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An Untrained Neural Network Prior for Light Field
Compression

Xiaoran Jiang, Jinglei Shi, Christine Guillemot Fellow, IEEE

Abstract—Deep generative models have proven to be effective
priors for solving a variety of image processing problems.
However, the learning of realistic image priors, based on a
large number of parameters, requires a large amount of training
data. It has been shown recently, with the so-called deep image
prior (DIP), that randomly initialized neural networks can act
as good image priors without learning. In this paper, we propose
a deep generative model for light fields, which is compact and
which does not require any training data other than the light
field itself. To show the potential of the proposed generative
model, we develop a complete light field compression scheme with
quantization-aware learning and entropy coding of the quantized
weights. Experimental results show that the proposed method
yields very competitive results compared with state-of-the-art
light field compression methods, both in terms of PSNR and
MS-SSIM metrics.

Index Terms—light fields, compression, generative model, com-
pact representation.

I. INTRODUCTION

L IGHT field imaging has recently gained in popularity due
to their potential for computer vision or computational

photography applications. Compared to classical 2D imaging,
light fields record the flow of rays in the form of large volumes
of data, which retain both spatial and angular information
of a scene. Several camera designs have been proposed for
capturing light fields, from uniform arrays of pinholes placed
in front of the sensor [1] to arrays of micro-lenses placed
between the main lens and the sensor [2]–[4] and arrays of
cameras [5], [6]. Some other designs use coded attenuation
masks [7]–[9], with sparse reconstruction or deep learning
methods [10], [11].

Light fields represent very large volumes of high-
dimensional data. Finding effective but compact representa-
tions of light fields, that would capture both their spatial and
angular redundancy, has therefore become a key challenge for
practical use of this technology. This motivated the design
of a variety of solutions, ranging from approaches extending
HEVC Intra to directly compress the lenslet images [12],
[13], to the compression of the set of views as pseudo-
sequences using HEVC [14], [15], or using solutions based
on 4D disparity-compensated transforms applied on spatio
angular blocks [16], [17], [18], [19], [20]. A comparison of
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the performance of light field compression schemes using
various video coding standards can also be found in [20].
Methods using view synthesis have also been proposed in [21]
to synthesize all the views from a sparse set of input views, or
in [22] where the authors use a linear approximation computed
with Matching Pursuit for disparity based view prediction.
Other view synthesis-based compression approaches have been
proposed in [23] and in [24] using the Fourier Disparity Layer
(FDL) representation introduced in [25], or exploiting the
sparsity in the continuous Fourier domain as proposed in [26]
respectively. Solutions using 3D representations have also been
investigated as in [27] where the authors use an approximate
3D surface reconstruction to construct an eigen texture basis
representation from the light field. Some approaches aim at
providing scalability when coding light fields, such as in
e.g., [28], [29], [30], [31] by designing layered compression
schemes.

Neural Radiance Fields (NeRF) [32] have been recently
introduced for light field view synthesis, hence, as other view
synthesis methods, could be used as predictors in light field
compression schemes, or directly as the light field representa-
tion. NeRF models, based on multi-layer perceptrons (MLP)
are defined as models mapping continuous 5D vectors (3D
coordinates plus 2D viewing directions) to volume density
and view-dependent radiance. The model, trained to fit a set of
input views, can be used to generate any view of the light field
using volume rendering techniques. Many variants of NeRF
have been proposed, to reduce the number of input views (e.g.,
[33]), or to generalize to new scenes (e.g. [34]). The authors
in [35] first transform the 4D light field by leveraging Gegen-
bauer polynomials basis, and learn the mapping from these
basis functions to color. The concept is further generalized
to X-Fields in [36] defined as sets of 2D images taken across
different view, time or illumination conditions. By limiting the
novel viewpoints to be on the same side of the cameras, e.g.,
front views only, the NeuLF method in [37] aims at decreasing
the inference time of NeRF, without sacrificing the rendering
quality.

In this paper, we propose a neural network for compact light
field representation. Like NeRF, it is untrained in the sense that
it is learned only on the light field to be processed, without any
additional training data. However, our motivation here was to
design a lightweight network offering a good trade-off between
the number of parameters, i.e. to decrease the bit rate needed
to encode the light field representation, and the quality of
the light field reconstruction. The proposed network is based
on both a generative model that aims at modeling the spatial
information that is static, i.e., found in all light field views,
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and on a convolutional Gated Recurrent Unit (ConvGRU) that
is used to model variations between blocks of angular views.

The spatial view generative model is inspired from the deep
decoder proposed in [38], itself built upon the deep image
prior [39], proposed to solve inverse problems with 2D images.
The model in [38] is a simpler under-parameterized model
using filters of reduced support, proposed for compact image
representation. Even if the compression performance of the
deep decoder is not comparable to the performance that can be
achieved with auto-encoders trained from large collections of
images, as in [40]–[47], this untrained compact model can be
applied to solve inverse problems, and not only compression.

We enhance the spatial generative model with spatial and
channel attention modules, and with quantization-aware learn-
ing. The attention modules modulate the feature maps at
the output of the different layers of the generator, following
principles described in [48]. Our spatial information model
also differs from the original deep decoder by the fact that
it is formed by a set of layers common to all views within
a block, hence modelling spatial information common to all
views in a block, and by layers (or features) that are specific
to each view.

The convolutional GRU models variations between angular
views in light fields. The idea of disentangling static and
transient information with deep neural networks has recently
been explored in [49] for video frame prediction and [50] for
video generation. However, while in [50] the latent space is
trained using large training datasets, our input latent vectors
do not require such optimization, since they are random
vectors known from both the encoder and the decoder. In
addition, we offer an option which expressively encodes the
upscaling operations in learned weights in order to better fit the
light field to process. The convGRU network takes randomly
generated Gaussian noise as input, and produces a sequence of
structured noise maps capturing variations across views, and
this sequence is then fed to the adapted deep decoder based
spatial generative model.

The weights of both the ConvGRU and the generator are
learned end-to-end in order to minimize the reconstruction
error of the target light field. The network weights can be
considered as a representation of the input light field. The
compactness of the representation obviously depends on the
number of weights or network parameters, but not only. It
also depends on the number of bits needed to accurately
quantize each weight. Our network is thus learned using a
strategy that takes into account weight quantization, in order
to minimize the effect of weight quantization noise on the light
field reconstruction quality.

We assess the rate-distortion performance of the
quantization-aware learned representation for compression,
in comparison with methods specifically designed for light
fields, i.e., the prediction mode (4DPM) of JPEG-Pleno
[51] and the method in [23], as well as with the encoding
of the light field as a pseudo video sequence using video
compression solutions, i.e., HEVC [52], [53]. We also
considered recent deep learning video compression methods
(the Hierarchical Learned Video Compression (HLVC) [54],
the Recurrent Learned Video Compression (RLVC) [55]

methods, and the OpenDVC [56] solution based on DVC
[57]). While achieving very good distortion-rate performance,
such motion estimation based deep compression networks,
as well as similar methods such as in [58]–[61], often have
complex structures, thus are not easy to train, and often need
pre-trained optical flow estimators.

We also compared the compression performance of the
model with two versions of quantized neural radiance field
models (quantized NeRF), the NeRF model of [32] and a
version with a reduced number of parameters, which we call
NeRF-Slim in the paper. With NeRF-Slim, we show that one
can indeed decrease the number of parameters, however at the
expense of a loss in terms of reconstruction quality. We also
assessed the interest of using ConvGRU to exploit angular
view correlation, in comparison with the use of CoordConv
[62] principles making the network aware of the coordinates
of the data to process.

Our experimental results show that our method can achieve
very good rate-distortion performance, outperforming very
recent deep video compression methods requiring training on
large datasets. It is also competitive against the standardized
and highly optimized HEVC video compression tools applied
to the sequence of views, as well as JPEG Pleno.

In summary, our contributions are as follows:
• We propose a novel deep generative model for light fields,

based on a convolutional GRU modeling variations across
the views, and on an adapted deep decoder modeling
the spatial view information. The model is sufficiently
compact to give convincing rate-distortion performance
in compression applications.

• By introducing attention mechanisms and learned upsam-
pling operations, our network is capable of generating real
world light fields of good quality.

• We develop a complete light field compression method
using this novel representation model learned in a
quantization-aware manner in order to minimize the im-
pact of weight quantization on light field reconstruction.

• We show that the resulting light field compression al-
gorithm yields very good rate-distortion performances
compared with state-of-the-art methods.

II. NETWORK FORMULATION

A. Network overview
Let us consider an input light field, represented by a 4D

function L(x, y, s, t) describing the radiance along rays, with
the two plane parameterization proposed in [63], [64]. The
parameters (s, t) denote the angular (view) coordinates and
(x, y) the spatial (pixel) coordinates. This 4D light field rep-
resentation can be seen as an array of viewpoints (called sub-
aperture images v) of the scene with varying angular coordi-
nates s and t, or as a sequence of images L =

[
L1, L2, ..., Lv

]
.

Our goal is to develop a deep generative model with few
parameters for light fields, that is able to capture not only
statistics within each sub-aperture image, but also correlation
between the different viewpoints.

The proposed deep network architecture is shown in Fig. 1.
The proposed network follows the principles of deep gener-
ative models which aim at transforming a randomly chosen
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Fig. 1. Network overview. To process a light field with a large number of views, the light field is divided into b blocks of sub-aperture views. The
convGRU network ΘA takes randomly generated Gaussian noise volumes Za ∈ Rca×hin×win as input, and produces a sequence of b structured noise volumes
[Z1

a, Z
2
a, ..., Z

b
a], each volume being of dimension (ca×hin×win) capturing inter-block angular variations. This sequence is concatenated with b repeated noise

volumes Zs ∈ Rcs×hin×win corresponding to shared spatial information across the b blocks of views, and then fed in parallel to the spatial generative model
ΘG, which produces the light field views within each block. The model ΘG consists of a decoder with several elementary blocks composed of convolution,
upsampling, non-linear activation, batch normalization and attention modulation operators. The last layer uses distinct convolution filters to generate different
views within a block based on the same input feature maps.

input noise map into image data. The proposed model is
formed by a ConvGRU, denoted ΘA in Fig. 1, that aims at
modeling variations across the light field views followed by
a deep generative model (ΘG) mapping a sequence of code
vectors in a latent space Z =

[
Z1, Z2, ..., Zv

]
, to the views

of the light field L.
Given the high correlation between light field views, espe-

cially for light fields with narrow baselines, one can consider
that a light field static latent space, which contains shared
spatial information of all the views, should be disentangled
from the angular latent space, which contains the angular
information differing from one view to another. Thus, the code
vectors in the latent space can be expressed as:

Z =

[[
Zs

Z1
a

]
,

[
Zs

Z2
a

]
, ...,

[
Zs

Zva

]]
(1)

with Zs ∈ Rcs×hin×win being the shared spatial latent code,
and where Z1

a , Z2
a , ..., Zva denote the angular latent codes

corresponding to the different viewpoints. We will see in the
next section that the sequence of latent codes Z1

a , Z2
a , ..., Zva

can be generated from one unique code Za ∈ Rca×hin×win ,
using a ConvGRU. The quantities ca and cs denote the numbers
of channels of the input angular code vectors and that of the
input spatial code vectors respectively. These ca + cs = cin
channels are fed to the generator ΘG to reconstruct the light
field. hin and win denote the spatial dimensions of the input
noise maps.

The light field L̂ ∈ Rv×c×h×w, with v views, c color
channels, and of spatial resolution h×w, is then reconstructed
from these disentangled latent codes via the network ΘG

inference L̂ = ΘG(Z), where Z ∈ Rcin×hin×win . Given that the

angular component of Z is inferred from Za via the ConvGRU,
the light field is actually reconstructed via an inference based
on the whole network Θ, which can be written as

L̂ = Θ(Zs, Za) (2)

The weights of both the convGRU ΘA and the generator
ΘG are learned end-to-end in order to minimize the energy E
as

Θ∗ = argmin
Θ

E(Θ(Zs, Za), L) (3)

where the energy E can be defined by the mean square error
(MSE) between the original light field and the reconstructed
one, or using other metrics such as the Multi-Scale Structural
Similarity (MS-SSIM).

As the MS-SSIM value increases as the image quality
increases, the energy E is defined as the opposite of the MS-
SSIM value: E = 1−MS SSIM value. NΘ, the number of
network weight parameters is much smaller than the number
of pixels in the light field, NΘ � v × c× h×w, making the
network a compact representation of the light field. Note that
the only information we need to learn the network weights
is the target light field L. In other words, the training of
the entire network is self-supervised and does not need any
external training data.

Note that the code vectors Za and Zs in the latent space of
the generative model are here noise map volumes generated
from a standard normal distribution (see Fig. 1).

B. Angular prior utilizing a convolutional Gated Recurrent
Unit

We use a convolutional Gated Recurrent Unit (ConvGRU)
to model the variations between the light field angular views.
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The ConvGRU unit generates, from a single latent code
Za, the sequence of angular latent codes

[
Z1
a , Z

2
a , ..., Z

v
a

]
.

The ConvGRU is an efficient recurrent neural structure for
sequential learning utilizing a gated mechanism as in a long
short-term memory (LSTM), but with fewer parameters.

At a given step τ corresponding to a particular view, we
compute

C = σ(conv(cat[Za, Hτ−1])) (4)

where σ denotes the sigmoid activation function to scale
the output between 0 and 1, Hτ−1 the hidden state of the
previous step, cat[., .] the concatenation operation, and conv()
the convolution operation. The resulting tensor C is then split
into two parts, the reset gate R and the update gate U :

[R,U ] = split(C). (5)

The current memory content can be computed as

M = tanh(conv(cat[Za, R�Hτ−1])), (6)

with tanh being hyperbolic tangent activation and � the
Hadamard element-wise multiplication. The final memory at
the current step τ is updated by element-wise multiplication
using the update gate U , and the current latent map is
computed after convolution as

Hτ = (1− U)�Hτ−1 + U �M,

Zτa = conv(Hτ ).
(7)

In our experiments, as a light field usually contains a
relatively large number of sub-aperture views, learning a long
sequence of angular latent codes, one angular latent code
per view, can be expensive both in terms of memory and
time consumption. In order to reduce the sequence length,
we choose to process the light field views by block of views.
We divide the light field into b blocks of n views each, with
b× n = v. If the light field is sufficiently dense, which is the
case for real world light fields captured by plenoptic cameras,
it is reasonable to suppose that within each block, the views
can share the same angular latent code without loosing too
much in terms of reconstruction quality. Therefore, the light
field is reconstructed by blocks:

L̂ =

[
Θ

([
Zs

Z1
a

])
,Θ

([
Zs

Z2
a

])
, ...,Θ

([
Zs

Zba

])]
. (8)

where Zβa , β = 1 . . . b denotes the angular code vector for the
block β.

Furthermore, the network parameters Θ can be split into
two disjoint parts: ΘA, the ConvGRU network that captures
the inter-block level angular prior of the light field, and ΘG,
the generator network that represents a spatial prior for the
light field views, as well as some angular variations within a
light field block β. Eq.(4-7) can be re-written as

Zβa = ΘA(Za, β), (9)

and the light field is thus reconstructed as

L̂ =

[
ΘG

([
Zs

ΘA(Za, 1)

])
,ΘG

([
Zs

ΘA(Za, 2)

])
,

...,ΘG

([
Zs

ΘA(Za, b)

])]
.

(10)

Inter-block angular latent codes Zβa inferred by ΘA form a
sequence of structured feature volumes which are concatenated
with the shared spatial latent code Zs. The resulting feature
volume is then fed into ΘG, which infers the light field views
per block of views.

C. Generator network

In this section, we describe the generator network ΘG that
maps the structured noise generated by the ConvGRU network
to the final light field. If the ConvGRU network ΘA works
at the inter-block level, the generator ΘG works within each
light field view block. For each block, the static latent code
Zs which is shared by all the views in the light field, is
concatenated with the angular latent code of the block β, Zβa ,
i.e. shared by the views within the block β. For each block β,

the generator maps the concatenated latent code Zβ =

[
Zs

Zβa

]
,

to the n light field views of the block. This generator design
should satisfy two conditions: 1) it should capture the spatial
information of a single light field view; 2) it should be able to
differentiate the different views within a block, even by taking
the same input block-level code Zβ .

Similar to [38], a decoder structure consisting of several
elementary structures Stri is used. At each level i, Stri trans-
forms the input feature maps Fi to Fi+1 in the way that the
spatial resolution of the feature maps are doubled:

Fi+1 = Stri(Fi) (11)

Each elementary structure Stri contains a sequence of oper-
ations: one convolutional layer with kernel size 3 × 3, one
upsampling layer with scale factor 2, one non-linear activation
layer (rectified linear units) ReLU6, one batch normalization
layer and finally an attention module A.

Fi+1 = A(BN(ReLU6(up(conv(Fi))))). (12)

The convolutional and upsampling layers can be replaced by
a pixel-shuffle layer to achieve more accurate reconstruction,
more details being explained in Section II-E.

Note that the main parameter overhead in each block resides
in the convolutional layer, which gathers both cross-channel
and spatial information. The n views in a block share the
same filters, except the last convolutional layer. In the last
layer, cin× c×n filters are learnt, which can be considered as
n independent branches of cin× c filters, where cin = ca + cs
is the total number of input channels of the generator ΘG, and
c is the number of color RGB channels of the output views.
These distinct filters enable to generate different sub-aperture
views based on the same input feature maps. It is preferable
to consider this structure instead of a second ConvGRU at this
stage for two reasons: 1) the dimension of the feature maps
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at this last stage of generation is much higher than the one of
the input latent codes. Using a second ConvGRU would cause
memory issues; 2) within each light field block, the angular
variation across views is very limited, thus it is reasonable to
only disentangle the filters of the last layer.

The upsampling layer performs bi-linear interpolation with-
out weight parameters, whereas BatchNorm layers and atten-
tion modules are very light-weight. We use ReLU6 which clips
the maximal activation at the value of 6, instead of the conven-
tional ReLU layer. We have observed in our experiments that
ReLU6 limits the dynamics of the activation, and thus enables
to reduce quantization errors, especially when the quantization
is coarse.

D. Attention mechanism

Three dimensional feature volumes Fi ∈ Rci×hi×wi are
generated at the output of each intermediate convolutional
layer. Modulating features in order to favor the most relevant
ones for the targeted task has been found to be useful to
improve network efficiency [48], [65]–[69]. Instead of directly
processing the 3D feature volumes, which involves much
more computational and parameter overhead, we chose to use
the strategy presented in [48] which consists in sequentially
computing the modulation weights for the cross-channel 2D
feature maps by the channel attention module Ac, and then
computing those for the spatial 2D feature maps by the spatial
attention module As, making the CNN aware of “where” to
focus in each feature map. The obtained attention maps are
element-wise multiplied with the feature maps. The overall
process is summarized as follows:

F′i = Ac(Fi)� Fi

F′′i = As(F
′
i)� F′i,

(13)

with F′i and F′′i being the resulting modulated feature vol-
umes at layer i.

The channel attention module performs average pooling
and max pooling to aggregate spatial information for each
feature map and to obtain a vector of ci values. In order to
extract meaningful information, this vector should be further
compressed to a vector of smaller dimension c′i, with c′i = ci

r ,
r > 1 being the reduction ratio. To achieve this, a simple
multi-layer perceptron (MLP) structure with two fully con-
nected layers is applied, with ci being the number of input and
output neurons, and c′i being the number of hidden neurons. At
the end, we obtain ci modulation weights, one for each feature
map, which are used to modulate the different feature maps.
The function performed by the channel attention module can
be expressed as:

Ac(Fi) = σ(MLP(MaxPools(Fi)) + MLP(AvgPools(Fi)))
(14)

with σ being sigmoid activation used to keep the modulation
weights between 0 and 1. MaxPools and AvgPools are respec-
tively max pooling and average pooling operations across the
spatial dimension.

A similar processing is performed by the spatial attention
module. Pixel-wise pooling operations are performed across
the channel dimension, and convolutions are performed on the

resulting feature map to obtain the final spatial attention map
of dimension hi × wi.

As(Fi) = σ(conv(cat[MaxPoolc(Fi),AvgPoolc(Fi)])) (15)

The symbols MaxPoolc and AvgPoolc represent max and
average pooling operations across channels, whereas cat[., .]
denotes a concatenation along the channel dimension.

E. Upsampling and pixel-shuffle

In the generator network, each elementary structure Stri
contains a convolutional layer followed by a parameter-free
upsampling layer performing a 2× bi-linear interpolation of
the resulting feature maps. In a compression context, this
design yields a satisfying reconstruction quality while main-
taining a relatively low bit-rate. However, for higher bit-rates,
in order to obtain more accurate reconstructed images, it is
possible to learn the interpolation operation in a similar way
as proposed in [70]. Instead of a convolutional layer of size
ci × ci × k × k with ci the number of input and output
channels at level i, and k the kernel size, followed by a
handcrafted upsampling operation, one can use a pixel-shuffle
layer containing ci × 4ci × k × k kernel parameters and a
pixel re-arrangement operation, which remaps the elements of
a 4ci×hi×wi tensor to a tensor of dimension ci×2hi×2wi.

Note that, when using the handcrafted upsampling opera-
tion, increasing the depth of feature maps can also improve
the reconstruction quality. However, we will demonstrate in
Section IV-C3 that the pixel-shuffle layer is more effective
with an equivalent parameter overload. Moreover, the pixel-
shuffle scheme is more memory-friendly for back-propagation
since despite increasing the network size, it keeps the quantity
of feature maps unchanged at each level.

III. QUANTIZATION-AWARE LEARNING

Having a light-weight neural structure is essential for our
goal of finding a compact representation of light fields. As
an example, let us suppose that we use ca = 15 latent
maps to generate angular information, and cs = 30 latent
maps to generate spatial and static information, and each
light field block contains n = 9 views. The corresponding
structure details and the number of parameters of the network
are depicted in Table I, where the layers without parameters
are omitted. The network contains 109427 weights. If we
reconstruct a light field of 81 views of 512×512 pixels via the
network, the network is indeed a highly under-parameterized
model. We obtain a compression ratio of approximately 0.005
weight per pixel.

These weights can be further quantized to reduce the size
of the model. Instead of using fixed-point scalar quantization
which maps the weights to uniformly spaced codewords, we
learn the codebook using the k-means algorithm with a fixed
number γ of codewords, as classically done in image or
network compression schemes, such as e.g. in [71]. Since k-
means clustering can be computationally expensive compared
to one iteration of back-propagation, this clustering is only
performed once before training. The codebook of each layer
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k s in/out # params

ΘA

conv1 3 1 35/40 12600
conv2 3 1 35/20 6300
conv3 3 1 20/15 2700

Total ΘG - - - 21600

ΘG

conv1 3 1 45/45 18225
BN1 - - - 90

mlp Ac1 - - 45/9, 9/45 810
conv As1 7 1 2/1 98

conv2 3 1 45/45 18225
BN2 - - - 90

mlp Ac2 - - 45/9, 9/45 810
conv As2 7 1 2/1 98

conv3 3 1 45/45 18225
BN3 - - - 90

mlp Ac3 - - 45/9, 9/45 810
conv As3 7 1 2/1 98

conv4 3 1 45/45 18225
BN4 - - - 90

mlp Ac4 - - 45/9, 9/45 810
conv As4 7 1 2/1 98

conv5 3 1 45/27 10935
Total ΘG - - - 87827

Total Θ - - - 109427

TABLE I
THE DETAIL OF PARAMETER NUMBERS OF A NETWORK EXAMPLE
(LAYERS WITHOUT PARAMETERS ARE OMITTED). k, s AND in/out
REPRESENT THE KERNEL SIZE, THE STRIDE AND THE NUMBER OF

INPUT/OUTPUT CHANNELS. THIS EXAMPLE IS GIVEN FOR THE
FOLLOWING CONFIGURATION: ca = 15, cs = 30 AND EACH LIGHT FIELD

BLOCK CONTAINS n = 9 SUB-APERTURE VIEWS.

is then updated by averaging the gradients of their assigned
elements with gradient steps as

c← c− η 1

|Jc|
∑
w∈Jc

∂E

∂w
. (16)

where E is the energy function to minimize, which computes
the light field reconstruction error, and η is learning rate. Jc
is the set of weights w which are assigned to the codeword c.

Achieving good reconstruction performance despite quan-
tization can be challenging especially when the number γ of
codewords per layer is small. Indeed, the quantization error can
be accumulated in a neural network, since subsequent layers
take as input the activation of the preceding layers, which are
corrupted by quantization noise. In order to alleviate this issue,
as proposed in [72], we sequentially quantize layers from the
lowest to the highest, and finetune the upper layers after the
lower layers have been quantized. Finally, we apply entropy
coding, e.g. Huffman coding, on quantized weights to achieve
further compression of the model.

Overall, for each neural layer, we transmit γ codewords,
with a cost of γ × 32 bits, each codeword being encoded
in 32 bits. We also transmit the entropy H of the indices
which associate each weight to its corresponding codeword.
The entropy is computed as H = −

∑
j

|Jcj |
Ni

log2

|Jcj |
Ni

, with
Ni the total number of parameters in a certain layer i.

IV. EXPERIMENTAL RESULTS

A. Settings

The encoding of a light field proceeds in three steps. First,
we train an uncompressed model from scratch. We begin with
a learning rate of 0.01, and after every 8000 epochs, the
learning rate is decreased by a factor of 0.6. Second, we
sequentially quantize weights and finetune the model layer
per layer with a fixed number γ of codewords per layer.
In this work, we fix γA = 64 for ConvGRU network and
γG = 256 for the generator network, as they have been found
to meet a good rate-distortion trade-off. The same learning rate
schedule is applied as in the first step. We have observed in
the experiments that following the “Train-Finetune/Quantize”
process can give better image quality than directly performing
the quantization-aware training from scratch. Third, entropy
coding is applied to further compress the quantized weights.
In our experiments, Huffman coding is used.

The test light fields are real world light fields captured
by a Lytro Illum camera, which are widely used by the
light field compression research community. We compare our
compression scheme against
• Solutions based on video coding standards, such as the

HEVC coding standard [52], [53]. The HEVC version
used in the tests is HM-16.10. The base QPs are set to
20, 25, 30, 35 and a GOP of 4 is used.

• Learning-based video compression methods (HLVC [54],
RLVC [55] and OpenDVC [56]). We use the code and the
PSNR-tuned and MS-SSIM-tuned models provided by
the authors, with their default settings. For PSNR-tuned
models, BPG [73] is used to compress I-frames, whereas
for MS-SSIM-tuned models, the method in [74] is used
to compress I-frames. For RLVC, 6 P-frames are encoded
both in the forward and backward directions, which
corresponds to GOP = 13 (bi-IPPP). HLVC predicts
images with three hierarchical quality layers and the
defaut GOP= 10 is used. For OpenDVC, the default
GOP is also set to 10, and an inter-coded image is
predicted from the previous decoded image. To obtain
different bitrates with the OpenDVC, RLVC and HLVC
methods, λ =8, 16, 32 and 64 and λ =256, 512, 1024
and 2048 are chosen for the MS-SSIM and PSNR models
respectively, λ being the hyperparameter controlling the
trade-off between distortion and bit-rate.

• Solutions specifically designed for light field compres-
sion, i.e., JPEG pleno [51], and FDL [23] with hierarchi-
cal scheme. For JPEG Pleno, the software version used
is the JPEG Pleno Verification Model 2.0. The prediction
mode with WaSP is used.

We also compare our scheme against a quantized version
of the NeRF model originally proposed in [32], as well
as a version of reduced dimension that we developed and
called NeRF-Slim. The original NeRF model [32] has 8 fully
connected layers, with a layer width of 256, and each pixel
is synthesized based on 128 samplings along the ray. NeRF-
Slim is also composed of 8 fully connected layers, but with
layers of width 134 and the same sampling along the rays.
The quantized versions of these two models are denoted as
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NeRF-Quant and NeRF-Slim-Quant. The models are quantized
layer by layer, with 32, 64, 128 or 256 centroids per layer, to
obtain NeRF-Quant and NeRF-Slim-Quant models. The same
quantization-aware learning as used in our model is applied.

B. Performance

Rate-distortion: The rate-distortion curves are shown in
Fig.2 and Fig.3. The image quality is evaluated in terms
of PSNR (Fig.2) and Multi-Scale SSIM (MS-SSIM) (Fig.
3) respectively. The bit-rate is computed in bits per pixel
(bpp). The PSNR curves show that, at moderate and high
bit-rates, averaged on the test light fields, our compression
scheme achieves the best light field image quality among all
compared methods, whereas at low bit-rate, HEVC obtains
the best performance. Note also that our PSNR-tuned models
achieve better quality than other learning-based reference
methods (OpenDVC, HLVC, RLVC, NeRF-Quant and NeRF-
Slim-Quant) for the entire bit-rate range. Table II shows BD-
PSNR gains (using the Bjontegaard measure) with respect
to the HEVC baseline. Our method outperforms the non-
learning methods HEVC and FDL, as well as the learning-
based methods HLVC, RLVC, OpenDVC and NeRF-Quant,
and is comparable with JPEG Pleno.

In terms of MS-SSIM, Fig. 3 shows that for most of the
test scenes, our MS-SSIM-tuned models reach the best rate-
distortion trade-off for the entire bit-rate range. Note that both
PSNR-tuned and MS-SSIM-tuned models of RLVC, HLVC
and OpenDVC are publicly available.

TABLE II
BD-PSNR GAINS WITH RESPECT TO HEVC BASELINE. THE GAINS ARE
SHOWN FOR THE NON-LEARNING METHOD JPEG PLENO [51], FDL [23]

AND FOR LEARNING-BASED METHODS HLVC [54], RLVC [55],
OPENDVC [56], NERF [32]-QUANT AS WELL AS OUR PROPOSED

METHOD. TEST LIGHT FIELDS ARE BIKES, DDM (DANGER DE MORT),
SPO (STONE PILLARS OUTSIDE), FV2 (FOUNTAIN & VINCENT 2),

FRIENDS AND VESPA.

LF JPEG HLVC RLVC OpenDVC NeRF FDL Ours
Pleno -Quant

Bikes -0.36 -0.83 -0.68 -1.62 0.45 -0.45 0.03
DdM 0.67 -0.74 -0.52 -1.52 0.04 0.50 0.55
SPO 0.16 -0.71 -0.42 -1.18 -0.92 0.51 -0.32
FV2 -0.08 -0.82 -0.53 -1.42 -0.49 -1.90 0.24

Friends -0.24 -1.23 -0.95 -1.98 -1.68 0.56 -0.62
Vespa 1.25 0.36 0.64 -0.26 0.97 1.17 0.92
Avg. 0.23 -0.66 -0.41 -1.33 -0.27 0.06 0.13

Visual comparison: Visual comparisons are given both for
PSNR-tuned models and MS-SSIM-tuned models. In Fig. 4,
we show the reconstruction error maps computed between
the ground truth and the decompressed images when using
OpenDVC, RLVC, HLVC, JPEG Pleno, NeRF-Slim-Quant and
our PSNR-tuned models. Error maps are summed up over all
viewpoints. One can observe that for a similar bit-rate, our
model generates less error especially on object contours. In
Fig. 5, we compare the visual quality of the decompressed
images by using NeRF-Slim-Quant, JPEG Pleno, HEVC, and
MS-SSIM-tuned OpenDVC and our models. It can be observed

that the views generated by our model are less blurry than
those by NeRF-Slim-Quant, HEVC and OpenDVC, and our
model generates less artifact than JPEG Pleno.

Fig. 6 shows the reconstructed EPIs which are the slices
in the sx- and yt-planes depicted below and on the right of
the reconstructed center view. One can observe patterns with
consistent slopes, which means the light field parallex is well
preserved after compression.

Consistency across views: In Fig. 7, we visualize the
variation of PSNR values for each sub-aperture view of the
reconstructed light field. The corresponding bitrate is around
0.1 bpp for all the methods. The periodic variations observed
with the methods HEVC, RLVC, HLVC and OpenDVC corre-
spond to the GOP sizes used (4, 13, 10 and 10 respectively).
For learning-based methods, i.e. RLVC, HLVC and OpenDVC,
one can observe significant degradation of the PSNRs for
inter coded views compared to intra coded ones. Similar
observation can be made for JPEG Pleno: the quality of the
views which are encoded at a higher hierarchical level with
a low texture rate degrades rapidly compared to those at a
lower coding level, for example, the central view. In fact, the
error “propagates” with these methods, where the encoding
and decoding of the current view depends on the previous
reference views. On the contrary, our model consistently
generates views across different viewpoints, since they are all
supervised by the same loss function (image reconstruction
error) during model learning, and hierarchical quality (I,P,B
frames) used in conventional codecs is not imposed with our
method. Apart from the views that are coded in intra mode
using RLVC, HLVC and OpenDVC, and some views coded at
a low hierarchical level using JPEG Pleno, our model gives a
higher reconstruction quality than the other reference methods.

C. Ablation studies

1) Attention module: To put in evidence the utility of
feature map modulation, in Fig. 8, we show the learning
curves of our proposed network with and without attention
modules respectively. After convergence, a gain of up to 1dB
can be observed on the reconstructed light field images when
using the feature map modulation. The parameter overhead
is relatively limited, since the corresponding attention module
only represents 2.5% of the total parameter load.

2) Compactness versus reconstruction quality using Con-
vGRU: We evaluate the efficiency of ConvGRU to learn the
angular prior of light field views, and whether the use of
ConvGRU yields a good trade-off between model compactness
and reconstruction quality. Table III compares our model using
ConvGRU against other approaches that can be considered to
model the angular correlation between the light field views.
We first compare with an adapted version of the deep decoder
(Ada-DD) with 3v output channels, v being the number of
sub-aperture views, while the original deep decoder [38] used
for single 2D images with RGB channels has only 3 output
channels. We also consider a solution in which the angular
coordinates of the views are padded with the generator input,
following the principle of CoordConv [62], to make the model
aware of the view angular positions. Finally, we also compare
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Fig. 2. PSNR vs. bitrate compression performance, with real world light fields from the JPEG Pleno dataset [75] (Bikes, Danger de Mort, Fountain Vincent 2
and Stone Pillars Outside) and EPFL light field dataset [76] (Vespa and Friends). Averaged curves over all test data, with standard deviations, are also shown.
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Fig. 3. Compression performance measured in terms of MS-SSIM vs. bitrate, using real world light fields from the JPEG Pleno dataset [75] (Bikes,
Danger de Mort, Fountain Vincent 2, Stone Pillars Outside and EPFL light field dataset [76] (Vespa and Friends). Averaged curves over all test data, with
standard deviations, are also shown.
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OpenDVC RLVC HLVC
Bikes PSNR = 29.71dB PSNR = 30.45dB PSNR = 30.76dB

JPEG Pleno NeRF-Slim-Quant Ours
PSNR = 30.63dB PSNR = 30.08dB PSNR = 31.21dB

OpenDVC RLVC HLVC
Fountain˙Vincent˙2 PSNR = 29.23dB PSNR = 30.03dB PSNR = 29.06dB

JPEG Pleno NeRF-Slim-Quant Ours
PSNR = 30.39dB PSNR = 28.82dB PSNR = 30.88dB

OpenDVC RLVC HLVC
Danger PSNR = 30.72dB PSNR = 31.40dB PSNR = 31.80dB

JPEG Pleno NeRF-Slim-Quant Ours
PSNR = 32.72dB PSNR = 31.48dB PSNR = 33.06dB

Fig. 4. The reconstruction error of the decompressed views obtained with PSNR-tuned models of OpenDVC, RLVC, HLVC and our method, as well as JPEG
Pleno and NeRF-Slim-Quant. The bitrates are around 0.1 bpp.



JOURNAL OF LATEX CLASS FILES 11

HEVC JPEG Pleno
Bikes GT MS-SSIM = 0.9554 MS-SSIM = 0.9521

NeRF-Slim-Quant OpenDVC Ours
MS-SSIM = 0.9389 MS-SSIM = 0.9560 MS-SSIM = 0.9733

HEVC JPEG Pleno
Fountain Vincent 2 GT MS-SSIM = 0.9537 MS-SSIM = 0.9515

NeRF-Slim-Quant OpenDVC Ours
MS-SSIM = 0.9413 MS-SSIM = 0.9445 MS-SSIM = 0.9669

Fig. 5. Visual comparison of the decompressed view obtained with HEVC, JPEG Pleno, NeRF-Slim-Quant, MS-SSIM-tuned models of OpenDVC and our
method. Comparable bitrates are around 0.03 bbp.

our model learning an angular prior based on the ConvGRU
against NeRF models which map continous 5D vectors (3D
coordinates plus 2D viewing directions) to volume density and
view-dependent radiance. The original NeRF model of [32]
has 595844 parameters. In order to be comparable with other
models in terms of numbers of parameters, in Table III we
consider a NeRF-Slim model with 172931 parameters, which
has exactly the same architecture as a NeRF model, but with
less parameters in each MLP layer. The CoordConv model is
also dimensioned to have a comparable number of network
parameters.

Table III shows that, in comparison with Ada-DD, Coord-
Conv and NeRF-Slim, our model achieves the best reconstruc-
tion quality while using fewer parameters or a comparable
number of parameters. Note that the consistent and high
image quality across different viewpoints shown in Fig. 7 also
demonstrates the effectiveness of ConvGRU module to learn

TABLE III
PSNR (DB), NUMBERS OF PARAMETERS FOR DIFFERENT MODELS

GENERATING LIGHT FIELDS. VALUES ARE AVERAGED OVER THE TEST
LIGHT FIELDS. †: THE COORDCONV PRINCIPLE IS USED TO MAKE OUR

MODEL AWARE OF THE VIEW ANGULAR COORDINATES. ∗: THESE RESULTS
HAVE BEEN OBTAINED WITH A NERF MODEL OF REDUCED DIMENSION

(THAT WE CALLED NERF-SLIM) COMPARED WITH THE ORIGINAL MODEL
OF [32].

Our model Ada-DD CoordConv† NeRF-Slim∗

# params 173968 261300 178302 172931
# PSNR (dB) 30.87 29.98 30.19 29.99

a light field angular prior.

3) Parameter-free upsampling vs. pixel-shuffle: In the de-
coder structure proposed in deep image generative models such
as DIP [39] and deep decoder [38], handcrafted parameter-
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Fig. 6. Reconstructed epipolar images (EPIs) are the slices in the sx- and
yt-planes shown below and on the right of the reconstructed center view. Test
light field: Bikes.
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Fig. 7. The variation of average PSNR over all the test light fields, for each
reconstructed sub-aperture view. The corresponding bitrate is around 0.1 bpp.

Fig. 8. Optimization curves of the proposed network with attention modules
and without attention modules respectively for the light field reconstruction
task.

TABLE IV
COMPARISON BETWEEN HANDCRAFTED PARAMETER-FREE UPSAMPLING
AND LEARNED UPSAMPLING WITH PIXEL-SHUFFLE. THE PSNR VALUES
OF THE GENERATED LIGHT FIELDS, AS WELL AS THE CORRESPONDING

NETWORK PARAMETER NUMBERS ARE LISTED. THE PSNR VALUES ARE
AVERAGED OVER THE TEST LIGHT FIELDS.

(ca,cs) (15,30) (20,40) (25,50) (30,60)
Upsampling #params 108270 173968 256346 355404

PSNR (dB) 29.65 30.87 31.63 32.16
Pixel-shuffle # params 326970 562768 863846 1230204

PSNR(dB) 31.52 33.24 34.11 34.79

free upsampling operations are used to increase feature map
resolutions from a lower layer to its immediate upper layer.
Moreover, in [38] along with 1× 1 convolutions, the relation-
ships between nearby pixels of reconstructed images are barely
imposed by upsampling layers. In Table IV, we compare
the reconstruction performance in terms of PSNR between
our model with handcrafted upsampling and its counterpart
with learned upsampling by pixel-shuffle layers. The values
are averaged over the test light fields. If taking the same
configuration of the (ca, cs) pair, the number of features maps
on each layer dedicated to angular information and shared
spatial information, the model using pixel-shuffle significantly
outperforms its counterpart using handcrafted upsampling by
a large margin (a gain of approximately 2.5 dB can be
observed). However, to obtain smaller models using pixel-
shuffle, one has to decrease the number of feature maps per
layer. For example, a model using pixel-shuffle with small
number of feature maps (ca, cs) = (15, 30) obtains lower
PSNR than its counterpart using handcrafted upsampling with
(ca, cs) = (30, 60), whereas the two models have roughly
the same number of parameters. In this work, we constantly
search for the tradeoff between the model compactness and
the generative capacity. Therefore, when a compact enough
model is needed, it is more advantageous to maintain a
moderate number of feature maps that contribute to image
reconstruction, rather than using additional parameters to learn
interpolation and decreasing feature map numbers. On the
contrary, upsampling with learned pixel-shuffle layers allows
a better modeling of the relationships between nearby pixels,
both on the feature level and the image level, which yields
more accurate reconstruction when the model compactness is
less demanded.

4) Quantization: In Table V, we compare different quan-
tization schemes in terms of light field reconstruction
performance. Four networks with parameters (ca, cs) =
(15, 30), (20, 40), (25, 50), (30, 60) are tested. We take pre-
trained light field generative models, which corresponds to the
line “Without quantization” in Table V, and then apply differ-
ent quantization schemes. A posteriori quantization without
any finetuning yields about 3-4dB of PSNR loss compared to
the non-compressed model. Schemes using quantization-aware
finetuning (QAF) update quantized weights with respect to the
light field reconstruction quality. We observe that the scheme
“Non-uniform QAF” (c.f. Section III) obtains the best PSNR
values among all tested quantization schemes, and achieves
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TABLE V
RECONSTRUCTION QUALITY MEASURED IN PSNR(DB) BY USING
DIFFERENT QUANTIZATION SCHEMES ON THE TEST LIGHT FIELD

“DANGER DE MORTS”

(ca,cs) (15,30) (20,40) (25,50) (30,60)
A posteriori quantization 27.57 28.65 29.12 30.17

Uniform QAF 27.68 29.16 31.35 31.80
Non-uniform QAF 29.84 31.44 32.26 33.06
QAT from scratch 19.17 20.69 20.74 21.16

Without quantization 30.57 32.29 33.05 33.71

TABLE VI
MODEL MEMORY USAGE (IN MEGABYTES) COMPARISON BETWEEN

QUANTIZED AND NON-QUANTIZED NETWORKS. THE TEST LIGHT FIELD IS
“DANGER DE MORTS” WITH AN ORIGINAL SIZE OF 40.4 MEGABYTES.

(ca,cs) (15,30) (20,40) (25,50) (30,60)
Non-uniform QAF 0.11 0.18 0.27 0.35

Without quantization 0.43 0.70 1.03 1.42

TABLE VII
DECODING TIME OF TESTED METHODS

HEVC JPEG Pleno RLVC HLVC OpenDVC
13.4s 18.8s 2587.0s 491.2s 43.7s
NeRF NeRF-Slim CoordConv Ours
580.8s 353.9s 0.250s 0.262s

significant gain compared against the “Uniform QAF” using
equal widths quantization bins. Finally, “QAT from scratch”
corresponds to the scheme applying quantization-aware train-
ing from randomly-initialized weights. The results demonstrate
the necessity of optimizing network weights with respect to
the reconstruction quality before quantization. In Table VI,
memory usage of the models applying non-uniform QAF and
those without quantification is shown.

5) Decoding time: Table VII gives the decoding times
of the different methods, for a light field of 81 views of
resolution 432 × 624. We used a GeForce RTX 2080 Ti
GPU for testing learning-based methods. Our method, using
the convGRU or the CoordConv technique to model angular
variations, gives the shortest decoding time. Both methods
use the same generator structure. When using CoordConv,
instead of using ConvGRU to exploit angular correlation,
view angular positions are padded with the generator input,
following the principle of [62]. When using HEVC, JPEG
Pleno, the RLVC, HLVC and OpenDVC methods, the light
field views are decoded following the order used for encoding,
the decoding of the current view depending on the decoding
of a reference views. NeRF and NeRF-Slim proceeding view
by view could be parallelized in theory, however at the cost
of a very high memory usage, which, for some GPUs, not
always be practical. The CoordConv solution decodes all the
light field views at the same time, without any dependency
to any of the other views. Our model can be seen as a
hybrid solution, in which a short sequence carrying inter-block
angular dependency information is predicted by the ConvGRU,

and all the views are then generated by the generator at the
same time. The simplicity of our network structure and the
relative lack of reference dependency can explain the short
decoding time compared against other methods. Finally, our
solution with ConvGRU is only slightly slower than the use
of CoordConv in terms of decoding time, which shows that
the ConvGRU does not penalize much the method in terms of
decoding efficiency.

Note that for each light field, its corresponding network
is quantized and transmitted to the decoder. On the decoder
side, it takes the input noise, being fixed for all the light
fields and being known on the decoder side, and the quantized
network. The decoder performs a simple feedforward inference
to obtain the decoded light field. The change of the network
configuration, such as number of blocks and number of views
per block, does not impact the efficiency of this inference
process on the decoder side.

V. CONCLUSION

In this paper, we proposed a deep generative model for light
fields that does not require any training data other than the
light field itself. We show that the proposed model gives a
compact representation of the input light field, and can lead,
with quantization-aware learning, to convincing compression
performance with high image quality. In future work, we will
investigate the use of this untrained compact model for solving
inverse light field problems. We will also further explore the
use of the fast evolving NeRF concept in the context of light
field compression, considering methods such as in [35], [36],
[37], [77] for learning the NeRF models.
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