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Bubbles and droplets are ubiquitous in many areas of engineering, including microfluidics where
they can serve as microreactors for screening of chemical reactions. They are often formed out of a
constriction (a microfluidic channel or a cylindrical tube) by blowing a given volume of gas into a
liquid phase. It is obviously crucial to be able to control their size, which is not always easy due to
the coupling between the volume of the bubble and the gas pressure induced by the Laplace law. In
this paper, we examine the size and formation dynamics of soap bubbles blown from a cylindrical
tube, which is the paradigm geometry for bubble and droplet formation. To do so, one end of the
tube is closed by a soap film, while the other end is connected to a large reservoir of variable volume
filled with gas. To inflate the gas in the bubble, we reduce the volume of the reservoir, which mimics
air inflation through the lung diaphragm or the flow-rate driven bubble formation in microfluidics
geometry such as flow-focusing. As the volume of the reservoir decreases, the gas pressure increases,
the soap film curves and takes the form of a spherical cap with an increasingly smaller radius of
curvature. This quasi-static process continues until a critical pressure is reached for which the bubble
is quasi-hemispherical. Beyond this pressure, the film undergoes a rapid topological transformation
and swells very rapidly (in less than a hundred ms) until it reaches its final volume. We describe this
instability in particular by showing that this unstable regime appears when a dimensionless number
- whose expression we specify - reaches a critical value. Using a quasi-static model that we solve
analytically, we predict the bubble growth dynamics and the final height of the bubble produced for
any reservoir volume and constriction size.

I. INTRODUCTION

Among the successes of microfluidics is the possibility
of forming large assemblies of drops or bubbles almost
identical at high throughput (of the order of 100 Hz)
[1–3]. These entities, dispersed in a continuous liquid
phase and used as microreactors containing active ingre-
dients at a concentration changing from drop to drop,
allows analysis and screening of chemical reactions with
unprecedented throughput [4–7]. Bubbles and drops are
also found in other fields of engineering where they are
generally dispersed in a continuous liquid phase, them-
selves then being qualified as the dispersed phase (fire-
fighting foam or sparkling drinks [8]). There are many
methods to make monodisperse bubbles or drops such as
shearing crude emulsion to split it into droplets[9, 10] or
blowing on an interface [11–13]. One commonly used in
microfluidics and called flow-focusing consists in form-
ing bubbles (or drops) by deforming an air/liquid inter-
face placed at the end of a tube (of square, rectangular
or circular section) from a reservoir whose pressure in-
creases [1]. In the dripping regime, three distinct steps
can be identified: (1) a phase of quasi-static deforma-
tion of the interface fixed to the end of the tube which,
by bending, changes from a flat geometry to that of a
quasi-hemispherical cap with a radius equal to that of
the tube. (2) a rapid growth (generally in less than 100
milliseconds) of this hemisphere until reaching a final al-
most spherical shape of radius much greater than that of
the tube. (3) Finally, pinch-off regime with detachment
of the bubble from the constriction [14, 15]. Depending
on the geometry of the system used, gravity or viscous

friction forces produce the work necessary to stretch the
neck separating the spherical bubble to the point of spon-
taneous rupture driven by capillary forces[16, 17]. When
nothing disturbs the bubble, it remains attached to the
end of the constriction or tube, as beautifully illustrated
in the magnificent paintings ”Les bulles de savon” of J.S.
Chardin, E. Manet or J. Bail [18].

To obtain the most peaked bubble size distribution,
the time of the pinch-off regime (3), which is intrinsically
variable as a result of hydrodynamic instability, must be
much shorter than the time of growth regimes (1) and
(2). Thus, the pinching dynamics of fluid necks have
been studied with great care, revealing the importance of
convection [14, 19], swirl [20], confinement [21], presence
of surfactants or not [22]. On the contrary, the dynamics
of phases (1) and (2) have been much less explored, the
implicit hypothesis being that the duration of this phase
is controlled by the flow rate of the dispersed phase and
the volume of the bubble at the threshold of breakup.
However, what sets this flow rate is not always obvious.
For pressure-driven flow of the dispersed phase, nonlin-
ear variations of the gas flow rate, induced by hydrody-
namic feedback in the outlet channel have been reported
in several studies [23–25]. For flow-rate driven flow, this
difficulty should not exist, yet we reveal in this work that
the compliance of the system - which arises here from the
gas compressibility - induces a mechanical coupling be-
tween the deformation of the interface at the constriction
and the pressure in the gas reservoir. This coupling can
induce large fluctuations in the flow rate that lead to un-
stable bubble formation modes. We therefore study the
first steps of bubble growth at an imposed flow rate in a
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FIG. 1. Experimental setup: the bubble of radius of curvature
R and height h is connected to a large reservoir of volume V
constituted by the volume of the two syringes, V1 and V2,
the dead volume of the connectors Vd and the volume of the
spherical cap, Ω, of the bubble. The volume V1 is decreased
at a flow rate Q thanks to a syringe pump.

geometry reminiscent of the one used by children when
they blow a bubble from a tube. By comparing experi-
mental results with an analytical model, we predict the
final bubble volume. In particular, we show that the ini-
tial volume of the reservoir comprising the gas - usually
not considered - is a key parameter of this process.

II. EXPERIMENT

The soap film is made of a mixture of Sodium Do-
decyl Sulfate (SDS) at a concentration of 24 mmol/L,
which is 3 times larger than the CMC, 20% of glycer-
ine and deionized water. The solution is used at least 3
days after it has been made to ensure that the hydroly-
sis of SDS into dodecanol is achieved[26]. The liquid/air
surface tension, γ, is measured prior to any experiment
using the pendant drop technique[27] and we systemati-
cally found γ = 23± 2 mN/m. The soap film is deposed
at the extremity of a needle - tube in the following - of ex-
ternal radius, a, ranging between 0.3 and 0.83 mm. The
other extremity of the tube is connected to a reservoir
composed of two syringes of volumes V1 and V2 (see Fig.
1). The total volume of the reservoir V - which includes
V1, V2, Vd the dead volume of the valve and the tube
and Ω the volume comprised between the film and the
outlet of the tube - varies between 1 and 50 mL. A first
syringe, connected to a syringe pump (KdScientific), is
used to reduce the volume of the reservoir at a flow rate
−dV1/dt = Q, with Q equal to 1 or 2 µL/s. A second
syringe serves to change the initial total volume of the
reservoir V (t = 0) = V0. The deformation of the soap
film is monitored by a camera Marlin from Allied Vision.

At t = 0, the syringe pump and the camera are trig-
gered simultaneously (the error associated with this man-
ual triggering is estimated at less than one second). The
reduction of the volume of the reservoir increases the
pressure and bends the soap film. The liquid film is
much softer than the rest of the elements containing the

FIG. 2. These two image sequences shows two bubbles swelled
from reservoirs of identical volume V0 = 10 mL. In a) a = 0.3
mm and in b) a = 0.83 mm. The thumbnails are separated
by 5 ms except for the first ones that display the tube before
the beginning of the soap films’ compression. In a way to
superposed the two swellings Q = 2 µL/s in a) and Q = 1
µL/s in b).

compressed gas (syringe tube and connectors), then we
assume that only the film is deformable. To avoid prema-
ture rupture of the soap film, a transparent plastic box is
placed around the bubble to limit its evaporation. This
allows an easy observation of stable bubbles for several
minutes. We made sure that this plastic box is not com-
pletely airtight so that the external pressure around the
bubble is the atmospheric pressure.

III. EXPERIMENTAL RESULTS

In our experiments, we have observed that it exist two
clearly different regimes for a bubble to swell, a quasi-
static one and a second highly dynamic. Those two
regimes are illustrated in Fig. 2.a) and b). In both cases
V0 is identical while a is 2.8 times bigger in b) than in
a). The bubble in Fig. 2.b), swelled from a large tube,
continuously inflates step by step while the swelling of
the bubble in Fig. 2.a) is unstable and takes place in
less than 5 ms. To go further, we report in Fig. 3 the
evolution of h, the height of the bubble, defined in Fig.1,
as a function of time, t, at same flow rate and radius but
for different V0. As we can see, we can make a distinc-
tion between two regimes, a first for V0 < 10 mL where
the growth of the bubble is continuous and a second for
V0 ≥ 10 mL, where the swelling is unstable. In this sec-
ond regime, the curves are S-shaped with a near-vertical
zone meaning that the height of the bubble, h, changes
from one to several millimeters in less than 5 ms.
The non-monotonic evolution of the radius of curva-

ture, R, of the soap film is a crucial point to explain the
distinction of regime observed in experiment. This radius
is both constrained by a, the radius of the tube, and the
evolution of the pressure, P , which follows the Laplace’s
law P = P0 + 4γ/R, where the factor 4 arises from the
presence of two liquid/air interfaces.
At first, the pressure in the reservoir is identical to the

atmospheric pressure and the film is flat, thus R → ∞.
When the volume of the reservoir decreases due to the
push syringe action, the pressure increases. Then, the
soap film bends, R decreases and Laplace-over pressure
increase in agreement. However, due to geometrical con-
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FIG. 3. Bubble’s height, h as a function of time, t for a = 0.83
mm, Q = 2 µL/s and different V0. For V0 = 42, 30 and 20 mL,
the bubbles inflate very rapidly while for V0 = 1 and 10 mL,
the bubbles inflate continuously. For each curve, the time
origin is adjusted so that the data collapses at long times.
The recording of the different curves is stopped just before
the explosion of the bubbles.

straint, R cannot reach a value smaller than a which
correspond to a maximal pressure P ∗ = P0 + 4γ/a. At
this point any compression of the volume by the push
syringe triggers a second step of the film dynamic. The
compression of the reservoir by the push syringe can not
be balance with an increase of the pressure because R is
now increasing with the bubble bending. The bubble is
in a non-equilibrium state in which compressed air has
been store in the reservoir. To recover an equilibrium
state, the bubble as to inflate until that the decompres-
sion of the stored air is done. This event has a very short
characteristic time fully separate from the push syringe
speed and an amplitude dependant of the quantity of
compressed air stored. After, any further compression
from the syringe pump is compensated by an increase of
the bubble size.

IV. MODEL

To understand these results, we write simple thermo-
dynamic arguments stemming from the conservation of
n, the number of gas moles in the reservoir. This is valid
if the whole system is gas tight, hence if the rate of mole
transfer dn/dt due to the permeability k of the soap film
is negligible. From Fick’s law, dn/dt = −kA∆C, where
k is the soap film permeability, A ≈ 4πR2 the area of the
bubble and ∆C the difference of gas concentration be-
tween the reservoir and the atmosphere surrounding the
bubble. Using R ∼1 mm, k ∼ 1 mm/s, a typical value
from literature for SDS surfactants without salts [28, 29],
and ∆C = 4γ/(RRuT0), where Ru = 8.31 J/mol/K is
the universal gas constant and T0 = 298 K the room

temperature, we find dn/dt ∼ 2 10−10 mol/s. As the
bubble typically forms in 100 s, the variation of moles
in the bubble due to the permeability of the soap film
is δn ∼ 2 10−8 mol. This is very small when compared
to n0 = P0V0/(RuT0) ≈ 1.210−3 mol, thus we assume
the system to be air tight and consider n to be constant.
Writing the conservation of n for an isothermal transfor-
mation, yields:

1 = (1 +
4γ

P0R
)(1 +

Ω

V0
− Qt

V0
) (1)

Where Ω is the volume of the spherical cap above the
tube of radius a. Since R > a, with a ranging between
0.3 and 0.83 mm, 4γ

RP0
< 4γ

aP0
<< 1, we make a Taylor

expansion of Eq. 1 and express the geometrical quantities
Ω and R as a function of h, the height of the spherical
cap (see Fig. 1), using the geometrical relations 2hR =

h2 + a2 and Ω = πh/2(a2 + h2

3 ). We also introduce the

dimensionless parameters x = h/a, τ =
2Qt

πa3
, so that Eq.

1 finally writes:

τ = x

(
1 +

x2

3

)
+

Bx

x2 + 1
(2)

With B =
16γV0

πa4P0
. The numerical resolution of Eq.

2 is plotted in figure 4 for various values of B. Two
types of bubble growth are observed: for small values
of B, x increases as τ increases and the bubble forma-
tion is monotonic and proceeds continuously. This is in
agreement with the observations of Fig. 2 and 3, which
revealed continuous bubble formation for large values of
a and small values of V0. For larger values of B (typi-
cally B ≥ 38 on figure 4), the curves corresponding to
the numerical solution of Eq. 2 are S-shaped with non-
monotonic variation of τ as a function of x, which is
not physical since τ - the dimensionless time - should al-
ways increases. Thus, when dx/dτ is negative, there is no
physical solution to the equation, and the dimensionless
height suddenly jumps from one value to another. In the
following, we call x1 the maximum value of x before the
jump and x2 the minimum value of x after the jump.

To determine x1 and x2, we proceed as follows. We first
calculate x1, the dimensionless height at the onset of the
formation of an unstable bubble, for which dτ

dx

∣∣
x=x1

= 0.

Hence x1 is a solution of:

B−1
(
1 + x2

)3 − x2 + 1 = 0 (3)

Using X = 1+x2, Eq. 3 can be reduced to a polynomial
of degree 3:

B−1X3 −X + 2 = 0 (4)

We seek for solutions larger than one using the Cardan
method [30]. For B ≤ 27, there is no real solution larger
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FIG. 4. The theoretical dimensionless height x as a function of
dimensionless time τ for different values of B calculated using
Eq. 2. Two regimes are observed: for B ≤ 19, x is defined
unequivocally as a function of τ and the slope dx/dt always
reaches a finite value, whereas for B ≥ 38, x is multivalued
and the slope dx/dt reaches an infinite value.

than one for Eq. 4, hence
dτ

dx
> 0 and the formation of

the bubble is continuous.
For B ≥ 27, two real solutions exist, but only one, X1,

is larger than one, increases with B, and is physically
consistent when B → ∞:

X1 = 2

√
B

3
cos

[
1

3
arccos

(
−3

√
3

B

)
+

4π

3

]
(5)

Thus, the instability is triggered, as soon as x > x1,
where x1 =

√
X1 − 1, with X1 given by Eq. 5.

To determine x2, the dimensionless height of the bub-
ble after the unstable swelling, we assume that the
swelling is instantaneous and writes τ(x1) = τ(x2) us-
ing Eq. 2. This leads to a 4th order polynomial equation
in x2:

x4
2+x1x

3
2+(x2

1+4)x2
2+x1

(
1− 3B

x2
1 + 1

)
x2+3+x2

1+
3B

x2 + 1
= 0

(6)
Since x1 is also a solution of Eq.6 we factor by (x2 − x1)
to reduce the polynomial of degree 4 to a polynomial of
degree 3:

x3
2+2x1x

2
2+(4+3x1

2)x2−
(

3B

x1(1 + x1
2)

+
3

x1
+ x1

)
= 0

(7)
Eq. 7 can also be solved analytically using the Cardan
method after the change of variable X2 = x2 +

2x1

3 [30],
which leads to:

X2 =
3

√
1

2
(−q +

√
D

27
)− 3

√
1

2
(q +

√
D

2
) (8)

FIG. 5. Analytical solutions x1 of Eq. 5 and x2 of Eq. 7
as a function of B. The two curves meet for B = 27 at
x1 = x2 =

√
2. For B < 27, x1 and x2 are not defined as

the bubble inflates continuously. For B −→ ∞, x1 −→ 1 and
x2 ∼ ( 3

2
B)1/3. The green stars correspond to experimental

data.

with D = 27q2 + 4p3, q = 43
27x

3
1 + 63

27x1 − 3Bx1

(1+x2
1)

and

p = 5
3x

2
1+4. x1 and x2 are plotted in Fig. 5 and discussed

in the following section.

V. RESULTS

We now discuss the outcomes of the model. In Figure
5, we plot the simple analytical expressions of x1 and x2

as a function of B. For B < 27, x1 and x2 are not de-
fined and the bubble growth proceeds continuously. For
B = 27, Eq. 5 and 8 insures X1 = 3 and X2 = 5

3

√
2,

hence x1 = x2 =
√
2, as highlighted by the black dot

of coordinate (27,
√
2), which superimposes with the two

curves of Fig. 5. For B −→ ∞, Eq. 3 gives x1 −→ 1 as ob-
served in Fig. 5. Since B increases with V0 and decreases
with a, this suggests that for large V0 and/or small a, the
instability is triggered as soon as h −→ a, hence when the
bubble reaches a shape very close to the hemisphere in
agreement with the Laplace pressure limit set by the ra-
dius of the tube. Then imposing x1 in Eq. 7 yields to

x2 ∼
(
3
2B
)1/3

. In this asymptotic limit, which correctly

reproduces the full calculation of x2 for B ≥ 103 as high-
lighted by the dashed line Fig. 5, the height of the bubble

at the end of the instability is of the order of a
(
3
2B
)1/3

.
In this limit of large B, the bubble is quasi-spherical and
its volume Ω right after the jump is Ω = π

6h
3. There-

fore, our model predicts a final bubble volume equal to
V0

4γ
aP0

, which is surprisingly proportional to V0 the vol-
ume of compressed gas upstream of the constricted zone
modulated by the ratio of the Laplace pressure over the
atmospheric pressure.

The comparison of this theoretical findings with the
experimental data is not immediate for the following rea-
sons. First, the determination of ax1, the height of the
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bubble at the onset of the instability is delicate due to the
small range of variation of x1, so we do not propose exper-
imental data points on Fig. 5 conserning x1.Second, the
data of figure 3 shows a very fast growth of the bubble,
but not instantaneous. Thus, to experimentally extract
the height ax2 corresponding to the end of the instabil-
ity, we use the following arbitrary criterion: the bubble
is in the unstable mode as soon as dh/dt is greater than
af where f is the acquisition frequency of the camera.
Despite this arbitrary criterion, the corresponding ex-
perimental data show a remarkable agreement with the
model as illustrated in figure 5. The model thus con-
firms the importance of V0 and a for bubble sizing and
gives a direct relation between those parameters which
could have direct application in microfluidic engineering
processes.

VI. DISCUSSION

The system we describe - namely ejection of a large vol-
ume of gas when the pressure in the microfluidic reservoir
exceeds a critical value - is analogous to what could be
observed when following the volume of gas ejected from
a macroscopic pressure cooker equipped with a weighted
valve. In these cookers, the charging phase where the
pressure increases in the tank is contained by the weight
of the valve, is followed by a discharging phase, where
a large volume of gas is ejected very quickly when the
pressure exceeds the threshold supported by the valve.
Beyond that, the gas flow rate out of the cooker remains
constant. In the problem we study, the constriction of
the tube, a, that imposes the maximum capillary pres-
sure that the system can support is then equivalent to the
valve of the pressure cooker. Recently, Keiser & al [31]
have shown that a similar behavior can also be observed
in a dead-end microchannel containing a constriction, ini-
tially filled with water. The unstability is then driven
by the pervaporation of the liquid through the channels.
Yet, in their case, the water being incompressible, it is
the compliance of the elastic channels that allows the
variation of pressure of the water. As for our system, the
kinetics of fluid escape depends on the volume under ten-
sion. Magdelaine & al.[32] who studied a gaseous system
very similar to the one considered here where the volume
of compressed gas ejects into water rather than into a
bubble, also highlights the importance of the volume of
the pressurized reservoir. By adopting a very different
formalism from ours and introducing the pinching kinet-
ics of the gas jet ejected into the water, they produce a
comprehensive model predicting the number of bubbles
formed during the compression of a gaseous syringe. In
general, in these two-phase systems, it is the compliance
of the system, whether it comes from the compressibility
of the gas or the elasticity of the microfluidic channels,
which is at the origin of this instability as thoroughly
discussed in [33] for two-phase microfluidics flow.

In view of these results, two points seem interesting to

discuss.

The first point of interest concerns the formation of
monodisperse bubbles in microfluidic geometries where
the interface is confined in a constriction, like flow-
focusing. Experimentalists in this field are well aware
that the bubble size distributions produced in this type
of geometry when the gas phase is flow-rate driven are
more difficult to control and less peaked (with standard
deviations higher than 20%) than when the gas is driven
at controlled pressure [34]. This explains why pressure-
driven gas control is often preferred to flow-rate gas con-
trol. Our work sheds light on this point : taking typical
values a = 100 µm, V0 = 1 mL, it comes B ∼ 1000,
which clearly shows that those devices are in the unsta-
ble regime highlighted here. This suggests that the vol-
ume of the syringe containing the gas, V0, a parameter
usually not considered, must be taken into account to set
the bubbles size.

Second, the proposed model, in very good agreement
with the experiments, allows to predict the unstable
growth regime (B > 27) as well as the amplitude of this
phase, set by a(x2−x1). Since it is based on quasi-static
arguments, it does not perfectly capture the growth dy-
namics of the bubble in the unstable regime. Indeed,
for B > 27, we predict that the height h/a jumps from
x1 to x2 instantaneously (see Fig. 4), which is neither
physical nor confirmed by experiments. As can be seen
in Fig. 3, the growth is very fast but not infinite be-
cause in practice, this expansion regime is limited by a
dissipative process being either inertia of the gas, viscos-
ity of the gas or liquid or rheology of the interface. A
detailed follow-up of the bubble growth kinetics using a
high-speed camera in the limit where it is limited by the
interfacial rheology, seems to us a promising prospect for
this work, since it could open the way to a new char-
acterization of the interfacial rheology of surfactants in
elongation.

VII. CONCLUSION

We have shown that the growth of bubbles blown in ge-
ometries with non-zero compliance can exhibit unstable
regimes. Our experimental and theoretical study reveals
the importance of the coupling between the constriction
zone on which the interface is anchored and the volume of
the tank in which the gas is compressed. The use of these
unstable regimes to probe elongational interfacial rheol-
ogy seems to us among the most promising perspective
of this work.
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