-Lie algebra, and let 𝑃 be
a Poincaré duality algebra of dimension 𝑛 > 1. Let 𝐴̃ = 𝑆(𝔤[1 − 𝑛]) be e𝑛-algebra
associated to 𝔤. The complex G∨

𝑃
◦Le𝑛 𝐴̃ is quasi-isomorphic to the Chevalley–Eilenberg

complex of 𝑃−∗ ⊗ 𝔤:
G∨𝑃 ◦Le𝑛 𝐴̃ ' 𝐶

𝐶𝐸
∗ (𝑃−∗ ⊗ 𝔤). (5.79)

Proof (Sketch) Let us start by noting that the collection G∨
𝑃

forms a right e𝑛-module.
By restricting the structure along the inclusion Lie𝑛 ⊂ e𝑛, it thus forms a right
Lie𝑛-module.

We can define a Lie algebra in the category of right Lie𝑛-modules by:

𝐿𝑛 B Lie[1 − 𝑛] = {Lie(𝑘) [1 − 𝑛]}𝑘≥0. (5.80)

Since 𝑃−∗ is a graded commutative algebra, the tensor product 𝑃−∗ ⊗ 𝐿𝑛 = {𝑃−∗ ⊗
𝐿𝑛 (𝑟)}𝑟 ≥0 remains a Lie algebra in the category of right Lie𝑛-modules. The proof
is identical to the classical analogous result in the category of vector spaces. The
Lie bracket is given by the formula [𝑎 ⊗ 𝑥, 𝑏 ⊗ 𝑦] = ±𝑎𝑏 ⊗ [𝑥, 𝑦] where 𝑎, 𝑏 ∈ 𝑃−∗,
𝑥 ∈ 𝐿𝑛 (𝑟), 𝑦 ∈ 𝐿𝑛 (𝑠). We can thus define the Chevalley–Eilenberg complex
𝐶𝐶𝐸∗ (𝑃−∗ ∈ 𝐿𝑛) in a way analogous to Definition 5.104.

The proof of the proposition is now very similar to that of a theorem from
Félix and Thomas [FT04, Section 2]. Their result is that the spectral sequences
of Bendersky–Gitler and Cohen–Taylor were dual of each other (see the end of
Section 3.1). The Cohen–Taylor spectral sequence is the analogue of G𝑃 , while
the Bendersky–Gitler spectral sequence is the analogue of the Chevalley–Eilenberg
complex. By reinterpreting Felix and Thomas’ proof and reusing their arguments, we
can show that G∨

𝑃
is isomorphic, as a right Lie𝑛-module, to 𝐶𝐶𝐸∗ (𝑃−∗ ⊗ 𝐿𝑛).

The relative composition product 𝐶𝐶𝐸∗ (𝑃−∗ ⊗ 𝐿𝑛) ◦Lie𝑛 𝔥 with a Lie𝑛 algebra 𝔥 is
isomorphic to 𝐶𝐶𝐸∗ (𝑃−∗ ⊗ 𝔥[1− 𝑛]. Using the fact that e𝑛 = Com ◦ Lie𝑛 decomposes
in terms of the operads Com and Lie𝑛 by a distributive law (cf. [LV12, Section 13.3]),
we obtain that:

G∨𝑃 ◦e𝑛 𝑆(𝔥[1 − 𝑛]) � G∨𝑃 ◦Lie𝑛 𝔥[1 − 𝑛] � 𝐶𝐶𝐸∗ (𝑃−∗ ⊗ 𝔥). (5.81)
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146 5 Configuration spaces and operads

To compute the derived composition product of the proposition, we need to
replace 𝔥 with a cofibrant resolution of 𝔤 in the above expression. However, the
Chevalley-Eilenberg complex preserves quasi-isomorphisms, so this does not change
the type of quasi-isomorphism. We thus obtain the desired result. �

Proposition 5.106 thus allows us to compute the chains of factorization homology
over a simply connected, parallelized, smooth closed manifold of dimension ≥ 4,
with coefficients in a universal enveloping 𝑛-algebra.

Remark 5.107 As the Ω∗
𝑃𝐴

functor sends the colimits to limits, we can also compute
the real homotopy type of

∫
𝑀
𝐴. The result is simply easier to state in the dual

framework.

In the previous proof, we described G∨
𝑃

as a right Lie𝑛-module. However, this
collection actually forms a module on e𝑛 = Com ◦ Lie𝑛. The right Com-module
structure has been described in [Idr18, Section 4.4] and we will recall it here. We only
need to describe the action of the generators: the unit 𝜂 ∈ Com(0) and the product
𝜇 ∈ Com(2).

To describe these actions, let us begin by noting that the isomorphism of Poincaré
duality, 𝑃∨ � 𝑃𝑛−∗, induces on 𝑃𝑛−∗ and a cocommutative product Δ : 𝑃𝑛−∗ →
(𝑃𝑛−∗)⊗2 which is dual to the product of 𝑃. The augmentation 𝜀 : 𝑃𝑛−∗ → R is dual
to the unit of 𝑃 with this point of view.

Example 5.108 Let 𝑃 = 𝐻∗ (S2 × S2) = 𝑆(𝑎2, 𝑏2)/(𝑎2, 𝑏2) and let 𝑎𝑏 = 𝜐 with
𝜀(𝜐) = 1. Then Δ(1) = 𝜐 ⊗ 1 + 1 ⊗ 𝜐 + 𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎, Δ(𝑎) = 𝑎 ⊗ 𝜐 + 𝜐 ⊗ 𝑎 (similarly
for 𝑏) and Δ(𝜐) = 𝜐 ⊗ 𝜐.

Let 𝑈 be a set and 𝑈 =
⊔
𝑖∈𝐼 𝑉𝑖 a partition of 𝑈. For brevity, we will denote

by a dot (“·”) the tensor product in 𝑃 ⊗ Lie𝑛 (𝑉𝑖), to distinguish it from the other
tensor products. Let 𝑋 = (𝑎𝑖 · 𝜆𝑖)𝑖∈𝑈 ∈ G∨

𝑃
(𝑈) be an element, where 𝑎𝑖 ∈ 𝑃, and

𝜆𝑖 ∈ Lie𝑛 (𝑉𝑖). Let 𝑗 ∈ 𝑉𝑖 ⊂ 𝑈 be an index.

• If 𝜆𝑖 has at least one bracket (i.e. #𝑉𝑖 ≥ 2) then 𝑋 ◦ 𝑗 𝜂 = 0. Otherwise, we have
𝑉𝑖 = { 𝑗} and 𝜆𝑖 is a scalar multiple of the identity. In this case, in 𝑋 ◦ 𝑗 𝜂, the
factor corresponding to Lie𝑛 (𝑉𝑖) � R disappears, and we multiply the result by
𝜀(𝑎𝑖).

• The element 𝑋 ◦ 𝑗 𝜇 is obtained by inserting the product in position 𝑗 ∈ 𝑉𝑖 of
𝜆𝑖 ∈ Lie𝑛 (𝑉𝑖). Using the distributive law Lie𝑛 ◦Com→ Com◦Lie𝑛 which is used
to define the operadic structure of e𝑛, one thus obtains a sum of products of two
elements of Lie𝑛 which partition𝑉𝑖 into two subsets. We then apply the coproduct
Δ to the decoration 𝑎𝑖 to obtain an element of 𝑃 ⊗ 𝑃 which will decorate the two
subsets thus obtained.

Example 5.109 Consider the element 𝑋 = 𝑎 ·id(𝑢1)⊗𝑏 ·𝜆(𝑢2, 𝑢3) ∈ G∨
𝑃
({𝑢1, 𝑢2, 𝑢3}),

where 𝑎, 𝑏 ∈ 𝑃−∗, id(𝑢1) ∈ Lie𝑛 ({𝑢1}) is the identity, and 𝜆(𝑢2, 𝑢3) ∈ Lie𝑛 ({𝑢2, 𝑢3})
is the Lie bracket.

• We have 𝑋 ◦𝑢1 𝜂 = 𝜀(𝑎)𝑏 · 𝜆(𝑢2, 𝑢3) and 𝑋 ◦𝑢2 𝜂 = 𝑋 ◦𝑢3 𝑢 = 0.
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5.5 Example of calculation 147

• Let us use Sweedler’s notation for co-products: Δ(𝑎) = ∑
(𝑎) 𝑎

′ ⊗ 𝑎′′ ∈ (𝑃𝑛−∗)⊗2

and the same for Δ(𝑏). Let us write 𝜇 ∈ Com({𝑣1, 𝑣2}) for the product. Then we
see that:

𝑋 ◦𝑢1 𝜇 =
∑︁
(𝑎)

𝑎′ · id(𝑣1) ⊗ 𝑎′′ · id(𝑣2) ⊗ 𝑏 · 𝜆(𝑢2, 𝑢3),

𝑋 ◦𝑢2 𝜇 =
∑︁
(𝑏)
𝑎 · id(𝑢1) ⊗

(
𝑏′ · id(𝑣1) ⊗𝑏′′ ·𝜆(𝑣2, 𝑢3)±𝑏′ ·𝜆(𝑣1, 𝑢3) ⊗𝑏′′ · id(𝑣2)

)
,

and 𝑋 ◦𝑢3 𝜇 has a description similar to 𝑋 ◦𝑢2 𝜇.

Remark 5.110 In [Idr18], using the e𝑛-module structure above, we have extended the
calculation of the Proposition 5.78 to the case where 𝔤 is a “unitary” Lie algebra, i.e.
when it is equipped with an element 𝑐 satisfying [𝑐, 𝑥] = 0 for any 𝑥 ∈ 𝔤. The analog
of the universal enveloping 𝑛-algebra is then the quotient 𝑆(𝔤[1 − 𝑛])/(𝑐 = 1). We
find a result analogous to the one of Proposition 5.106.
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Symbols

𝑈/𝑊 50
Δ𝑛 21
M ◦Q 𝐴 118∫
𝑀
𝐴 141

𝜎𝐵 87
Δ𝐴 40
𝐸𝜕 51
𝑝𝑖 41
𝑝𝑖 𝑗 42
Ω∗PA (𝑋 ) 57
Ω∗PL (𝑋 ) 23
Ω∗min (𝑋 ) 56
Ω𝑛 22
𝛿𝑖 𝑗𝑘 46, 52
𝑓∗È𝑀É 55∫
Φ
𝜆 57

𝜆( 𝑓0; 𝑓1, . . . , 𝑓𝑘 ) 56
𝜔 (Γ) 64
𝜔′ (Γ) 64
𝜋0 (𝑋 ) 19
𝜋𝑛 (𝑋 ) 19
𝜋∗𝜔 58
𝜃𝑖 𝑗 46, 52

A

aFM𝑁 (𝑈 ) 89
aGC𝑅𝜕 97
aGraphs0

𝑅𝜕
(𝑈 ) 98

aGraphs𝑅𝜕 (𝑈 ) 94
algebra over an operad 114

algebra over a relative operad 137
free algebra 115

Ass 112

B

Boardman–Vogt construction 125

C

𝐶𝐶𝐸∗ (𝔥) 145
𝐶SA
∗ (𝑋 ) 55

CDGA 21
free CDGA 21
minimal CDGA 24
path CDGA 69
PLD (Poincaré–Lefschetz duality) pair 83
Poincaré duality CDGA 40

Chevalley–Eilenberg complex 145
Com 113
commutative differential graded algebra 21
configuration space 9

Conffr𝑀 (𝑟 ) 123
Conf𝑀 (𝑟 ) 9
Conf𝑀 (𝑈 ) 46
framed configuration space 123
generalized configuration space 14
unordered configuration space 10

current 55

D

Δ𝐾𝑃 87
Δ𝑃 87
diagonal class 40, 87
𝐷𝑘 (𝑋 ) 55
D𝑀 124
D′
𝑀

122
D𝑛 119
D𝑛+ 138
Drinfeld–Kohno Lie algebra 36
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E

𝐸𝑛 119
e𝑛 130
endomorphism operad 111, 112
End𝑋 111, 112
End𝑋,𝑌 117, 118
e∨𝑛 (𝑟 ) 28

F

factorization homology 141
fGC𝑅 67
fGC0

𝑅 71
fiberwise boundary 51
finite type space 20
FM𝑀 (𝑈 ) 52
FM𝑛 (𝑈 ) 47
𝜕𝑊 FM𝑛 (𝑈 ) 49
formal operad 131
formal space 33
forms

minimal forms 56
PA (piecewise semi-algebraic) forms 57
piecewise polynomial forms 23
polynomial forms on the simplex 22

frame bundle 122
Fr𝑀 122
Fulton–MacPherson compactification 47, 52,

89

G

𝐸0𝐺𝐴 〈𝑈 〉 74
G𝐴 (𝑟 ) 42
GC𝑅 67
G𝑃 (𝑈 ) 101
Graphs0

𝐴
(𝑈 ) 73

𝐸0Graphs0
𝐴
〈𝑈 〉 74

Graphs𝑛 (𝑟 ) 132
Graphs𝑅 (𝑈 ) 68
Graphs′𝑅 (𝑈 ) 61
group-like D𝑛-algebra 121
G̃𝑃 (𝑈 ) 105

H

Hochschild homology 142
hoker 82
homotopy 15, 70
homotopy equivalence 15

rational homotopy equivalence 20
real homotopy equivalence 26
weak homotopy equivalence 19

homotopy group 19
homotopy type 15

rational homotopy type 20
homotoyp kernel 82
Hopf comodule

right Hopf comodule 134
Hopf cooperad 129

I

infinitesimally close 49

K

Kähler manifold 34

L

Lambrechts–Stanley model 42, 101
perturbed Lambrechts–Stanley model 105

lens space 17
Lie 115
Lie algebra 25
little disks operad 119
loop space 119

M

Massey product 18
Maurer–Cartan element 68
MC(𝔤) 68
mFM𝑀 (𝑈 ) 89
mGC𝑅 98
mGraphs0

𝑅
(𝑈 ) 99

mGraphs𝑅 (𝑈 ) 95
model 23

minimal model 24
PLD (Poincaré–Lefschetz duality) model

84
Poincaré duality model 40
rational model 23
real model 27
real model of a Hopf comodule 134
real model of an operad 130

module over an operad
bimodule 118
left module 116
right module 117

morphism of algebras over an operad 114

O

operad 112
relative operad 136
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P

partition function 68, 95, 96
trivial partition function 69, 97, 99

Pois𝑛 130
Poisson algebra 129
propagator 63, 93, 94

Q

quasi-free 24
quasi-isomorphism 21

R

recognition principle 121

S

SA (semi-algebraic)
SA chain 55
SA fiber bundle 54
SA manifold 54
SA map 54
SA set 54

SC𝑛 138
section 87

SFM𝑀 140
SGraphs𝑛 140
simplex 21
simply connected space 19
S𝑛 16
stratification 55
strongly continuous family of chains 56
𝑆 (𝑉 ) 21
Swiss-Cheese operad 138
symmetric sequence 112

T

tensor product of right modules 136

W

𝑊 96
𝑤 95
𝑊0 99
𝑤0 97
Whitehead product 25

Z

𝑧 68
𝑧0 69
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