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Abstract. Classically, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition on the constraint. In this note, we propose an alternative framework to study
such problems by using the T-coercivity approach to derive a global inf-sup condition. Generally speaking,
this is a constructive approach that, in addition, drives the design of suitable approximations. As a matter
of fact, the derivation of the uniform discrete inf-sup condition for the approximate problems follows easily
from the study of the original problem. To support our view, we solve a series of classical mixed problems with
the T-coercivity approach. Among others, the celebrated Fortin Lemma appears naturally in the numerical
analysis of the approximate problems.

Résumé. Classiquement, le caractère bien posé des formulations variationnelles de problèmes linéaires
mixtes est obtenu à l’aide de la condition inf-sup sur la contrainte. Dans cette note, nous proposons un cadre
alternatif pour étudier de tels problèmes en utilisant la notion de T-coercivité pour obtenir une condition
inf-sup globale. Il s’agit d’une approche constructive qui permet en outre de concevoir simplement des
approximations numériques adaptées car la dérivation de la condition inf-sup discrète uniforme découle en
général directement de l’étude du problème continu. Pour appuyer notre propos, nous résolvons une série
de problèmes mixtes classiques grâce à la notion de T-coercivité. Entre autres, le lemme de Fortin apparaît
naturellement dans l’analyse numérique des problèmes discrets.
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1. Introduction

Traditionally, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition, also called stability condition [2, 12, 42]. As a matter of fact,
proving this condition allows to derive existence and uniqueness of the solution, and continuous
dependence with respect to the data. On the other hand, the way this condition is established
depends on the problem to be solved. The analysis of such problems can be performed either
following a monolithic approach, namely studying the all-in-one bilinear form incorporating the
constraint, or by studying the constrained part of the problem separately.
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In this note, we focus on the monolithic approach and investigate the mixed problem’s well-
posedness based on the T-coercivity framework. The principle of this framework is to find an
explicit realization of the inf-sup condition for the all-in-one bilinear form. Of equal importance,
in the T-coercivity framework, is the design of suitable approximations of the original problem.
Indeed, with the help of the explicit realization of the condition for the original problem, one
can get useful insight on how to derive the so-called uniform discrete inf-sup condition for the
approximate, or discrete, problems set in finite-dimensional vector spaces. Thus, convergence
of the approximate solutions to the exact one follows under well-known principles in numerical
analysis, such as Céa’s Lemma (or a variant), and a basic approximability property of elements
of the original space of solutions. To summarize, although the T-coercivity approach may not
bring new result to the theory of variational formulations, it holds two key features: it proposes a
compact way to study them theoretically ; it provides useful insight on how to approximate them.

So far, the T-coercivity approach has been mainly applied to two categories of linear problems.
First, for problems involving an invertible operator and a compact perturbation, see eg. [13–16,
24,37,38,45,46]. Then, for problems with sign-changing coefficients, cf. [6–11,17–23,25,27,35,36,
44]. For the second category, we observe that well-posedness and (efficient) approximation of the
variational formulations has actually been achieved with the help of the T-coercivity approach.
Up to the authors’ knowledge, this approach was only applied to mixed problems in [28, 41]
and [39]: the last reference focuses on perturbed saddle-point problems, whereas the other two
deal with the specific case of neutron diffusion.

In this note, we apply the T-coercivity approach to general mixed problems, including unper-
turbed and perturbed saddle-point problems. In particular, we will explain the connections with
the classical theory, for which we use [5] as the reference textbook. Among those connections,
we note that the celebrated Fortin Lemma will appear naturally in the (numerical) analysis of the
discrete problems.

Let us introduce some notation. Given a Hilbert space V , we denote by (·, ·)V and ‖ · ‖V the
inner product and the norm on V , and by V ′ its dual space. In a product space V ×W of two
Hilbert spaces, we use the norm

‖(v, w)‖V ×W = (‖v‖2
V +‖w‖2

W

)1/2
,

and similarly for the inner product. Let L (V ,W ) denote the set of bounded operators from V to
W . In L (V ,W ), we use the norm

|||A||| = sup
v ∈V \{0}

‖Av‖W

‖v‖V
.

If V =W we use the notation L (V ).
Vector-valued function spaces are written in boldface character. A connected, bounded, open
subset of Rd with a Lipschitz boundary is called a domain.

LetΩ be a domain with boundary ∂Ω. We denote by n the unit outward normal vector field to
∂Ω. Let L2(Ω) and L2(Ω) be the set of square-integrable real-valued and Rd -valued functions on
Ω. The natural norm in L2(Ω) or L2(Ω) is denoted by ‖ ·‖, and we let

L2
0(Ω) =

{
v ∈ L2(Ω) ,

∫
Ω

v dx = 0

}
.

In what follows, unless otherwise stated, the standard Sobolev space H 1
0 (Ω) is endowed with the

norm v 7→ ‖∇v‖, that defines a norm that is equivalent to ‖·‖H 1(Ω) thanks to Poincaré’s inequality.
The dual space of H 1

0 (Ω) is denoted by H−1(Ω). Similarly, H 1
0(Ω) is endowed with the norm
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v 7→ (
∑

i=1,d ‖∇vi‖2)1/2, that defines a norm that is equivalent to ‖ · ‖H 1(Ω), and its dual space is
denoted by H−1(Ω). We introduce the usual Sobolev spaces for vector-valued fields [1]

H(div ;Ω) = {
v ∈ L2(Ω), div v ∈ L2(Ω)

}
,

H 0(div ;Ω) = {v ∈ H(div ;Ω), v ·n = 0 on ∂Ω} ,

H(div0;Ω) = {v ∈ H(div ;Ω), div v = 0} ,

H(curl ;Ω) = {
v ∈ L2(Ω), curl v ∈ L2(Ω)

}
, for d = 3,

H 0(curl ;Ω) = {v ∈ H(curl ;Ω), v ×n = 0 on ∂Ω} , for d = 3.

Unless otherwise specified, H(div ;Ω) is endowed with the norm v 7→ (‖v‖2 + ‖div v‖2)1/2 and
H(curl ;Ω) with the norm v 7→ (‖v‖2 +‖curl v‖2)1/2.

The outline is as follows. In Section 2, we introduce the T-coercivity approach, and explain
how it can be applied to solve the Stokes problem theoretically. Then, in Section 3, we develop
the abstract framework underlying the approach for mixed problems, including saddle-point,
augmented and perturbed ones. In Sections 4, 5 and 6, we propose some applications, respec-
tively to electromagnetism, nearly-incompressible elasticity, and diffusion. Then, in Section 7,
we propose the natural extension of the T-coercivity approach for the conforming approxima-
tion of mixed problems. As before, we begin by the Stokes problem, then we consider the nu-
merical analysis for mixed problems in general, before describing how the approach can be ap-
plied to electromagnetism, nearly-incompressible elasticity, and diffusion. We conclude by a list
of further extensions and recent applications of the T-coercivity approach.

2. T-coercivity for the Stokes problem

The starting point of our study is to propose a T-coercivity approach to solve Stokes problem. Let
Ω ⊂ Rd be a domain. We consider the Stokes problem with homogeneous Dirichlet boundary
conditions: given a prescribed body force f ∈ H−1(Ω), find the velocity u ∈ H 1(Ω) and the
pressure p ∈ L2

0(Ω) such that

−ν∆u +∇p = f , inΩ,

divu = 0, inΩ,

u = 0, on ∂Ω,

(1)

where ν> 0 denotes the fluid’s viscosity.
The standard method to solve Problem (1) – see [33] – consists in a one-plus-one approach.

The problem is split into a coercive part

a(u, v ) = ν
∫
Ω
∇u : ∇v dx

and divergence constraint terms of the form

b(v , q) =−
∫
Ω

q div v dx,

so that the weak formulation of Problem (1) reads: find (u, p) ∈ H 1
0(Ω)×L2

0(Ω) such that

a(u, v )+b(v , p) = 〈 f , v〉, ∀v ∈ H 1
0(Ω),

b(u, q) = 0, ∀q ∈ L2
0(Ω),

(2)
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where 〈·, ·〉 denotes the duality product in H−1(Ω)× H 1
0(Ω). The well-posedness of Problem (2)

then follows from Ladyzhenskaya–Babuška–Brezzi’s theory [2, 12, 42] since the bilinear form a is
coercive on H 1

0(Ω) and the bilinear form b satisfies the inf-sup condition

inf
q ∈L2

0(Ω)\{0}
sup

v ∈H 1
0(Ω)\{0}

b(v , q)

‖∇v‖‖q‖ ≥β (3)

for some constant β> 0.
Here, we are going to give an alternative proof that Problem (1) is well-posed by analysing the

all-in-one bilinear form defined on H 1
0(Ω)×L2

0(Ω)

A
(
(u, p), (v , q)

)= ν∫
Ω
∇u : ∇v dx −

∫
Ω

p div v dx −
∫
Ω

q divu dx

instead of splitting it into two bilinear forms a and b as in (2). This bilinear form is not coercive
since

A
(
(0, p), (0, p)

)= 0, ∀p ∈ L2
0(Ω).

For this reason, we use the notion of T-coercivity [23, 24], which can be seen as a reformulation
of Banach–Nečas–Babuška’s theory [30, Theorem 25.9]. The definition and the main property of
T-coercivity are recalled below.

Definition 1 ( [23, Definition 3]). Let W be a Hilbert space and let A (·, ·) be a continuous bilinear
form over W ×W . We say that A is T-coercive if there exists a bijective operator T ∈ L (W ) and
α> 0 such that

|A (v,Tv)| ≥α‖v‖2
W , ∀v ∈W.

When the bilinear form A (·, ·) is in addition symmetric, the requirement that the operator T is
bijective can be dropped.

Proposition 2 ( [23, Theorem 1]). Let W be a Hilbert space. Let `(·) be a continuous linear form
over W and A (·, ·) be a continuous bilinear form over W ×W . The problem{

Find u ∈W such that

∀v ∈W, A (u, v) = `(v)

is well-posed if and only if A is T-coercive. If so, it holds that

‖u‖W ≤ |||T|||
α

‖`‖W ′ , (4)

for all pairs of operators and constants (T,α) that yield T-coercivity.

Remark 3. In the above definition, we observe that if (T,α) is a suitable pair, then for all λ > 0,
(λT,λα) is also a suitable pair. It is then possible to choose a normalized operator T, that is
|||T||| = 1. In this case, in the proposition, the estimate (4) writes ‖u‖W ≤α−1‖`‖W ′ .

Remark 4. In [23], the definition and proposition are stated for (possibly) different spaces of
solutions u and test functions v .

2.1. Proving well-posedness with T-coercivity

With the T-coercivity tool in mind, we are now ready to establish the main result of this section.
To that aim, we use the result below, see for instance [33, Corollary I.2.4]. Let q ∈ L2

0(Ω). Then,
there exists v q ∈ H 1

0(Ω) satisfying
− div v q = q. (5)

In addition, there exists a constant Cdiv > 0 independent of q such that∥∥∇v q
∥∥≤Cdiv‖q‖. (6)
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Theorem 5. The problem{
Find (u, p) ∈ H 1

0(Ω)×L2
0(Ω) such that

∀(v , q) ∈ H 1
0(Ω)×L2

0(Ω), A
(
(u, p), (v , q)

)= 〈 f , v〉 (7)

is well-posed and

∥∥(u, p)
∥∥

H 1
0(Ω)×L2

0(Ω) ≤
2max

(p
2νC 2

div,Cdiv
(
2+ν2C 2

div

)1/2
)

min
(
ν2C 2

div,1
) ‖ f ‖H−1(Ω). (8)

Proof. The linear form defined by

`
(
(v , q)

)= 〈 f , v〉, ∀(v , q) ∈ H 1
0(Ω)×L2

0(Ω)

is continuous over H 1
0(Ω)×L2

0(Ω) in view of the inequality

`
(
(v , q)

)≤ ∥∥ f
∥∥

H−1(Ω)

∥∥(v , q)
∥∥

H 1
0(Ω)×L2

0(Ω) . (9)

The bilinear form A is continuous over
(

H 1
0(Ω)×L2

0(Ω)
)2 and we observe that it is also symmetric.

Then, from Proposition 2, it is sufficient to show that the bilinear form A is T-coercive. For
a given (u, p) ∈ H 1

0(Ω) × L2
0(Ω), we look for an element (v∗, q∗) of H 1

0(Ω) × L2
0(Ω) depending

continously on (u, p) and such that

A
(
(u, p),

(
v∗, q∗))≥α‖(u, p)‖2

H 1
0(Ω)×L2

0(Ω)

for some constantα> 0. In order to get an intuitive idea of the construction of (v∗, q∗), let us start
with specific elements (u, p).

• If p = 0, then ‖(u, p)‖2
H 1

0(Ω)×L2
0(Ω)

= ‖∇u‖2 and

A
(
(u, p),

(
v∗, q∗))= ν∫

Ω
∇u : ∇v∗ dx −

∫
Ω

divu q∗ dx,

so that we can take v∗ = u and q∗ = p = 0.
• If u = 0, then ‖(u, p)‖2

H 1
0(Ω)×L2

0(Ω)
= ‖p‖2 and

A
(
(u, p),

(
v∗, q∗))=−

∫
Ω

p div v∗ dx.

In order to recover the expected term ‖p‖2 in the above expression, we have to choose v∗,
the divergence of which is “as close as possible” to −p. The idea is now to choose v∗ = v p ,
where v p is as in (5)-(6). Hence, taking q∗ = 0, we find

A
(
(u, p),

(
v∗, q∗))= ‖p‖2,

and (6) ensures that the pair (v p ,0) depends continously on (0, p) in H 1
0(Ω)×L2

0(Ω).
• If divu = 0, then

A
(
(u, p),

(
v∗, q∗))= ν∫

Ω
∇u : ∇v∗ dx −

∫
Ω

p div v∗ dx.

Since we need to get a term of the form ‖∇u‖2 but also of the form ‖p‖2, we combine the
previous two cases by setting v∗ =λu+v p , whereλ is a positive coefficient to be adjusted
and v p is the divergence lifting from (5) – (6). Now, we compute

A
(
(u, p),

(
v∗, q∗))= νλ

∫
Ω
∇u : ∇u dx +ν

∫
Ω
∇u : ∇v p dx −λ

∫
Ω

p divu dx −
∫
Ω

p div v p dx

= νλ‖∇u‖2 +ν
∫
Ω
∇u : ∇v p dx +‖p‖2

C. R. Mathématique — Draft, 24th September 2024



6 Mathieu Barré and Patrick Ciarlet

since divu = 0 and −div v p = p. For all η> 0, Young’s inequality implies that∫
Ω
∇u : ∇v p dx ≥−η

2
‖∇u‖2 − 1

2η

∥∥∇v p
∥∥2

≥−η
2
‖∇u‖2 − C 2

div

2η
‖p‖2 in virtue of (6),

and thus

A
(
(u, p), (v∗, q∗)

)≥ ν(
λ− η

2

)
‖∇u‖2 +

(
1− νC 2

div

2η

)
‖p‖2.

Hence, by setting η=λ= νC 2
div, we obtain

A
(
(u, p),

(
v∗, q∗))≥ ν2C 2

div

2
‖∇u‖2 + 1

2
‖p‖2.

In the general case, we choose v∗ = λu + v p with λ = νC 2
div and q∗ = −λp so that, even if

divu 6= 0, the term −λ∫
Ω p divu dx cancels with the term −∫

Ωdivu q∗ dx and we get the same
results as in the case divu = 0. Namely, the bilinear form A is T-coercive for the mapping

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)

(u, p) 7−→ (
νC 2

divu +v p ,−νC 2
divp

)
,

where v p is defined by (5) with estimate (6), and it holds that

A
(
(u, p),T(u, p)

)≥ ν2C 2
div

2
‖∇u‖2 + 1

2
‖p‖2 ≥ 1

2
min

(
ν2C 2

div,1
)∥∥(u, p)

∥∥2
H 1

0(Ω)×L2
0(Ω) . (10)

Thanks to (5)-(6), T belongs to L (H 1
0(Ω)×L2

0(Ω)). More precisely, we have∥∥T(u, p)
∥∥2

H 1
0(Ω)×L2

0(Ω) =
∥∥νC 2

divu +v p
∥∥2

H 1
0(Ω) +

∥∥νC 2
divp

∥∥2

≤ 2
(
νC 2

div

)2 ‖∇u‖2 +2
∥∥∇v p

∥∥2 + (
νC 2

div

)2 ‖p‖2

≤ 2
(
νC 2

div

)2 ‖∇u‖2 +
(
2C 2

div +
(
νC 2

div

)2
)
‖p‖2

and thus

|||T||| ≤ max
(p

2νC 2
div,Cdiv

(
2+ν2C 2

div

)1/2
)
. (11)

Using (9), (10) and (11) in the stability estimate (4), we finally obtain (8). �

Remark 6. The previous result readily extends to the case of a non-null divergence constraint

−ν∆u +∇p = f , inΩ,

divu = g , inΩ,

u = 0, on ∂Ω,

with g ∈ L2
0(Ω), leading to the stability estimate

∥∥(u, p)
∥∥

H 1
0(Ω)×L2

0(Ω) ≤
2max

(p
2νC 2

div,Cdiv
(
2+ν2C 2

div

)1/2
)

min
(
ν2C 2

div,1
) ∥∥( f , g )

∥∥
H−1(Ω)×L2

0(Ω) . (12)

Remark 7. Of course, the all-in-one bilinear form A can also be studied using Banach–Nečas–
Babuška’s theory with inf-sup conditions, see [30, Theorem 49.15 and Lemma 53.12].
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2.2. Comments

The stability estimates (8) and (12) are valid for all Cdiv that fulfills (6). On the other hand, one has

lim
Cdiv →∞

2max
(p

2νC 2
div,Cdiv

(
2+ν2C 2

div

)1/2
)

min
(
ν2C 2

div,1
) =+∞,

i.e. the stability estimates become meaningless for large Cdiv.
Going through the proof of Theorem 5, we observe that the constant obtained in (8) and (12)

is just one of the many bounds one can achieve with T-coercivity for the Stokes problem. Indeed,
the operator T is in general not unique, see Remark 3. Here, one can choose any positive value of
λ, so that there exists a family of admissible operators T in the sense of Definition 1, which shows
the flexibility of the approach.

Let us provide an illustration. For small viscosity ν (the domainΩ being fixed), it is well-known
that the stability constant appearing in the estimate∥∥(u, p)

∥∥
H 1

0(Ω)×L2
0(Ω) ≤C (ν)

∥∥( f , g )
∥∥

H−1(Ω)×L2
0(Ω)

behaves likes O(ν−1). For instance, for the velocity u, the result is elementarily obtained by taking
the test field (v , q) = (u, p) in (2). On the other hand, in (8) and (12), we find a behavior in O(ν−2).
But, if one is interested in obtaining a less severe blowup, one can simply choose

η= νC 2
div

2
(
1− ν

2

) and λ= 1

2
(1+η)

in the above proof, for all 0 < ν≤ 1. Then, one finds that

α= ν

2
and |||T||| ≤ max

(
1p
2

(
1+C 2

div

)
,

(
2C 2

div +
1

4

(
1+C 2

div

)2
)1/2

)
,

so that (4) actually yields a stability constant in O(ν−1).

Theorem 5 provides a constructive proof for the well-posedness of Stokes problem, which is
an emblematic example of mixed problem. In the next section, we show that the T-coercivity
approach employed here is in fact very general and can be extended to a large class of saddle-
point problems.

3. Abstract framework

We start with the classical statements regarding the definition of saddle-point problems, and the
equivalent conditions to ensure an inf-sup condition on the constraint. Then, we proceed with
the design of abstract operators T to ensure well-posedness for saddle-point problems, and for
augmented saddle-point problems.

3.1. Saddle-point problems in Hilbert spaces

Let V and Q be two Hilbert spaces. In the Hilbert space Q, we introduce the canonical isomor-
phism 1Q→Q ′ : Q →Q ′ defined by〈

1Q →Q ′p, q
〉

Q ′,Q = (p, q)Q , ∀p ∈Q, ∀q ∈Q,

which is a bijective isometry according to Riesz Theorem. As a matter of fact, its inverse 1Q ′→Q is
also a bijective isometry, and(

1Q ′→Q g , q
)

Q = 〈
g , q

〉
Q ′,Q , ∀g ∈Q ′, ∀q ∈Q.

C. R. Mathématique — Draft, 24th September 2024
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We then introduce two bilinear forms a(·, ·) on V ×V and b(·, ·) on V ×Q that are assumed to
be continuous, i.e. there exist Ca > 0 and Cb > 0 such that

a(u, v) ≤Ca‖u‖V ‖v‖V , ∀u ∈V ,∀v ∈V , (13)

b(v, q) ≤Cb‖v‖V ‖q‖Q , ∀v ∈V ,∀q ∈Q. (14)

We denote by A and B the linear continuous operators associated with a and b, defined by

A ∈L (V ,V ′), 〈Au, v〉V ′,V = a(u, v), ∀u ∈V ,∀v ∈V ,

B ∈L (V ,Q ′), 〈B v, q〉Q ′,Q = b(v, q), ∀v ∈V ,∀q ∈Q.

The adjoint operator of B is given by

B∗ ∈L (Q,V ′),
〈

B∗q, v
〉

V ′,V = 〈B v, q〉Q ′,Q = b(v, q), ∀v ∈V ,∀q ∈Q.

Given f ∈V ′ and g ∈Q ′, we consider the saddle-point problem: find (u, p) ∈V ×Q such that

Au +B∗p = f , in V ′,
Bu = g , in Q ′.

(15)

Or, equivalently, in variational form:
Find (u, p) ∈V ×Q such that

∀v ∈V , a(u, v)+b(v, p) = 〈 f , v〉V ′,V ,

∀q ∈Q, b(u, q) = 〈g , q〉Q ′,Q .

(16)

As for the Stokes problem, we write Problem (15) as an all-in-one variational formulation{
Find (u, p) ∈V ×Q such that

∀(v, q) ∈V ×Q, A
(
(u, p), (v, q)

)= 〈 f , v〉V ′,V +〈g , q〉Q ′,Q ,
(17)

where

A
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q).

In what follows, we show that Problem (17) is well-posed using the notion of T-coercivity, with
slightly different techniques depending on the assumptions on the bilinear form a.

Regarding the form b(·, ·) and the operator B , one has the well-known result below, see for
instance [33, Lemma I.4.1]1 or [30, Lemma C.44], which can be viewed as a reformulation of
Banach’s Closed Range Theorem.

Theorem 8. The following three statements are equivalent:

(1) There exists β> 0 such that

inf
q ∈Q\{0}

sup
v ∈V \{0}

b(v, q)

‖v‖V ‖q‖Q
≥β. (18)

(2) B : (KerB)⊥ →Q ′ is an isomorphism, and

‖B v‖Q ′ ≥β‖v‖V , ∀v ∈ (KerB)⊥.

(3) There exists an isomorphic operator LB : Q ′ → (KerB)⊥ such that

B(LB g ) = g and ‖g‖Q ′ ≥β ∥∥LB g
∥∥

V , ∀g ∈Q ′.

1Item (iii) below is a rephrasing of the original statement, because it is better suited for our purposes. For details, see
the proof of [33, Lemma I.4.1, p. 59, item 2]. The operator LB is a right-inverse of the operator B .
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Since our aim is to build operators T from V ×Q to itself, we first introduce the operator

B= 1Q ′→Q ◦B : V →Q.

For all v ∈V , ‖B v‖Q ′ = ‖1Q ′→Q (B v)‖Q = ‖Bv‖Q and, for all (v, q) ∈V ×Q,

b(v, q) = 〈B v, q〉Q ′,Q = 〈
1Q→Q ′ (Bv), q

〉
Q ′,Q = (Bv, q)Q . (19)

Whenever applicable, we also introduce its right-inverse

LB = LB ◦ 1Q→Q ′ : Q → (KerB)⊥.

Observe that

b
(
LB p, q

)= 〈
BLB p, q

〉
Q ′,Q = 〈

1Q→Q ′p, q
〉

Q ′,Q = (p, q)Q , ∀p ∈Q, ∀q ∈Q. (20)

Under these notations, items (ii)-(iii) of Theorem 8 now write

(1) B : (KerB)⊥ →Q is an isomorphism, and

‖Bv‖Q ≥β‖v‖V , ∀v ∈ (KerB)⊥. (21)

(2) There exists an isomorphic operator LB : Q → (KerB)⊥ such that

B(LB q) = q and ‖q‖Q ≥β ∥∥LB q
∥∥

V , ∀q ∈Q. (22)

For convenience, we often use β=β−1, so that∥∥LB q
∥∥

V ≤β‖q‖Q , ∀q ∈Q.

3.2. How to achieve T-coercivity for saddle-point problems?

If a is coercive on the whole space V , we can extend the proof of Theorem 5 in the following way.

Theorem 9. Assume that the inf-sup condition (18) on the form b holds true and that the form a
is symmetric and positive. If there exists a constant α> 0 such that

a(u,u) ≥α‖u‖2
V , ∀u ∈V , (23)

then there exists a unique solution to Problem (17) and

∥∥(u, p)
∥∥

V ×Q ≤
2max

(p
2Caβ

2,β
(
2+C 2

aβ
2
)1/2

)
min

(
αCaβ2,1

) ∥∥( f , g )
∥∥

V ′×Q ′ . (24)

Proof. First, we note that the symmetry of the bilinear form a implies that A is also symmetric.
Then, we follow the same ideas as in the proof of Theorem 5, replacing v p by LB p. We introduce
the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp

)
and we compute

A
(
(u, p),T(u, p)

)= a(u,λu)+a(u,LB p)+b(λu, p)+b(LB p, p)−b(u,λp)

=λa(u,u)+a(u,LB p)+‖p‖2
Q ,

in view of (20).
Because the form a is symmetric and positive, we can apply Young’s inequality: for any η> 0,

a
(
u,LB p

)≥−η
2

a(u,u)− 1

2η
a

(
LB p,LB p

)
.

Taking into account (13) and (22), the latter being equivalent to (18), we get

a
(
LB p,LB p

)≤Ca‖LB p‖2
V ≤Caβ

2‖p‖2
Q
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and thus

a
(
u,LB p

)≥−η
2

a(u,u)− Caβ
2

2η
‖p‖2

Q .

Hence, recalling (23), if λ− η
2 > 0 it follows that

A
((

u, p
)

,T
(
u, p

))≥α(
λ− η

2

)
‖u‖2

V +
(
1− Caβ

2

2η

)
‖p‖2

Q .

Setting in particular η=λ=Caβ
2, we infer that

A
((

u, p
)

,T
(
u, p

))≥αCaβ
2

2
‖u‖2

V + 1

2
‖p‖2

Q ≥ 1

2
min

(
αCaβ

2,1
)‖(u, p)‖2

V ×Q , (25)

which proves that A is T-coercive.
Since T(u, p) = (Caβ

2u +LB p,−Caβ
2p), it holds that∥∥T

(
u, p

)∥∥2
V ×Q = ∥∥Caβ

2u +LB p
∥∥2

V +∥∥Caβ
2p

∥∥2
Q

≤ 2
(
Caβ

2)2 ‖u‖2
V +2‖LB p‖2

V + (
Caβ

2)2 ‖p‖2
Q

≤ 2
(
Caβ

2)2 ‖u‖2
V +

(
2β2 + (

Caβ
2)2

)
‖p‖2

Q ,

which yields

|||T||| ≤ max
(p

2Caβ
2,β

(
2+C 2

aβ
2)1/2

)
. (26)

Lastly, we observe that

〈 f , v〉V ′,V +〈g , q〉Q ′,Q ≤ ‖( f , g )‖V ′×Q ′‖(v, q)‖V ×Q . (27)

Combining (25), (26) and (27), the stability estimate (4) furnishes exactly (24). �

Remark 10. By applying Theorem 9 to Stokes problem, we recover stability estimates (8) and (12)
from the correspondence α= ν, Ca = ν and β=Cdiv.

In Ladyzhenskaya–Babuška–Brezzi’s theory and in many applications, the bilinear form a is
not coercive on the whole space V but only on the kernel of the operator B. This is for instance
the case in electromagnetism, which will be detailed in Section 4. The next result shows how to
address this situation in the T-coercivity framework (provided that the form a is symmetric and
positive), thus establishing the equivalence between the two theories.

Theorem 11. Assume that the form a is symmetric and positive.

(1) If the inf-sup condition (18) on the form b holds true, and if there exists a constant α0 > 0
such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB, (28)

then the form A is T-coercive. In other words, Problem (17) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ , (29)

with C a constant depending only on α0, β, Ca and Cb .
(2) Conversely, if Problem (17) is well-posed, that is, if the form A is T-coercive, then (18)

and (28) both hold.

Proof. (1) We consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp +λµBu

)
.
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This is almost the same mapping as the one used in the proof of Theorem 9. The only difference
is the term λµBu, which is going to help us handling the extra terms that do not belong to the
kernel of B by adjusting the value of the constant µ. We get

A
(
(u, p),T(u, p)

)= a(u,λu)+a
(
u,LB p

)+b(λu, p)+b
(
LB p, p

)−b(u,λp)+b
(
u,λµBu

)
=λa(u,u)+a

(
u,LB p

)+‖p‖2
Q +λµ‖Bu‖2

Q

because b(LB p, p) = ‖p‖2
Q as previously, and

b(u,Bu) = 〈
Bu,Bu

〉
Q ′,Q = (

1Q ′→Q (Bu),Bu
)

Q = ‖Bu‖2
Q .

Since the form a is symmetric and positive, one may use Young’s inequality. By proceeding as
in the proof of Theorem 9 and after setting λ=Caβ

2, we know that

λa(u,u)+a
(
u,LB p

)+‖p‖2
Q ≥ Caβ

2

2
a(u,u)+ 1

2
‖p‖2

Q ,

from which we deduce

A
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
a(u,u)+2µ‖Bu‖2

Q

)
+ 1

2
‖p‖2

Q .

To compensate the lack of coercivity of a outside KerB, we use the decomposition u = u0 + ū
with u0 ∈ KerB and ū ∈ (KerB)⊥. Following [5, p. 254], Young’s inequality yields

a(u,u) = a(u0,u0)+2a(u0, ū)+a(ū, ū)

≥ (1−θ)a(u0,u0)+
(
1− 1

θ

)
a(ū, ū)

≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ

)
‖ū‖2

V

for all 0 < θ < 1. Since u0 ∈ KerB, we have ‖Bu‖2
Q = ‖Bū‖2

Q . Moreover, using (21) yields ‖Bū‖2
Q ≥

β−2‖ū‖2
V . Thus

a(u,u)+2µ‖Bu‖2
Q ≥ (1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2

)
‖ū‖2

V . (30)

Choosing θ = 1
2 and µ= 3

4Caβ
2, it holds that

a(u,u)+2µ‖Bu‖2
Q ≥ 1

2
a(u0,u0)+ Ca

2
‖ū‖2

V .

Hence, recalling (28) and using the inequality Ca ≥α0, we obtain

a(u,u)+2µ‖Bu‖2
Q ≥ α0

2
‖u0‖2

V + α0

2
‖ū‖2

V = α0

2
‖u‖2

V

and we conclude that

A
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

2
‖p‖2

Q . (31)

From the above, we have

T(u, p) = (
Caβ

2u +LB p,−Caβ
2p + 3

4

(
Caβ

2)2 Bu
)
.
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12 Mathieu Barré and Patrick Ciarlet

Finally, T belongs to L (V ×Q) since ‖LB p‖V ≤β‖p‖Q (see (22)) and2

‖Bu‖Q ≤Cb‖u‖V . (32)

The stability estimate (29) is then given by (4).

(2) Conversely, suppose that there exist αV > 0, αQ > 0 and T ∈L (V ×Q) such that

A
(
(u, p),T(u, p)

)≥αV ‖u‖2
V +αQ‖p‖2

Q , ∀(u, p) ∈V ×Q. (33)

Noting T : (u, p) 7→ (TV (u, p),TQ (u, p)), we have

A
(
(u, p),T(u, p)

)= a
(
u,TV (u, p)

)+b
(
TV (u, p), p

)+b
(
u,TQ (u, p)

)
and, since T is bounded,

‖TV (u, p)‖2
V +‖TQ (u, p)‖2

Q ≤ |||T|||2(‖u‖2
V +‖p‖2

Q

)
. (34)

Now, choosing u = 0 in (33) and (34) yields

b
(
TV (0, p), p

)≥αQ‖p‖2
Q and ‖TV (0, p)‖V ≤ |||T|||‖p‖Q , ∀p ∈Q.

Thus, for p ∈Q \{0}, TV (0, p) 6= 0, otherwise b(TV (0, p), p) = 0, which contradicts b(TV (0, p), p) > 0.
Then it follows that

sup
v ∈V \{0}

b(v, p)

‖v‖V
≥ b

(
TV (0, p), p

)
‖TV (0, p)‖V

≥ αQ

|||T||| ‖p‖Q , ∀p ∈Q \ {0},

which shows that the inf-sup condition (18) is fulfilled. Likewise, taking p = 0 and u ∈ KerB in (33)
and (34), we get

a
(
u,TV (u,0)

)≥αV ‖u‖2
V and ‖TV (u,0)‖V ≤ |||T|||‖u‖V , ∀u ∈ KerB.

By symmetry and positivity of a, it holds that

a
(
u,TV (u,0)

)≤ (
a(u,u)

)1/2a
(
TV (u,0),TV (u,0)

)1/2.

Thus

αV ‖u‖2
V ≤ a

(
u,TV (u,0)

)≤ (
a(u,u)

)1/2(Ca |||T|||2‖u‖2
V

)1/2

and hence a(u,u) ≥ α2
V

Ca |||T|||2 ‖u‖2
V for all u ∈ KerB, which proves (28). �

Remark 12. The T-coercivity estimate (31) is very close to the case where a is coercive on the
whole space V . As a matter of fact, the only difference compared to (25) is that the constant before
the term ‖u‖2

V is twice as small, with α0 =α.

2 Classically,

‖Bu‖2
Q = (Bu,Bu)Q =

〈
1Q→Q′ (Bu),Bu

〉
Q′ ,Q by definition of 1Q→Q′ ,

=
〈
1Q→Q′ ◦ 1Q′→Q (Bu),Bu

〉
Q′ ,Q = 〈Bu,Bu〉Q′ ,Q since 1Q→Q′ ◦ 1Q′→Q = IdQ′ ,

= b(u,Bu) ≤Cb‖u‖V ‖Bu‖Q by definition and continuity of b (14).
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3.3. Augmented saddle-point problems

Let c(·, ·) be a positive and continuous bilinear form defined on Q ×Q, namely

c(p, p) ≥ 0, ∀p ∈Q and ∃Cc > 0, c(p, q) ≤Cc‖p‖Q‖q‖Q , ∀p ∈Q,∀q ∈Q. (35)

In some cases, the assumption on the positivity of the form c can be relaxed, see Remark 14. We
denote by C the linear operator associated with the form c, defined by

C ∈L
(
Q,Q ′) , 〈C p, q〉Q ′,Q = c(p, q), ∀p ∈Q,∀q ∈Q.

The all-in-one approach developed previously also enables us to deal with augmented saddle-
point problems: given f ∈V ′ and g ∈Q ′, find (u, p) ∈V ×Q such that

Au +B∗p = f , in V ′,
Bu −C p = g , in Q ′,

(36)

where the operator C possibly acts as a small perturbation of the original saddle-point prob-
lem (15). The weak formulation of (36) reads:{

Find (u, p) ∈V ×Q such that

∀(v, q) ∈V ×Q, Ac
((

u, p
)

, (v, q)
)= 〈 f , v〉V ′,V +〈g , q〉Q ′,Q ,

(37)

with

Ac
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q)− c(p, q).

As before, the bilinear form a is supposed to be symmetric and positive.

3.4. How to achieve T-coercivity for augmented saddle-point problems?

Once again, we distinguish the case where the form a is coercive on V or only on KerB. If the form
a is coercive on V , the results from the un-augmented case allow straightforwardly to handle the
augmented one.

Theorem 13. Assume that the inf-sup condition (18) on the form b holds true, that the form c
fulfills (35) and that the form a is symmetric and positive. If there exists a constant α> 0 such that

a(u,u) ≥α‖u‖2
V , ∀u ∈V ,

then there exists a unique solution to Problem (37).

Proof. With the same operator T as for the un-augmented problem, namely

T : V ×Q −→V ×Q

(u, p) 7−→ (
Caβ

2u +LB p,−Caβ
2p

)
,

it holds that

Ac
(
(u, p),T(u, p)

)=Caβ
2a(u,u)+a(u,LB p)+‖p‖2

Q +Caβ
2c(p, p).

Therefore, a similar argument as in Theorem 9 furnishes

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V + 1

2
‖p‖2

Q +Caβ
2c(p, p),

which shows that Ac is T-coercive since c is positive. �
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Remark 14. A particular case that appears in many applications – see Section 5 for the example
of nearly-incompressible elasticity – is when c has the form

c(p, q) = ε(p, q)Q , ε≥ 0.

In this case, we obtain the estimate

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V +
(

1

2
+εCaβ

2
)
‖p‖2

Q , (38)

so that the augmentation c improves the constant before the term ‖p‖2
Q and thus stabilizes the

bilinear form Ac . Moreover, the above estimate is robust for small values of ε. Besides, it even
allows to take negative values of ε. Indeed, if ε< 0, we have

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V +
(

1

2
−|ε|Caβ

2
)
‖p‖2

Q .

Hence, the bilinear form Ac remains T-coercive whenever |ε| < 1
2Caβ2 .

Let us now suppose that a is not coercive on the whole space V but only on the kernel of B.
Then, two different situations occur. Either the form c can be viewed as a small perturbation, and
we shall look for a solution of (36) that is close to the solution of the original problem (15). Or
this is not the case, and the form c is viewed as a “fixed” augmentation, and there is no obvious
connection a priori between the solutions of the augmented and un-augmented problems.

3.5. Additional results for small perturbations

We say that c is a small perturbation if it can be written as

c(p, q) = εc0(p, q), ε> 0, (39)

with ε a small parameter and c0 a symmetric, positive and continuous form on Q. We start with
the simple case

c(p, q) = ε(p, q)Q , ε> 0, (40)

for which the T-coercivity approach yields a shorter proof than the corresponding result stated in
Ladyzhenskaya–Babuška–Brezzi’s framework, see [5, p. 247-252].

Theorem 15. Assume that the inf-sup condition (18) on the form b holds true, that the form a is
symmetric and positive, and that c takes the simple form of (40). If there exists a constant α0 > 0
such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB, (41)

and if ε is small enough, namely

ε≤ 1

2Caβ4C 2
b

(
2− α0

Ca

)
, (42)

then Problem (37) is well-posed and∥∥(u, p)
∥∥

V ×Q ≤C‖( f , g )‖V ′×Q ′ , (43)

with C a constant depending only on α0, β, Ca and Cb .

Proof. Here again, we consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp +λµBu

)
.

The beginning of the proof is the same as in Theorem 11. Taking into account the extra terms
coming from the perturbation, we get

Ac
(
(u, p),T(u, p)

)=λa(u,u)+a(u,LB p)+‖p‖2
Q +λµ‖Bu‖2

Q ′ +λc(p, p)−λµc(p,Bu).
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Using Young’s inequality and setting λ=Caβ
2, it follows that

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
a(u,u)+2µ‖Bu‖2

Q ′
)+ 1

2
‖p‖2

Q +Caβ
2c(p, p)−Caβ

2µc(p,Bu). (44)

Now, as in (30), it holds that

a(u,u)+2µ‖Bu‖2
Q ′ ≥ (1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2

)
‖ū‖2

V (45)

for all 0 < θ < 1, where u = u0 + ū with u0 ∈ KerB and ū ∈ (KerB)⊥.
Knowing that c(p, q) = ε(p, q)Q for all p and q in Q, Young’s inequality implies that, for all δ> 0,

−c
(
p,Bu

)=−c
(
p,Bū

)=−ε(
p,Bū

)
Q ≥−εδ

2
‖p‖2

Q − ε

2δ
‖Bū‖2

Q

≥−εδ
2
‖p‖2

Q −εC 2
b

2δ
‖ū‖2

V in view of (32).

Putting (44), (45) and the above inequality together, we find that

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
(1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2 −µεC 2
b

δ

)
‖ū‖2

V

)
+ 1

2
‖p‖2

Q +εCaβ
2
(
1−µδ

2

)
‖p‖2

Q .

Hence, choosing θ = 1
2 , µ=Caβ

2 and recalling (41), it holds that

Ac
(
(u, p),T(u, p)

)
≥ Caβ

2

2

(
α0

2
‖u0‖2

V +Ca

(
1−εβ

2C 2
b

δ

)
‖ū‖2

V

)
+ 1

2
‖p‖2

Q +εCaβ
2
(
1−Caβ

2 δ

2

)
‖p‖2

Q . (46)

Finally, we set δ= 1
Caβ2 so that

1−Caβ
2 δ

2
= 1

2
and 1−εβ

2C 2
b

δ
= 1−εCaβ

4C 2
b ≥ 1

2
· α0

Ca

in virtue of (42). Thus

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V +
(

1

2
+εCaβ

2

2

)
‖p‖2

Q , (47)

where we used that ‖u‖2
V = ‖u0‖2

V +‖ū‖2
V . All in all, we have chosen

T(u, p) = (
Caβ

2u +LB p,−Caβ
2p + (

Caβ
2)2 Bu

)
.

Then, estimate (43) follows from (4) with a stability constant independent of ε since (47) is robust
for vanishing ε and since |||T||| does not depend on ε either. �

Remark 16. The final estimate (47) is very close to (38). The only difference between these two
estimates is a factor of 2 between the constants multiplying the norms of u and p, with α0 =α.

Remark 17. In Ladyzhenskaya–Babuška–Brezzi’s framework, it is commonly assumed that ε≤ 1.
On the other hand, in (42), we find a smallness condition that depends explicitly on the various
constants of the problem.

Remark 18. The inf-sup condition (18) and the continuity of b imply that β ≤ Cb , i.e. Cbβ ≥ 1.
Therefore, (42) yields in particular

ε≤ 1

Caβ2 ,

which corresponds to the condition found in Remark 14 for negative values of ε. As a matter
of fact, the non-coercivity of a on the whole space V calls for the introduction of a term Bu in
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the mapping T. This term induces an additional term of the form c(p,Bu) in the expression of
Ac ((u, p),T(u, p)), that can be interpreted as a “negative perturbation” of the bilinear form A .

Now, we move to the case where c is given by (39). Let us denote by Cc0 the continuity con-
stant of the bilinear form c0. The next theorem establishes the well-posedness of the perturbed
problem for a very general form c0.

Theorem 19. Assume that the inf-sup condition (18) on the form b holds true, and that the
bilinear forms a and c0 are both symmetric and positive and that c takes the form (39). Suppose in
addition that there exists α0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB.

If ε is small enough, namely

ε≤ 1

2Cc0Caβ4C 2
b

, (48)

then Problem (37) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ ,

with C a constant depending only on α0, β, Ca and Cb .

Proof. First, we adapt the beginning of the proof of Theorem 15 to take into consideration the
bilinear form c0. Since c0 is symmetric and positive, we can use Young’s inequality to obtain

−c(p,Bu) =−εc0(p,Bū)Q ≥−εδ
2

c0
(
p, p

)− ε

2δ
c0(Bū,Bū)

≥−εδ
2

c0
(
p, p

)−εCc0C 2
b

2δ
‖ū‖2

V since ‖Bū‖2
Q ≤C 2

b‖ū‖2
V ,

and thus (46) becomes

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
α0

2
‖u0‖2

V +Ca

(
1−εCc0β

2C 2
b

δ

)
‖ū‖2

V

)

+ 1

2
‖p‖2

Q +εCaβ
2
(
1−Caβ

2 δ

2

)
c0(p, p),

where T is the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
Caβ

2u +LB p,−Caβ
2p + (

Caβ
2)2 Bu

)
.

Setting δ= 1
Caβ2 as before, we get the estimate

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

2
‖p‖2

Q +εCaβ
2

2
c0(p, p),

as long as ε≤ 1
2Cc0 Caβ4C 2

b
(2− α0

Ca
), which is the case under the assumption (48) since α0 ≤Ca .

Because the bilinear form c0 is positive, this shows that Ac is T-coercive. �

Lastly, we mention that an important consequence of the previous result is to estimate the
distance between the solution (uε, pε) of the perturbed problem

Auε+B∗pε = f , in V ′,
Buε−εC0pε = g , in Q ′,

(49)

and the solution (u, p) of the original saddle-point problem (15) as a function of the penalty
parameter ε.
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Corollary 20. Assume that the inf-sup condition (18) on the form b holds true, that the forms a
and c0 are symmetric and positive, and that c takes the form of (39). If there exists α0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB,

and if

ε≤ 1

2Cc0Caβ4C 2
b

,

then we have

‖u −uε‖V +‖p −pε‖Q ≤Cε, (50)

with C a constant depending only on α0, β, Ca , Cb and Cc0 .

Proof. Subtracting (49) from (15), we find that (u −uε, p −pε) solves the system

A(u −uε)+B∗ (
p −pε

)= 0, in V ′,
B(u −uε)−εC0

(
p −pε

)=−εC0p, in Q ′.

From Theorem 19, we infer that

‖(u −uε, p −pε
)‖V ×Q ≤C‖(0,−εC0p

)‖V ′×Q ′

with C depending only on α0, β, Ca and Cb . Thus

‖(u −uε, p −pε
)‖V ×Q ≤CCc0ε‖p‖Q ,

which proves (50). �

3.6. Case of a “fixed” augmentation

If the bilinear form c is not given by (39), the extra terms of the form c(p,Bu) arising from the
previously considered T-coercivity operator cannot be controlled as before, because there is no
factor ε to adjust. Below, we assume that c is coercive on Q, namely that there exists γ > 0 such
that

c(p, p) ≥ γ‖p‖2
Q , ∀p ∈Q. (51)

So, to control these extra terms, we introduce an operator C−1 in the expression of T, where
C−1 ∈L (Q ′,Q) is defined by

c
(
C−1g , q

)= 〈g , q〉Q ′,Q , ∀g ∈Q ′,∀q ∈Q.

One can easily check that the operator C−1 satisfies

(Cc )−1‖g‖Q ′ ≤ ‖C−1g‖Q ≤ γ−1‖g‖Q ′ , ∀g ∈Q ′,

and 〈
g ,C−1g

〉
Q ′,Q ≥ γ

C 2
c
‖g‖2

Q ′ , ∀g ∈Q ′. (52)

Theorem 21. Assume that (51) holds true and that the bilinear forms a and c are both symmetric
and positive. Suppose in addition that there exists a constant αB > 0 such that

a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ ≥αB‖u‖2
V , ∀u ∈V , (53)

then Problem (37) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ ,

with C a constant depending only on αB , γ and Cb .
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Proof. For η,µ> 0, we consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
u,−ηp +µC−1(Bu)

)
.

Then, using the definitions of C−1 and B , we compute

Ac
(
(u, p),T(u, p)

)= a(u,u)+b(u, p)−ηb(u, p)+µb
(
u,C−1Bu

)+ηc(p, p)−µc
(
p,C−1Bu

)
= a(u,u)+ (1−η)b(u, p)+µ〈

Bu,C−1Bu
〉

Q ′,Q +ηc(p, p)−µ〈Bu, p〉Q ′,Q

= a(u,u)+ (1−η−µ)b(u, p)+µ〈
Bu,C−1Bu

〉
Q ′,Q +ηc(p, p).

Let us choose η,µ > 0 such that η+ µ = 1 to cancel the second term above. To fix ideas, let
η=µ= 1/2, so that

T(u, p) =
(
u,−1

2
p + 1

2
C−1(Bu)

)
(54)

and
Ac

(
(u, p),T(u, p)

)= a(u,u)+ 1

2

〈
Bu,C−1Bu

〉
Q ′,Q + 1

2
c(p, p).

Owing to (52) and (51), we deduce that

Ac
(
(u, p),T(u, p)

)≥ a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ + γ

2
‖p‖2

Q ,

and the result follows. �

Remark 22. The T-coercivity estimate reads

Ac
(
(u, p),T(u, p)

)≥αB‖u‖2
V + γ

2
‖p‖2

Q , (55)

so that it depends on γ, whereas it was independent of ε in the small perturbation case. Moreover,
because of the term C−1(Bu) in (54), |||T||| behaves as γ−1. Nevertheless, the final stability estimate
is robust because the value of the constant γ is fixed.

Remark 23. Note that Theorem 21 does not require the inf-sup condition (18) to be true.
However, if (18) holds, then (53) is automatically satisfied. As a matter of fact, for any u ∈ V ,
using the decomposition u = u0 + ū with u0 ∈ KerB and ū ∈ (KerB)⊥, we have seen in the proof of
Theorem 11 that, for all 0 < θ < 1, it holds

a(u,u) ≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ

)
‖ū‖2

V and ‖Bu‖2
Q ′ = ‖Bū‖2

Q ≥β−2‖ū‖2
V .

Hence,

a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ ≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ
+ γ

2C 2
c
β−2

)
‖ū‖2

V .

We then observe that(
Ca − Ca

θ
+ γ

2C 2
c
β−2

)
> 0, ∀θ ∈

((
1+ γ

2C 2
c Ca

β−2
)−1

,1

)
,

so (53) is obtained by choosing some θ = θ(Ca ,β,Cc ,γ) in the above interval.

Remark 24. We will see in Section 6 that Theorem 21 is sufficient to handle the case of neutron
diffusion. Nevertheless, note that assumption (53) is not optimal since it depends on the arbitrary
choice η = µ = 1/2 made in the proof. Looking through the proof, we see that the result of
Theorem 21 still holds true as long as there exist α̃B > 0 and 0 < µ̃< 1 such that

a(u,u)+ µ̃〈
Bu,C−1Bu

〉
Q ′,Q ≥ α̃B‖u‖2

V , ∀u ∈V.

The final T-coercivity estimate then reads

Ac
(
(u, p),T(u, p)

)≥ α̃B‖u‖2
V + (

1− µ̃)
γ‖p‖2

Q .

However, this estimate is possibly less sharp than (55) if µ̃> 1
2 .
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In addition to the Stokes problem, let us see next how other typical examples of mixed
formulations fall within the T-coercivity framework.

4. Application to electromagnetism

Our goal is to solve the so-called quasi-static magnetic problem set in a homogeneous or an
anisotropic medium, surrounded by a perfect conductor (see [1, Section 6.4]). The medium is
characterized by its dielectric permittivity ε and its magnetic permeability µ.

Let Ω be the domain of R3 in which the problem is set. For simplicity, we assume that Ω is
simply connected, with a connected boundary. Moreover, we assume that ξ ∈ {ε,µ} satisfy the
following assumption:{

ξ is a real-valued, symmetric, measurable tensor field onΩ,
∃ξ−,ξ+ > 0, ∀z ∈R3, ξ− |z |2 ≤ ξz · z ≤ ξ+ |z |2 a.e. inΩ.

(56)

Because one is dealing with symmetric tensors, if ξ fulfills (56), so does ξ−1, with (ξ−1)+ = (ξ−)−1

and (ξ−1)− = (ξ+)−1.
Given H? ∈ L2(Ω), such that µH? ∈ H 0(div ;Ω)∩ H(div0;Ω) and ρ ∈ H−1(Ω), the quasi-static

magnetic problem amounts to finding E ∈ L2(Ω) such that

µ−1curl E = H?, inΩ,

div(εE ) = ρ, inΩ,

E ×n = 0, on ∂Ω.

(57)

Under the assumptions on ε and µ, on the one hand we note that E ∈ H 0(curl ;Ω). On the other
hand, it is known that the problem (57) is well-posed, see for instance [1, Theorem 6.1.4]. Below,
we propose to recover well-posedness using the T-coercivity approach.

4.1. Proving well-posedness with T-coercivity

4.1.1. In a homogeneous medium

Let us first assume that ε= µ= I3 in Ω. To build an all-in-one equivalent variational formula-
tion, we follow e.g. [26]. In this case, the electromagnetic energy can be expressed in terms of the
electric field as (E ,E )L2(Ω) + (curl E ,curl E )L2(Ω). In other words, it is equal to ‖E‖2

H(curl ;Ω), where
‖·‖H(curl ;Ω) denotes the “natural” norm in H(curl ;Ω). We endow H 1

0 (Ω) with ‖∇·‖ and the corre-
sponding inner product (∇·,∇·)L2(Ω). Bearing in mind that curl (∇p) = 0, it follows that

‖∇q‖ = ‖∇q‖H(curl ;Ω), ∀q ∈ H 1
0 (Ω).

First, for H? ∈ H 0(div ;Ω)∩ H(div0;Ω) and ρ ∈ H−1(Ω), one can prove that the equivalent weak
formulation of Problem (57) reads: find E ∈ H 0(curl ;Ω) such that

(curl E ,curl v )L2(Ω) =
(

H?,curl v
)

L2(Ω) , ∀v ∈ H 0(curl ;Ω),(
E ,∇q

)
L2(Ω) =−〈ρ, q〉H−1(Ω),H 1

0 (Ω), ∀q ∈ H 1
0 (Ω).

Second, in order to fit (57) into the abstract framework (15), we introduce an artificial pressure un-
known p̃ by adding a term (v ,∇p̃)L2(Ω) in the first equation. The previous formulation becomes:
find (E , p̃) ∈ H 0(curl ;Ω)×H 1

0 (Ω) such that

(curl E ,curl v )L2(Ω) +
(
v ,∇p̃

)
L2(Ω) =

(
H?,curl v

)
L2(Ω) , ∀v ∈ H 0(curl ;Ω),(

E ,∇q
)

L2(Ω) =−〈ρ, q〉H−1(Ω),H 1
0 (Ω), ∀q ∈ H 1

0 (Ω).
(58)
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Indeed, one can easily check that (E , p̃) is solution of (58) if and only if p̃ = 0 and E is solution
of (57). So, defining the bilinear forms

a(u, v ) = (curl u,curl v )L2(Ω), ∀u ∈ H 0(curl ;Ω),∀v ∈ H 0(curl ;Ω),

b
(
v , q

)= (
v ,∇q

)
L2(Ω) , ∀v ∈ H 0(curl ;Ω),∀q ∈ H 1

0 (Ω),

the all-in-one bilinear and linear forms of Maxwell problem are respectively given by

A
((

E , p̃
)

,
(
v , q

))= a(E , v )+b
(
v , p̃

)+b
(
E , q

)
, (59)

`
((

v , q
))= (

H?,curl v
)

L2(Ω) −
〈
ρ, q

〉
H−1(Ω),H 1

0 (Ω) . (60)

The continuity constants are such that Ca = 1, Cb = 1, and C` ≤ (‖H?‖2 +‖ρ‖2
H−1(Ω)

)1/2.
Let us give an explicit expression of the abstract operators

B ∈L
(

H 0(curl ;Ω), H 1
0 (Ω)

)
, LB ∈L

(
H 1

0 (Ω), (KerB)⊥
)

corresponding to this problem. According to (19), for u ∈ H 0(curl ;Ω),

Bu = 0 ⇐⇒ (
u,∇q

)
L2(Ω) = 0, ∀q ∈ H 1

0 (Ω) ⇐⇒ divu = 0.

Hence,
KerB= K N (Ω), where K N (Ω) = H 0(curl ;Ω)∩H(div0;Ω). (61)

In addition, one easily checks that

(KerB)⊥ = {
v ∈ H 0(curl ;Ω), ∃q ∈ H 1

0 (Ω), v =∇q
}

. (62)

With those results, we can characterize LB . On the one hand, by definition of b, we observe that

b
(
LB p, q

)= (
LB p,∇q

)
L2(Ω), ∀p, q ∈ H 1

0 (Ω). (63)

On the other hand, according to (20), one has

b
(
LB p, q

)= (∇p,∇q
)

L2(Ω) , ∀p, q ∈ H 1
0 (Ω). (64)

Putting (62), (63) and (64) together, we deduce that

LB p =∇p.

Moreover, for all p ∈ H 1
0 (Ω), one has

‖LB p‖H(curl ;Ω) = ‖∇p‖H(curl ;Ω) =
∥∥∇p

∥∥ ,

hence LB is an isometry, so LB satisfies (22) with β= 1. The inf-sup condition (18) holds.
Going back to KerB (cf. (61)), we recall Weber inequality [47]: there exists CK > 1 such that

‖k‖H(curl ;Ω) ≤CK ‖curl k‖, ∀k ∈ K N (Ω).

The fact that CK cannot be taken smaller than 1 stems from the definition of the “natural”
norms involved. Hence, Weber inequality says that the form a is coercive on KerB, so that all
the conditions of Theorem 11 are fulfilled, with α0 = (CK )−2 < 1. Precisely, Theorem 11 states that
the bilinear form A is T-coercive for the mapping

T : H 0(curl ;Ω)×H 1
0 (Ω) −→ H 0(curl ;Ω)×H 1

0 (Ω)(
E , p̃

) 7−→ (
E +∇p̃,−p̃ + 3

4
BE

)
,

(65)

where, by definition of the operator B (cf. (19)), BE ∈ H 1
0 (Ω) satisfies(∇(BE ),∇q

)
L2(Ω) = b

(
E , q

)= (
E ,∇q

)
L2(Ω) , ∀q ∈ H 1

0 (Ω). (66)

Furthermore, following (31), it holds that

A
((

E , p̃
)

,T
(
E , p̃

))≥ (CK )−2

4
‖E‖2

H(curl ;Ω) +
1

2

∥∥∇p̃
∥∥2

L2(Ω) ≥α
(
‖E‖2

H(curl ;Ω) +
∥∥∇p̃

∥∥2
L2(Ω)

)
,
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with α= (CK )−2

4 .
To get the stability constant, we need to compute |||T|||, that is, bound ‖T(E , p̃)‖H 0(curl ;Ω)×H 1

0 (Ω)

for (E , p̃) ∈ H 0(curl ;Ω)×H 1
0 (Ω). We find that∥∥T

(
E , p̃

)∥∥2
H 0(curl ;Ω)×H 1

0 (Ω) = ‖E +∇p̃‖2
H(curl ;Ω) +

∥∥∥∥−∇p̃ + 3

4
∇(BE )

∥∥∥∥2

L2(Ω)

≤ 2‖E‖2
H(curl ;Ω) +2‖∇p̃‖2

H(curl ;Ω) +2‖∇p̃‖2
L2(Ω)

+2 ·
(3

4

)2
‖∇(BE )‖2

L2(Ω)

≤ 2‖E‖2
H(curl ;Ω) +4

∥∥∇p̃
∥∥2

L2(Ω) +2 ·
(

3

4

)2

‖E‖2
H(curl ;Ω)

≤ 4
(
‖E‖2

H(curl ;Ω) +
∥∥∇p̃

∥∥2
L2(Ω)

)
,

where we used that ‖∇(BE )‖L2(Ω) ≤ ‖E‖H(curl ;Ω) thanks to (66). Therefore, |||T||| ≤ 2.
Applying (4), we conclude that

‖E‖H(curl ;Ω) ≤ 8C 2
K

(
‖H?‖2 +‖ρ‖2

H−1(Ω)

)1/2
. (67)

4.1.2. In an anisotropic medium

In an anisotropic medium, let us follow for instance [25] to build an all-in-one equivalent vari-
ational formulation. In this case, the electromagnetic energy can be expressed as (εE ,E )L2(Ω) +
(µ−1curl E ,curl E )L2(Ω). Under the assumption (56) on ε and µ, we note that we can endow
H 0(curl ;Ω) with the inner product

(·, ·)ε,µ−1curl : (u, v ) 7→ (εu, v )L2(Ω) +
(
µ−1curl u,curl v

)
L2(Ω)

.

The associated scaled norm

‖u‖ε,µ−1curl =
(
(εu,u)L2(Ω) +

(
µ−1curl u,curl u

)
L2(Ω)

)1/2

is equivalent to the “natural” norm. Then, we endow H 1
0 (Ω) with the inner product (·, ·)1,ε :

(p, q) 7→ (ε∇p,∇q)L2(Ω), and the associated scaled norm

‖q‖1,ε =
((
ε∇q,∇q

)
L2(Ω)

)1/2

is equivalent to ‖ · ‖H 1(Ω) according to Poincaré inequality. With this choice of norms, for q ∈
H 1

0 (Ω), one has ‖q‖1,ε = ‖∇q‖ε,µ−1curl . Also, 1H 1
0 (Ω)→H−1(Ω) is the isomorphism defined by〈

1H 1
0 (Ω)→H−1(Ω)p, q

〉
H−1(Ω),H 1

0 (Ω)
= (

p, q
)

1,ε =
(
ε∇p,∇q

)
L2(Ω) , ∀p, q ∈ H 1

0 (Ω),

while the norm in H−1(Ω) is

‖g‖−1,ε−1 = sup
q ∈H 1

0 (Ω)\{0}

〈g , q〉H−1(Ω),H 1
0 (Ω)

‖q‖1,ε
, ∀g ∈ H−1(Ω).

Finally, for ξ ∈ {ε,ε−1,µ,µ−1}, we use the inner product (·, ·)ξ : (u, v ) 7→ (ξu, v )L2(Ω), and the

associated scaled norm ‖ · ‖ξ in L2(Ω). As we shall see below, these scaled norms and inner
products, which are introduced to account for the anisotropic medium, lead to computations
that are very similar to those that have been carried out for a homogeneous medium.
As before, in order to fit (57) into the abstract framework (15), we introduce a vanishing artifical
pressure p̃. The resulting formulation is: find (E , p̃) ∈ H 0(curl ;Ω)×H 1

0 (Ω) such that(
µ−1curl E ,curl v

)
L2(Ω)

+ (
εv ,∇p̃

)
L2(Ω) =

(
H?,curl v

)
L2(Ω) , ∀v ∈ H 0(curl ;Ω),(

εE ,∇q
)

L2(Ω) =−〈ρ, q〉H−1(Ω),H 1
0 (Ω), ∀q ∈ H 1

0 (Ω).
(68)
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So, defining the bilinear forms

aµ−1 (u, v ) =
(
µ−1curl u,curl v

)
L2(Ω)

, ∀u ∈ H 0(curl ;Ω),∀v ∈ H 0(curl ;Ω),

bε(v , q) = (εv ,∇q)L2(Ω), ∀v ∈ H 0(curl ;Ω),∀q ∈ H 1
0 (Ω),

the all-in-one bilinear form of Maxwell problem is now given by

Aε,µ
((

E , p̃
)

, (v , q)
)= aµ−1 (E , v )+bε

(
v , p̃

)+bε(E , q), (69)

while the linear form remains defined by (60). Thanks to the introduction of scaled norms, we find
that the bilinear form aµ−1 is continuous on H 0(curl ;Ω)×H 0(curl ;Ω) with a continuity constant

Ca = 1, while the bilinear form bε is continuous on H 0(curl ;Ω)×H 1
0 (Ω) with a continuity constant

Cb = 1. With respect to the scaled norms, we have∣∣∣(H?,curl v
)

L2(Ω) −〈ρ, q〉H−1(Ω),H 1
0 (Ω)

∣∣∣≤ ‖H?‖µ‖curl v‖µ−1 +‖ρ‖−1,ε−1‖q‖1,ε,

so that C` ≤ (‖H?‖2
µ+‖ρ‖2

−1,ε−1 )1/2. Let us give an explicit expression of the abstract operators

Bε ∈L
(

H 0(curl ;Ω), H 1
0 (Ω)

)
, LBε ∈L

(
H 1

0 (Ω),
(
KerBε

)⊥)
.

Given u ∈ H 0(curl ;Ω), we observe that, by definition of operator Bε (cf. (19))

Bεu = 0 ⇐⇒ (
εu,∇q

)
L2(Ω) = 0, ∀q ∈ H 1

0 (Ω) ⇐⇒ div(εu) = 0.

Hence,
KerBε = K N

(
Ω;ε

)
, where K N

(
Ω;ε

)= {
v ∈ H 0(curl ;Ω), div(εv ) = 0

}
. (70)

In addition (see e.g. [1, (6.16)])(
KerBε

)⊥ = {
v ∈ H 0(curl ;Ω), ∃q ∈ H 1

0 (Ω), v =∇q
}

, (71)

where orthogonality is understood with respect to the inner product (·, ·)ε,µ−1curl .
With those results, we can characterize LBε . By definition of bε, we observe that

bε
(
LBεp, q

)
=

(
ε
(
LBεp

)
,∇q

)
L2(Ω)

, ∀p, q ∈ H 1
0 (Ω). (72)

While, according to (20), one has

bε
(
LBεp, q

)
= (p, q)1,ε =

(
ε∇p,∇q

)
L2(Ω) , ∀p, q ∈ H 1

0 (Ω). (73)

Putting (71), (72) and (73) together, we deduce that LBεp =∇p. So, for all p ∈ H 1
0 (Ω), it follows that

‖LBεp‖ε,µ−1curl = ‖p‖1,ε. In other words, LBε is an isometry with respect to the scaled norms: LBε

satisfies (22) with β= 1, and the inf-sup condition (18) holds.
Going back to KerBε (cf. (70)), we recall the generalized Weber inequality [47] (or [1, Theo-
rem 6.1.4]): there exists CK > 1 such that

‖k‖ε,µ−1curl ≤CK ‖curl k‖µ−1 , ∀k ∈ K N (Ω;ε).

While the bound CK > 1 remains as a consequence of the definition of the scaled norms, the value
of the constant CK now possibly depends on ε or µ.
The generalized Weber inequality implies that the form aµ−1 is coercive on KerBε: all the condi-

tions of Theorem 11 are fulfilled, with α0 = (CK )−2 < 1. Interestingly, Theorem 11 states that the
bilinear form Aε,µ is T-coercive for the mapping T that is again given by (65), but replacing B by
the ε-dependent operator Bε. Based on this observation, the final computations are very close to
those of Section 4.1.1, replacing the “natural” norms and inner products by their scaled counter-
parts.

First, using (19), we find that BεE ∈ H 1
0 (Ω) satisfies(

ε∇(
BεE

)
,∇q

)
L2(Ω) =

(
εE ,∇q

)
L2(Ω) , ∀q ∈ H 1

0 (Ω). (74)
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Second, following (31) and introducing α= (CK )−2

4 (which depends on ε or µ), it holds that

Aε,µ
((

E , p̃
)

,T
(
E , p̃

))≥α(
‖E‖2

ε,µ−1curl +
∥∥p̃

∥∥2
1,ε

)
.

Finally, thanks to (74), which yields ‖BεE‖1,ε ≤ ‖E‖ε,µ−1curl , we now find that

∥∥T
(
E , p̃

)∥∥2
H 0(curl ;Ω)×H 1

0 (Ω) = ‖E +∇p̃‖2
ε,µ−1curl +

∥∥∥−p̃ + 3

4
BεE

∥∥∥2

1,ε

≤ 4

(
‖E‖2

ε,µ−1curl +
∥∥p̃

∥∥2
1,ε

)
.

Using the scaled norms, we have again that |||T||| ≤ 2, and we conclude with (4) that

‖E‖ε,µ−1curl ≤ 8C 2
K

(
‖H?‖2

µ+‖ρ‖2
−1,ε−1

)1/2
. (75)

4.2. Optimized bounds in an anisotropic medium

To achieve T-coercivity, the abstract theory does not take into account the so-called double
orthogonality property (or Helmholtz decomposition), which states that for all k ∈ K N (Ω;ε) and
all q ∈ H 1

0 (Ω), one has (εk ,∇q)L2(Ω) = (µ−1curl k ,curl (∇q))L2(Ω) = 0, so that

‖k +∇q‖2
ε,µ−1curl = ‖k‖2

ε,µ−1curl +‖q‖2
1,ε.

Indeed, given E ∈ H 0(curl ;Ω), we note that, with the help of φE := BεE ∈ H 1
0 (Ω) solving (74), one

has the (orthogonal) Helmholtz decomposition

E = kE +∇φE ,

with kE ∈ K N (Ω;ε).
We sketch below how one can improve the estimates, see [26] for further details. Let us choose

Topt : H 0(curl ;Ω)×H 1
0 (Ω) −→ H 0(curl ;Ω)×H 1

0 (Ω)

(E , p̃) 7−→ (
kE +∇p̃,φE

)
.

Thanks to the double orthogonality property, one finds easily that Topt is an isometry and that

Aε,µ
((

E , p̃
)

,Topt
(
E , p̃

))= ‖curl kE‖2
µ−1 +

∥∥p̃
∥∥2

1,ε+‖φE‖2
1,ε

≥ (CK )−2
(
‖E‖2

ε,µ−1curl +
∥∥p̃

∥∥2
1,ε

)
,

where CK is the constant that appears in the generalized Weber inequality. Applying (4), we have
the optimized stability estimate

‖E‖ε,µ−1curl ≤C 2
K

(
‖H?‖2

µ+‖ρ‖2
−1,ε−1

)1/2
. (76)

We conclude that, for all possible choices of coefficients ε and µ, there is only a factor 8 difference
between the stability constant obtained via the abstract T-coercivity approach, see (75), and the
optimized stability constant which relies explicitly on the double orthogonality property, see (76).

Remark 25. One can obtain similar results in more general geometries, such as a non-simply-
connected domain, or a non-connected boundary, see [26].

C. R. Mathématique — Draft, 24th September 2024



24 Mathieu Barré and Patrick Ciarlet

5. Application to nearly-incompressible elasticity

In this section, we apply the T-coercivity framework to the equations of elasticity, assuming
homogeneous Dirichlet boundary conditions. Let Ω ⊂ Rd be a domain, where d ∈ {2,3}. For a
prescribed body force f ∈ H−1(Ω), we look for the displacement u ∈ H 1(Ω) such that

−div
(
σ(u)

)= f , inΩ,

u = 0, on ∂Ω,
(77)

where σ(u) denotes the stress tensor. We assume that it is given by Hooke’s law

σ(u) = 2µε(u)+λ(divu)I ,

where λ,µ> 0 are the Lamé coefficients of the material and ε(u) = 1
2

(∇u+(∇u)T
)

is the linearized
strain tensor. Thanks to Korn inequality [29], the space H 1

0(Ω) is here endowed with the inner
product

(u, v ) 7−→
∫
Ω
ε(u) : ε(v )dx,

whose associated norm u 7→ ‖ε(u)‖ is equivalent to the H 1(Ω)-norm in H 1
0(Ω). Introducing the

new unknown p =λdivu, the elasticity system (77) can be written in mixed form as follows: find
u ∈ H 1

0(Ω) and p ∈ L2
0(Ω) such that

−2µdiv
(
ε(u)

)−∇p = f , inΩ,

divu − 1

λ
p = 0, inΩ.

Or equivalently, in variational form: find u ∈ H 1
0(Ω) and p ∈ L2

0(Ω) such that

a(u, v )+b(v , p) = 〈 f , v〉, ∀v ∈ H 1
0(Ω),

b(u, q)− 1

λ
c0(p, q) = 0, ∀q ∈ L2

0(Ω),
(78)

with

a(u, v ) = 2µ
∫
Ω
ε(u) : ε(v )dx, b(v , q) =

∫
Ω

q div v dx and c0(p, q) =
∫
Ω

pq dx.

For nearly-incompressible materials, the first Lamé coefficient λ goes to infinity, so that λ−1 goes
to zero. Therefore, (78) can be seen as a small perturbation of Stokes system.

Since the bilinear form a is coercive on the whole space H 1
0(Ω), we can directly apply The-

orem 13 in the special case of Remark 14. The bilinear form a is continuous and coercive, with
Ca =α= 2µ. In addition, the bilinear form b is continuous and satisfies the inf-sup condition (18)
with β = Cdiv since b is the same form – except to the sign – as for Stokes problem. Then, Theo-
rem 13 furnishes that the all-in-one bilinear form Ac defined by

Ac
(
(u, p), (v , q)

)= 2µ
∫
Ω
ε(u) : ε(v )dx +

∫
Ω

p div v dx +
∫
Ω

q divu dx − 1

λ

∫
Ω

pq dx (79)

is T-coercive for the mapping

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)
(u, p) 7−→ (

2µC 2
div u +v−p ,−2µC 2

div p
)
,

(80)

and (38) implies that

Ac
(
(u, p),T(u, p)

)≥ 2µ2C 2
div‖ε(u)‖2 +

(
1

2
+ 2µ

λ
C 2

div

)
‖p‖2.

Note that this estimate is robust in the incompressible limit, namely for large values of λ.
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Finally, replacing ν by 2µ in (11) and using (4), we get that the unique solution of (78) satisfies

‖(u, p
)‖H 1

0(Ω)×L2
0(Ω) ≤

2max
(
2
p

2µC 2
div,Cdiv

(
2+4µ2C 2

div

)1/2
)

min
(
4µ2C 2

div,1+4µλ−1C 2
div

) ‖ f ‖(H 1
0(Ω))′ ,

where ‖·‖(H 1
0(Ω))′ denotes the dual norm of H 1

0(Ω) endowed with ‖ε(·)‖.

6. Application to neutron diffusion

Let Ω ⊂ Rd be a domain, where d ∈ {2,3}. We consider the neutron diffusion equation with zero
flux boundary condition: given a prescribed fission source S f ∈ L2(Ω), find u ∈ H 1(Ω) such that

−div(D∇u)+σu = S f , inΩ,

u = 0, on ∂Ω,
(81)

where u, D , and σ denote respectively the neutron flux, the diffusion coefficient and the macro-
scopic absorption cross section. It is assumed that the diffusion coefficient D fulfills (56), and that
the macroscopic absorption cross section is such that{

σ is a real-valued measurable scalar field onΩ,
∃σ−,σ+ > 0, σ− ≤σ≤σ+ a.e. inΩ.

(82)

Because S f ∈ L2(Ω), one has D∇u ∈ H(div ;Ω). This problem can be recast equivalently in mixed
form, introducing the auxiliary unknown p = −D∇u, called the neutron current. It reads: find
(u, p) ∈ H 1

0 (Ω)×H(div ;Ω) such that

div p +σu = S f , inΩ,

D−1p +∇u = 0, inΩ.
(83)

It can be shown that an equivalent weak form is: find (u, p) ∈ L2(Ω)×H(div ;Ω) such that∫
Ω

(
v div p +σuv −D−1p ·q +u div q

)
dx =

∫
Ω

S f v dx ∀(v, q) ∈ L2(Ω)×H(div ;Ω). (84)

Remark 26. Among other things, one can recover that the solution u ∈ L2(Ω) from the weak
form (84) is such that u ∈ H 1(Ω), and that u = 0 on ∂Ω.

6.1. Proving well-posedness with T-coercivity

Defining the bilinear forms

aD−1 (p , q) = (
D−1p , q

)
L2(Ω) , ∀p ∈ H(div ;Ω),∀q ∈ H(div ;Ω),

b(q , v) =−(div q , v)L2(Ω), ∀q ∈ H(div ;Ω),∀v ∈ L2(Ω),

cσ(u, v) = (σu, v)L2(Ω), ∀u ∈ L2(Ω),∀v ∈ L2(Ω),

the all-in-one bilinear form of the diffusion problem is given by

Ac
(
(p ,u), (q , v)

)= aD−1 (p , q)+b(q ,u)+b(p , v)− cσ(u, v). (85)

Here, we are in the case of a “fixed” augmentation, as treated in Section 3.6.
Let us check below that all the conditions of Theorem 21 are fulfilled. First, cσ is coercive on

L2(Ω) with γ = σ−. Then, aD−1 fulfills (13) with Ca = (D−)−1, whereas b fulfills (14) with Cb = 1.
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Finally, we look for the condition (53). It is straightforward to check that, for all p ∈ H(div ;Ω),
B p = Bp =−div p . Hence

aD−1 (p , p)+ γ

2C 2
c
‖B p‖2 = (

D−1p , p
)+ σ−

2σ2+
‖div p‖2

≥ min

(
(D+)−1,

σ−
2σ2+

)
‖p‖2

H(div ;Ω).

Then, Theorem 21 establishes that the bilinear form Ac is T-coercive for the mapping (54)

T : H(div ;Ω)×L2(Ω) −→ H(div ;Ω)×L2(Ω)

(p ,u) 7−→
(

p ,
1

2

(−u −σ−1div p
))

.

Furthermore, using the estimate (55), it holds that

Ac
(
(p ,u),T(p ,u)

)≥ min

(
(D+)−1,

σ−
2σ2+

)
‖p‖2

H(div ;Ω) +
σ−
2

‖u‖2 ≥α‖(p ,u)‖2
H(div ;Ω)×L2(Ω), (86)

with α= 1
2 min(2(D+)−1,σ−(σ+)−2,σ−).

There remains to estimate |||T|||. One has

‖T(p ,u)‖2
H(div ;Ω)×L2(Ω) = ‖p‖2

H(div ;Ω) +
1

4
‖−u −σ−1div p‖2

L2(Ω)

≤ ‖p‖2
H(div ;Ω) +

1

4

(
(1+3)‖u‖2

L2(Ω) +
(
1+ 1

3

)
(σ−)−2‖div p‖2

L2(Ω)

)
≤

(
1+ 1

3
(σ−)−2

)
‖(p ,u)‖2

H(div ;Ω)×L2(Ω),

so that |||T||| ≤ (1+ 1
3 (σ−)−2)1/2. Applying (4), we conclude that

‖(p ,u)‖H(div ;Ω)×L2(Ω) ≤
2
(
1+ 1

3 (σ−)−2
)1/2

min
(
2(D+)−1,σ−(σ+)−2,σ−

)‖S f ‖L2(Ω).

Remark 27. Some of those computations can be found in [28, 41]. Here, we see them as a
consequence of the general result stated in Theorem 21. Note that in [28, 41], the T-coercivity
estimate (86) is obtained with a constantα′ = 1

2 min(2(D+)−1, (σ+)−1,σ−), which is very close toα
since σ−(σ+)−2 = (σ+)−1 · σ−

σ+ and σ−
σ+ ≤ 1.

Remark 28. Here again, the operator T is not unique, see for instance [31, Exercise 56.6] for
another possible choice of T-coercive operator with a different weak formulation of Problem (81).

Remark 29. If one wants to obtain estimates without the bounding factorsσ± and D±, a standard
path is to imbed the parameters D and σ into the definition of the norms, like it is done in
Section 4. Namely, one chooses the norms:

‖v‖σ = (
(σv, v)L2(Ω)

)1/2,

‖q‖D−1,σ−1div =
((

D−1q , q
)

L2(Ω) +
(
σ−1div q ,div q

)
L2(Ω)

)1/2
,∥∥(

q , v
)∥∥

V =
(
‖v‖2

σ+‖q‖2
D−1,σ−1div

)1/2
.

On the one hand, all norms are “fixed” once the parameters are given. On the other hand, one
can easily check that the stability constant is now independent of the bounding factors, by using
the same mapping T as before.
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7. T-coercivity at the discrete level

Previously, we demonstrated the robustness and the flexibility of the T-coercivity approach to
study mixed problems at the continuous level. In this section, we are going to see how T-coercivity
also enables us to provide a stable discretization of such problems with mixed finite elements. Let
us recall the simple results below [23, 24].

Definition 30 ( [23, Definition 5]). Let W be a Hilbert space, A (·, ·) be a continuous bilinear
form over W ×W and (Wh)h be conforming approximations of W . We say that A is uniformly
Th-coercive if

∃α∗,β∗ > 0, ∀h > 0, ∃Th ∈L (Wh),

|A (uh ,Thuh)| ≥α∗‖uh‖2
W , ∀uh ∈Wh , and |||Th ||| ≤β∗.

Proposition 31 ( [23, Theorem 2]). Let W be a Hilbert space, f be an element of W ′, A (·, ·) be a
continuous bilinear form over W ×W and (Wh)h be conforming approximations of W . Denote by
AAAh ∈L (Wh ,W ′

h) the discrete operator associated to A|Wh . The problem{
Find uh ∈Wh such that

∀vh ∈Wh , A (uh , vh) = 〈
f , vh

〉
is well-posed and (AAA−1

h )h is uniformly bounded if and only if A is uniformly Th-coercive. In that
case, denoting by CA the continuity constant of the bilinear form A , it holds that

‖u −uh‖W ≤C inf
vh ∈Wh

‖u − vh‖W , (87)

with C = 1+ CA β∗
α∗ independent of h.

Remark 32. Similarly to Remark 3, it is possible to choose normalized operators (Th)h in the
above definition, that is |||Th ||| = 1, with β∗ = 1 and a value of α∗ scaled accordingly. In this case,
in the proposition, the constant in (87) writes C = 1+CA (α∗)−1.

Remark 33. Proposition 31 can be extended to the case where the discrete forms Ah and fh differ
from the continuous forms A and f . In that case, Céa’s lemma (87) becomes

‖u −uh‖W ≤C inf
vh ∈Wh

(‖u − vh‖W +Cons f ,h +ConsA ,h(vh)
)
,

with

Cons f ,h = sup
vh ∈Wh \{0}

∣∣〈 f − fh , vh
〉∣∣

‖vh‖W

and

ConsA ,h(vh) = sup
wh ∈Wh \{0}

|(A −Ah)(vh , wh)|
‖wh‖W

, ∀vh ∈Wh .

As before, we start with the leading example of Stokes problem.

7.1. Stokes problem

For a given h, the natural discretization of Problem (7) reads:{
Find (uh , ph) ∈V h ×Qh such that

∀(v h , qh) ∈V h ×Qh , A
((

uh , ph
)

,
(
v h , qh

))= 〈
f , v h

〉
,

(88)

where V h ⊂ H 1
0(Ω) and Qh ⊂ L2

0(Ω) are two finite dimensional spaces constituting a conforming
approximation of H 1

0(Ω)×L2
0(Ω).
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From Proposition 31, we know that Problem (88) is well-posed if and only if A is uniformly
Th-coercive. To build a suitable mapping Th ∈ L (V h ×Qh), a natural idea is to reproduce the
continuous mapping from the proof of Theorem 5

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)

(u, p) 7−→ (
λu +v p ,−λp

)
at the discrete level. The operator T above depends on the divergence lifting v p ∈ H 1

0(Ω) of the
pressure p ∈ L2

0(Ω) defined by, see (5)-(6),

−div v p = p and ‖∇v p‖ ≤Cdiv‖p‖.

To obtain a similar lifting in the discrete setting, we consider the continuous lifting of the discrete
pressure ph ∈Qh ⊂ L2

0(Ω), namely v ph ∈ H 1
0(Ω) such that

− div v ph = ph and ‖∇v ph‖ ≤Cdiv‖ph‖. (89)

This lifting v ph does not necessarily belong to the discrete space V h ⊂ H 1
0(Ω), so we need an

operator Πh : H 1
0(Ω) −→V h to project it on V h . Therefore, we consider a discrete mapping of the

form
Th : V h ×Qh −→V h ×Qh(

uh , ph
) 7−→ (

λuh +Πh
(
v ph

)
,−λph

)
.

(90)

Now, let us precise under which conditions the bilinear form A is uniformly Th-coercive by
mimicking the proof of Theorem 5. We compute

A
((

uh , ph
)

,Th
(
uh , ph

))= νλ‖∇uh‖2 +ν
∫
Ω
∇uh : ∇(

Πh
(
v ph

))
dx −

∫
Ω

phdiv
(
Πh v ph

)
dx.

In order to get a term of the form ‖ph‖2, we assume that∫
Ω

phdiv
(
Πh v ph

)
dx =

∫
Ω

phdiv v ph dx, (91)

so that
A

((
uh , ph

)
,Th

(
uh , ph

))= νλ‖∇uh‖2 +ν
∫
Ω
∇uh : ∇(

Πh
(
v ph

))
dx +‖ph‖2

in view of (89). Then, for any η> 0, Young inequality yields∫
Ω
∇uh : ∇(

Πh
(
v ph

))
dx ≥−η

2
‖∇uh‖2 − 1

2η
‖∇(

Πh(v ph )
)‖2

≥−η
2
‖∇uh‖2 − C 2

divC 2
π

2η
‖ph‖2

provided that there exists a constant Cπ > 0, independent of h and of ph , such that

‖∇(
Πh

(
v ph

))‖ ≤Cπ‖∇v ph‖. (92)

Hence, it holds that

A
((

uh , ph
)

,Th
(
uh , ph

))≥ ν(
λ− η

2

)
‖∇uh‖2 +

(
1− νC 2

divC 2
π

2η

)
‖ph‖2.

Setting η=λ= νC 2
divC 2

π, we obtain

A
((

uh , ph
)

,Th
(
v h , ph

))≥ ν2C 2
divC 2

π

2
‖∇uh‖2 + 1

2
‖ph‖2

≥ 1

2
min

(
ν2C 2

divC 2
π,1

)‖(uh , ph
)‖2

H 1
0(Ω)×L2

0(Ω)
.

(93)

Moreover, taking into account (92) and mimicking the continuous case (see (11)), we have

|||Th ||| ≤ max
(p

2νC 2
divC 2

π,CdivCπ

(
2+ν2C 2

divC 2
π

)1/2
)
. (94)

So, with the help of the operatorΠh : H 1
0(Ω) −→V h , we have proven the following result.
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Theorem 34. If there exist a family of operators (Πh)h and a constant Cπ > 0 such that, for all h,∫
Ω

qh div(Πh v )dx =
∫
Ω

qh div v dx, ∀v ∈ H 1
0(Ω),∀qh ∈Qh , (95)

‖∇(
Πh(v )

)‖ ≤Cπ‖∇v‖, ∀v ∈ H 1
0(Ω), (96)

then Problem (88) is well-posed for all h and

‖(u −uh , p −ph
)‖H 1

0(Ω)×L2
0(Ω) ≤C inf

(v h ,qh)∈V h×Qh

‖(u −v h , p −qh
)‖H 1

0(Ω)×L2
0(Ω), (97)

with

C = 1+
2max(ν,2)max

(p
2νC 2

divC 2
π,CdivCπ

(
2+ν2C 2

divC 2
π

)1/2
)

min
(
ν2C 2

divC 2
π,1

) .

Proof. The previous reasoning shows that the bilinear form A is uniformly Th-coercive for the
mapping

Th : V h ×Qh −→V h ×Qh(
uh , ph

) 7−→ (
νC 2

divC 2
πuh +Πh

(
v ph

)
,−νC 2

divC 2
πph

)
as long as the two conditions (91) and (92) are fulfilled for all ph ∈ Qh , which is the case if (95)
and (96) hold true. The stability estimate (97) then follows by using (93) and (94) in (87). �

The conditions (95) and (96) correspond exactly to the assumptions of an abstract result
known as Fortin’s lemma [32]. Above, the T-coercivity approach allowed us to recover these two
conditions in a straightforward way. Moreover, we recall that, since the form b fulfills an inf-sup
condition (3), those conditions (95)-(96) are equivalent to the so-called uniform discrete inf-sup
condition on the form b

∃β′ > 0, ∀h, inf
qh ∈Qh \{0}

sup
v h ∈V h \{0}

∫
Ω qh div v h dx

‖∇v h‖‖qh‖
≥β′,

see for instance [33, Lemma II.1.1].
Finally, we recall that, provided there is a basic approximability property (i.e. any element of V ×Q
can be approximated by a sequence of elements of (V h ×Qh)h), the convergence of the discrete
solutions to the exact one is a consequence of (97).

7.2. Approximation of saddle-point problems

We now derive a conforming approximation of the abstract problem (15), starting from the
variational expressions (16) or (17), the latter with the form

A
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q).

So, let (Vh)h , resp. (Qh)h , be two families of finite dimensional subspaces of V , resp. Q. Starting
from (16), the discrete variational formulation writes

Find
(
uh , ph

) ∈Vh ×Qh such that

∀vh ∈Vh , a(uh , vh)+b
(
vh , ph

)= 〈
f , vh

〉
V ′,V

∀qh ∈Qh , b
(
uh , qh

)= 〈
g , qh

〉
Q ′,Q .

While, starting from (17), the all-in-one discrete variational formulation writes{
Find

(
uh , ph

) ∈Vh ×Qh such that

∀(
vh , qh

) ∈Vh ×Qh , A
((

uh , ph
)

,
(
vh , qh

))= 〈
f , vh

〉
V ′,V +〈

g , qh
〉

Q ′,Q .
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In abstract form, the uniform discrete inf-sup condition on the form b writes

∃β′ > 0, ∀h, inf
qh ∈Qh \{0}

sup
vh ∈Vh \{0}

b(vh , qh)

‖vh‖V ‖qh‖Q
≥β′. (98)

Remark 35. We note that if the form A is uniformly Th-coercive in the sense of Definition 30,
then the form b automatically fulfills a uniform discrete inf-sup condition. As a matter of fact,
let qh ∈ Qh \ {0} be given, and introduce (wh ,rh) = Th(0, qh). Using Definition 30 with the test
function (0, qh) leads to∣∣b (

wh , qh
)∣∣≥α∗‖qh‖2

Q and ‖(wh ,rh)‖V ×Q ≤β∗‖qh‖Q .

In particular, wh 6= 0, and it follows that

sup
vh ∈Vh \{0}

b
(
vh , qh

)
‖vh‖V ‖qh‖Q

≥ b
(
wh , qh

)
‖wh‖V ‖qh‖Q

≥α∗ ‖qh‖Q

‖wh‖V
≥ α∗

β∗ .

The condition (98) holds with β′ =α∗/β∗ > 0.

Let us denote byΠQh : Q →Qh the orthogonal projection operator defined by(
ΠQh p, qh

)
Q = (

p, qh
)

Q , ∀p ∈Q,∀qh ∈Qh .

We denote by Bh : Vh →Qh the discrete version of the operator B given by Bh =ΠQh B|Vh
. In other

words, we have (
Bh vh , qh

)
Q = (

Bvh , qh
)

Q = b
(
vh , qh

)
, ∀(

vh , qh
) ∈Vh ×Qh .

With such notations, the straightforward discrete counterpart of Theorem 8 is

Theorem 36. The following three statements are equivalent:

(1) There exists β′ > 0 such that the form b fulfills the uniform discrete inf-sup condition (98).

(2) For all h, Bh : (KerBh)⊥ →Qh is an isomorphism, and

‖Bh vh‖Q ≥β′‖vh‖V , ∀vh ∈ (KerBh)⊥ . (99)

(3) For all h, there exists an isomorphic operator LB ,h : Qh → (KerBh)⊥ such that

Bh
(
LB ,h qh

)= qh and ‖qh‖Q ≥β′‖LB ,h qh‖V , ∀qh ∈Qh . (100)

Remark 37. Obviously, this result also holds if the value of the constant in the discrete inf-
sup condition on the form b depends on h, i.e. for each h it holds for some β′(h) > 0, with
limh→0β

′(h) = 0. In this case however, getting error estimates can be more intricate.

As mentioned above for the Stokes system, one has the Fortin lemma (cf. [33, Lemma II.1.1]).

Theorem 38. Assume that the form b fulfills an inf-sup condition (18). The uniform discrete inf-
sup condition on the form b (98) holds if, and only if, there exist a family of operators (Πh)h , with
Πh : V −→Vh , and a constant Cπ > 0 such that, for all h,

b
(
Πh v, qh

)= b
(
v, qh

)
, ∀v ∈V , ∀qh ∈Qh ,

sup
h

|||Πh ||| ≤Cπ. (101)

Operators (Πh)h that fulfill conditions (101) are called Fortin operators.
Let us now proceed with the derivation of conditions to ensure that the form A is uniformly

Th-coercive. As a general rule, the proofs of the results follow very closely the proofs that were
given in the exact case. The straightforwardness of the procedure when going from the continu-
ous to the discrete level is one of the main features of the T-coercivity approach. We give next the
discrete counterparts of Theorems 9 and 11.
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Theorem 39. Assume that the form a is symmetric and positive, that there exists a constant α′ > 0
such that

a(uh ,uh) ≥α′‖uh‖2
V , ∀uh ∈Vh , (102)

and that the uniform discrete inf-sup condition (98) on the form b holds true.
Then the form A is uniformly Th-coercive.

The property (102) is sometimes called the uniform discrete coercivity property.

Proof. Let h be given. We introduce the mapping

Th : Vh ×Qh −→Vh ×Qh(
uh , ph

) 7−→ (
λuh +LB ,h ph ,−λph

)
.

We then compute

A
((

uh , ph
)

,Th
(
uh , ph

))= a(uh ,λuh)+a
(
uh ,LB ,h ph

)+b
(
λuh , ph

)+b
(
LB ,h ph , ph

)−b
(
uh ,λph

)
=λa(uh ,uh)+a

(
uh ,LB ,h ph

)+‖ph‖2
Q , according to (100)-left.

Because the form a is symmetric and positive, we can apply Young’s inequality: for any η> 0,

a
(
uh ,LB ,h ph

)≥−η
2

a(uh ,uh)− 1

2η
a

(
LB ,h ph ,LB ,h ph

)
.

According now to (100)-right, we find

a
(
LB ,h ph ,LB ,h ph

)≤Ca‖LB ,h ph‖2
V ≤Ca(β′)−2‖ph‖2

Q .

Using assumption (102), if λ− η
2 > 0, it follows that

A
((

uh , ph
)

,Th
(
uh , ph

))≥α′
(
λ− η

2

)
‖uh‖2

V +
(

1−
Ca(β′)−2

2η

)
‖ph‖2

Q .

Setting η=λ=Ca(β′)−2 as in the exact case, we infer that

A
((

uh , ph
)

,Th
(
uh , ph

))≥ 1

2
min

(
α′Ca

(
β′

)−2
,1

)
‖(uh , ph

)‖2
V ×Q

which proves that A is Th-coercive, with a T-coercivity constant 1
2 min(α′Ca(β′)−2,1) > 0 that is

independent of h.
Since Th(uh , ph) = (Ca(β′)−2uh +LB ,h ph ,−Ca(β′)−2ph), one finds that

‖Th
(
uh , ph

)‖2
V ×Q ≤ 2

(
Ca

(
β′

)−2
)2

‖uh‖2
V +2‖LB ,h ph‖2

V +
(
Ca

(
β′

)−2
)2

‖ph‖2
Q

≤ 2

(
Ca

(
β′

)−2
)2

‖uh‖2
V +

(
2
(
β′

)−2 +
(
Ca

(
β′

)−2
)2)

‖ph‖2
Q ,

where the last inequality follows from (100)-right. The bound is valid for all h, which yields

sup
h

|||Th ||| ≤ max
(p

2Ca

(
β′

)−2
,β

(
2+C 2

a

(
β′

)−2)1/2
)
,

so the form A is uniformly Th-coercive. �

Remark 40. As for the Stokes problem, the discrete right-inverse LB ,h is connected to the Fortin
operatorΠh . As a matter of fact, if there exists a family of discrete projectors (Πh)h verifying (101),
the operator defined by LB ,h =Πh(LB ) satisfies (100) with β′ = (Cπβ)−1 since for all qh ∈Qh

‖Πh
(
LB qh

)‖V ≤Cπ‖LB qh‖V ≤Cπβ‖qh‖Q ,

according to (22). As a consequence, to perform stability estimates at the discrete level using Th-
coercivity, one has only to replace β by Cπβ in the computations done at the continuous level.
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Theorem 41. Assume that the form a is symmetric and positive.
In this case, if the uniform discrete inf-sup condition (98) on the form b holds true and if there exists
a constant α′

0 > 0 such that

a(u0,h ,u0,h) ≥α′
0‖u0,h‖2

V , ∀u0,h ∈ KerBh , (103)

then the form A is uniformly Th-coercive.

The property (103) is sometimes called the uniform discrete coercivity property on the kernels.

Proof. Let h be given. We consider the mapping

Th : Vh ×Qh −→Vh ×Qh(
uh , ph

) 7−→ (
λuh +LB ,h ph ,−λph +λµBhuh

)
.

As in the proof of Theorem 11, we can compute

A
((

uh , ph
)

,Th
(
uh , ph

))=λa(uh ,uh)+a
(
uh ,LB ,h ph

)+‖ph‖2
Q +λµ‖Bhuh‖2

Q

because b(LB ,h ph , ph) = ‖ph‖2
Q . Since the form a is symmetric and positive, one may use Young’s

inequality. By proceeding as in the proof of Theorem 39 and after setting λ = Ca(β′)−2, we find
that

λa(uh ,uh)+a
(
uh ,LB ,h ph

)+‖ph‖2
Q ≥ 1

2
Ca

(
β′

)−2
a(uh ,uh)+ 1

2
‖ph‖2

Q ,

and

A
((

uh , ph
)

,Th
(
uh , ph

))≥ 1

2
Ca

(
β′

)−2(
a(uh ,uh)+2µ‖Bhuh‖2

Q

)+ 1

2
‖ph‖2

Q .

Then, we use the decomposition uh = u0,h + ūh with u0,h ∈ KerBh and ūh ∈ (KerBh)⊥. As before,
Young’s inequality yields

a(uh ,uh) ≥ (1−θ)a(u0,h ,u0,h)+
(
Ca − Ca

θ

)
‖ūh‖2

V

for all 0 < θ < 1. Moreover, ‖Bhuh‖2
Q = ‖Bh ūh‖2

Q ≥ (β′)2‖ūh‖2
V according to (99), so that

a(uh ,uh)+2µ‖Bhuh‖2
Q ≥ (1−θ)a(u0,h ,u0,h)+

(
Ca − Ca

θ
+2µ

(
β′

)2
)
‖ūh‖2

V .

Choosing θ = 1
2 and µ= 3

4Ca(β′)−2, it holds that

a(uh ,uh)+2µ‖Bhuh‖2
Q ≥ 1

2
a(u0,h ,u0,h)+ Ca

2
‖ūh‖2

V

≥ α′
0

2
‖u0,h‖2

V + α′
0

2
‖ūh‖2

V = α′
0

2
‖uh‖2

V ,

where we used assumption (103) and Ca ≥α′
0 on the second line.

Finally, we conclude that

A
((

uh , ph
)

,Th
(
uh , ph

))≥ 1

4
α′

0Ca

(
β′

)−2‖uh‖2
V + 1

2
‖ph‖2

Q ,

which yields that A is Th-coercive, with a T-coercivity constant min( 1
4α

′
0Ca(β′)−2, 1

2 ) > 0 that is
independent of h.

From the above, we have Th(uh , ph) = (Ca(β′)−2uh+LB ,h ph ,−Ca(β′)−2ph+ 3
4 (Ca(β′)−2)2Bhuh),

and, noting that ‖Bhuh‖Q ≤Cb‖uh‖V , one concludes that

sup
h

|||Th ||| ≤∞,

so the form A is uniformly Th-coercive. �

Remark 42. The reciprocal of Theorem 41 is also true. To see this, one simply needs to mimick
the proof of Theorem 11 - item 2. at the discrete level.
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Again, provided a basic approximability property holds, that is, any element of V ×Q can
be approximated by a sequence of elements of (Vh ×Qh)h , convergence will follow under the
assumptions of Theorem 39 or Theorem 41.

7.3. Approximation of augmented saddle-point problems

We now approximate the abstract problem (36), starting from the variational expression (37), with
the form

Ac
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q)− c(p, q),

where c(·, ·) is a form defined on Q ×Q that fulfills (35); in particular, c(·, ·) is positive. So, let again
(Vh)h , resp. (Qh)h , be two families of finite dimensional subspaces of V , resp. Q. The discrete
variational formulation writes{

Find
(
uh , ph

) ∈Vh ×Qh such that

∀(
vh , qh

) ∈Vh ×Qh , Ac
((

uh , ph
)

,
(
vh , qh

))= 〈
f , vh

〉
V ′,V +〈

g , qh
〉

Q ′,Q ,

To ensure that the form Ac is uniformly Th-coercive, the proofs once more follow very closely
those that were given in the exact case. We give next the discrete counterparts of Theorems 13, 15
and 21.

Theorem 43. Assume that the form a is symmetric, positive, fulfills the uniform discrete coercivity
property (102), and that the uniform discrete inf-sup condition (98) on the form b holds true. Then
the form Ac is uniformly Th-coercive.

Theorem 44. Assume that the form a is symmetric and positive, fulfills the uniform discrete
coercivity property on the kernels (103), and that the uniform discrete inf-sup condition (98) on
the form b holds true. If moreover the form c is like in (40), where ε is small enough, namely

ε≤ 1

2Ca
(
Cπβ

)4 C 2
b

(
2− α′

0

Ca

)
,

then the form Ac is uniformly Th-coercive.

Theorem 45. Assume that (51) holds true and that the bilinear forms a and c are both symmetric
and positive. If there exists a constant α′

B > 0 such that

a(uh ,uh)+ γ

2C 2
c
‖Bhuh‖2

Q ≥α′
B‖uh‖2

V , ∀uh ∈Vh , (104)

then the form Ac is uniformly Th-coercive.

As before, provided a basic approximability property holds, that is, any element of V ×Q can
be approximated by a sequence of elements of (Vh ×Qh)h , convergence will follow under the
assumptions of Theorem 43, Theorem 44 or Theorem 45.

7.4. Applications

Let us briefly see how the T-coercivity approach can be used to discretize the mixed problems,
that is for Stokes, electromagnetism, nearly-incompressible elasticity and finally neutron diffu-
sion. For each problem, we propose one or several possibilities. Note that, since there is a vast
litterature on this topic, there is no need to devise new approximation techniques. On the con-
trary, the simple framework of the T-coercivity approach provides elementary guidelines to help
us choose among existing techniques. In most cases, we emphasize that this leads to explicit dis-
crete operators Th . And, as we shall see next, the degree of explicitness depends on the problem
that is studied.
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In each case, the first step is to choose a conforming finite element discretization adapted to
the space V under consideration. We assume for simplicity that Ω is a polyhedron for d = 3, or
a polygon for d = 2, so one can use meshes made of simplices for the discretization by finite
elements. For k ≥ 1, Pk stands for the Lagrange finite elements of order k. For Stokes and
elasticity, we note that the space H 1

0(Ω) may be approximated using (Pk )d finite elements with
k ≥ 2. For electromagnetism, we have to deal with the space H 0(curl ;Ω), which can be discretized
using the (first-kind) Nédélec finite elements of order k ≥ 1, denoted by Nk . Lastly, for neutron
diffusion, we have to deal with the space H(div ;Ω), discretized with the help of the Raviart–
Thomas elements of order k ≥ 0, denoted by RT k . We refer to [5] for details.

The next step is to choose the conforming finite element discretization in the space Q in such a
way that convergence of the discrete solutions to the exact one is guaranteed. This occurs as soon
as one achieves uniform Th-coercivity for the all-in-one form A . To that aim, one simply has to
build discrete operators Th similarly as in the continuous case but using (when applicable) the
Fortin operators defined in Theorem 38 to project the lifting LB on the discrete space. Note that
according to classical theory [5, 33], the existence of such operators is equivalent to the uniform
discrete inf-sup condition (98) on the form b. Doing so, the discrete stability estimates then follow
from the continuous case by changing the constant β to take into account the influence of the
Fortin operators, see Remark 40.

First, for Stokes and elasticity, and for k = 2, setting Qh = P1 leads to Fortin operators ΠP
h :

H 1
0(Ω) −→ (Pk )d satisfying (95)-(96), or the abstract counterpart (101): the pair ((P2)d ,P1) is

called the Taylor-Hood finite element. In this case, building Fortin operators is a very technical
issue. We do not go into the details, and refer instead to [5, Section 8.8]: we note that the resulting
expression of the operatorΠP

h is quite involved. This leads to a uniform discrete inf-sup condition
on the form b. Regarding uniform Th-coercivity, one uses (90) to define the discrete operators
Th for Stokes. While, for nearly-incompressible elasticity, the bilinear form defined in (79) is
uniformly Th-coercive for the mapping

Th : (P2)d ×P1 −→ (P2)d ×P1(
uh , ph

) 7−→ (
2µ

(
Cπ,P Cdiv

)2 uh +ΠP
h

(
v−ph

)
,−2µ

(
Cπ,P Cdiv

)2 ph

)
,

according to Theorem 43 and (80).
For electromagnetism in an anisotropic medium (with smooth tensor fields ε and µ), for k ≥ 1,

setting Qh =Pk leads to Fortin operatorsΠN
h : H 0(curl ;Ω) −→Nk satisfying (101). Let us explain

below how to proceed. In (101), the operators must fulfill the compatibility conditions(
εΠN

h v ,∇qh

)
L2(Ω)

= (
εv ,∇qh

)
L2(Ω) , ∀v ∈ H 0(curl ;Ω), ∀qh ∈Pk . (105)

Under the assumptions (56) on ε (and µ), the Helmholtz decomposition of v , orthogonal with

respect to the inner product (·, ·)ε,µ−1curl , writes v = k v+∇φv , where k v ∈ K N (Ω;ε) andφv ∈ H 1
0 (Ω)

solves (74). Since qh ∈ H 1
0 (Ω), we note that(

εv ,∇qh
)

L2(Ω) =
(
ε∇φv ,∇qh

)
L2(Ω) , ∀v ∈ H 0(curl ;Ω), ∀qh ∈Pk .

This leads to the “natural” choice
ΠN

h v =∇
(
P k

hφv

)
,

where P k
h : H 1

0 (Ω) −→ Pk is the orthogonal projection on Pk with respect to the inner product
(·, ·)1,ε, namely (

ε∇
(
P k

hφ
)

,∇qh

)
L2(Ω)

= (
ε∇φ,∇qh

)
L2(Ω) , ∀φ ∈ H 1

0 (Ω), ∀qh ∈Pk . (106)

Indeed, the above problem is well-posed thanks to the assumptions (56) on ε, and ΠN
h v auto-

matically belongs to Nk because, by design, the finite element space Nk contains ∇[Pk ].
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With this definition of the operatorΠN
h , the compatibility conditions (105) immediately follow.

Furthermore, the uniform bound on the norm of the operators in (101) is obtained via∥∥∥ΠN
h v

∥∥∥2

ε,µ−1curl
=

∥∥∥∇(
P k

hφv

)∥∥∥2

ε,µ−1curl

=
(
ε∇

(
P k

hφv

)
,∇

(
P k

hφv

))
L2(Ω)

(cf. (106)) =
(
ε∇φv ,∇

(
P k

hφv

))
L2(Ω)

≤ ∥∥∇φv
∥∥
ε,µ−1curl

∥∥∥∇(
P k

hφv

)∥∥∥
ε,µ−1curl

= ∥∥∇φv
∥∥
ε,µ−1curl

∥∥∥ΠN
h v

∥∥∥
ε,µ−1curl

,

so that ‖ΠN
h v‖ε,µ−1curl ≤ ‖v‖ε,µ−1curl by orthogonality of the Helmholtz decomposition.

On the other hand, the uniform coercivity condition on the discrete kernels in Theorem 41 is
obtained for instance in [25, Theorem 3]. It hinges on the crucial property stating that, given a
field v = ∇q with q ∈ H 1

0 (Ω), the result of the interpolation of v with the Nédélec interpolation
operator may be expressed as ∇qh for some qh ∈Pk .
Hence, for electromagnetism in an anisotropic medium we infer from Theorem 41 that the
bilinear form Aε,µ defined in (69) is uniformly Th-coercive for the mapping

Th : Nk ×Pk −→Nk ×Pk(
E h , p̃h

) 7−→ ((
Cπ,N

)2 E h +ΠN
h

(∇p̃h
)

,−(
Cπ,N

)2 p̃h + 3

4

(
Cπ,N

)4
φE h

)
,

where φE h ∈Qh satisfies the discrete counterpart of (74), namely(
ε∇φE h ,∇qh

)
L2(Ω) =

(
εE h ,∇qh

)
L2(Ω) , ∀qh ∈Pk .

Alternatively, one can follow Section 4.2. In this case, adding indices and superscripts h in the
definition of Topt , one considers(

Topt
)

h : Nk ×Pk −→Nk ×Pk(
E h , p̃h

) 7−→ (
kh

E h
+∇p̃h ,φh

E h

)
,

with the decomposition E h = kh
E h

+∇φh
E h

. The crucial idea is now to use a discrete Helmholtz

decomposition to define kh
E h

and φh
E h

. Namely, for v h ∈Nk , φh
v h

∈Pk is defined by(
ε∇φh

v h
,∇qh

)
L2(Ω)

= (
εv h ,∇qh

)
L2(Ω) , ∀qh ∈Pk ,

and kh
v h

= v h −∇φh
v h

. Doing so, one obtains an (orthogonal) discrete Helmholtz decomposition
that is uniformly stable, and it can be checked that the form Aε,µ is uniformly Th-coercive.
The results also hold for piecewise smooth tensor fields ε and µ. Details can be found in [25,
Proposition 13].

Last, for neutron diffusion, we use Qh = P
pw
k , for k ≥ 0, where the superscript pw stands for

piecewise Lagrange finite elements of order k. Assuming for simplicity that σ restricted to any
simplex is constant, we introduce the discrete mapping [28, 41]

Th : RT k ×P
pw
k −→RT k ×P

pw
k(

ph ,uh
) 7−→ (

ph ,
1

2

(−uh +σ−1div ph

))
,

and the property div(RT k ) ⊂P
pw
k guarantees the uniform Th-coercivity of the bilinear form (85)

in virtue of Theorem 45.
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All basic approximability properties are established in [5], which guarantees convergence in
all of the above cases. We again refer to [5] for details and possible extensions, such as the
generalized Taylor–Hood elements (k ≥ 3) or the MINI element for Stokes or elasticity.

8. Conclusion and perspectives

We have demonstrated the flexibility of the T-coercivity approach, here applied to classical linear
mixed problems, both for the theoretical study of the problems and for their numerical approxi-
mation by finite elements. Let us mention some possible extensions, such as nonconforming dis-
cretization methods for Stokes [40], multigroup diffusion [34] or DDM for diffusion [28]. It is our
belief that numerous applications can be studied with the T-coercivity approach, both theoreti-
cally and numerically. Recent works include application in poromechanics [3, 4], time-harmonic
Maxwell’s equations with impedance surfaces [43], and the applications listed in [39].
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