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Abstract

For decades, clouds have remained a central open question in understanding the climate system of Venus. We have developed a new micro-
physical model for the clouds of Venus that we describe in this paper. The model is a modal aerosol dynamical model that treats the formation and
evolution of sulfuric acid solution droplets with a moderate computational cost. To this end, the microphysical equations are derived to describe
the evolution of the size distribution of the particles using the moments of the distribution. We describe the derivation of the equations and their
implementation in the model. We tested each microphysical process of the model separately in conditions of the Venus’ atmosphere and show that
the model behaves in a physically sound manner in the tested cases. The model will be coupled in the future with a Venus Global Climate Model
and used for elucidating the remaining mysteries.
© 2022 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction 1

Models are crucial for understanding the role of clouds in the climate of Venus, since the observations of Venus clouds are 2

scarce. The only in situ descent profile that measured the cloud properties and their vertical distribution comes from Pioneer 3

Venus (Knollenberg & Hunten, 1980). Until recently, the Venus International Reference Atmosphere (VIRA, Kliore et al., 1985) 4

that aggregated and merged all existing datasets into a reference model of the Venusian atmosphere, was also the baseline for 5

atmospheric model comparisons and provided important inputs also for cloud models (temperature and pressure profiles). The 6

European Space Agency mission Venus Express (VEx, 2005-2014) shed more light on the atmosphere of Venus and characterized 7

the climate, in particular the structure of the atmosphere in terms of temperature and density, concentrations of trace gases, and 8

even winds (Limaye et al., 2018; Marcq et al., 2018). The properties of the upper cloud and the upper haze were measured by VEx 9

with several observation methods, revealing new aspects of the Venus cloud droplet distribution (Titov et al., 2018). However, the 10
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2 Anni Määttänen etal / Advances in Space Research xx (2022) xxx-xxx

properties of the middle and the lower cloud layers can not be easily probed with remote sensing observations mainly because of 11

the high optical thickness of the clouds, and thus VEx was not able to replace the unique descent profile of Pioneer Venus as the 12

reference for cloud properties. 13

Pioneer Venus probe’s Cloud Particle Size Spectrometer (LPSC) instrument revealed the structure of the cloud layers (Knollen- 14

berg & Hunten, 1980). The clouds of Venus can be divided in three layers of varying properties, with hazes surrounding the cloud 15

layers above and below. The particle size distributions in the clouds were found to have at least two modes, and a third, larger mode 16

was observed in the lowest cloud layer. The mean radii and variances of the modes and their variation as a function of altitude were 17

also established (Knollenberg & Hunten, 1980): modes 1 and 2, respectively, for small (r=0.2 µm) and medium particles (r=1.0 18

µm), and the third mode that would contain the largest particles (r=3.5 µm). The composition and existence of the latter mode, 19

detected by the Pioneer Venus probe, are still debated. Since then, these observations have been the reference on the structure of 20

the Venus’ cloud layers and the particle size distributions, particularly for the lowest cloud layers that are difficult to observe via 21

satellite. Other particle modes have been suggested in interpretation of measurements, such as mode 0 (smaller than mode 1) and 22

mode 2’ (larger than mode 2), but the prevailing standard in the community is to use the LSPC measurements as the reference (see 23

reviews in Esposito et al., 1983, 1997; Titov et al., 2018) 24

Several microphysical models have been developed for the Venus’ clouds to understand better the formation and evolution of 25

the cloud layers that cover the whole planet and have a fundamental effect on its climate. The models have been developed since 26

the 1980s for different purposes, mainly to help in interpreting observations. In particular in the 1990s and 2000s, four models 27

were published (James et al., 1997; Imamura & Hashimoto, 1998; Yamamoto & Takahashi, 2006; McGouldrick & Toon, 2007). 28

The latest published model (Gao et al., 2014; Parkinson et al., 2015a,b) is based on a newer version of the same model that James 29

et al. (1997) and McGouldrick & Toon (2007) used (CARMA, Toon et al., 1988). None of these models have been used in a 30

three-dimensional (3D) context. 31

In general, these microphysical models can be divided in two groups: sectional models and modal models. The difference 32

between the two is the way to describe the particle size distribution: either by discretizing the distribution in sections or bins as a 33

function of particle size, or by fixing the size distribution shape and describing the integral properties of the distribution, such as 34

the total number of particles, the average radius and the total volume. Most of these models consider liquid, spherical sulfuric acid 35

solution droplets. The assumption of sphericity eases radiative transfer calculations and is very probably a good estimate for the 36

Venusian particle shape unless solid particles exist. The models also often include a source of condensation nuclei (CN) that help 37

in forming the droplets. 38

To our knowledge, the first published model was a 1D model by Toon et al. (1982), which is a sectional model coupled to 39

a chemistry module. It allowed for the formation of sulfur allotropes (Sx) up to S8 and included the coagulation between the 40

liquid sulfuric acid solution droplets and the sulfur particles Sx. Thus the model was able to form two particle populations of 41

mixed composition and it had the ability to follow the fractions of the components, like it was the case for the terrestrial models 42

developed in the same epoch (Turco et al., 1979) and on which the Toon et al. (1982) model was based. However, the model 43

was not able to reproduce the observed cloud properties. For example, at 62 km altitude, the model of Toon et al. (1982), despite 44

obtaining a bimodal distribution, does not reproduce the tail of the small particles of mode 1 and underestimates the observed 45

number concentration in the clouds. However, this study initiated the further development of several Venus versions of the same 46

model (James et al., 1997; McGouldrick & Toon, 2007; Gao et al., 2014) with different levels of complexity. 47

Imamura & Hashimoto (2001), using their sectional model, highlighted the importance of atmospheric circulation for the com- 48
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prehension of Venus’ cloud system. Likewise, McGouldrick & Toon (2007) studied this issue and showed that their model produced 49

results that much better corresponded to the observed clouds when atmospheric dynamics was included at a sufficient detail. Only 50

accounting for the vertical (eddy) transport, such as is usually done in a 1D model, did not suffice for an accurate modeling of 51

large-scale cloud structures. 52

In addition to the sectional models listed above, three published models use a different parameterization of the particle size 53

distribution. The simplified particle size description of Hashimoto & Abe (2001) is based on determining the mean radius and 54

the particle number density for a unimodal size distribution in equilibrium with its environment. Mass fluxes of sulfuric acid and 55

water between the different atmospheric layers are calculated and these fluxes are then used to calculate the number concentration 56

of droplets as a function of particle size (modes 2 or 3 of Knollenberg & Hunten (1980)). Coagulation is applied via a parameter 57

that varies with altitude. The model is based on Krasnopolsky & Pollack (1994) who tried to model atmospheric chemistry within 58

the clouds, and the same parameterizations are used in the Global Climate Model (GCM) of Lee et al. (2010). 59

Two modal models have been previously developed using the moment method (Yamamoto & Tanaka, 1998; Yamamoto & 60

Takahashi, 2006) These two models describe only the liquid droplet mode 1. The particle size distribution is supposed to have 61

a lognormal shape and its standard deviation is fixed in one of the models (Yamamoto & Takahashi, 2006) but not in the other 62

(Yamamoto & Tanaka, 1998), meaning that the latter model has more prognostic variables than the former so that the freely varying 63

standard deviation can be calculated. However, the simplified model of Yamamoto & Takahashi (2006) led to an unsatisfactory 64

correspondence between the model and the observations by Pioneer Venus (Knollenberg & Hunten, 1980). The authors indicated 65

the reason being the simplified nucleation scheme of their model that does not produce enough particles. 66

Although none of the models perfectly reproduce the Pioneer Venus observations, these studies led to different hypotheses on 67

the origin of the UV absorber (polysulfur, Toon et al., 1982), impact of clouds on the radiative budget (McGouldrick & Toon, 2007) 68

and the understanding of the chemical cycles within the clouds (H2O-H2SO4 cycle: Krasnopolsky & Pollack, 1994). Some models 69

also introduce CN to help in forming the clouds. However, some models do not explicitly define the nature of the CN (McGouldrick 70

& Toon, 2007), and others put forward hypotheses of sulfur aerosols or meteoric dust particles (Gao et al., 2014). 71

To help elucidate the untamed mysteries of Venus’ clouds, a modal microphysical model, called MAD-VenLA (Modal Aerosol 72

Dynamics for Venus Liquid Aerosols), has been developed and is presented in this article. The ultimate goal is to integrate in 73

the future MAD-VenLA into the Global Climate Model for Venus of the Institute Pierre-Simon Laplace (IPSL-VGCM, Lebonnois 74

et al., 2010) to be able to conduct global 3D simulations of Venus’ cloud microphysics. The VGCM includes currently a cloud 75

parameterization of (Stolzenbach, 2016): however, it does not contain microphysical processes and only describes clouds in equi- 76

librium with their environment. For the microphysical model, the choice of the moment method allows us to limit the number of 77

tracers to be added to the VGCM due to the integration of the cloud model. Modal models are very often used in terrestrial GCMs 78

(Vignati et al., 2004; Mann et al., 2010) and also already used in the Titan and Mars GCMs (Burgalat et al., 2014; Navarro et al., 79

2014; Haberle et al., 2019; Määttänen et al., 2022). This method offers a good compromise between the accuracy of the results and 80

the computational time. 81

This article reports the derivations of the mathematical expressions of the microphysical equations with moments, developed 82

particularly for Venus’ clouds, that have been implemented in MAD-VenLA. The governing equations for all of the microphysical 83

processes acting in the model are presented, with a part of the detailed derivations given in an Appendix. We also report and discuss 84

the hypotheses that were necessary for the development of the model. We study the behavior of the model processes one by one in 85

an idealized 0D setting in Venus’ atmospheric conditions and show that the modal parameterization performs as expected. Direct 86
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comparison with observations is not done here since our model does not include transport nor radiative transfer, for which coupling 87

with a VGCM will be necessary and will be performed in the future. 88

2. Materials and Methods 89

In this section we describe the model and the expressions developed in this work for the case of Venus’ aerosols. We start with the 90

description of the moment method applied to a particle size distribution and continue with the descriptions of the different aerosol 91

dynamical processes accounted for in the model. Only the derivations of the main expressions are retained in the article and the 92

detailed derivations can be found in Appendix A, together with two additional processes (aerosol production and sedimentation) 93

that are needed if the model is used in a 1D setting (Appendix B). 94

2.1. Moments of a lognormal particle size distribution 95

A moment M of the kth order, noted as Mk, is an integrated quantity that can be generally expressed as the integral of a function 96

f (x) on an inteval I ⊂ <+. In our case, the function f (x) is the particle number concentration n(r) as a function of radius r (the 97

particle size distribution). We can then write the moment of the kth order of this size distribution as: 98

Mk =

∫ ∞

0
rkn(r)dr. (1) 99

Applied to a lognormal function used for Venus’ cloud size distributions, and noting M0 the total particle concentration, we can 100

write 101

Mk = M0r̄k
g exp

(
k2 ln2 (σg)

2

)
(2) 102

with r̄g, σg and M0 being the median radius, geometric standard deviation and the zeroth moment of the distribution (equal to the 103

total number of particles of the distribution). 104

We have decided to fix the standard deviation of our lognormal size distributions. This allows us, with the help of Eq. (2), to 105

define a parameter α(k): 106

α(k) = exp
k2 ln2(σg)

2

 (3) 107

so that Mk = M0r̄k
gα(k). With this latter expression we can calculate any moment of the kth order as a function of the zeroth order 108

moment M0. 109

2.2. Modeled modes and moments of the size distribution 110

MAD-VenLA accounts for three lognormal size distributions, two of which describe the liquid cloud droplets (the observed 111

modes 1 and 2) and the third the preexisting aerosols that act as condensation nuclei (CN). The lognormal form of the size distri- 112

butions, their number and the size ranges they describe are based on the Pioneer Venus nephelometer measurements (Knollenberg 113

& Hunten, 1980) and previous modeling work. Concerning the preexisting solid aerosols that can function as CN, we suppose that 114

their density is 2000 kg m−3 as estimated for meteoric dust particles (Hunten et al., 1980). In this model version we do not account 115

for the Mode 3 of Knollenberg & Hunten (1980). 116

The three distributions are described with the help of two moments: M0, equal to the total particle number, and M3, proportional 117

to the total volume of the particles. We chose these two moments (M0 and M3) since they represent convenient characteristics of the 118

particle size distribution. In the development of the moment method equations, a moment of any order k can be calculated from M0 119
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with the help of the term α(k) defined above. Equation (2) shows the dependence of the moments on the median radius and on the 120

standard deviation. In reality, the standard deviation of a particle size distribution can vary. However, letting the standard deviation 121

vary in the model would increase the number of moments, and in addition, its variations can not be verified with the existing 122

observations. Choosing only two moments is permitted by the definition of a constant standard deviation of our size distribution, 123

the value of which has been chosen based on observations (Table 1). This also allows us to simplify the equations of the model 124

(Yamamoto & Takahashi, 2006; Burgalat et al., 2014). Thus, in the model we have two moments (M0, M3) for each of the three 125

modes, adding up to six moments in total. 126

Table 1. Parameters of the mode 1 and 2 size distributions on Venus used in our model. The values are based on the Pioneer Venus measurements (Knollenberg &
Hunten, 1980).

Mode Standard deviation Radius (m)
1 1.56 3.0 · 10−7

2 1.29 1.0 · 10−6

For each droplet the amount of acid and water are followed independently. We also keep track of the condensation nuclei (solid, 127

activated aerosols: CN) potentially existing inside the droplets. Thus, the third moment is a sum of three moments: M3 = M(H2SO4)
3 128

+ M(H2O)
3 + MCN

3 , where the sum M(H2SO4)
3 + M(H2O)

3 corresponds to the liquid part of the droplet. The volumes of acid and water are 129

given by the composition of the droplet, calculated in the next section (2.3). Similarly, the zeroth moment is a sum of two moments: 130

Mdrop
0 the total number of liquid particles and MCN

0 the total number of CN activated in the droplets. Thus, M0 = Mdrop
0 + MCN

0 . For 131

the size distribution of the solid, unactivated aerosols we apply the appropriate moments (Maer
0 and Maer

3 ). 132

This sums up as 12 moments in total. When this model will be used in a GCM, these 12 moments will be the 12 tracers that 133

the GCM will need to advect. As a comparison, integrating in a GCM some of the other, published Venus cloud models such as 134

Imamura & Hashimoto (1998) or Gao et al. (2014), would require 23 or 45 tracers, respectively. This means that using the moment 135

method will help in limiting the computational cost of the simulations. 136

2.3. Weight percent of sulfuric acid in the droplets 137

On Venus the droplets in modes 1 and 2 are liquid droplets composed of a sulfuric acid solution. The composition is given by 138

the acid mass fraction in the droplet: 139

Wm =
ma

ma + mw
. (4) 140

where ma and mw are, respectively, the condensed masses of sulfuric acid and water. The droplet composition is mainly controlled 141

by the temperature and the relative humidity (Steele & Hamill, 1981; James et al., 1997). We calculate separately the composition 142

for each of the two modes by using the Ridders method that solves by double iteration the Kelvin equation and simultaneously 143

conserves the total mass of water in the system (Stolzenbach, 2016). Following Hashimoto & Abe (2001) and Stolzenbach (2016), 144

we assume that the composition does not depend on the particle size. We have verified this hypothesis by calculating the weight 145

percent of acid in a set of conditions valid for Venus (see Table 2). 146

The weight percent of acid remains nearly constant for all droplet radii in all conditions, as shown in Fig.1. A small variation is 147

seen for case 3 where the weight percent for 1 nm particles is about 1.6% larger than for larger droplets (>10 nm). As these sizes 148

correspond to the freshly nucleated particles that grow very fast, and the majority of the observed particles in the atmosphere are of 149

the order of 100 nm to 1 µm, we consider this deviation negligible for our model. Thus, in MAD-VenLA the weight percent does 150

not vary with particle size but only with water vapor concentration. In what follows, the weight percent will be calculated solely 151

for the median radius of the size distribution. 152
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Table 2. Conditions used for calculating the variation of the acid weight percent in the cloud droplets.
Parameter Lower cloud Middle cloud Upper cloud

(Case 1) (Case 2) (Case 3)
Altitude (km) 48 54 60

Temperature (K) 366 312 262
Pressure (hPa) 1375 616 236
H2SO4 (ppmv) 6.93 0.08 1.0
H2O (ppmv) 20 15 1

Fig. 1. Variation of the weight percent of sulfuric acid in the atmosphere of Venus as a function of droplet radius for the cases listed in Table 2.

We will also need the weight percent of acid in a droplet in equilibrium with its environment. This parameter is defined as 153

Weq
m =

ma

ma + mw + ∆mw
(5) 154

where ∆mw is the mass of water that needs to be added to the droplet to obtain the equilibrium composition. 155

2.4. Homogeneous nucleation 156

We calculate the homogeneous nucleation rate Jhom of sulfuric acid and water with the parametrization of Määttänen et al. 157

(2018). The nucleation rate of droplets of the critical size r∗ (critical radius) is given by Jhom(r∗) that then converts to a temporal 158

variation of the number density of droplets n(r) : 159

dn(r)
dt

= Jhom(r∗)δr∗ (r) (6) 160

where δr∗ (r) is a Dirac peak centered on r∗. First, Equation (6) is integrated over all the radii of the distribution, and then by 161

multiplying with rk we get: 162

d
dt

∫ ∞

0
n(r)rkdr =

∫ ∞

0
Jhom(r∗)rkδr∗ (r)dr. (7) 163

We introduce Mk, the moment of kth order, in the equation to obtain: 164

dMk

dt
= Jhom(r∗)r∗k (8) 165

where r∗ is the critical radius of the droplets. By discretizing the equation and expressing the moment Mk at the timestep t + 1, we 166

get the the following relation: 167

Mk,t+1 = Jhom(r∗)r∗k∆t + Mk,t. (9) 168
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2.5. Heterogeneous nucleation 169

We can similarly express the heterogeneous nucleation with moments. We note naer the number distribution of unactivated 170

aerosols in the atmosphere, nCN that of the CN (the number of activated aerosols on which the liquid droplets can form), and Jhet 171

the heterogeneous nucleation rate. We can write the number of droplets created by heterogeneous nucleation as: 172

dnCN(r)
dt

= Jhet(r)4πr2naer(r) (10) 173

where r is the radius of the CN. 174

We integrate Equation (10) over the radius space so that we can express it with the help of moments : 175

d
dt

MCN
k = Jhet4πMaer

k+2 (11) 176

Applying to the distribution the definition of a moment of the kth order and Eq. (3) we can write: 177

Maer
k+2 = Maer

k r̄2
aer
α(k + 2)
α(k)

. (12) 178

Here r̄aer is the median radius of the aerosol size distribution. The number of produced CN is equal to the number of aerosols lost 179

to nucleation: 180

dMCN
k

dt
= 4πJhet r̄2

aer
α(k + 2)
α(k)

Maer
k = −

dMaer
k

dt
. (13) 181

The new aerosol mode moments at timestep t + 1 are given by 182

Maer
k,t+1 =

1

1 + (4πJhet r̄2
aer

α(k+2)
α(k) )∆t

Maer
k,t . (14) 183

The heterogeneous nucleation rate is calculated via a simple activation of the aerosols. We use the approach of James et al. 184

(1997). We calculate for each size bin of a pre-defined aerosol size grid the saturation ratio S over a droplet of the same size 185

accounting for the Kelvin effect and the actual vapor concentrations. When the saturation ratio exceeds unity for a given radius, 186

all of the aerosols in this size bin are activated and are transformed into droplets. The aerosol size distribution is comprised of 187

100 bins, guaranteeing a sufficient precision of the activated fraction of aerosols in our sensitivity tests (see Appendix A.1.1). The 188

nucleation subroutine is the only one in MAD-VenLA not using the moment method, as it is impossible to express the activation in 189

moments. This parametrization was compared with a more detailed expression (see Appendix A.1.1) and was deemed sufficient, 190

especially due to the unknown properties of the venusian CN, inhibiting the correct use of the classical expression for heterogeneous 191

nucleation. The routine can be improved in the future if precise information on the nature and properties of the CN can be acquired 192

and the classical nucleation theory can be used to express the nucleation rate. 193

2.6. Mass transfer 194

On Venus the size of the two-component solution cloud droplets evolves through the mass transfer (condensation or evaporation) 195

of sulfuric acid and water. The fluxes of the two vapors are steered by two processes. The droplets remain in thermodynamical 196

equilibrium by adjustment to the equilibrium composition when the environmental conditions change. The equilibrium adjustment 197

happens through exchange of water between the droplet and its environment. Water pilots this process due to its concentration being 198

higher than that of sulfuric acid in the atmosphere of Venus, leading to more frequent collisions of water molecules with the droplet. 199

Thus, it is assumed that the mass of sulfuric acid in the droplet stays constant in the equilibrium adjustment. Once the droplet is 200

in its equilibrium composition (defined by the temperature and the relative humidity), it might still be sub- or supersaturated with 201
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respect to sulfuric acid. In this case condensation or evaporation – conserving the equilibrium composition – will lead to a change 202

in its size. This process is dominated by sulfuric acid flux, and the corresponding water flux is defined by the conservation of the 203

equilibrium composition. 204

Following James et al. (1997) and Steele & Hamill (1981), the change in the mass of the binary water-sulfuric acid droplet mg 205

can be written: 206

dmg(r)
dt

=
dma(r)

dt

∣∣∣∣∣∣
Weq

m

+
dmw(r)

dt

∣∣∣∣∣∣
Weq

m︸                          ︷︷                          ︸
dmg (r)

dt

∣∣∣∣∣∣
Weq

m

+
∆mw(r)

τ
(15) 207

where τ is the model time step, ma and mw are respectively the condensed masses of sulfuric acid and water in the droplet, and mg 208

the total condensed mass in the droplet so that mg = ma + mw. 209

The first term on the right hand side of Eq. (15) represents the change in the sulfuric acid mass generated by condensation or 210

evaporation, the second term the change in the mass of water from condensation/evaporation, and the last term gives the variation 211

of the water mass due to the equilibrium adjustment. 212

As mentioned before, we suppose that the water and acid fractions in the droplet do not depend on the droplet size. We will 213

note the mass fraction of sulfuric acid in the droplet as Wm = ma/(ma + mw). Then ma = Wmmg, since the total mass of the droplet 214

mg = ma + mw. With Eq. (5), we can write : ∆mw = (ma + mw)(Wm/W
eq
m − 1). These expressions allow us to rewrite Eq. (15): 215

dmg

dt
=

1
Weq

m

dma

dt

∣∣∣∣∣∣
Weq

m

+
mg

τ

(
Wm

Weq
m
− 1

)
. (16) 216

Thus, the temporal variations of the droplet mass mg are governed by sulfuric acid, and then the change in acid mass is used for 217

calculating the quantity of water required to adjust the droplet into equilibrium with its environment. 218

Condensation and evaporation change the total mass and volume of a droplet size distribution, and this is why the mass flux 219

changes only the third order moment that is proportional to the volume. The total number of particles, given by M0, does not 220

change, except when all droplets evaporate. We need to express the change in M3 and for doing so we will start from the equation 221

of mass transfer for sulfuric acid: 222

dma

dt

∣∣∣∣∣∣
Weq

m

= 4πρar
S a − S ∗a
Rc + Rd

= 4πρar2 dr
dt

(17) 223

where Rc and Rd are the resistances to growth by heat conduction and diffusion (Kuroda, 1984), and S ∗a is the saturation ratio 224

of sulfuric acid at the droplet surface given by the Kelvin equation S ∗ = exp ((2esv1)/(kBTr∗)). In the Kelvin equation, es is the 225

surface tension (calculated with the approach of Vehkamäki et al., 2002; Vehkamäki et al., 2003), v1 the volume of a molecule, 226

kB the Boltzmann constant, T the temperature and r∗ the radius of the droplet. To find an analytical solution to this equation in 227

moments, we apply a second order Taylor-Young expansion of S ∗a to obtain an expression using powers of r that we can integrate: 228

S ∗a = B −
A
r2

0

B(r − r0) +
(r − r0)2

2
B

2A
r3

0

+
A2

r4
0

 (18) 229

where the parameters A and B are 230

A =
2esMa

ρaRT
(19)

B = exp
(

A
r0

)
(20)
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with Ma the molar mass of sulfuric acid and ρa the density of the condensate. We can rewrite the equation (16) as a function of 231

moments: 232

dM3

dt
=

dM3

dt

∣∣∣∣∣∣
Weq

m

+
M3

τ

(
Wm

Weq
m
− 1

)
(21) 233

and 234

dM3

dt

∣∣∣∣∣∣
Weq

m

=

∫ ∞

0
3r

S a − S ∗a
Rc + Rd

n(r)dr (22) 235

since for Weq
m , the variation of M3 is also governed by the growth rate g(r) related to sulfuric acid. Taking the Taylor expansion of 236

S ∗a (Equation 18), we obtain: 237

dM3

dt

∣∣∣∣∣∣
Weq

m

= a1M1 + a2M2 + a3M3 (23) 238

with the coefficients a1, a2 et a3: 239

a1 =

[
S − B −

AB
r0
−

r2
0AB
2

2r0 + A
r4

0

]
3

Rc + Rd
(24)

a2 =

[
AB
r3

0

(A + 3r0)
]

3
Rc + Rd

(25)

a3 =

[
−

AB(2r0 + A)
2r4

0

]
3

Rc + Rd
. (26)

Here the median radius of the distribution, r0, is determined at the previous time step and it is considered constant until the 240

recalculation of its value in the end of the microphysical loop. With Eq. (3), we can define the coefficients α(1), α(2) and α(3) to 241

write 242

M1 = r̄−2
g
α(1)
α(3)

M3 (27) 243

M2 = r̄−1
g
α(2)
α(3)

M3, (28) 244

and the Equation (22) becomes: 245

dM3

dt

∣∣∣∣∣∣
Weq

m

=

(
a1r̄−2

g
α(1)
α(3)

+ a2r̄−1
g
α(2)
α(3)

+ a3

)
M3. (29) 246

We can rewrite Eq. (29) with the help of a new coefficient a4 and express the third order moment at time t + 1 : 247

Mg
3,t+1 =

1
1 − a4∆t

Mg
3,t (30) 248

where 249

a4 =

(
a1r̄−2

g
α(1)
α(3)

+ a2r̄−1
g
α(2)
α(3)

+ a3

)
+

1
τ

(
Wm

Weq
m
− 1

)
. (31) 250

Now all of the tendencies of the third order moment M3 of the size distribution can be calculated. As the moment M3 is the sum 251

of two specific moments for water and sulfuric acid, we need to calculate a coefficient that gives the fraction of mass gained/lost 252

in each of the species-specific moments. This fraction Xm allows to distribute the tendency (dMg
3 = Mg

3,t+1 − Mg
3,t) so that the 253

equilibrium mass fraction of acid in conserved: 254

Xm =
Weq

m (dMg
3 + MH2S O4

3,t + MH2O
3,t )

Wm(MH2S O4
3,t + MH2O

3,t )dMg
3

. (32) 255
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Using the second order Taylor expansion for describing the behavior of the Kelvin equation should be taken with caution as it 256

deviates significantly from the exact result for particle radii far from the median radius r0. The second order Taylor expansion gen- 257

erates high S ∗a values for bigger particles, while it should tend towards unity. This results in an overestimation of the supersaturation 258

in the mass transfer scheme for the largest particles when the median radius of the distribution, r0, is small. 259

In addition, the supersaturation will be underestimated for very small particles. Since nucleation is calculated in our model with 260

a parametrization, the approximation does not affect this process. However, when the size distribution moves towards smaller sizes 261

during evaporation, the evaporation process will be slightly affected by the approximation, as the saturation ratio for the smaller tail 262

of the distribution particles will be smaller than given by the exact solution. 263

As particle size distributions span several orders of magnitude in size, the errors for the mass flux for the tails of the distribution 264

can be significant. However, only small amount of particles are contained in the tails of the distribution and thus the subsequent 265

error may turn out to be small. The error could be reduced in theory by using very narrow distributions, which would limit the 266

impact. As the particle modes in the model are defined for the conditions in Venus’ clouds, in particular through setting the standard 267

deviations of the modes as constant values given by observations, we can not try and limit the impact of the approximation by using 268

narrower modes. 269

Despite these limitations we use this approximation in this version of the model, but we acknowledge the existence of a large 270

deviation in supersaturation in the tails of the size distribution caused by our approximation. We have verified that the approximation 271

is in an acceptable range (less than a factor of two) from the exact solution for a large part of the distribution, but the tails of the 272

distribution will be subject to the increasing error of the approximation. However, the actual number of particles in the tails of the 273

distribution that will have unexpectedly large growth rates is very small, and qualitatively the model results do not show unphysical 274

behavior in the tests made here. 275

In future work our model will be developed further and we will investigate the best way of describing the saturation ratio in our 276

model. 277

2.7. Coagulation 278

Coagulation processes in our model include only Brownian coagulation, coalescence being for the moment neglected. The 279

equations developed for coagulation need to account for the flow regime and the particle mode in question. In the following we 280

present the main equations for coagulation, and a part of the detailed derivations are given in Appendix A.2. These equations have 281

been adapted for the case of Venus (two modes of spherical aerosols) from Burgalat & Rannou (2017) who developed the equations 282

for a spherical particle mode and a fractal particle mode in Titan’s atmosphere. 283

2.7.1. Integrated equations and the bimodal distribution 284

We can write the coagulation equation as a function of moments as follows (Whitby & McMurry, 1997): 285

dMk

dt
=

1
2

∫ ∞

0

∫ ∞

0
β(ri, r j)(r3

i + r3
j )

k
3 n(ri)n(r j)dridr j︸                                                     ︷︷                                                     ︸

gain

−
1
2

∫ ∞

0

∫ ∞

0
β(ri, r j)(rk

i + rk
j)n(ri)n(r j)dridr j︸                                                   ︷︷                                                   ︸

loss

(33)

with Mk the kth order moment, β the coagulation coefficient (also called the coagulation kernel) that depends on intra- and inter- 286

modal interactions, ri and r j are the radii of the coagulating droplets and n the number distribution of the droplets of radius ri or r j. 287
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In our case we consider a bimodal distribution. This allows us to write n(ri) = n1(ri) + n2(ri) where the indices 1 and 2 correspond 288

to the respective modes. The equation (33) can thus be rewritten as follows: 289

dMk

dt
=

1
2

∫ ∞

0

∫ ∞

0
β(ri, r j)(r3

i + r3
j )

k
3

×[n1(ri) + n2(ri)][n1(r j) + n2(r j)]dridr j

−
1
2

∫ ∞

0

∫ ∞

0
β(ri, r j)(rk

i + rk
j)

×[n1(ri) + n2(ri)][n1(r j) + n2(r j)]dridr j. (34)

The equation (34) will now be written for each of the considered modes and as a function of the inter- and intra-modal interactions 290

between the droplets. Thus we define the following conventions: 291

1. For intra-modal interactions, in which the two coagulating droplets belong to the same mode, the droplets form a new, larger 292

droplet that stays in that mode: 293

• (mode 1↔ mode 1)⇒ mode 1, 294

• (mode 2↔ mode 2)⇒ mode 2. 295

2. For inter-modal interactions, in which the two coagulating droplets belong to different modes (1 and 2), the droplets form a 296

new, larger droplet that is assigned to the larger mode (2): 297

• (mode 1↔ mode 2)⇒ mode 2. 298

299

These conventions have the following implications. First, in inter-modal coagulation, mode 1 will lose its particles to mode 2. 300

Second, in intra-model interactions the mean radius of the mode increases. For intra-modal coagulation in mode 1 in particular this 301

means that at some point modes 1 and 2 may overlap if the mean radius of mode 1 becomes sufficiently large. To maintain two 302

distinct modes in such a situation requires a way to handle particle transport between modes. The method of mode-merging we are 303

using in the model for this purpose will be described later in Section 2.8. 304

Here, we use β to designate the coagulation coefficient in general, independently of the flow regime or the form of interaction. 305

The terms β11, β12 and β22 will represent the coefficients for the different types of intra- and inter-modal coagulation. 306

Thus we obtain the temporal variation of the kth order moment for the intra-modal interactions: 307

dMk

dt

∣∣∣∣∣∣
11

=
1
2

∫ ∞

0

∫ ∞

0
β11(ri, r j)[(r3

i + r3
j )

k
3

−rk
i − rk

j]n1(ri)n1(r j)dridr j (35)

dMk

dt

∣∣∣∣∣∣
22

=
1
2

∫ ∞

0

∫ ∞

0
β22(ri, r j)[(r3

i + r3
j )

k
3

−rk
i − rk

j]n2(ri)n2(r j)dridr j (36)

and for inter-modal coagulation: 308

dMk

dt

∣∣∣∣∣∣
12

=

∫ ∞

0

∫ ∞

0
β12(ri, r j)[(r3

i + r3
j )

k
3

−rk
i − rk

j]n1(ri)n2(r j)dridr j. (37)

The process of coagulation leads to a change in the total number of droplets, and the total volume of the droplets remains constant. 309

It can be seen that when k = 0, the equation (37) gives the variation of the 0th order moment, which is not equal to zero. When 310

k = 3, we obtain the variation of the 3rd order moment, equal to zero. 311
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Equation (37), the tendency of the moments for inter-modal coagulation where all resulting droplets end up in mode 2, can be 312

decomposed into three components: mode 1 (m1) losses (Eq. (38)), mode 2 (m2) losses (Eq. (39)) and mode 2 gain (Eq. (40)): 313

dMm1
k

dt

∣∣∣∣∣∣L
12

=

∫ ∞

0

∫ ∞

0
β12(ri, r j)(−rk

i )n1(ri)n2(r j)dridr j (38) 314

dMm2
k

dt

∣∣∣∣∣∣L
12

=

∫ ∞

0

∫ ∞

0
β12(ri, r j)(−rk

j)n1(ri)n2(r j)dridr j (39) 315

dMm2
k

dt

∣∣∣∣∣∣G
12

=

∫ ∞

0

∫ ∞

0
β12(ri, r j)(r3

i + r3
j )

k
3 n1(ri)n2(r j)dridr j. (40) 316

Now we wish to write the tendencies of the moments for modes 1 and 2 by taking into account both inter- and intra-modal interac- 317

tions. We get for mode 1 318

dMm1
k

dt
= (41)

1
2

∫ ∞

0

∫ ∞

0
β11(ri, r j)[(r3

i + r3
j )

k
3 − rk

i − rk
j]

×n1(ri)n1(r j)dridr j

+

∫ ∞

0

∫ ∞

0
β12(ri, r j)(−rk

i )n1(ri)n2(r j)dridr j

(42)

and for mode 2 319

dMm2
k

dt
=

1
2

∫ ∞

0

∫ ∞

0
β22(ri, r j)[(r3

i + r3
j )

k
3 − rk

i − rk
j]

×n2(ri)n2(r j)dridr j

+

∫ ∞

0

∫ ∞

0
β12(ri, r j)[(r3

i + r3
j )

k
3 − rk

j]

×n1(ri)n2(r j)dridr j. (43)

2.7.2. Coagulation coefficient or coagulation kernel 320

In our model we only consider Brownian coagulation. The coagulation coefficient β defines the collision and agglomeration 321

efficiency between two droplets of radii ri and r j (with i , j). The coagulation coefficient will thus depend on the size of the two 322

droplets and on the flow regime in which they are embedded. The Knudsen number, Kn, defines the flow regime with the help of 323

the mean free path λg and the droplet radius rg: Kn = λg/rg. From here onwards, we note the continuum regime (Kn ≤ 1) as CO 324

and the free molecular regime (Kn � 1) as FM, and βCO and βFM the coagulation coefficients for these regimes. 325

In the continuum regime, the coagulation coefficient βCO is expressed with the help of the droplet radii ri et r j and the diffusion 326

coefficients Di et D j given by Eq. (44). 327

D =
kBT

6πµairr
(1 + ACMKn), (44) 328

where µ is the air viscosity. Here we use an approximation of the Cunningham-Milikan correction (1 + ACMKn, where ACM = 1.591; 329

Park et al. (1999)) that allows for the transition between the flow regimes. Burgalat (2012) has estimated that the error due to the 330

approximation 1+ ACMKn is between -4 and +9 % for Kn between 0.1 and 20. With this approximation we can express the diffusion 331

coefficient in powers of r and write the coagulation equations in moments. 332
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We can write the coagulation coefficient as follows: 333

βCO(ri, r j) = 4π(ri + r j)(Di + D j) (45) 334

with Di and D j the diffusion coefficients related to the droplets i et j and defined by Eq. (44). Eq. (45) is only valid in the continuum 335

regime since it does not take into account the Fuchs interpolation that would allow for the utilisation of this equation in all flow 336

regimes. If we note C = ACMλg and KCO = 2kBT
3µ and write the coagulation coefficient as a function of radius r, we get: 337

βCO(ri, r j) = KCO

[
2 +

ri

r j
+

r j

ri
+ C

(
1
ri

+
1
r j

+
ri

r2
j

+
r j

r2
i

)]
(46) 338

Here the terms in rk can then be replaced with the corresponding moments. 339

In the free molecular regime the coagulation coefficient βFM is a function of the droplet density ρg (Friedlander et al., 2000): 340

βFM(ri, r j) =

√
6kBT
ρg

(ri + r j)2
√

r−3
i + r−3

j (47) 341

The term
√

r−3
i + r−3

j can not be expressed in rk. To be able to proceed with the development of the equations on moments, we need 342

to approximate this term following Lee & Chen (1984) who introduced a term bk and wrote:
√

r−3
i + r−3

j = bk(r−3/2
i + r−3/2

j ). We 343

also note KFM =
√

6kBT
ρg

. Now we can rewrite Eq. (47) as follows: 344

βFM(ri, r j) = KFMbk(r1/2
i + r1/2

j + r2
i r−3/2

j

+r−3/2
i r2

j + 2r−1/2
i r j + 2rir

−1/2
j ). (48)

Lee & Chen (1984) studied a monomodal distribution and deduced that the value of the coefficient bk depends on the law used for 345

the particle size distribution, its geometric standard deviation σg and of the order k of the moment (Table A.8). We need to define 346

bk for our bimodal distribution. The derivation and the choice of the values of bk can be found in Appendix A.2.1. The final chosen 347

values for the bk coefficients are given in Table 3.

Table 3. The values of bk (for moment k) chosen for our model. The superscripts T [1-4] indicate the interaction type as follows. T1: mode 1 intra-modal interactions;
T2: mode 1 inter-modal interactions; T3: mode 2 intra-modal interactions; T4: mode 2 inter-modal interactions.

Interactions Value
bT1

0 0.73
bT2

0 0.88
bT2

3 0.80
bT3

0 0.77

348

2.7.3. General expression for the tendencies of 0th and 3rd order moments 349

Starting from equations (42) et (43), we can determine the 0th and 3rd order moment tendencies for mode 1 (m1) and mode 2 350

(m2) in the different flow regimes. For the 0th order moment of the two modes we get 351

dMm1
0

dt
= −

1
2

∫ ∞

0

∫ ∞

0
β11(ri, r j)n1(ri)n1(r j)dridr j

−

∫ ∞

0

∫ ∞

0
β12(ri, r j)n1(ri)n2(r j)dridr j (49)

dMm2
0

dt
= −

1
2

∫ ∞

0

∫ ∞

0
β22(ri, r j)n2(ri)n2(r j)dridr j. (50) 352
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Similarly, we will write the 3rd order moment for the two modes: 353

dMm1
3

dt
=

∫ ∞

0

∫ ∞

0
β12(ri, r j)(−r3

i )n1(ri)n2(r j)dridr j (51)

dMm2
3

dt
=

∫ ∞

0

∫ ∞

0
β12(ri, r j)r3

i n1(ri)n2(r j)dridr j. (52)

Inter-modal coagulation will make mode 1 lose volume that will be acquired by mode 2. Thus, we can write 354

dMm2
3

dt
= −

dMm1
3

dt
. (53) 355

The tendencies of 0th and 3rd order moments for modes 1 and 2 as a function of the flow regime and their derivations can be 356

found in Appendix A.2.2 and in Tables A.9 and A.10. 357

2.7.4. Transition regime and the harmonic mean 358

The transition between the free molecular regime and the continuum regime is not well-defined theoretically, but it can be 359

estimated (semi-)empirically (Fuchs, 1964; Otto et al., 1999). For developing our model, we will use the approach of harmonic 360

means used by Park et al. (1999). The harmonic means for a kth order moment can be written: 361

dMk

dt
=

dMk/dt |CO ×dMk/dt |FM

dMk/dt |CO +dMk/dt |FM
. (54) 362

We can also write: 363

K =
K |CO ×K |FM

K |CO +K |FM
(55) 364

In order to determine the harmonic means for each mode and moment, we need to start with the equations presented in Table A.9. 365

First we isolate inter- and intra-modal interactions and then apply Eq. (55). Doing so, we obtain the variations of the 0th and 3rd
366

order moments. For the 0th order moment for mode 1 we obtain: 367

dMm1
0

dt
=
γm1,A01

0,CO × γm1,A01
0,FM

γm1,A01
0,CO + γm1,A01

0,FM

(Mm1
0 )2

−
γm1,B01

0,CO × γm1,B01
0,FM

γm1,B01
0,CO + γm1,B01

0,FM

Mm1
0 Mm2

0 (56)

and for mode 2: 368

dMm2
0

dt
=
γm2

0,CO × γ
m2
0,FM

γm2
0,CO + γm2

0,FM

(Mm2
0 )2 (57) 369

For the 3rd order moment, we acquire for mode 1: 370

dMm1
3

dt
= −

γm1
3,CO × γ

m1
3,FM

γm1
3,CO + γm1

3,FM

Mm1
3 Mm2

3 (58) 371

and for mode 2: 372

dMm2
3

dt
=
γm1

3,CO × γ
m1
3,FM

γm1
3,CO + γm1

3,FM

Mm1
3 Mm2

3 = −
dMm1

3

dt
(59) 373
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2.8. Mode-merging 374

As mentioned before, we describe the shape of the particle size distribution with a lognormal function so that we can apply the 375

moment method to the microphysical equations. We use two particle modes whose mean radii evolve due to the microphysical 376

processes. As the particles in mode 1 grow, the mode 1 radius might become similar in size or even larger than the mode 2 median 377

radius. In such a situation, particles should be moved from the smaller mode to the larger one. In order to do this, we will apply the 378

so-called mode-merging technique (Whitby et al., 2002) that will allow us to limit the superposition of the two modes. 379

We will show here the expressions for calculating the new droplet number concentrations and radii in a situation where the 380

droplets in mode 1 are large enough to migrate in mode 2. For the mode 1 moment tendencies we can write: 381

Mm1
k,t+1 = Mm1

0,t r̄k
1 exp(

k2

2
ln2 σ1)

1
2

[
1 + er f (uX(k))

]
(60) 382

Mm1
q,t+1 = Mm1

0,t r̄q
1 exp(

q2

2
ln2 σ1)

1
2

[
1 + er f (uX(q))

]
(61) 383

where k and q are the orders of the moments with k , q and the error function er f (x) is defined as er f (x) = 2/
√
π
∫ x

0 e−t2
dt. The 384

function uX(k) is defined as: 385

uX(k) =
ln(redge) − ln(ri) − k ln2(σi)

√
2 ln(σi)

(62) 386

where i is the studied mode and redge the threshold radius defined as redge =
√r f 1r f 2. Here, the expected median radii of the modes 387

1 and 2 r f 1 and r f 2 are respectively fixed at 330 nm and 1 µm, following the values measured by Pioneer Venus Knollenberg & 388

Hunten (1980). This combination of equations gives us the new droplet number concentrations Ng and median radii r̄g of the mode 389

as defined by Whitby et al. (2002): 390

r̄1,t+1 = r̄1,t

(
1 + er f (uX(q))
1 + er f (uX(k))

)−1/(k−q)

(63) 391

and 392

N1,t+1 =
N1,t

2
(1 + er f (uX(q)))k/(k−q)

(1 + er f (uX(k)))q/(k−q) (64) 393

The same process is applied to mode 2 (with the help of the parameters calculated for mode 1), so that: 394

Mm2
k,t+1 = Mm1

0,t r̄k
1 exp(

k2

2
ln2 σ1)

1
2

[
1 − er f (uX(k))

]
(65) 395

Mm2
q,t+1 = Mm1

0,t r̄q
1 exp(

q2

2
ln2 σ1)

1
2

[
1 − er f (uX(q))

]
(66) 396

with k and q the orders of the moments. This provides us: 397

r̄2,t+1 = r̄1,t exp
(

k + q
2

(ln2 σ1 − ln2 σ2)
)

×

(
1 − er f (uX(q))
1 − er f (uX(k))

)−1/(k−q)

(67)

and 398

N2,t+1 =
N1,t

2
exp

(
−kq

2
(ln2 σ1 − ln2 σ2)

)
×

(1 − er f (uX(q)))k/(k−q)

(1 − er f (uX(k)))q/(k−q) (68)

In the case shown above, mode 1 loses droplets to mode 2, but the equations can also be applied to the inverse situation where mode 399

2 particles decrease in size and migrate to mode 1. 400
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Fig. 2. An example of mode-merging results obtained with the MAD-VenLA model in 0D. The initial mode (in blue) has the same standard deviation as mode 1
(σi = σ1). When its median radius reaches the threshold radius (redge = 570 nm) , the mode is divided in two (modes 1 and 2: respectively, in green and red). The
legend gives the mean radii and total number concentrations of the size distributions (i: initial; 1: mode 1; 2: mode 2).

3. Results 401

We have explored the behavior of the model by testing the microphysical processes one by one in the conditions of the atmosphere 402

of Venus in 0D. The goal of these tests was to make sure the developed routines behave as expected. The simulations are very short 403

as in all cases a steady state is rapidly reached. 404

In order to test the reliability of our model, we define some basic simulations where we use a realistic reference profile of 405

the Venus’ tropical atmosphere for all of the tests (VIRA, Fig. 3, Kliore et al., 1985). This profile was chosen as it gives the 406

closest description of the atmosphere in which Pioneer Venus descended while measuring the properties of the clouds. It provides 407

the temperature and pressure at the altitudes chosen for the specific tests, whereas the vapor concentrations are taken from other 408

sources (specified separately for each test case).

Fig. 3. VIRA pressure and temperature profiles for latitudes 0-30◦.

409
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3.1. Homogeneous and heterogeneous nucleation 410

The homogeneous nucleation rate is calculated with the parametrization of Määttänen et al. (2018) that depends on the relative 411

humidity, the saturation ratio of sulfuric acid and the temperature. Figure 4 shows the results of a homogeneous nucleation test in 412

the atmospheric conditions given in Table 4. The final concentration of the formed particles (after 3600 s) is the same for the two

Table 4. The initial conditions of the homogeneous nucleation tests. The values are based on a VIRA profile for latitude 30◦N and are taken at approximately 60 km
altitude.

Parameter Value
Temperature (K) 262.8
Pressure (hPa) 235.7

H2SO4 vapor (ppmv) 6.9·10−5

H2O vapor (ppmv) 1.0
Particle concentration (m−3

air) 4.0·107

Wm 0.87

413

runs having different time steps of 1 s (typical nucleation timescale) or 15 min (typical Global Climate Model physics timestep). 414

As changes in vapor concentrations due to nucleation are negligible, nucleation rate stays fairly constant during the simulation as 415

the thermodynamic conditions do not vary significantly during the 1 s timestep.

Fig. 4. Particle concentration in a 3600 s simulation with homogeneous nucleation for two different timesteps: 15 min (blue) and 1 s (red). The results after the first
timestep are shown by the dashed lines and the final results (at 3600 s) with the solid lines. The initial conditions are given in Table 4.

416

The presence of a substrate (the CN) facilitates droplet formation via heterogeneous nucleation. We made a second test, taking 417

three different sets of conditions (Table 5) and we calculated both homogeneous and heterogeneous nucleation in these conditions. 418

Only heterogeneous nucleation produces droplets (Fig. 5), the homogeneous nucleation rate remaining negligible in these condi- 419

tions. One should note that the homogeneous nucleation parameterization neglects nucleation rates below 0.1 cm−3 and is valid 420

only for relative humidities above 10−5 (the value at 50 km is lower than that). At 60 and 70 km, heterogeneous nucleation starts 421

when the saturation ratio exceeds a value above unity (1.05 in the three cases of Table 5). The nucleation rate is close to the total 422

number of aerosols available as CN (1.86 ·108 m−3 at 50 km) and reaches the maximum rate at a saturation ratio of 1.14 at all 423

levels. It can be seen that the nucleation rate increases more rapidly at 50 km than at higher altitudes, due to the slightly different 424

conditions. However, the differences are negligible and in practice all aerosols are activated as CN at all layers in these simulations. 425

426
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Table 5. Parameters for the heterogeneous nucleation tests. Temperature T , pressure P; sulfuric acid and water vapor mixing ratios and relative humidity (RH) for
the three studied altitudes (50, 60 and 70 km). The values have been taken from Stolzenbach (2016) and from a VIRA profile for latitudes 0-30◦. The relative
humidity has been calculated from the other values.

Altitude T P H2SO4 H2O RH
(km) (K) (Pa) (ppmv) (ppmv) (%)
50 350.5 10.7·104 0.26 20 5.0·10−5

60 262.8 23.6·103 0.75 10 8.5·10−4

70 229.8 36.9·102 0.09 4.5 1.3·10−3

Fig. 5. Heterogeneous nucleation rate (Jhet) as a function of the sulfuric acid saturation ratio for the three altitudes in the atmosphere of Venus given in Table 5. The
initial aerosol number concentration is 2.0·108 m−3 and the saturation ratio varies from 0.5 to 1.5. A nucleation rate is calculated for each particle size in a 1000-bin
radius grid in the range [1.0 nm,10.0 µm] and the total nucleation rate is the sum of the activated aerosols over the entire distribution.

3.2. Mass transfer 427

We have also conducted tests of mass transfer (condensation/evaporation) in the conditions of the atmosphere of Venus, once 428

again taking the pressure and temperature from the VIRA profile (Fig. 3) and the vapor mixing ratios are taken as in Table 6. The 429

choice of the latter leads to a supersaturation (S>1) for 57.5-79.5 km altitude and a subsaturation (S<1) below 57.5 km. For growth 430

to happen, droplets need to exist, and thus we initialize the mode 1 distribution in the model prior to the mass transfer calculations. 431

No other process is included, there is no vertical transport (sedimentation, mixing) and the output timestep is 1 s. Mass transfer 432

affects only the particle volume (3rd order moment), and does not change the total number of particles (0th order moment, M0) 433

except when all particles evaporate leading to M0 = 0.

Table 6. Initial profiles of gaseous sulfuric acid and water vapor for the mass transfer test cases (Stolzenbach, 2016).
Altitude (km) H2O (ppmv) H2SO4 (ppmv)

40 - 60 15.0 0.01
60 - 80 3.0 0.01

434

Figures 6 and 7 show that at 55.5 km and 57.5 km the median radius of the size distribution and the total volume decrease during 435

the simulation until complete evaporation of the droplets. This is due to the subsaturated conditions in the very warm conditions in 436

these layers that lead to evaporation. The acceleration of the evaporation with decreasing particle radius is due to the Kelvin effect: 437

the saturation vapor pressure increases with decreasing particle size, increasing the subsaturation and the evaporation rate as the 438

particle size gets smaller. At higher altitudes, from 59.5 to 70.5 km, the median radius and the total volume increase with time since 439
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they evolve in supersaturated conditions. The evolution of the droplets is not similar at different altitudes. At all three altitudes the 440

volume and the radius of the particles already grow at the start of the simulation, but then the growth stops and the particle size 441

and volume stabilize to a constant value. This corresponds to the situation where all of the available vapor has been consumed by 442

condensation, and since the vapor is not replenished by transport, phase equilibrium is reached. This stationary state is reached at 443

different times, depending on the growth rate and the amount of available vapor (supersaturation) at the respective altitudes. The 444

largest overall growth is modeled at around 60 km altitude where the thermodynamic conditions are the most favorable.

Fig. 6. Evolution of the 3rd order moment of mode 1 (proportional to the total volume of the mode) at different altitudes on Venus in the pure mass transfer test. The
temperature and pressure come from the VIRA profile for latitudes 0-30◦ (Fig. 3).

Fig. 7. Evolution of the median radius of mode 1 at different altitudes on Venus in the pure mass transfer test. The temperature and pressure come from the VIRA
profile for latitudes 0-30◦ (Fig. 3).

445

In the previous test we only followed the growth/evaporation of mode 1 particles. If we include mode-merging, we can obtain 446

growth on mode 1 particles into mode 2 thanks to the inter-mode transfer of particles made possible by this technique. This results 447

in a decrease of the total particle number (moment M0) of mode 1. Due to the large difference in the particle numbers of the two 448

modes, this decrease is not very clearly visible at 65.5 km in Fig. 8, but the mode 1 decrease is equal to the visible increase of the 449

total droplet concentration in mode 2. The increase in mode 2 is very rapid during the first 200 s (going from 0 to 3·107 m−3) and 450

continues more slowly and attains 4.5·107 m−3 after 1000 s. 451

During growth, the largest particles of mode 1 move to mode 2 and this can be seen in the behavior of the 3rd order moment M3 452
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Fig. 8. Evolution of the 0th order moment (proportional to the total number of particles) of modes 1 and 2 in the test including both condensation and mode-merging
at 65.5 km altitude on Venus. At the start of the simulation only mode 1 contains droplets and mode 2 acquires droplets through mode-merging.

that is proportional to the total volume of the distribution (Fig. 9). For mode 1, the M3 moment decreases more rapidly than M0 453

(Figures 8 and 9). This can be understood as M3 ∝ r̄3
pg M0 and the M3 of mode 1 decreases with the median radius of mode 1. The 454

median radius of mode 2 (Fig. 10) stabilizes just like the moments M0 and M3.

Fig. 9. Evolution of the 3rd order moment (proportional to the total volume) of modes 1 and 2 in the test including both condensation and mode-merging at 65.5 km
altitude on Venus. At the start of the simulation only mode 1 contains droplets.

455

3.3. Impact of Brownian coagulation and mode-merging 456

Finally, we have conducted simulations to test coagulation and mode-merging together. The tests were made in conditions over 457

different altitudes (40-80 km), but the results were very similar for all altitudes. Thus we have decided to choose one altitude only, 458

55 km, for which we present results here (see conditions in Table 7). As mentioned related to condensation, in our simulations mode 459

2 is not initialized but forms as a results of mode 1 particle growth and mode-merging that moves the droplets too large for mode 1 460

into mode 2. Here we investigate the growth process with coagulation. Intra-modal coagulation in mode 1 leads to the growth of 461

the radius of mode 1 and eventually a part of the mode 1 particles will be moved to mode 2 by mode-merging. Once mode 2 has 462

formed, both intra- and inter-modal coagulation can take place. Both of these processes lead to the formation of mode 2 particles 463

and thus induce an increase in the mode 2 total droplet concentration and a decrease of the mode 1 total droplet concentration (Fig. 464

11). Fig. 12 shows that the median radius of mode 2 varies very little and that the increase of M3 is governed here only by the 465
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Fig. 10. Variation of the median radius of modes 1 and 2 in the test including both condensation and mode-merging at 65.5 km altitude on Venus. At the start of the
simulation only mode 1 contains droplets and mode 2 acquires droplets through mode-merging.

Table 7. Atmospheric conditions (from the VIRA profile at latitudes 0-30◦) and initial parameters of the particle size distribution at 55 km altitude used in the
coagulation test. The mode 1 initialization parameters are the standard deviation σ1, the median radius rp1 and the total particle concentration Ntot1.

Parameter Value
Altitude 55 km

Temperature 302.3 K
Pressure 53.1·103 Pa
σ1 1.56
rp1 3·10−7 m

Ntot1 2·108 m−3

increase of the particle number M0. Since the total particle concentration of mode 1 is much larger than that of mode 2, its decrease 466

is much less visible in Fig. 11. The growth-related behavior seen in both Figures 11 and 13 is very similar to what was seen in 467

Figures 8 and 9 for the mass transfer. 468

4. Conclusions 469

We have developed a modal microphysical model, MAD-VenLA, for modeling the clouds of Venus. The equations governing 470

the microphysical processes of mass transfer and Brownian coagulation have been derived in the form necessary for the application 471

of the moment method, basis of a modal microphysical model. This paper presents the derivations of the equations for all required 472

flow regimes (continuum, transition, kinetic) and reports the hypotheses and estimation of parameters that were necessary in the 473

development of the model. We have also included in the model the so-called mode-merging technique that allows the transfer of 474

particles from one mode to another when modes overlap due to particle growth or decay. Such a technique is necessary when 475

modeling aerosol dynamics of a multimodal particle population with a modal model. The developed model processes have been 476

tested in a number of cases in average tropical atmospheric conditions on Venus. All of the model processes behave as expected. 477

Heterogeneous nucleation is more efficient than homogeneous nucleation, as predicted by theory. Mass transfer tests on a pre- 478

existing droplet population show that the particle sizes evolve as expected as a function of sub- and supersaturated conditions. 479

Droplets shrink in size due to evaporation in subsaturated conditions, and this happens at an accelerating rate, since the growth rate 480

is inversely proportional to the size of the particle. The inverse is seen in supersaturated conditions and the final size of the droplets 481

depends on the growth rate and on the amount of available condensable vapor. The combination of a growth process (condensation 482

or coagulation) and mode-merging on a single mode produces two modes due to growth and subsequent transfer of particles from 483
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Fig. 11. Time evolution of the 0th order moment M0 (total particle concentration) of modes 1 and 2 in the coagulation test with initial conditions as in Table 7.

Fig. 12. Time evolution of the mode 1 and 2 median radii in the coagulation test with initial conditions as in Table 7.

the initial, smaller mode to a second, larger one. These tests provide the first validation of the proper functioning of the model. This 484

model will be coupled with the IPSL Venus Global Climate Model in the near future to conduct simulations including transport, 485

chemistry and cloud microphysics. 486
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Appendix A. Detailed derivations of the microphysical processes used in the model 491

Appendix A.1. Heterogeneous nucleation 492

Appendix A.1.1. Calculation of the heterogeneous nucleation rate 493

As explained in Section 2.5, we use an effective heterogeneous nucleation rate calculated through a sectional parametrization. 494

We tested two approaches, the first being to calculate the heterogeneous nucleation rate for pure sulfuric acid on a particle size 495
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Fig. 13. Time evolution of the 3rd order moment M0 (total particle volume) of modes 1 and 2 in the coagulation test with initial conditions as in Table 7.

distribution, and the second consists in calculating a simple activation of aerosols supposing that they correspond to acid solution 496

droplets of the same size (approach also used by James et al. (1997)). We will describe the two parameterizations in the following. 497

The first approach is based on adapting a one-component nucleation routine (from the Mars global climate model, Navarro et al., 498

2014) to the nucleation of pure sulfuric acid. Calculating the nucleation rate for the median radius of the distribution only would 499

lead to an instantaneous activation of all particles (supposed to have the same average radius), overestimating nucleation. To avoid 500

this, we have divided the particle size distribution in several bins to calculate the heterogeneous nucleation rate Jhet, allowing us to 501

activate only a part of the distribution (above a certain size) as a function of the saturation ratio. We also had to estimate the values 502

of certain parameters for sulfuric acid: the desorption energy, the energy for surface diffusion and the molecular vibration frequency. 503

For these parameters we use the values for water (Montmessin et al., 2004). In addition, we also need to make a hypothesis on the 504

contact parameter between the unknown aerosols and sulfuric acid. We use the value 0.946 that has been arbitrarily chosen as a 505

compromise between numerical errors and number concentration of activated aerosols. The value is close to unity, meaning that we 506

suppose the unknown aerosols to be easily wettable by sulfuric acid. 507

The second approach that accounts for the actual composition of the droplets is based on James et al. (1997). We predefine a 508

size grid of unactivated aerosols and calculate, for each size bin, the saturation ratio supposing that the aerosol is a droplet of that 509

size. The calculation accounts for the curvature and the thermodynamic conditions (temperature, vapor concentrations for H2SO4 510

and H2O). When the saturation ratio for a certain size bin is larger than 1, the aerosols in this bin are activated as CN and become 511

droplets of the same size. Otherwise (S < 1), the aerosols remain unactivated. 512

We have compared the two approaches for different size discretizations. The initial conditions of the tests are given in Table 4. 513

The sum of activated aerosols gives the total number of CN. 514

One should note that the discretization has an effect on the precision on the fraction of activated aerosols, the result being better 515

for a finer size grid. This can be seen in Fig. A.14 that shows as a function of the number of size bins the ratio of the calculated 516

activated fraction and the reference given by the calculation using 106 bins. When the ratio is close to one, the result of the 517

calculation using fewer bins approaches the result of the calculation using 106 bins, considered sufficiently accurate. However, the 518

computational cost of such a high-resolution discretization can be prohibitive for applications in 3D atmospheric models. We have 519

thus aimed at finding a compromise between the number of size bins and the accuracy of the result. 520

It can be seen that the results approach (for both parametrizations) the reference value given by the ideal case when the number 521



24 Anni Määttänen etal / Advances in Space Research xx (2022) xxx-xxx

of size bins is around 100, giving the order of magnitude of the required discretization for our model. As the approach of James 522

et al. (1997) has the smallest difference compared to the reference even below 100 size bins and since it is computationally very 523

efficient, we decided to opt for this routine for our model. 524

The total number of activated CN summed over the size grid gives the tendency of moment M0 and the moment M3 can be easily 525

calculated from the bin radii and the number of activated CN in each bin summed over the size distribution.

Fig. A.14. The ratio of the nucleation rate calculated with the parametrizations using different discretizations (number of bins given by the y-axis) and the ”accurate”
rate calculated with 106 bins. Orange line: approach of James et al. (1997); blue line: one-component nucleation of pure sulfuric acid.

526

Appendix A.2. Coagulation 527

Appendix A.2.1. Derivation and values of the bk coefficients in the molecular regime 528

The calculation of the coefficients bk (see Section 2.7, Eq. (48)) requires expressing the integrals of the coagulation equations 529

(Equations (38)-(40)) with the functions G(ri, r j, k) that represent the gain/loss of each mode, so that 530

I =

∫ ∞

0

∫ ∞

0
β(ri, r j)G(ri, r j, k)n(ri)n′(r j)dridr j (A.1) 531

Here, concerning the molecular regime, we can rewrite Eq. (A.1) : 532

I =

∫ ∞

0

∫ ∞

0

√
6kT
ρg

(ri + r j)2bk(r−3/2
i + r−3/2

j )

×G(ri, r j, k)n(ri)n′(r j)dridr j (A.2)

From these expressions (Equations (A.1) and (A.2)) we get for bk: 533

bk =

∫ ∞
0

∫ ∞
0 β(ri, r j)G(ri, r j, k)n(ri)n′(r j)dridr j∫ ∞

0

∫ ∞
0 β(ri, r j)

r−3/2
i +r−3/2

j√
r−3

i +r−3
j

G(ri, r j, k)n(ri)n′(r j)dridr j

(A.3) 534

Table A.8 compiles the different expressions for G(ri, r j, k) and bk for the inter- and intra-modal interactions and modes. 535

Here we can see that there is a similarity: bT2
3 ∼ −bT4

3 . This means that in inter-modal coagulation the loss of volume in mode 1 536

is equal to the gain in volume in mode 2. Certain coefficients are equal to zero (bT1
3 ∼ bT3

3 ∼ bT4
0 ∼ 0) and there is thus no loss nor 537
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Table A.8. Coefficients bk and values of G(ri, r j, k) for the moments of order k for modes 1 and 2. The last column (type) gives the type of interaction with (1-1) and
(2-2) referring to intra-modal and ((1-2) to inter-modal coagulation.

Mode bk G(ri, r j, k) G(k = 0) G(k = 3) Type
1 bT1

k (r3
i + r3

j )
k
3 − rk

i − rk
j -1 0 (1-1)

1 bT2
k −rk

i -1 −r3
i (1-2)

2 bT3
k (r3

i + r3
j )

k
3 − rk

i − rk
j -1 0 (2-2)

2 bT4
k (r3

i + r3
j )

k
3 − rk

j 0 r3
i (1-2)

gain for the respective modes. These aspects reduce the number of coefficients bk necessary for the calculations to four, and they 538

are defined below. 539

bT1
0 =

∫ ∞
0

∫ ∞
0 β11(ri, r j)n1(ri)n1(r j)dridr j∫ ∞

0

∫ ∞
0 β11(ri, r j)

r−3/2
i +r−3/2

j√
r−3

i +r−3
j

n1(ri)n1(r j)dridr j

(A.4)

bT2
0 =

∫ ∞
0

∫ ∞
0 β12(ri, r j)n1(ri)n2(r j)dridr j∫ ∞

0

∫ ∞
0 β12(ri, r j)

r−3/2
i +r−3/2

j√
r−3

i +r−3
j

n1(ri)n2(r j)dridr j

(A.5)

bT2
3 =

∫ ∞
0

∫ ∞
0 β12(ri, r j)r3

i n1(ri)n2(r j)dridr j∫ ∞
0

∫ ∞
0 β12(ri, r j)

r3/2
i +r3

i r−3/2
j√

r−3
i +r−3

j

n1(ri)n2(r j)dridr j

(A.6)

bT3
0 =

∫ ∞
0

∫ ∞
0 β22(ri, r j)n2(ri)n2(r j)dridr j∫ ∞

0

∫ ∞
0 β22(ri, r j)

r−3/2
i +r−3/2

j√
r−3

i +r−3
j

n2(ri)n2(r j)dridr j

(A.7)

We have done the calculations for determining the values of bk using Equations (A.4)-(A.7) as a function of droplet size in the

Fig. A.15. Values of bT2 for the 0th order moment (top) and 3rd order moment (bottom) for inter-modal interactions. The axes give the radii of the two modes. The
black lines give the median radii of the two modes.

540

ranges [1.0·10−9, 5.5·10−7] m for mode 1 and [5.45·10−7, 2.0·10−5] m for mode 2 (Fig. A.15). For the intra-modal interactions the 541

value of bT1
0 is a constant as it only depends on the mode 1 radius range and is equal to 0.73, and similarly, bT3

0 = 0.77. 542

The results for bT2
0 and bT2

3 are shown in Figure A.15 that shows their dependence on the radii of modes 1 and 2. As the online 543

calculation of these parameters is time-consuming, we have decided to use constant values for bT2
0 and bT2

3 . As we are using the 544

moment method that considers the median radius of each mode, we have selected the bk values corresponding to the median radii 545
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observed by Pioneer Venus, 300 nm for mode 1 and 1 µm for mode 2, that result in bT2
0 = 0.88 and bT2

3 = 0.80. We can see 546

from Fig. A.15 that within the defined radius range the dominating value for bT2
0 and bT2

3 is 1.0. For the inter-modal interactions 547

in a purely molecular regime, the choice of the values chosen above could lead to a maximum error of 15 % for bT2
0 and 20 % for 548

bT2
3 compared to the value of unity. This might make a difference at the Venus cloud tops where homogeneously nucleated 1 nm 549

droplets would be in this regime. However, since in our model we consider heterogeneous nucleation on CN with a mean radius of 550

about 125 nm, the chosen values correspond quite well to the model regime. 551

Appendix A.2.2. Derivation of the moment M0 and M3 tendencies for modes 1 and 2 as a function of the flow regime 552

Table A.9 lists the tendencies of 0th and 3rd order moments for modes 1 and 2 as a function of the flow regime. The coefficients 553

involved in the equations are given in Table A.10.

Table A.9. Equations for modes 1 et 2 for the two flow regimes and for the 0th and 3rd order moments. The coefficients γmode
order,regime are derived in Appendix A.2.2

and are given in Table A.10.
Regime Mk Mode Expression

CO M0 m1
dMm1

0
dt = γ

1A01
0,CO(Mm1

0 )2 + γ
1B01
0,CO Mm1

0 Mm2
0

m2
dMm2

0
dt = γ2

0,CO(Mm2
0 )2

CO M3 m1
dMm1

3
dt = −γ1

3,CO Mm1
3 Mm2

3

m2
dMm2

3
dt = −

dMm1
3

dt = γ1
3,CO Mm1

3 Mm2
3

FM M0 m1
dMm1

0
dt = γ

1A01
0,FM(Mm1

0 )2 + γ
1B01
0,FM Mm1

0 Mm2
0

m2
dMm2

0
dt = γ2

0,FM(Mm2
0 )2

FM M3 m1
dMm1

3
dt = −γ3,FM Mm1

3 Mm2
3

m2
dMm2

3
dt = −

dMm1
3

dt = γ3,FM Mm1
3 Mm2

3

554

Starting from equations (42) et (43) (Section 2.7), we can determine the 0th and 3rd order moment tendencies for mode 1 (m1) 555

and mode 2 (m2) in the different flow regimes. For the 0th order moment of the two modes we get 556

dMm1
0

dt
= −

1
2

∫ ∞

0

∫ ∞

0
β11(ri, r j)n1(ri)n1(r j)dridr j

−

∫ ∞

0

∫ ∞

0
β12(ri, r j)n1(ri)n2(r j)dridr j (A.8)

dMm2
0

dt
= −

1
2

∫ ∞

0

∫ ∞

0
β22(ri, r j)n2(ri)n2(r j)dridr j. (A.9) 557

We will write the mode 1 equation (A.8) with two terms 558

dMm1
0

dt
= A01 + B01. (A.10) 559

Similarly, we will write the 3rd order moment for the two modes: 560

dMm1
3

dt
=

∫ ∞

0

∫ ∞

0
β12(ri, r j)(−r3

i )n1(ri)n2(r j)dridr j (A.11)

dMm2
3

dt
=

∫ ∞

0

∫ ∞

0
β12(ri, r j)r3

i n1(ri)n2(r j)dridr j (A.12)

Inter-modal coagulation will make mode 1 lose volume that will be acquired by mode 2. This is why we can write: 561

dMm2
3

dt
= −

dMm1
3

dt
(A.13) 562
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Table A.10. The coefficients γmode
order,regime that appear in the equations of Table A.9.

Expression

γ
1A01
0,CO = −KCO

1 + α1(1)α1(−1) + r̄−1
1 C

α1(−1) + α1(−2)α1(1)


γ
1B01
0,CO = −KCO

2 + r̄1r̄−1
2 α1(1)α2(−1) + r̄−1

1 r̄2α1(−1)α2(1)

+C
r̄−1

1 α1(−1) + r̄−1
2 α2(−1)+

r̄1r̄−2
2 α1(1)α2(−2) + r̄−2

1 r̄2α1(−2)α2(1)


γ2
0,CO = −KCO

1 + α2(1)α2(−1) + r̄−1
2 C

α2(−1) + α2(−2)α2(1)


γ1
3,CO = −KCO

2r̄−3
2

1
α2(3) + r̄1r̄−4

2
α1(4)α2(−1)
α1(3)α2(3) + r̄−1

1 r̄−2
2

α1(2)α2(1)
α1(3)α2(3) +

C
r̄−1

1 r̄−3
2

α1(2)
α1(3)α2(3) + r̄1r̄−5

2
α1(4)α2(−2)
α1(3)α2(3) + r̄−2

1 r̄−2
2

α1(1)α2(1)
α1(3)α2(3) + r̄−4

2
α2(−1)
α2(3)


γ

1A01
0,FM = −bT1

0 KFMr
1
2
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
Appendix A.2.3. Moment M0 and M3 tendencies in the continuum regime 563

We write the intra-modal term A01 in Eq. (A.8) with β for continuum regime (Eq. (46)). We end up with an expression in powers 564

of r: 565

A01 = −
1
2

∫ ∞

0

∫ ∞

0
KCO

[
2 +

ri

r j
+

r j

ri

+C
(

1
ri

+
1
r j

+
ri

r2
j

+
r j

r2
i

)]
n1(ri)n1(r j)dridr j. (A.14)

With Eq. (1) we can use the moments to rewrite: 566

A01 = −
1
2

KCO

[
2Mm1

0 Mm1
0 + Mm1

1 Mm1
−1 + Mm1

−1 Mm1
1

+C
(
Mm1
−1 Mm1

0 + Mm1
0 Mm1

−1

+Mm1
1 Mm1

−2 + Mm1
−2 Mm1

1

)]
. (A.15)

With the help of Eq. (3) we can replace the moments of order k , 0 by the 0th order moments. As we are only using 0th and 3rd
567

order moments in the model, we can write 568

A01 = −KCO

[
1 + α1(1)α1(−1)
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+r̄−1
1 C

(
α1(−1) + α1(−2)α1(1)

)]
(Mm1

0 )2

= γ1A01
0,CO(Mm1

0 )2. (A.16)

This term describes the intra-modal interactions of mode 1. Coagulation induces a loss in the number concentration of mode 1, so 569

A01 < 0. 570

Then we proceed in the same way to write the inter-modal term for mode 1 (Eq. (A.8)) that we note B01: 571

B01 = −
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0
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0 Mm2
0 (A.17)

The term B01 gives the loss of droplets in mode 1 and gain in mode 2 due to inter-modal coagulation. This is why B01 depends both 572

on Mm1
0 and Mm2

0 . Now we rewrite Eq. (A.10) and insert in A01 (Eq. (A.16)) and B01 (Eq. (A.17)) with the constants γ1A01
0,CO and 573

γ1B01
0,CO, giving the following expression for mode 1: 574

dMm1
0

dt
= γ1A01

0,CO(Mm1
0 )2 + γ1B01

0,COMm1
0 Mm2

0 . (A.18)

For mode 2 we get: 575

dMm2
0

dt
= −KCO

[
1 + α2(1)α2(−1)
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2 C

(
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)]
(Mm2

0 )2. (A.19)

This can also be written as follows: 576

dMm2
0

dt
= γ2

0,CO(Mm2
0 )2. (A.20)

We use the same approach to define the tendency of the 3rd order moment for mode 1 and consequently deduce the tendency for 577

mode 2, starting from Equations (46) and (A.9): 578

dMm1
3

dt
=

∫ ∞

0

∫ ∞

0
KCO

[
2 +

ri

r j
+

r j

ri

+C
(

1
ri

+
1
r j

+
ri

r2
j

+
r j

r2
i

)]
(−r3

i )n1(ri)n1(r j)dridr j

= −KCO

[
2Mm1

3 Mm2
0 + Mm1

4 Mm2
−1 + Mm1

2 Mm2
1
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Thus the tendencies are: 579

dMm2
3

dt
= −

dMm1
3

dt
= −γ1

3,COMm1
3 Mm2

3 (A.22)

This equation shows that the volume lost in mode 1 through inter-modal coagulation is a gain for mode 2. 580

Appendix A.2.4. Moment M0 and M3 tendencies in the molecular regime 581

Just like for the continuum regime the equations for modes 1 and 2 depend on the Eq. (48) of the coagulation coefficient for the 582

molecular regime. Thus we will need the Equations (A.9), (A.12) and (A.14) for expressing the tendencies of the 0th and 3rd order 583

moments in this regime. 584

Let us start with the 0th order moment. For mode 1 we will derive separately the terms A01 (Eq. (A.14)) and B01 (Eq. (A.17)): 585
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586

B01 = −
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Using the constants γ1A01
0,FM and γ1A01

0,FM in A01 (Eq. (A.23)) and B01 (Eq. (A.24)), we get: 587
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0,FM Mm1
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0 (A.25) 588

and 589
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giving 590

dMm2
0

dt
= γ2

0,FM(Mm2
0 )2 (A.27) 591

For the 3rd order moments we acquire in a similar fashion: 592

dMm1
3

dt
=

∫ ∞

0

∫ ∞

0
βFM(ri, r j)n1(ri)n2(r j)dridr j

=

∫ ∞

0

∫ ∞

0
bT2

3 β1↔2(ri, r j)n1(ri)n2(r j)dridr j

= bT2
3 KFM

(
Mm1

1
2

Mm2
0 + Mm1

2 Mm2
− 3

2
+ Mm1

− 3
2
Mm2

2

+Mm1
0 Mm2

1
2

+ 2Mm1
− 1

2
Mm2

1 + 2Mm1
1 Mm2

− 1
2

)
(A.28)

and 593
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giving 594

dMm1
3

dt
= γ3,FM Mm1

3 Mm2
3 = −

dMm2
3

dt
. (A.30) 595

In the molecular regime the coagulation tendencies for inter- and intra-modal interactions follow the same logic as for the continuum 596

regime. For intra-modal coagulation, the total volume is conserved, and the volume lost by mode 1 is transferred to mode 2. 597

Appendix A.2.5. Explicit expressions for the coagulation tendencies 598

Now that we have at hand the expressions for calculating the variations of the moments for the two modes (Table A.9), we will 599

be able to write them in an explicit form with the help of the coefficients γ (Table A.10). 600

Mm1
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0 ∆tMm2
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Mm1
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2γ1A
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(A.31)
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1
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0∆t2
(A.32)
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Eq. (A.32) can be inserted in (A.31). For the 3rd order we get: 601
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(A.33)
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(A.34)

602

With the adequate coefficients γ (Table A.10), these equations are valid for both the continuum and molecular regimes. 603

Appendix B. Processes included for cloud modeling in an atmospheric column 604

Appendix B.1. Aerosol production 605

The formation of clouds via heterogeneous nucleation requires the presence of solid aerosol particles that function as conden- 606

sation nuclei. We do not know the composition of the possible CN in the atmosphere of Venus so this approach requires certain 607

hypotheses. First of all, for the purpose of 1-3D modeling, we need to define their distribution as a function of altitude that we have 608

chosen as follows: 609

dM3

dt
=

γaer
4
3πρaerdz

(B.1) 610

where γaer is the production rate of aerosols in kg m−2 s−1 and ρaer the density of the aerosol particles. The parameter dz is the 611

width (or standard deviation) of the gaussian distribution used for describing the aerosol layer. We apply the explicit scheme and 612

write: 613

M3,t+1 =
γaer

4
3πρaerdz

∆t + M3,t (B.2) 614

The zeroth order moment is acquired by: 615

M0,t+1 =
1

r3
aerαaer(3)

M3,t+1. (B.3) 616

The produced aerosol particles are activated by heterogeneous nucleation to allow for the formation of droplets in the model that 617

act as a sink for the aerosols. When the droplets evaporate, the aerosol particles are released. 618

Appendix B.2. Sedimentation 619

The model includes the possibility to calculate sedimentation in case it is used in a 1D setting. Although in this paper the model 620

is only used in 0D, we present in the following the equations for calculating sedimentation with moments. For sedimentation we 621

have applied the same approach as Burgalat (2012). We can write: 622

vt(r, z) =
2
9

r2ρgg0(1 + ACMKn)
µair

(B.4) 623

allowing us to write the sedimentation flux Fsed as a function of powers of r: 624

Fsed(∆r, z) =

∫ r+dr

r
n(r, z)vt(r, z)dr. (B.5) 625
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If we replace vt in Eq. (B.5) with Eq. (B.4), we obtain: 626

Fsed(∆r, z) =

∫ r+dr

r
n(r, z)

2
9

r2ρgg0(1 + ACMKn)
µair

dr (B.6) 627

Expressing Eq. (B.6) with moments, we finally get: 628

Fsed,Mk (z) =
2ρgg0

9µair
(Mk+2

k + ACMλgMk) (B.7) 629

The expression (B.7) allows us to determine the sedimentation flux in an atmospheric column (1D). Just like for coagulation, we 630

use the approximation of the Cunningham-Millikan correction ACM = 1.591 Park et al. (1999)). This produces an error very similar 631

to that of the coagulation, from -4 to 9% (Burgalat, 2012). 632
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