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Deep generative models have proven to be effective priors for solving a variety of image processing problems. However, the learning of realistic image priors, based on a large number of parameters, requires a large amount of training data. It has been shown recently, with the so-called deep image prior (DIP), that randomly initialized neural networks can act as good image priors without learning. In this paper, we propose a deep generative model for light fields, which is compact and which does not require any training data other than the light field itself. To show the potential of the proposed generative model, we develop a complete light field compression scheme with quantization-aware learning and entropy coding of the quantized weights. Experimental results show that the proposed method yields very competitive results compared with state-of-the-art light field compression methods, both in terms of PSNR and MS-SSIM metrics.

I. INTRODUCTION

L IGHT field imaging has recently gained in popularity due to their potential for computer vision or computational photography applications. Compared to classical 2D imaging, light fields record the flow of rays in the form of large volumes of data, which retain both spatial and angular information of a scene. Several camera designs have been proposed for capturing light fields, from uniform arrays of pinholes placed in front of the sensor [START_REF] Ives | Parallax panoramagrams made with a large diameter lens[END_REF] to arrays of micro-lenses placed between the main lens and the sensor [START_REF] Lippmann | La photographie intégrale[END_REF]- [START_REF] Ng | Light Field Photography with a Handheld Plenoptic Camera[END_REF] and arrays of cameras [START_REF] Yang | A Real-Time Distributed Light Field Camera[END_REF], [START_REF] Wilburn | High Performance Imaging using Large Camera Arrays[END_REF]. Some other designs use coded attenuation masks [START_REF] Babacan | Compressive Light Field Sensing[END_REF]- [START_REF] Miandji | Multi-shot single sensor light field camera using a color coded mask[END_REF], with sparse reconstruction or deep learning methods [START_REF] Nabati | Fast and accurate reconstruction of compressed color light field[END_REF], [START_REF] Le Guludec | Deep light field acquisition using learned coded mask distributions for color filter array sensors[END_REF].

Light fields represent very large volumes of highdimensional data. Finding effective but compact representations of light fields, that would capture both their spatial and angular redundancy, has therefore become a key challenge for practical use of this technology. This motivated the design of a variety of solutions, ranging from approaches extending HEVC Intra to directly compress the lenslet images [START_REF] Conti | HEVC-based light field image coding with bi-predicted self-similarity compensation[END_REF], [START_REF] Monteiro | Light field hevc-based image coding using locally linear embedding and self-similarity compensated prediction[END_REF], to the compression of the set of views as pseudosequences using HEVC [START_REF] Liu | Pseudosequence-based light field image compression[END_REF], [START_REF] Ahmad | Interpreting plenoptic images as multiview sequences for improved compression[END_REF], or using solutions based on 4D disparity-compensated transforms applied on spatio angular blocks [START_REF] Tabus | Lossy compression of lenslet images from plenoptic cameras combining sparse predictive coding and jpeg 2000[END_REF], [START_REF] Chang | Light field compression using disparitycompensated wavelet decomposition[END_REF], [START_REF] Chang | Light field compression using disparity-compensated lifting and shape adaptation[END_REF], [START_REF] Girod | Light field compression using disparity-compensated lifting[END_REF], [START_REF] Barina | Comparison of light field compression methods[END_REF]. A comparison of This project has been in part supported by the EU H2020 Research and Innovation Programme under grant agreement No 694122 (ERC advanced grant CLIM), and in part by the French ANR research agency in the context of the artificial intelligence project DeepCIM.

X.Jiang, J. Shi and C. Guillemot are with the Inria Centre de Recherche Rennes -Bretagne Atlantique, Rennes 35042, France. (e-mail: xiaoran.jiang@inria.fr; jinglei.shi@inria.fr; christine.guillemot@inria.fr) the performance of light field compression schemes using various video coding standards can also be found in [START_REF] Barina | Comparison of light field compression methods[END_REF]. Methods using view synthesis have also been proposed in [START_REF] Jiang | Light fields compression using depth image based view synthesis[END_REF] to synthesize all the views from a sparse set of input views, or in [START_REF] Zhao | Light field image coding via linear approximation prior[END_REF] where the authors use a linear approximation computed with Matching Pursuit for disparity based view prediction. Other view synthesis-based compression approaches have been proposed in [START_REF] Dib | Light field compression using fourier disparity layers[END_REF] and in [START_REF] Hawary | Scalable light field compression scheme using sparse reconstruction and restoration[END_REF] using the Fourier Disparity Layer (FDL) representation introduced in [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF], or exploiting the sparsity in the continuous Fourier domain as proposed in [START_REF] Shi | Light field reconstruction using sparsity in the continuous fourier domain[END_REF] respectively. Solutions using 3D representations have also been investigated as in [START_REF] Volino | Light field compression using eigen textures[END_REF] where the authors use an approximate 3D surface reconstruction to construct an eigen texture basis representation from the light field. Some approaches aim at providing scalability when coding light fields, such as in e.g., [START_REF] Conti | Inter-Layer Prediction Scheme for Scalable 3-D Holoscopic Video Coding[END_REF], [START_REF] Li | Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities[END_REF], [START_REF] Rüefenacht | Base-Anchored Model for Highly Scalable and Accessible Compression of Multiview Imagery[END_REF], [START_REF] Hu | Adaptive two-layer light field compression scheme based on sparse reconstruction[END_REF] by designing layered compression schemes.

Neural Radiance Fields (NeRF) [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF] have been recently introduced for light field view synthesis, hence, as other view synthesis methods, could be used as predictors in light field compression schemes, or directly as the light field representation. NeRF models, based on multi-layer perceptrons (MLP) are defined as models mapping continuous 5D vectors (3D coordinates plus 2D viewing directions) to volume density and view-dependent radiance. The model, trained to fit a set of input views, can be used to generate any view of the light field using volume rendering techniques. Many variants of NeRF have been proposed, to reduce the number of input views (e.g., [START_REF] Yu | pixelneRF: Neural radiance fields from one or few images[END_REF]), or to generalize to new scenes (e.g. [START_REF] Chen | MVSNeRF: Fast generalizable radiance field reconstruction from multiview stereo[END_REF]). The authors in [START_REF] Feng | Signet: Efficient neural representations for light fields[END_REF] first transform the 4D light field by leveraging Gegenbauer polynomials basis, and learn the mapping from these basis functions to color. The concept is further generalized to X-Fields in [START_REF] Bemana | Xfields: Implicit neural view-, light-and time-image interpolation[END_REF] defined as sets of 2D images taken across different view, time or illumination conditions. By limiting the novel viewpoints to be on the same side of the cameras, e.g., front views only, the NeuLF method in [START_REF] Li | Neulf: Efficient novel view synthesis with neural 4d light field[END_REF] aims at decreasing the inference time of NeRF, without sacrificing the rendering quality.

In this paper, we propose a neural network for compact light field representation. Like NeRF, it is untrained in the sense that it is learned only on the light field to be processed, without any additional training data. However, our motivation here was to design a lightweight network offering a good trade-off between the number of parameters, i.e. to decrease the bit rate needed to encode the light field representation, and the quality of the light field reconstruction. The proposed network is based on both a generative model that aims at modeling the spatial information that is static, i.e., found in all light field views, and on a convolutional Gated Recurrent Unit (ConvGRU) that is used to model variations between blocks of angular views.

The spatial view generative model is inspired from the deep decoder proposed in [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF], itself built upon the deep image prior [START_REF] Lempitsky | Deep image prior[END_REF], proposed to solve inverse problems with 2D images. The model in [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF] is a simpler under-parameterized model using filters of reduced support, proposed for compact image representation. Even if the compression performance of the deep decoder is not comparable to the performance that can be achieved with auto-encoders trained from large collections of images, as in [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]- [START_REF] Minnen | Imagedependent local entropy models for learned image compression[END_REF], this untrained compact model can be applied to solve inverse problems, and not only compression.

We enhance the spatial generative model with spatial and channel attention modules, and with quantization-aware learning. The attention modules modulate the feature maps at the output of the different layers of the generator, following principles described in [START_REF] Woo | CBAM: Convolutional block attention module[END_REF]. Our spatial information model also differs from the original deep decoder by the fact that it is formed by a set of layers common to all views within a block, hence modelling spatial information common to all views in a block, and by layers (or features) that are specific to each view.

The convolutional GRU models variations between angular views in light fields. The idea of disentangling static and transient information with deep neural networks has recently been explored in [START_REF] Villegas | Decomposing motion and content for natural video sequence prediction[END_REF] for video frame prediction and [START_REF] Aich | Non-adversarial video synthesis with learned priors[END_REF] for video generation. However, while in [START_REF] Aich | Non-adversarial video synthesis with learned priors[END_REF] the latent space is trained using large training datasets, our input latent vectors do not require such optimization, since they are random vectors known from both the encoder and the decoder. In addition, we offer an option which expressively encodes the upscaling operations in learned weights in order to better fit the light field to process. The convGRU network takes randomly generated Gaussian noise as input, and produces a sequence of structured noise maps capturing variations across views, and this sequence is then fed to the adapted deep decoder based spatial generative model.

The weights of both the ConvGRU and the generator are learned end-to-end in order to minimize the reconstruction error of the target light field. The network weights can be considered as a representation of the input light field. The compactness of the representation obviously depends on the number of weights or network parameters, but not only. It also depends on the number of bits needed to accurately quantize each weight. Our network is thus learned using a strategy that takes into account weight quantization, in order to minimize the effect of weight quantization noise on the light field reconstruction quality.

We assess the rate-distortion performance of the quantization-aware learned representation for compression, in comparison with methods specifically designed for light fields, i.e., the prediction mode (4DPM) of JPEG-Pleno [START_REF]Jpeg pleno[END_REF] and the method in [START_REF] Dib | Light field compression using fourier disparity layers[END_REF], as well as with the encoding of the light field as a pseudo video sequence using video compression solutions, i.e., HEVC [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF], [START_REF]High Efficiency Coding and Media Delivery in Heterogeneous Environments -Part 2: High Efficiency Video Coding[END_REF]. We also considered recent deep learning video compression methods (the Hierarchical Learned Video Compression (HLVC) [START_REF] Yang | Learning for video compression with hierarchical quality and recurrent enhancement[END_REF], the Recurrent Learned Video Compression (RLVC) [START_REF] Yang | Learning for video compression with recurrent auto-encoder and recurrent probability model[END_REF] methods, and the OpenDVC [START_REF] Yang | OpenDVC: An open source implementation of the DVC video compression method[END_REF] solution based on DVC [START_REF] Lu | Dvc: An end-to-end deep video compression framework[END_REF]). While achieving very good distortion-rate performance, such motion estimation based deep compression networks, as well as similar methods such as in [START_REF] Lin | M-LVC: Multiple frames prediction for learned video compression[END_REF]- [START_REF] Yilmaz | End-to-end rate-distortion optimization for bi-directional learned video compression[END_REF], often have complex structures, thus are not easy to train, and often need pre-trained optical flow estimators.

We also compared the compression performance of the model with two versions of quantized neural radiance field models (quantized NeRF), the NeRF model of [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF] and a version with a reduced number of parameters, which we call NeRF-Slim in the paper. With NeRF-Slim, we show that one can indeed decrease the number of parameters, however at the expense of a loss in terms of reconstruction quality. We also assessed the interest of using ConvGRU to exploit angular view correlation, in comparison with the use of CoordConv [START_REF] Liu | An intriguing failing of convolutional neural networks and the coordconv solution[END_REF] principles making the network aware of the coordinates of the data to process.

Our experimental results show that our method can achieve very good rate-distortion performance, outperforming very recent deep video compression methods requiring training on large datasets. It is also competitive against the standardized and highly optimized HEVC video compression tools applied to the sequence of views, as well as JPEG Pleno.

In summary, our contributions are as follows:

• We propose a novel deep generative model for light fields, based on a convolutional GRU modeling variations across the views, and on an adapted deep decoder modeling the spatial view information. The model is sufficiently compact to give convincing rate-distortion performance in compression applications. • By introducing attention mechanisms and learned upsampling operations, our network is capable of generating real world light fields of good quality. • We develop a complete light field compression method using this novel representation model learned in a quantization-aware manner in order to minimize the impact of weight quantization on light field reconstruction. • We show that the resulting light field compression algorithm yields very good rate-distortion performances compared with state-of-the-art methods.

II. NETWORK FORMULATION A. Network overview

Let us consider an input light field, represented by a 4D function L(x, y, s, t) describing the radiance along rays, with the two plane parameterization proposed in [START_REF] Levoy | Light field rendering[END_REF], [START_REF] Gortler | The lumigraph[END_REF]. The parameters (s, t) denote the angular (view) coordinates and (x, y) the spatial (pixel) coordinates. This 4D light field representation can be seen as an array of viewpoints (called subaperture images v) of the scene with varying angular coordinates s and t, or as a sequence of images L = L 1 , L 2 , ..., L v . Our goal is to develop a deep generative model with few parameters for light fields, that is able to capture not only statistics within each sub-aperture image, but also correlation between the different viewpoints.

The proposed deep network architecture is shown in Fig. 1. The proposed network follows the principles of deep generative models which aim at transforming a randomly chosen . .
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Given the high correlation between light field views, especially for light fields with narrow baselines, one can consider that a light field static latent space, which contains shared spatial information of all the views, should be disentangled from the angular latent space, which contains the angular information differing from one view to another. Thus, the code vectors in the latent space can be expressed as:

Z = Z s Z 1 a , Z s Z 2 a , ..., Z s Z v a (1) 
with Z s ∈ R cs×hin×win being the shared spatial latent code, and where Z 1 a , Z 2 a , ..., Z v a denote the angular latent codes corresponding to the different viewpoints. We will see in the next section that the sequence of latent codes Z 1 a , Z 2 a , ..., Z v a can be generated from one unique code Z a ∈ R ca×hin×win , using a ConvGRU. The quantities c a and c s denote the numbers of channels of the input angular code vectors and that of the input spatial code vectors respectively. These c a + c s = c in channels are fed to the generator Θ G to reconstruct the light field. h in and w in denote the spatial dimensions of the input noise maps. The light field L ∈ R v×c×h×w , with v views, c color channels, and of spatial resolution h×w, is then reconstructed from these disentangled latent codes via the network Θ G inference L = Θ G (Z), where Z ∈ R cin×hin×win . Given that the angular component of Z is inferred from Z a via the ConvGRU, the light field is actually reconstructed via an inference based on the whole network Θ, which can be written as

L = Θ(Z s , Z a ) (2) 
The weights of both the convGRU Θ A and the generator Θ G are learned end-to-end in order to minimize the energy E as

Θ * = argmin Θ E(Θ(Z s , Z a ), L) (3) 
where the energy E can be defined by the mean square error (MSE) between the original light field and the reconstructed one, or using other metrics such as the Multi-Scale Structural Similarity (MS-SSIM).

As the MS-SSIM value increases as the image quality increases, the energy E is defined as the opposite of the MS-SSIM value: E = 1-M S SSIM value. N Θ , the number of network weight parameters is much smaller than the number of pixels in the light field, N Θ v × c × h × w, making the network a compact representation of the light field. Note that the only information we need to learn the network weights is the target light field L. In other words, the training of the entire network is self-supervised and does not need any external training data.

Note that the code vectors Z a and Z s in the latent space of the generative model are here noise map volumes generated from a standard normal distribution (see Fig. 1).

B. Angular prior utilizing a convolutional Gated Recurrent Unit

We use a convolutional Gated Recurrent Unit (ConvGRU) to model the variations between the light field angular views.

The ConvGRU unit generates, from a single latent code Z a , the sequence of angular latent codes Z 1 a , Z 2 a , ..., Z v a . The ConvGRU is an efficient recurrent neural structure for sequential learning utilizing a gated mechanism as in a long short-term memory (LSTM), but with fewer parameters.

At a given step τ corresponding to a particular view, we compute

C = σ(conv(cat[Z a , H τ -1 ])) (4) 
where σ denotes the sigmoid activation function to scale the output between 0 and 1, H τ -1 the hidden state of the previous step, cat [., .] the concatenation operation, and conv() the convolution operation. The resulting tensor C is then split into two parts, the reset gate R and the update gate U :

[R, U ] = split(C). ( 5 
)
The current memory content can be computed as

M = tanh(conv(cat[Z a , R H τ -1 ])), (6) 
with tanh being hyperbolic tangent activation and the Hadamard element-wise multiplication. The final memory at the current step τ is updated by element-wise multiplication using the update gate U , and the current latent map is computed after convolution as

H τ = (1 -U ) H τ -1 + U M, Z τ a = conv(H τ ). (7) 
In our experiments, as a light field usually contains a relatively large number of sub-aperture views, learning a long sequence of angular latent codes, one angular latent code per view, can be expensive both in terms of memory and time consumption. In order to reduce the sequence length, we choose to process the light field views by block of views. We divide the light field into b blocks of n views each, with b × n = v. If the light field is sufficiently dense, which is the case for real world light fields captured by plenoptic cameras, it is reasonable to suppose that within each block, the views can share the same angular latent code without loosing too much in terms of reconstruction quality. Therefore, the light field is reconstructed by blocks:

L = Θ Z s Z 1 a , Θ Z s Z 2 a , ..., Θ Z s Z b a . ( 8 
)
where Z β a , β = 1 . . . b denotes the angular code vector for the block β.

Furthermore, the network parameters Θ can be split into two disjoint parts: Θ A , the ConvGRU network that captures the inter-block level angular prior of the light field, and Θ G , the generator network that represents a spatial prior for the light field views, as well as some angular variations within a light field block β. Eq.(4-7) can be re-written as

Z β a = Θ A (Z a , β), (9) 
and the light field is thus reconstructed as

L = Θ G Z s Θ A (Z a , 1) , Θ G Z s Θ A (Z a , 2) , ..., Θ G Z s Θ A (Z a , b) . (10) 
Inter-block angular latent codes Z β a inferred by Θ A form a sequence of structured feature volumes which are concatenated with the shared spatial latent code Z s . The resulting feature volume is then fed into Θ G , which infers the light field views per block of views.

C. Generator network

In this section, we describe the generator network Θ G that maps the structured noise generated by the ConvGRU network to the final light field. If the ConvGRU network Θ A works at the inter-block level, the generator Θ G works within each light field view block. For each block, the static latent code Z s which is shared by all the views in the light field, is concatenated with the angular latent code of the block β, Z β a , i.e. shared by the views within the block β. For each block β, the generator maps the concatenated latent code

Z β = Z s Z β a ,
to the n light field views of the block. This generator design should satisfy two conditions: 1) it should capture the spatial information of a single light field view; 2) it should be able to differentiate the different views within a block, even by taking the same input block-level code Z β . Similar to [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF], a decoder structure consisting of several elementary structures Str i is used. At each level i, Str i transforms the input feature maps F i to F i+1 in the way that the spatial resolution of the feature maps are doubled:

F i+1 = Str i (F i ) (11) 
Each elementary structure Str i contains a sequence of operations: one convolutional layer with kernel size 3 × 3, one upsampling layer with scale factor 2, one non-linear activation layer (rectified linear units) ReLU6, one batch normalization layer and finally an attention module A.

F i+1 = A(BN(ReLU6(up(conv(F i ))))). (12) 
The convolutional and upsampling layers can be replaced by a pixel-shuffle layer to achieve more accurate reconstruction, more details being explained in Section II-E. Note that the main parameter overhead in each block resides in the convolutional layer, which gathers both cross-channel and spatial information. The n views in a block share the same filters, except the last convolutional layer. In the last layer, c in × c × n filters are learnt, which can be considered as n independent branches of c in × c filters, where c in = c a + c s is the total number of input channels of the generator Θ G , and c is the number of color RGB channels of the output views. These distinct filters enable to generate different sub-aperture views based on the same input feature maps. It is preferable to consider this structure instead of a second ConvGRU at this stage for two reasons: 1) the dimension of the feature maps at this last stage of generation is much higher than the one of the input latent codes. Using a second ConvGRU would cause memory issues; 2) within each light field block, the angular variation across views is very limited, thus it is reasonable to only disentangle the filters of the last layer.

The upsampling layer performs bi-linear interpolation without weight parameters, whereas BatchNorm layers and attention modules are very light-weight. We use ReLU6 which clips the maximal activation at the value of 6, instead of the conventional ReLU layer. We have observed in our experiments that ReLU6 limits the dynamics of the activation, and thus enables to reduce quantization errors, especially when the quantization is coarse.

D. Attention mechanism

Three dimensional feature volumes F i ∈ R ci×hi×wi are generated at the output of each intermediate convolutional layer. Modulating features in order to favor the most relevant ones for the targeted task has been found to be useful to improve network efficiency [START_REF] Woo | CBAM: Convolutional block attention module[END_REF], [START_REF] Hu | Squeeze-and-excitation networks[END_REF]- [START_REF] Bello | Attention augmented convolutional networks[END_REF]. Instead of directly processing the 3D feature volumes, which involves much more computational and parameter overhead, we chose to use the strategy presented in [START_REF] Woo | CBAM: Convolutional block attention module[END_REF] which consists in sequentially computing the modulation weights for the cross-channel 2D feature maps by the channel attention module A c , and then computing those for the spatial 2D feature maps by the spatial attention module A s , making the CNN aware of "where" to focus in each feature map. The obtained attention maps are element-wise multiplied with the feature maps. The overall process is summarized as follows:

F i = A c (F i ) F i F i = A s (F i ) F i , (13) 
with F i and F i being the resulting modulated feature volumes at layer i. The channel attention module performs average pooling and max pooling to aggregate spatial information for each feature map and to obtain a vector of c i values. In order to extract meaningful information, this vector should be further compressed to a vector of smaller dimension c i , with c i = ci r , r > 1 being the reduction ratio. To achieve this, a simple multi-layer perceptron (MLP) structure with two fully connected layers is applied, with c i being the number of input and output neurons, and c i being the number of hidden neurons. At the end, we obtain c i modulation weights, one for each feature map, which are used to modulate the different feature maps. The function performed by the channel attention module can be expressed as:

A c (F i ) = σ(MLP(MaxPool s (F i )) + MLP(AvgPool s (F i ))) (14) 
with σ being sigmoid activation used to keep the modulation weights between 0 and 1. MaxPool s and AvgPool s are respectively max pooling and average pooling operations across the spatial dimension.

A similar processing is performed by the spatial attention module. Pixel-wise pooling operations are performed across the channel dimension, and convolutions are performed on the resulting feature map to obtain the final spatial attention map of dimension h i × w i .

A s (F i ) = σ(conv(cat[MaxPool c (F i ), AvgPool c (F i )])) (15)
The symbols MaxPool c and AvgPool c represent max and average pooling operations across channels, whereas cat[., .] denotes a concatenation along the channel dimension.

E. Upsampling and pixel-shuffle

In the generator network, each elementary structure Str i contains a convolutional layer followed by a parameter-free upsampling layer performing a 2× bi-linear interpolation of the resulting feature maps. In a compression context, this design yields a satisfying reconstruction quality while maintaining a relatively low bit-rate. However, for higher bit-rates, in order to obtain more accurate reconstructed images, it is possible to learn the interpolation operation in a similar way as proposed in [START_REF] Shi | Real-time single image and video superresolution using an efficient sub-pixel convolutional neural network[END_REF]. Instead of a convolutional layer of size c i × c i × k × k with c i the number of input and output channels at level i, and k the kernel size, followed by a handcrafted upsampling operation, one can use a pixel-shuffle layer containing c i × 4c i × k × k kernel parameters and a pixel re-arrangement operation, which remaps the elements of a 4c i × h i × w i tensor to a tensor of dimension c i × 2h i × 2w i .

Note that, when using the handcrafted upsampling operation, increasing the depth of feature maps can also improve the reconstruction quality. However, we will demonstrate in Section IV-C3 that the pixel-shuffle layer is more effective with an equivalent parameter overload. Moreover, the pixelshuffle scheme is more memory-friendly for back-propagation since despite increasing the network size, it keeps the quantity of feature maps unchanged at each level.

III. QUANTIZATION-AWARE LEARNING

Having a light-weight neural structure is essential for our goal of finding a compact representation of light fields. As an example, let us suppose that we use c a = 15 latent maps to generate angular information, and c s = 30 latent maps to generate spatial and static information, and each light field block contains n = 9 views. The corresponding structure details and the number of parameters of the network are depicted in Table I, where the layers without parameters are omitted. The network contains 109427 weights. If we reconstruct a light field of 81 views of 512×512 pixels via the network, the network is indeed a highly under-parameterized model. We obtain a compression ratio of approximately 0.005 weight per pixel.

These weights can be further quantized to reduce the size of the model. Instead of using fixed-point scalar quantization which maps the weights to uniformly spaced codewords, we learn the codebook using the k-means algorithm with a fixed number γ of codewords, as classically done in image or network compression schemes, such as e.g. in [START_REF] Han | Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding[END_REF] is then updated by averaging the gradients of their assigned elements with gradient steps as

c ← c -η 1 |J c | w∈Jc ∂E ∂w . ( 16 
)
where E is the energy function to minimize, which computes the light field reconstruction error, and η is learning rate. J c is the set of weights w which are assigned to the codeword c. Achieving good reconstruction performance despite quantization can be challenging especially when the number γ of codewords per layer is small. Indeed, the quantization error can be accumulated in a neural network, since subsequent layers take as input the activation of the preceding layers, which are corrupted by quantization noise. In order to alleviate this issue, as proposed in [START_REF] Fan | Training with quantization noise for extreme model compression[END_REF], we sequentially quantize layers from the lowest to the highest, and finetune the upper layers after the lower layers have been quantized. Finally, we apply entropy coding, e.g. Huffman coding, on quantized weights to achieve further compression of the model.

Overall, for each neural layer, we transmit γ codewords, with a cost of γ × 32 bits, each codeword being encoded in 32 bits. We also transmit the entropy H of the indices which associate each weight to its corresponding codeword. The entropy is computed as

H = -j |Jc j | Ni log 2 |Jc j |
Ni , with N i the total number of parameters in a certain layer i.

IV. EXPERIMENTAL RESULTS

A. Settings

The encoding of a light field proceeds in three steps. First, we train an uncompressed model from scratch. We begin with a learning rate of 0.01, and after every 8000 epochs, the learning rate is decreased by a factor of 0.6. Second, we sequentially quantize weights and finetune the model layer per layer with a fixed number γ of codewords per layer. In this work, we fix γ A = 64 for ConvGRU network and γ G = 256 for the generator network, as they have been found to meet a good rate-distortion trade-off. The same learning rate schedule is applied as in the first step. We have observed in the experiments that following the "Train-Finetune/Quantize" process can give better image quality than directly performing the quantization-aware training from scratch. Third, entropy coding is applied to further compress the quantized weights. In our experiments, Huffman coding is used.

The test light fields are real world light fields captured by a Lytro Illum camera, which are widely used by the light field compression research community. We compare our compression scheme against

• Solutions based on video coding standards, such as the HEVC coding standard [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF], [START_REF]High Efficiency Coding and Media Delivery in Heterogeneous Environments -Part 2: High Efficiency Video Coding[END_REF]. The HEVC version used in the tests is HM-16.10. The base QPs are set to 20, 25, 30, 35 and a GOP of 4 is used. • Learning-based video compression methods (HLVC [START_REF] Yang | Learning for video compression with hierarchical quality and recurrent enhancement[END_REF],

RLVC [START_REF] Yang | Learning for video compression with recurrent auto-encoder and recurrent probability model[END_REF] and OpenDVC [START_REF] Yang | OpenDVC: An open source implementation of the DVC video compression method[END_REF]). We use the code and the PSNR-tuned and MS-SSIM-tuned models provided by the authors, with their default settings. For PSNR-tuned models, BPG [START_REF] Bellard | BPG image format[END_REF] is used to compress I-frames, whereas for MS-SSIM-tuned models, the method in [START_REF] Lee | Context-adaptive entropy model for end-to-end optimized image compression[END_REF] is used to compress I-frames. For RLVC, 6 P-frames are encoded both in the forward and backward directions, which corresponds to GOP = 13 (bi-IPPP). HLVC predicts images with three hierarchical quality layers and the defaut GOP= 10 is used. For OpenDVC, the default GOP is also set to 10, and an inter-coded image is predicted from the previous decoded image. To obtain different bitrates with the OpenDVC, RLVC and HLVC methods, λ =8, 16, 32 and 64 and λ =256, 512, 1024 and 2048 are chosen for the MS-SSIM and PSNR models respectively, λ being the hyperparameter controlling the trade-off between distortion and bit-rate. • Solutions specifically designed for light field compression, i.e., JPEG pleno [START_REF]Jpeg pleno[END_REF], and FDL [START_REF] Dib | Light field compression using fourier disparity layers[END_REF] with hierarchical scheme. For JPEG Pleno, the software version used is the JPEG Pleno Verification Model 2.0. The prediction mode with WaSP is used. We also compare our scheme against a quantized version of the NeRF model originally proposed in [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF], as well as a version of reduced dimension that we developed and called NeRF-Slim. The original NeRF model [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF] has 8 fully connected layers, with a layer width of 256, and each pixel is synthesized based on 128 samplings along the ray. NeRF-Slim is also composed of 8 fully connected layers, but with layers of width 134 and the same sampling along the rays. The quantized versions of these two models are denoted as NeRF-Quant and NeRF-Slim-Quant. The models are quantized layer by layer, with 32, 64, 128 or 256 centroids per layer, to obtain NeRF-Quant and NeRF-Slim-Quant models. The same quantization-aware learning as used in our model is applied.

B. Performance

Rate-distortion: The rate-distortion curves are shown in Fig. 2 and Fig. 3. The image quality is evaluated in terms of PSNR (Fig. 2) and Multi-Scale SSIM (MS-SSIM) (Fig. 3) respectively. The bit-rate is computed in bits per pixel (bpp). The PSNR curves show that, at moderate and high bit-rates, averaged on the test light fields, our compression scheme achieves the best light field image quality among all compared methods, whereas at low bit-rate, HEVC obtains the best performance. Note also that our PSNR-tuned models achieve better quality than other learning-based reference methods (OpenDVC, HLVC, RLVC, NeRF-Quant and NeRF-Slim-Quant) for the entire bit-rate range. Table II shows BD-PSNR gains (using the Bjontegaard measure) with respect to the HEVC baseline. Our method outperforms the nonlearning methods HEVC and FDL, as well as the learningbased methods HLVC, RLVC, OpenDVC and NeRF-Quant, and is comparable with JPEG Pleno.

In terms of MS-SSIM, Fig. 3 shows that for most of the test scenes, our MS-SSIM-tuned models reach the best ratedistortion trade-off for the entire bit-rate range. Note that both PSNR-tuned and MS-SSIM-tuned models of RLVC, HLVC and OpenDVC are publicly available. [START_REF]Jpeg pleno[END_REF], FDL [START_REF] Dib | Light field compression using fourier disparity layers[END_REF] AND FOR LEARNING-BASED METHODS HLVC [START_REF] Yang | Learning for video compression with hierarchical quality and recurrent enhancement[END_REF], RLVC [START_REF] Yang | Learning for video compression with recurrent auto-encoder and recurrent probability model[END_REF], OPENDVC [START_REF] Yang | OpenDVC: An open source implementation of the DVC video compression method[END_REF], NERF [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF] Visual comparison: Visual comparisons are given both for PSNR-tuned models and MS-SSIM-tuned models. In Fig. 4, we show the reconstruction error maps computed between the ground truth and the decompressed images when using OpenDVC, RLVC, HLVC, JPEG Pleno, NeRF-Slim-Quant and our PSNR-tuned models. Error maps are summed up over all viewpoints. One can observe that for a similar bit-rate, our model generates less error especially on object contours. In Fig. 5, we compare the visual quality of the decompressed images by using NeRF-Slim-Quant, JPEG Pleno, HEVC, and MS-SSIM-tuned OpenDVC and our models. It can be observed that the views generated by our model are less blurry than those by NeRF-Slim-Quant, HEVC and OpenDVC, and our model generates less artifact than JPEG Pleno. Fig. 6 shows the reconstructed EPIs which are the slices in the sxand yt-planes depicted below and on the right of the reconstructed center view. One can observe patterns with consistent slopes, which means the light field parallex is well preserved after compression.

Consistency across views: In Fig. 7, we visualize the variation of PSNR values for each sub-aperture view of the reconstructed light field. The corresponding bitrate is around 0.1 bpp for all the methods. The periodic variations observed with the methods HEVC, RLVC, HLVC and OpenDVC correspond to the GOP sizes used (4, 13, 10 and 10 respectively). For learning-based methods, i.e. RLVC, HLVC and OpenDVC, one can observe significant degradation of the PSNRs for inter coded views compared to intra coded ones. Similar observation can be made for JPEG Pleno: the quality of the views which are encoded at a higher hierarchical level with a low texture rate degrades rapidly compared to those at a lower coding level, for example, the central view. In fact, the error "propagates" with these methods, where the encoding and decoding of the current view depends on the previous reference views. On the contrary, our model consistently generates views across different viewpoints, since they are all supervised by the same loss function (image reconstruction error) during model learning, and hierarchical quality (I,P,B frames) used in conventional codecs is not imposed with our method. Apart from the views that are coded in intra mode using RLVC, HLVC and OpenDVC, and some views coded at a low hierarchical level using JPEG Pleno, our model gives a higher reconstruction quality than the other reference methods.

C. Ablation studies 1) Attention module:

To put in evidence the utility of feature map modulation, in Fig. 8, we show the learning curves of our proposed network with and without attention modules respectively. After convergence, a gain of up to 1dB can be observed on the reconstructed light field images when using the feature map modulation. The parameter overhead is relatively limited, since the corresponding attention module only represents 2.5% of the total parameter load.

2) Compactness versus reconstruction quality using Con-vGRU: We evaluate the efficiency of ConvGRU to learn the angular prior of light field views, and whether the use of ConvGRU yields a good trade-off between model compactness and reconstruction quality. Table III compares our model using ConvGRU against other approaches that can be considered to model the angular correlation between the light field views. We first compare with an adapted version of the deep decoder (Ada-DD) with 3v output channels, v being the number of sub-aperture views, while the original deep decoder [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF] used for single 2D images with RGB channels has only 3 output channels. We also consider a solution in which the angular coordinates of the views are padded with the generator input, following the principle of CoordConv [START_REF] Liu | An intriguing failing of convolutional neural networks and the coordconv solution[END_REF], to make the model aware of the view angular positions. Finally, we also compare Table III shows that, in comparison with Ada-DD, Coord-Conv and NeRF-Slim, our model achieves the best reconstruction quality while using fewer parameters or a comparable number of parameters. Note that the consistent and high image quality across different viewpoints shown in Fig. 7 also demonstrates the effectiveness of ConvGRU module to learn a light field angular prior.

3) Parameter-free upsampling vs. pixel-shuffle: In the decoder structure proposed in deep image generative models such as DIP [START_REF] Lempitsky | Deep image prior[END_REF] and deep decoder [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF], handcrafted parameter- free upsampling operations are used to increase feature map resolutions from a lower layer to its immediate upper layer. Moreover, in [START_REF] Heckel | Deep decoder: Concise image representations from untrained non-convolutional networks[END_REF] along with 1 × 1 convolutions, the relationships between nearby pixels of reconstructed images are barely imposed by upsampling layers. In Table IV, we compare the reconstruction performance in terms of PSNR between our model with handcrafted upsampling and its counterpart with learned upsampling by pixel-shuffle layers. The values are averaged over the test light fields. If taking the same configuration of the (c a , c s ) pair, the number of features maps on each layer dedicated to angular information and shared spatial information, the model using pixel-shuffle significantly outperforms its counterpart using handcrafted upsampling by a large margin (a gain of approximately 2.5 dB can be observed). However, to obtain smaller models using pixelshuffle, one has to decrease the number of feature maps per layer. For example, a model using pixel-shuffle with small number of feature maps (c a , c s ) = (15, 30) obtains lower PSNR than its counterpart using handcrafted upsampling with (c a , c s ) = (30, 60), whereas the two models have roughly the same number of parameters. In this work, we constantly search for the tradeoff between the model compactness and the generative capacity. Therefore, when a compact enough model is needed, it is more advantageous to maintain a moderate number of feature maps that contribute to image reconstruction, rather than using additional parameters to learn interpolation and decreasing feature map numbers. On the contrary, upsampling with learned pixel-shuffle layers allows a better modeling of the relationships between nearby pixels, both on the feature level and the image level, which yields more accurate reconstruction when the model compactness is less demanded. 4) Quantization: In Table V, we compare different quantization schemes in terms of light field reconstruction performance. Four networks with parameters (c a , c s ) = [START_REF] Ahmad | Interpreting plenoptic images as multiview sequences for improved compression[END_REF][START_REF] Rüefenacht | Base-Anchored Model for Highly Scalable and Accessible Compression of Multiview Imagery[END_REF], [START_REF] Barina | Comparison of light field compression methods[END_REF][START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF], [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF][START_REF] Aich | Non-adversarial video synthesis with learned priors[END_REF], [START_REF] Rüefenacht | Base-Anchored Model for Highly Scalable and Accessible Compression of Multiview Imagery[END_REF][START_REF] Zou | End-to-end learning for video frame compression with self-attention[END_REF] are tested. We take pretrained light field generative models, which corresponds to the line "Without quantization" in Table V, and then apply different quantization schemes. A posteriori quantization without any finetuning yields about 3-4dB of PSNR loss compared to the non-compressed model. Schemes using quantization-aware finetuning (QAF) update quantized weights with respect to the light field reconstruction quality. We observe that the scheme "Non-uniform QAF" (c.f. Section III) obtains the best PSNR values among all tested quantization schemes, and achieves significant gain compared against the "Uniform QAF" using equal widths quantization bins. Finally, "QAT from scratch" corresponds to the scheme applying quantization-aware training from randomly-initialized weights. The results demonstrate the necessity of optimizing network weights with respect to the reconstruction quality before quantization. In Table VI, memory usage of the models applying non-uniform QAF and those without quantification is shown. 5) Decoding time: Table VII gives the decoding times of the different methods, for a light field of 81 views of resolution 432 × 624. We used a GeForce RTX 2080 Ti GPU for testing learning-based methods. Our method, using the convGRU or the CoordConv technique to model angular variations, gives the shortest decoding time. Both methods use the same generator structure. When using CoordConv, instead of using ConvGRU to exploit angular correlation, view angular positions are padded with the generator input, following the principle of [START_REF] Liu | An intriguing failing of convolutional neural networks and the coordconv solution[END_REF]. When using HEVC, JPEG Pleno, the RLVC, HLVC and OpenDVC methods, the light field views are decoded following the order used for encoding, the decoding of the current view depending on the decoding of a reference views. NeRF and NeRF-Slim proceeding view by view could be parallelized in theory, however at the cost of a very high memory usage, which, for some GPUs, not always be practical. The CoordConv solution decodes all the light field views at the same time, without any dependency to any of the other views. Our model can be seen as a hybrid solution, in which a short sequence carrying inter-block angular dependency information is predicted by the ConvGRU, and all the views are then generated by the generator at the same time. The simplicity of our network structure and the relative lack of reference dependency can explain the short decoding time compared against other methods. Finally, our solution with ConvGRU is only slightly slower than the use of CoordConv in terms of decoding time, which shows that the ConvGRU does not penalize much the method in terms of decoding efficiency.

Note that for each light field, its corresponding network is quantized and transmitted to the decoder. On the decoder side, it takes the input noise, being fixed for all the light fields and being known on the decoder side, and the quantized network. The decoder performs a simple feedforward inference to obtain the decoded light field. The change of the network configuration, such as number of blocks and number of views per block, does not impact the efficiency of this inference process on the decoder side.

V. CONCLUSION

In this paper, we proposed a deep generative model for light fields that does not require any training data other than the light field itself. We show that the proposed model gives a compact representation of the input light field, and can lead, with quantization-aware learning, to convincing compression performance with high image quality. In future work, we will investigate the use of this untrained compact model for solving inverse light field problems. We will also further explore the use of the fast evolving NeRF concept in the context of light field compression, considering methods such as in [START_REF] Feng | Signet: Efficient neural representations for light fields[END_REF], [START_REF] Bemana | Xfields: Implicit neural view-, light-and time-image interpolation[END_REF], [START_REF] Li | Neulf: Efficient novel view synthesis with neural 4d light field[END_REF], [START_REF] Attal | Learning neural light fields with ray-space embedding networks[END_REF] for learning the NeRF models.
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Fig. 1 .

 1 Fig. 1. Network overview. To process a light field with a large number of views, the light field is divided into b blocks of sub-aperture views. The convGRU network Θ A takes randomly generated Gaussian noise volumes Za ∈ R ca×h in ×w in as input, and produces a sequence of b structured noise volumes [Z 1 a , Z 2 a , ..., Z b a ], each volume being of dimension (ca ×h in ×w in ) capturing inter-block angular variations. This sequence is concatenated with b repeated noise volumes Zs ∈ R cs×h in ×w in corresponding to shared spatial information across the b blocks of views, and then fed in parallel to the spatial generative model Θ G , which produces the light field views within each block. The model Θ G consists of a decoder with several elementary blocks composed of convolution, upsampling, non-linear activation, batch normalization and attention modulation operators. The last layer uses distinct convolution filters to generate different views within a block based on the same input feature maps.

Fig. 3 .

 3 Fig.3. Compression performance measured in terms of MS-SSIM vs. bitrate, using real world light fields from the JPEG Pleno dataset[START_REF] Rerabek | New light field image dataset[END_REF] (Bikes, Danger de Mort, Fountain Vincent 2, Stone Pillars Outside and EPFL light field dataset[START_REF] Rerabek | New light field image dataset[END_REF] (Vespa and Friends). Averaged curves over all test data, with standard deviations, are also shown.

Fig. 4 .Fig. 5 .

 45 Fig. 4. The reconstruction error of the decompressed views obtained with PSNR-tuned models of OpenDVC, RLVC, HLVC and our method, as well as JPEG Pleno and NeRF-Slim-Quant. The bitrates are around 0.1 bpp.

Fig. 6 .

 6 Fig. 6. Reconstructed epipolar images (EPIs) are the slices in the sxand yt-planes shown below and on the right of the reconstructed center view. Test light field: Bikes.

Fig. 7 .Fig. 8 .

 78 Fig. 7. The variation of average PSNR over all the test light fields, for each reconstructed sub-aperture view. The corresponding bitrate is around 0.1 bpp.

TABLE I THE

 I . Since kmeans clustering can be computationally expensive compared to one iteration of back-propagation, this clustering is only performed once before training. The codebook of each layer DETAIL OF PARAMETER NUMBERS OF A NETWORK EXAMPLE (LAYERS WITHOUT PARAMETERS ARE OMITTED). k, s AND in/out REPRESENT THE KERNEL SIZE, THE STRIDE AND THE NUMBER OF INPUT/OUTPUT CHANNELS. THIS EXAMPLE IS GIVEN FOR THE FOLLOWING CONFIGURATION: ca = 15, cs = 30 AND EACH LIGHT FIELD BLOCK CONTAINS n = 9 SUB-APERTURE VIEWS.

		k	s	in/out	# params
	Θ A				
	conv 1	3 1	35/40	12600
	conv 2	3 1	35/20	6300
	conv 3	3 1	20/15	2700
	Total Θ G	-	-	-	21600
	Θ G				
	conv 1	3 1	45/45	18225
	BN 1	-	-	-	90
	mlp A c1	-	-	45/9, 9/45	810
	conv A s1	7 1	2/1	98
	conv 2	3 1	45/45	18225
	BN 2	-	-	-	90
	mlp A c2	-	-	45/9, 9/45	810
	conv A s2	7 1	2/1	98
	conv 3	3 1	45/45	18225
	BN 3	-	-	-	90
	mlp A c3	-	-	45/9, 9/45	810
	conv A s3	7 1	2/1	98
	conv 4	3 1	45/45	18225
	BN 4	-	-	-	90
	mlp A c4	-	-	45/9, 9/45	810
	conv A s4	7 1	2/1	98
	conv 5	3 1	45/27	10935
	Total Θ G	-	-	-	87827
	Total Θ	-	-	-	109427

TABLE II BD

 II -PSNR GAINS WITH RESPECT TO HEVC BASELINE. THE GAINS ARE SHOWN FOR THE NON-LEARNING METHOD JPEG PLENO

  Fig.2. PSNR vs. bitrate compression performance, with real world light fields from the JPEG Pleno dataset[START_REF] Rerabek | New light field image dataset[END_REF] (Bikes, Danger de Mort, Fountain Vincent 2 and Stone Pillars Outside) and EPFL light field dataset[START_REF] Rerabek | New light field image dataset[END_REF] (Vespa and Friends). Averaged curves over all test data, with standard deviations, are also shown.
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TABLE III PSNR

 III (DB), NUMBERS OF PARAMETERS FOR DIFFERENT MODELS GENERATING LIGHT FIELDS. VALUES ARE AVERAGED OVER THE TEST LIGHT FIELDS. †: THE COORDCONV PRINCIPLE IS USED TO MAKE OUR MODEL AWARE OF THE VIEW ANGULAR COORDINATES. * : THESE RESULTS HAVE BEEN OBTAINED WITH A NERF MODEL OF REDUCED DIMENSION (THAT WE CALLED NERF-SLIM) COMPARED WITH THE ORIGINAL MODEL OF [32].

		Our model Ada-DD CoordConv † NeRF-Slim *
	# params	173968	261300	178302	172931
	# PSNR (dB)	30.87	29.98	30.19	29.99

TABLE IV COMPARISON

 IV BETWEEN HANDCRAFTED PARAMETER-FREE UPSAMPLING AND LEARNED UPSAMPLING WITH PIXEL-SHUFFLE. THE PSNR VALUES OF THE GENERATED LIGHT FIELDS, AS WELL AS THE CORRESPONDING NETWORK PARAMETER NUMBERS ARE LISTED. THE PSNR VALUES ARE AVERAGED OVER THE TEST LIGHT FIELDS.

		(ca,cs)	(15,30) (20,40) (25,50) (30,60)
	Upsampling	#params	108270 173968 256346 355404
		PSNR (dB) 29.65	30.87	31.63	32.16
	Pixel-shuffle	# params	326970 562768 863846 1230204
		PSNR(dB)	31.52	33.24	34.11	34.79

TABLE V RECONSTRUCTION

 V QUALITY MEASURED IN PSNR(DB) BY USING DIFFERENT QUANTIZATION SCHEMES ON THE TEST LIGHT FIELD

	"DANGER DE MORTS"		
	(ca,cs)	(15,30) (20,40) (25,50) (30,60)
	A posteriori quantization 27.57	28.65	29.12	30.17
	Uniform QAF	27.68	29.16	31.35	31.80
	Non-uniform QAF	29.84	31.44	32.26	33.06
	QAT from scratch	19.17	20.69	20.74	21.16
	Without quantization	30.57	32.29	33.05	33.71

TABLE VI MODEL

 VI MEMORY USAGE (IN MEGABYTES) COMPARISON BETWEEN QUANTIZED AND NON-QUANTIZED NETWORKS. THE TEST LIGHT FIELD IS "DANGER DE MORTS" WITH AN ORIGINAL SIZE OF 40.4 MEGABYTES.

	(ca,cs)	(15,30) (20,40) (25,50) (30,60)
	Non-uniform QAF	0.11	0.18	0.27	0.35
	Without quantization	0.43	0.70	1.03	1.42
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