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Abstract
Operational modal analysis is generally performed using contact sensors that may be time-consuming to
setup and may introduce mass loading. Taking advantage of works about motion estimation by video anal-
ysis, several video modal analysis methods have emerged in the last decade. These new methods make it
possible to perform modal analysis with a camera by estimating displacement from a video instead of contact
motion measurements. Thereby, each pixel may be used as a contactless sensor. This study compares differ-
ent strategies to perform video-based modal analysis. Two sub-pixel displacement estimation methods based
on the phase of frame multi-scale decomposition are compared. In addition, two operational modal analysis
methods using displacement estimations are studied. The methods are validated and compared on synthetic
videos of a vibrating vertical cantilever beam. Different videos are generated to assess the robustness of
these methods against motion amplitude, white noise, blurring, and gray level quantization.

1 Introduction

Monitoring properties of civil structures is important to detect failures at an early stage. The goal of oper-
ational modal analysis (OMA) is to identify the modal properties of a structure from local displacements,
velocity, and/or acceleration measurements [1]. Traditionally, these measurements are obtained by contact
sensors such as accelerometers or linear variable differential transformers. However, placing sensors on the
structure can be tough and time-consuming. Furthermore, these sensors are generally expensive. During
the last decade, video-based modal analysis methods have emerged thanks to high-speed camera improve-
ments [2–5]. By considering each pixel as a sensor, one performs contactless modal analysis at low cost by
estimating small displacements in video. Phase-based approaches estimate sub-pixel displacement with no
need of any speckle pattern projected on the structure [5]. Two methods can be followed to estimate displace-
ment from a multi-scale pyramid decomposition of each frame. Wadhwa et al. [6] analyze the multi-scale
pyramid to estimate the displacement at each pixel, whereas Yang et al. [7] perform displacement estimation
using a single scale. Moreover, OMA can be performed either by a combination of principal component anal-
ysis for data size reduction and complexity pursuit for blind source separation [8], or by covariance-driven
stochastic subspace identification [9]. Few works compare the OMA performances reached by video-based
strategies [5]. Because no study focuses on phase-based methods, we propose to compare their performances
using synthetic videos that represent a vibrating vertical cantilever beam.

Section 2 describes how displacement is estimated by multi-scale and single-scale phase-based methods, and
Sec. 3 how modal analyses are performed with different model orders to build stabilization diagrams. These
graphs are then automatically processed to compare the results with the theoretical modal basis. In Sec. 4, we
generate videos with different motion amplitudes to study sub-pixel efficiency. We also study the robustness
of the methods against additive noise, blurring, and gray level quantization.



2 Displacement estimation by video analysis

2.1 Phase-based displacement estimation

Let I(x, y; k) be the intensity at spatial coordinates (x, y) in frame k ∈ J0,Nk−1K and δ be the displacement
field along horizontal and vertical directions at k:

δ(x, y; k) =

(
δh(x, y; k)
δv(x, y; k)

)
∈ R2. (1)

Assuming illumination is spatially and spectrally constant over time, the intensity associated to a given
surface element can be considered as constant:

I(x, y; 0) ≈ I(x+ δh(x, y; k), y + δv(x, y; k); k). (2)

To estimate the displacement field δ, each frame is decomposed into a complex steerable pyramid (CSP).
To do so, spatial frequencies are transformed as (ωh, ωv) = (ωr cos(θ), ωr sin(θ)) into polar coordinates
corresponding to different scales r = 1, . . . ,Nr and orientations θ = 0, . . . , (Nθ − 1)π/Nθ, where Nr and
Nθ are the number of scales and orientations. The CSP is then built by convolving each frame with a set of
quadrature complex filters that split it into spatial frequency sub-bands. Each filter Gr,θ provides a complex
response Sr,θ = Gr,θ ∗ I with magnitude ρr,θ = |Sr,θ| and phase φr,θ = arctan (Im(Sr,θ)/Re (Sr,θ)).

Using the constant illumination assumption, a filter response for frame 0 can be expressed from its response
and the displacement for frame k:

Sr,θ(x, y; 0) = Gr,θ ∗ I(x, y; 0)
(2)≈ Sr,θ(x+ δh(x, y; k), y + δv(x, y; k); k). (3)

For each sub-band, the filter response phase thus verifies:

φr,θ(x, y; 0) ≈ φr,θ(x+ δh(x, y; k), y + δv(x, y; k); k). (4)

Assuming that φr,θ ∈ C1 for all r, θ, and k, a first-order Taylor expansion of Eq. (4) yields:

φr,θ(x, y; 0)− φr,θ(x, y; k) ≈ ∇φr,θ(x, y; k) · δ(x, y; k). (5)

Because the phase gradient ∇φr,θ is approximately equal to the filter central spatial frequencies [10], dis-
placement can be estimated by replacing ∇φr,θ by (ωh, ωv) in Eq. (5):

φr,θ(x, y; 0)− φr,θ(x, y; k) ≈ (ωh, ωv) · δ(x, y; k). (6)

Let us use the Dirac comb to sample continuous space quantities I , ρr,θ, and φr,θ, and denote them in discrete
space as I[x, y; k], ρr,θ[x, y; k], φr,θ[x, y; k], and δ[x, y; k], with [x, y; k] ∈ J1,NxK× J1,NyK× J0,Nk − 1K,
where Nx, Ny, and Nk are the number of pixel columns, pixel rows, and frames.

2.2 Multi-scale displacement estimation

To decompose each frame into a CSP, Wadhwa et al. [6] use Simoncelli and Freeman frequency filters,
whose supports are shown in Fig. 1. Then they solve a weighted least square (WLS) problem to estimate
displacement by fusing sub-band phases:

δ̂[x, y; k] = argmin
δ[x,y;k]

∑
r

∑
θ

9∑
c=−9

9∑
ℓ=−9

G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]

·
[
(ωh, ωv) · δ[x, y; k]−

(
φr,θ[x+ c, y + ℓ; 0]− φr,θ[x+ c, y + ℓ, k]

)]2
.

(7)
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Figure 1: Ideal Simoncelli and Freeman [11] frequency filters Gr,θ supports of a pyramid with Nr = 2 scales
and Nθ = 4 orientations.

Weights are based on the squared filter response magnitude ρ2r,θ derived from sub-band decomposition. In-
deed, the phase in a sub-band is meaningful only if the associated magnitude is high. The authors also assume
that displacement is locally constant and add a spatial consistency constraint via a Gaussian kernel G (with
3 px standard deviation and 19 × 19 px support). Furthermore, phase φr,θ[x, y; k] is wrapped in (−π, π].
Before solving Eq. (7), phase is temporally unwrapped to compare phase shift between frame k and 0. In
Eq. (7), φr,θ and ρr,θ are upsampled by bicubic interpolation for r > 1 to get the same spatial resolution as
φ1,θ and ρ1,θ.

2.3 Single-scale horizontal displacement estimation

Yang et al. [7] also use the frequency filters of Fig. 1 for CSP frame decomposition. Besides, they assume
that the vertical displacement in their vertical cantilever beam videos can be neglected (i.e., δv(x, y; k) ≈ 0),
which gives from Eq. (4):

φr,θ(x, y; 0) ≈ φr,θ(x+ δh(x, y; k), y; k). (8)

Using a Taylor expansion and the phase partial derivative approximation [10], Eq. (8) becomes:

φr,θ(x, y; 0) = φr,θ(x, y; k) + ωhδh(x, y; k). (9)

The authors only use the response of horizontal filters (θ = 0) and estimate horizontal displacement at scale
r by:

δ̂hr [x, y; k] =
φr,0[x, y; 0]− φr,0[x, y; k]

ωr
. (10)

Phase is also temporally unwrapped before displacement estimation. δ̂h1 is computed at frame resolution,
whereas for r > 1, δ̂hr is first computed with subsampled phase φr,0, then upsampled by bicubic interpolation
to get the full frame spatial resolution.

3 Modal analysis

As our experiments focus on a vertical cantilever beam, we neglect the vertical displacement of the multi-
scale displacement estimator described in Sec. 2.2. The single-scale operator (see Sec. 2.3) provides a
horizontal displacement estimation at a given scale. To perform modal analysis, the horizontal displacement
estimated in either case is sampled at Np pixels of interest (PoI), and reorganized as a matrix δ̂h ∈ RNp×Nk .



3.1 Complexity pursuit after principal component analysis

The objective of principal component analysis (PCA) and complexity pursuit (CP) [7] is to decompose the
displacement matrix δ̂h as:

δ̂h = Φq, (11)

where Φ ∈ RNp×N and q ∈ RN×Nk are the mode shape and modal coordinate matrices. The method takes
a parameter N called the model order and is performed in two successive steps: i) a model order reduction
using PCA to reduce the number of displacement matrix rows from Np to N , and ii) an estimation of modal
coordinates using blind source separation by CP algorithm.

i) When Np is high, video-based modal analysis may examine a high-dimensional displacement matrix.
To reduce its size, it is factorized by singular value decomposition (SVD):

δ̂h =
[
U U

] [ Σ 0

0 Σ

] [
V

V

]
. (12)

The displacement matrix is projected by PCA upon the first N left-singular vectors gathered in U ∈
RNp×N , whose conjugate transpose provides the reduced displacement matrix η that is defined as:

η = U⋆δ̂h ∈ RN×Nk . (13)

ii) Assuming that η can be decoupled into modal coordinates q:

q = Wη , (14)

where W ∈ RN×N is the demixing matrix, this blind source separation problem is solved using CP [8].
The method estimates each row wi of W so that qi = wiη ∈ RNk , i ∈ J1, NK, has the highest temporal
predictability defined as:

P (qi) = log

(∑Nk−1
k=0 (q̄i[k]− qi[k])

2∑Nk−1
k=0 (q̌i[k]− qi[k])2

)
, (15)

where q̄i[k] and q̌i[k] are long and short exponential moving average of qi, respectively.

For a given model order N , natural frequencies are estimated as the frequencies that maximize the discrete
Fourier transform of modal coordinates:

fN
i = argmax

f

∣∣DFT{qi}[f ]
∣∣ . (16)

Each damping ratio ζNi is estimated from qi using the logarithmic decrement method. Each mode shape ϕN
i

is a column of the mode shape matrix ΦN that is computed as:

ΦN = UW−1 . (17)

3.2 Covariance-driven stochastic subspace identification

The free motion equation for a system with N degrees of freedom (N corresponding to the model order) and
viscous damping is:

Mü(t) +Du̇(t) +Ku(t) = 0 , (18)

where M , D, and K ∈ RN×N are the mass, damping, and stiffness matrices, and u(t) ∈ RN is the
time-varying displacement vector. This problem can be recast into a discrete-time state space form:

x[k + 1] = Ax[k] +w[k]

y[k] = Cx[k] + v[k] , (19)



where x[k] =
(
u(k∆t)

u̇(k∆t)

)
∈ R2N is the state vector, ∆t the time step between two successive frames, y[k] ∈

RNp the observation vector, A ∈ R2N×2N the state-space matrix, C ∈ RNp×2N the observation matrix, and
w[k] ∈ R2N and v[k] ∈ RNp are the observation and input noise vectors.

The objectives of stochastic subspace identification (SSI) [9] is to get estimates Â and Ĉ of these matrices
only from observations {y[k]}Nk−1

k=0 (columns of δ̂h) to obtain the modes. The covariance-driven method
takes a parameter R < Nk/2 and considers a set of covariance matrices {Λj}2R−1

j=1 between time-shifted
observations:

Λj =
1

Nk − 2R

Nk−2R−1∑
k=0

y[k + j]y[k]⊺ . (20)

These matrices are used to form a block Toeplitz matrix of R block rows as:

T1:R =


ΛR ΛR−1 · · · Λ1

ΛR+1 ΛR · · · Λ2
...

...
. . .

...
Λ2R−1 Λ2R−2 · · · ΛR

 ∈ RRNp×RNp . (21)

The SVD of T1:R provides estimates Â and Ĉ [9]. Then, from the eigenvalue decomposition Â = ΨSΨ−1

with S = diag(λi), i ∈ J1, 2NK, natural frequencies, damping ratios, and mode shapes can be computed as:

fN
i =

1

2π

∣∣∣∣ log λi

∆t

∣∣∣∣ , (22)

ζNi =
Re(λi)

|λi|
, (23)

ΦN = ĈΨ. (24)

The 2N modes come as N complex conjugate pairs and only N positive frequencies are kept.

3.3 Fast covariance-driven stochastic subspace identification

The size RNp × RNp of the Toeplitz matrix may be huge for video-based modal analysis. To reduce
the number of observations, we use a similar projection as in Eq. (13). The displacement matrix is first
decomposed by SVD, then projected on the first P left-singular vectors to obtain a reduced observation
matrix y̌:

δ̂h =
[
UP UP

] [ ΣP 0

0 ΣP

] [
VP

VP

]
, (25)

y̌ = U⋆
P δ̂

h ∈ RP×Nk . (26)

SSI is performed on y̌ with N and R as parameters. The Toeplitz matrix Ť1:R ∈ RRP×RP is constructed to
obtain the natural frequencies {fN

i }Ni=1 and damping ratios {ζNi }Ni=1, and a reduced mode shape matrix Φ̌N .
The mode shape matrix ΦN on the Np pixels can then be computed as:

ΦN = UP Φ̌
N . (27)

We denote this method as FSSI.



3.4 Stabilization diagram

In practice, the number of modes N is not known. Therefore, a stabilization diagram is used to plot the poles
obtained from a modal analysis method for different model orders [12]. Irrelevant models produce spurious
modes that can be discarded by a stability analysis. Indeed, physical poles tend to be stable while spurious
ones tend to be unstable (in frequency, damping, and/or mode shape).

Let pNi , i ∈ J1, NK, be a pole of order N with fN
i , ζNi , and ϕN

i its natural frequency, damping ratio, and
mode shape. We consider it stable if the following predicate holds:

S
(
pNi
)
= ∃pN−1

j

[(
|fN

i − fN−1
j |

fN−1
j

< 0.01

)
∧
(
|ζNi − ζN−1

j |
ζN−1
j

< 0.05

)
∧
(
MAC(ϕN

i ,ϕN−1
j ) > 0.98

)]
, (28)

where MAC is the modal assurance criterion defined for any two mode shapes ϕ and ϕ̃ by:

MAC(ϕ, ϕ̃) =
(ϕ⊺ϕ̃)2

(ϕ⊺ϕ)(ϕ̃⊺ϕ̃)
. (29)

The key idea is that spurious modes occur randomly and are not stable for two consecutive model orders.

In addition to poles, complex mode indication functions (CMIFs) are also represented on the diagram [13].
These functions are the squared eigenvalues of the estimated frequency response function matrix, sorted in
descending order for each frequency. The first CMIF is the most important, and each of its peaks indicates
the presence of a mode at the associated frequency.

4 Experiments

4.1 Experimental setup

To compare the methods considered in Sec. 3, we generate synthetic videos of a vertical cantilever beam us-
ing the Euler-Bernoulli beam model. This model requires adjusting the following physical beam parameters:
length L (m), Young modulus E (Pa), moment of inertia J (m4), and mass per unit length µ (kg·m−1). The
center line of the vertical beam is defined in the scene coordinate system by the point set:

{(g(z, t), z; t) ∈ R× [0, L]× [0, (Nk − 1)∆t]}, (30)

where g(z, t) =
∑Nm

m=1 ϕm(z) qm(t) with, for all m ∈ J1,NmK, ϕm and qm solutions of:

∂4ϕm

∂z4
(z)− µ(2πfm)2

EJ
ϕm(z) = 0

ϕm(0) = 0,
∂ϕm

∂z
(0) = 0

∂2ϕm

∂z2
(L) = 0,

∂3ϕm

∂z3
(L) = 0

(2πfm)2qm(t) + 4πfmζm
∂qm
∂t

(t) +
∂2qm
∂t2

(t) =
1

µ

∫ L

0
ϕm(z)γ(z, t)dz

(31)

(32)

(33)

(34)

In this experiment, the input force γ (N) is represented by a time and space Dirac function to simulate a
horizontal hammer impact at the free end of the beam (z = L) at t = 0. To simulate the behavior of our
experimental beam, we set its volume to 900 × 30 × 6mm3 with L = 900 mm, its mass to 1.413 kg, and
its Young modulus to E = 210 · 109 Pa. We set the number of modes to Nm = 4. Theoretical natural
frequencies {fm}4m=1 are computed from Eqs. (31)–(33), and damping ratios are set from the results of an
experimental modal analysis of our beam. Their values are listed in Table 1.



Table 1: Beam theoretical natural frequencies and damping ratios.

m 1 2 3 4
fm (Hz) 6.19 38.79 108.60 212.82
ζm (%) 0.11 1.13 0.29 0.13
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Figure 2: Edge pixels of interest for displacement estimation, with PoI in red.

Frame resolution is set to 720× 40 px and since the beam covers 97% of the frame height, pixel resolution is
1.289mm·px−1. Videos last 4 s at 436 fps (frame rate of TIS DMK 33UX287 camera). Each pixel intensity
value is computed in proportion to the area of the intersection between the pixel in the image plane and the
projected beam using a pinhole camera model without optical distortion. Values are then scaled between 30
and 225 to encode the gray level of each pixel on Nb = 8 bits. These values ensure a high contrast between
the beam and the background, and avoid saturation after Gaussian noise addition (see Sec. 4.3).

Our pixels of interest (PoI) are the 699 pixels on the beam left edge, as displayed in Fig. 2. As the beam
is vertical, we consider that its vertical displacement is negligible and focus on the horizontal one. Table 2
shows the amplitude of the true (model-based) horizontal displacement δh computed at the top edge pixel
according to the input force γ.

To estimate displacement δh at the PoI, each video is analyzed by the multi-scale estimator using Eq. (7) to
compute δ̂h, and by the single-scale estimator using Eq. (10) for δ̂h1 and δ̂h2 . We adapt the Gaussian kernel G
used in the multi-scale estimator (1 px standard deviation and 7×7 px support) to account for the beam thick-
ness (5 px). Displacements are estimated with respect to the first frame, hence are not necessarily centered on
the cantilever beam equilibrium. In practice, we remove the temporal mean of the displacements estimated at
each pixel to analyze centered vibrations. Figure 3 shows all the 699 theoretical and estimated displacements
with each estimator for two input forces of 0.08 and 1.31N. We can observe that for γ = 1.31N, estimations
are close to the theoretical displacements. The single-scale estimator δ̂h2 overestimates displacement, while
the single-scale estimator δ̂h1 and multi-scale one δ̂h overestimate it. For γ = 0.08N, estimated displace-
ments follow the main frequency of the theoretical one, but the low displacement amplitudes introduce a
quantization effect because gray levels have too few different values.

The estimated displacements of the 699 pixels are extracted and used as input data of the three modal analysis
methods described in Sec. 3: CP after PCA (PCA + CP), SSI, and FSSI. For PCA + CP, we set the model
order N from 2 to 25. For SSI, the number of block rows in the Toeplitz matrix is set to R = 20 and the

Table 2: Amplitude of true horizontal displacement δh at the top of the beam vs. input force γ.

Force γ (N) 0.08 0.16 0.33 0.65 1.31 2.62 5.24 10.47
max(δh)−min(δh) (px) 0.03 0.06 0.12 0.25 0.5 1 2 4



Figure 3: Theoretical and estimated displacements with input forces γ = 0.08 and 1.31N.
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Figure 4: Stabilization diagram of SSI with δ̂h2 for the video with input force γ = 1.31N.

model order N also varies from 2 to 25. For FSSI, we first keep the first P = 50 principal components from
the displacement matrix δ̂h to obtain the reduced observation matrix, then set the same SSI parameters.

According to the displacement estimator and the modal analysis method, we then obtain nine stabilization
diagrams per video, of which Fig. 4 provides an example. To compare the approaches, we assume that
spurious poles are successfully removed with the stabilization diagram and the CMIF. For a given theoretical
frequency, we count how many among the 24 poles of different orders are stable according to Eq. (28)
provided that their estimated natural frequencies differ by no more than 1% relative to the theoretical one.
We consider that the number of stable pole is a quality indicator of the method efficiency, and that a mode is
successfully retrieved if at least five stable poles are retrieved at the mode frequency.

Four sensitivity studies are then performed to test the robustness of the methods against the following vari-
ations: i) input force γ, ii) Gaussian white noise standard deviation in the video, iii) Gaussian blur standard
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Figure 5: Number of stable poles around theoretical natural frequencies against input force γ.

deviation in the video, and iv) quantization bits of the video.

4.2 Robustness against input force

We perform a sensitivity study of the methods against the input force γ to inspect their robustness to dis-
placement amplitude. The input force γ varies from 0.08 N to 10.47 N according to Table 2. For each video,
the three horizontal displacements estimations δ̂h, δ̂h1 , and δ̂h2 are computed, followed by the three modal
analyses on each of them. Each stabilization diagram is processed as described in Sec. 4.1. The results
gathered in Fig. 5 show that the estimator δ̂h2 tends to give better results than δ̂h and δ̂h1 for γ ≥ 2.62N.
PCA + CP generates more stable poles for the first mode, but is much less efficient than SSI and FSSI for
modes at f3 and f4. FSSI is more efficient than SSI: the reduced observations does not deteriorate the results
and FSSI is 100 times faster than SSI. For videos with small motion amplitudes (i.e., γ ≤ 0.16N), only the
first mode is retrieved. This may be due to a quantization of the estimated displacement, caused by a low
variation of the intensity of each pixel, as shown in Fig. 3 for γ = 0.08N.

4.3 Robustness against noise

In real acquisition conditions, high-speed videos may be corrupted by noise, especially in low-light condi-
tions. To check the robustness of the methods against noise, Gaussian noise with standard deviation from
σn = 0 to σn = 4 is added to the video with input force γ = 1.31N. Figure 6 shows the number of stable
poles near every theoretical frequencies according to Gaussian noise standard deviation. Modes with natural
frequencies f3 and f4 are less tolerant to noise. The multi-scale displacement estimator δ̂h is less robust than
δ̂h1 and δ̂h2 for modes 2, 3, and 4. FSSI still gives similar results as SSI.

4.4 Robustness against blur

According to the depth of field of the camera, parts of the acquired scene (that are not in the same plane) may
be blurred in real experimental conditions. To study the effect of blur on the considered methods, Gaussian
blur is applied to each frame of the video synthesized for γ = 1.31N before displacement estimation and
modal analysis. Results for different values of the Gaussian blur standard deviation σb are shown in Fig. 7.
The study shows that results of the first-scale displacement estimator δ̂h1 are improved by blur. Indeed, modal
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Figure 6: Number of stable poles around theoretical natural frequencies against Gaussian noise standard
deviation.

analyses with δ̂h1 tend to have more stable poles with σb = 2.0 px than with σb = 0 px. In particular,
PCA + CP do not retrieve the second mode from δ̂h1 with σb = 0 px whereas all modes are retrieved with
σb = 2.0 px. This may be because blur modifies high spatial frequencies of each frame and that neighboring
pixel values are also taken into account. SSI and FSSI methods are robust against blur, since they both
correctly estimate the four modes with any displacement estimator. PCA + CP with the single-scale estimator
δ̂h2 does not retrieve the third mode, and the number of stable modes around the last mode decreases as blur
increases. In conclusion, each method is barely affected by blur.

4.5 Robustness against quantization

When acquisitions take place outside, illumination is uncontrolled and contrast between the structure and
background may vary. Low contrast can be simulated by reducing the bit depth of intensity at each pixel.
Moreover, decreasing the bit depth may be desirable to increase the acquisition frame rate. Therefore, we
quantize the gray levels of the video with γ = 1.31N onto a number of bits from 5 to 8 before motion
estimation and modal analysis. The number of stable poles per method are represented in Fig. 8. The
first mode is retrieved by all methods. PCA + CP needs at least 7 quantization bits to estimate the second
mode, while SSI and FSSI can retrieve it with 6 quantization bits. For the third and fourth modes, the
first-scale estimator δ̂h1 is less robust than the multi-scale estimator δ̂h and second-scale estimator δ̂h2 against
quantization. For each displacement estimation, FSSI is as reliable as SSI.

4.6 Synthesis

To synthesize the results of each sensitivity study, for each approach we count the percentage of modes
retrieved over all values of force, noise and blur standard deviations, and quantization bits. We consider that
a mode is retrieved if there are at least five stable poles near its natural frequency. These percentages are
gathered in Table 3. We can see that the methods that give the best results whatever the study are SSI and
FSSI. As FSSI is 100 times faster thanks to dimension reduction, we conclude that FSSI is the most efficient
method.
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Figure 7: Number of stable poles around theoretical natural frequencies against Gaussian blur standard
deviation.
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Figure 8: Number of stable poles around each theoretical natural frequencies against the number of quanti-
zation bits.

Table 3: Percentage of modes retrieved per method for each sensitivity study. Bold indicates the best result.

Displacement estimator
OMA method

δ̂h

SSI
δ̂h

FSSI
δ̂h

PCA + CP
δ̂h1
SSI

δ̂h1
FSSI

δ̂h1
PCA + CP

δ̂h2
SSI

δ̂h2
FSSI

δ̂h2
PCA + CP

Input force (γ) 59% 59% 41% 56% 56% 38% 78% 78% 47%
Noise (σn) 67% 71% 42% 92% 92% 50% 96% 96% 75%
Blur (σb) 100% 100% 62% 100% 100% 67% 100% 100% 50%

Quantization 75% 75% 50% 63% 63% 31% 75% 75% 38%



5 Conclusion

In this paper, we compare different methods to perform modal analysis from a video. These methods are
split into two successive steps. First, the displacement is estimated at each frame pixel using responses of
spatial-frequency filter phases. The displacement is then used as input of a modal analysis method. Three
displacement estimators are compared: a multi-scale one that merges phases from the first two scales us-
ing a WLS estimator, and two single-scale estimators using the phase at first or second scale. Three modal
analysis methods are also compared in combination with each displacement estimator. The first one uses a
principal component analysis to reduce the dimension of the displacement matrix, and a blind source separa-
tion algorithm called complexity pursuit to estimate the modal coordinates. The second one is the classical
covariance-driven stochastic subspace identification. The last one is the same as the previous, but preceded
by a principal component analysis to speed up computations. The nine combinations of displacement esti-
mator and modal analysis method are compared using synthetic videos of a vertical cantilever beam whose
model is based on Euler-Bernoulli beam theory.The stabilization diagram is constructed for each method by
iterating on the model order and is then automatically processed by counting stable poles around the four
theoretical natural frequencies.

Different forces are applied to generate videos with different displacement amplitudes, and the comparison
is achieved for different standard deviations of Gaussian noise and blur, and different numbers of quantiza-
tion bits. The results show that the best method is the stochastic subspace identification on displacements
estimated by the single-scale (at scale 2) estimator. However, the multi-scale estimator may be useful for
videos that represent objects at different depths in the scene. Furthermore, the principal component analysis
between motion estimation and stochastic subspace identification gives similar results with faster computa-
tion. However, these methods do not succeed in estimating all the modes when input force γ ≤ 0.33N (i.e.,
displacement amplitude δh ≤ 0.12 px). This is due to the estimated displacement quantization, caused by
low variations of the pixel intensities. Principal component analysis followed by complexity pursuit gives the
worst results. The blind source separation method does not provide a good estimator of modal coordinates,
so that estimated natural frequencies and damping ratios are not reliable.

Future tests on experimental videos should be performed to confirm the results of this work on synthetic
videos. Moreover, these experiments focus on horizontal displacements. Extension of this work should
make no assumption on the displacement direction.
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Appendix

A Notations

A Matrix
f(x) Continuous function
f [x] Discrete function
f̂ Estimator of f
t Continuous time
k Discrete time
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