Rafael C Deptulski 
email: rafael.deptulski@gmail.com
  
Magdalena Dymitrowska 
email: magdalena.dymitrowska@irsn.fr
  
Djimédo Kondo 
email: djimedo.kondo@sorbonne-universite.fr
  
Modeling non-local elasticity in 1D vibrating rods using Corrected Smoothed Particle Hydrodynamics method

Keywords: 

The present study aims to assess the use of the Corrected Smoothed Particle Hydrodynamics (CSPH) method predicting non-local elastic effects in finite deformations. For this aim, we first recall the discrete and continuum analytical solutions of a 1D bar under longitudinal harmonic vibrations with small scale effects. SPH is an integral-based non-local approach where the non-locality is introduced through the kernel convolution. Contrary to the classical use of the SPH method, our simulations are conducted with values of the smoothing length parameter that may be not infinitesimal, which can be related to the characteristic size of the microstructure.

The numerical results obtained from the 1D bar simulations under different boundary conditions demonstrate that the CSPH method can capture the non-local effects in dynamic conditions. In detail, it is shown that the numerical results have a good agreement with available discrete and continuum analytical solutions. We also simulate hardening effects due to the increase of the amplitude of vibration. Moreover, it is observed that CSPH strain-based and stress-based formulations lead to similar responses. Finally, we provide a discussion about the correspondences between finite and infinite support kernel functions.

Introduction

Low permeability argillite rocks are commonly studied as potential hosts for geological nuclear waste disposals or CO2 storage. In nuclear waste disposals, gases (predominantly dihydrogen) are expected to be generated, namely by anoxic corrosion of different metallic components of waste packages and disposal structures [START_REF] M'jahad | Impact de la fissuration sur les propriétés de rétention d'eau et de transport de gaz des géomatériaux : Application au stockage géologique des déchets radioactifs[END_REF][START_REF] Grambow | Geological disposal of radioactive waste in clay[END_REF]. Due to inherent argillite properties (very small pore sizes, high confining pressures, and swelling capabilities related to significant clay fraction), the understanding of gas migration phenomena therein requires taking into account hydro-mechanical coupling [START_REF] Marschall | Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal[END_REF][START_REF] Cuss | Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone. Clays in Natural and Engineered Barriers for Radioactive Waste Confinament[END_REF].

To this end, it is possible to work directly on the pore-scale level with models describing the direct displacement and deformation of different fluid and solid phases. Smoothed Particle Hydrodynamics (SPH) method allows to solve all kinds of partial differential equations within the same boundary conditions were presented by Wang et al. [START_REF] Wang | Eringen's small length scale coefficient for vibration of axially loaded nonlocal Euler beams with elastic end restraints[END_REF]. Otherwise, some studies can be found based on different configurations taking into account indirect neighbouring interaction such as nneighbour lattice interactions [START_REF] Rosenau | Dynamics of dense lattices[END_REF][START_REF] Challamel | Exact and nonlocal solutions for vibration of axial lattice with direct and indirect neighboring interactions[END_REF] or higher-order finite difference formulation [START_REF] Challamel | Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua[END_REF][START_REF] Challamel | On nonlocal computation of eigen frequencies of beams using finite difference and finite element methods[END_REF]. Using the higher-order bi-Helmholtz elasticity model, Lazar et al. [START_REF] Lazar | On a theory of nonlocal elasticity of bi-Helmholtz type and some applications[END_REF] considered nearest and next-nearest neighbor interactions to obtain constant and size-dependent values for 0 .

In lattice discrete models with direct interaction between neighbors [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF][START_REF] Lagrange | Méchanique Analitique. Desaint[END_REF], the non-local response is given by the distance between nodes. In the non-local continuum integral-based models [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF], the non-local quantities are computed through an integral convolution procedure, where the distance of the smoothing length of the kernel function is directly related to its non-local response. Otherwise, in non-local continuum gradient-based models [START_REF] Eringen | On nonlocal elasticity[END_REF], such non-local response is given by a differential operator that is added into the governing equations.

The present study presents an approach dealing with non-local effects using a corrected version of the numerical method Smoothed Particle Hydrodynamics (SPH). SPH is a non-local integralbased method that has a discrete domain. The principles of this method were introduced independently by Lucy [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF] and Gingold and Monaghan [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] for treating astrophysical problems. Nowadays, it is widely applied to simulate, with good accuracy, transient dynamic problems with important local deformations of studied domains. SPH has been largely employed in the fields of fluid dynamics [START_REF] Liu | Meshfree particle simulation of micro channel flows with surface tension[END_REF][START_REF] Liu | Smoothed particle hydrodynamics (SPH): An overview and recent developments[END_REF][START_REF] Violeau | Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview[END_REF][START_REF] Capone | Sph modelling of water waves generated by submarine landslides[END_REF] including multiphase flows [START_REF] Monaghan | SPH simulation of multi-phase flow[END_REF][START_REF] Chen | An SPH model for multiphase flows with complex interfaces and large density differences[END_REF]. Applications to solid mechanics have been explored since the 1990s after introducing the structural mechanics framework by Libersky and Petscheck [START_REF] Libersky | Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method[END_REF][START_REF] Libersky | High strain lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response[END_REF]. Besides, applications in other domains have also been made, for instance, in reactive transport [START_REF] Tartakovsky | Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media[END_REF] and heat transfer [START_REF] Chaniotis | Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting Flows[END_REF][START_REF] Chen | An SPH model for multiphase flows with complex interfaces and large density differences[END_REF]. SPH is constructed as a Lagrangian points method that does not use a fixed grid and where a convolution assesses the properties of a material point with a kernel function over its neighbourhood. The meshless character of the SPH allows an efficient implementation based on CUDA technology for massively parallel computations on GPU. The present work uses an CSPH-based framework developed at the Institute for Radiological Protection and Nuclear Safety (IRSN). Following Pazdniakou and Dymitrowska [START_REF] Pazdniakou | Migration of gas in water saturated clays by coupled hydraulic-mechanical model[END_REF], such a method can manage multiphase fluid, rigid, and solid elastic components within the same conceptual framework.

Particle disorder and truncated boundaries are well-known SPH drawbacks. The challenge to ensure the first-order consistency in SPH led to the development of several SPH method alternatives, such as Reproducing Kernel Particle Method (RKPM) [START_REF] Liu | Reproducing kernel particle methods for structural dynamics[END_REF], Element Free Galerkin Method (EFGM) [START_REF] Belytschko | Element-free galerkin methods[END_REF][START_REF] Krongauz | Consistent pseudo-derivatives in meshless methods[END_REF], Moving Least Square Particle Hydrodynamics (MLSPH) [START_REF] Dilts | Moving-least-squares-particle hydrodynamics-i. consistency and stability[END_REF], Meshless Local Petrov Galerkin Method (MLPG) [START_REF] Atluri | A new meshless local petrov-galerkin (mlpg) approach in computational mechanics[END_REF] and more recently Updated Lagrangian Particle Hydrodynamics (ULPH) [START_REF] Tu | An updated lagrangian particle hydrodynamics (ulph) for newtonian fluids[END_REF][START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF][START_REF] Yan | Higher-order nonlocal theory of updated lagrangian particle hydrodynamics (ulph) and simulations of multiphase flows[END_REF]. Notwithstanding, some significant developments on SPH have been made to improve the consistency and accuracy of its operators caused by underpopulated or truncated domains. In the present study, we adopt a corrected version proposed by Bonet and Lok [START_REF] Bonet | Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[END_REF] which ensures a 1st order consistency and conserves angular and linear momentum. Such correction is capable of solving well-known stability and accuracy issues present in the original SPH form (as was introduced in [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF][START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF]).

It is worth noting that, inspired by the elasto-damage non-local analytical model proposed by Bažant and Belytschko [START_REF] Bažant | Wave propagation in a strain-softening bar: exact solution[END_REF][START_REF] Bažant | Why continuum damage is nonlocal: justification by quasiperiodic microcrack array[END_REF][START_REF] Bažant | Why continuum damage is nonlocal: Micromechanics arguments[END_REF], previous research was performed using SPH to the same purpose by Vignjevic et al. [START_REF] Vignjevic | A treatment of zero-energy modes in the smoothed particle hydrodynamics method[END_REF][START_REF] Vignjevic | SPH in a total lagrangian formalism[END_REF][START_REF] Vignjevic | Sph as a nonlocal regularisation method: Solution for instabilities due to strain-softening[END_REF]. They have demonstrated the non-local character and the absence of mesh dependency on elastic-damage phenomena using an SPH Total Lagrangian form and comparing it to Finite Element Method (FEM) results. However, we demonstrate in the present paper that the capability of the CSPH method to represent such scale effects is much larger. In the field of nonlocal models, the main novelty is to use an integral-based model solved in a discrete domain (SPH) to capture non-local effects through varying the size of the kernel function smoothing length. Other novelties related to the numerical solver were presented: different SPH formulations were tested, notably following material coordinates (Total Lagrangian SPH), strain-based and stress-based SPH formulations, and applications through different kernel functions. In addition, our numerical results fitted well when compared to the discrete analytical solution. However, we observed that the continuum analytical solutions present in literature (with a 0-th order Taylor expansion) could be improved whit a higher-order solution provided by the continualization method. This result also confirmed the equivalence between the discrete lattice and the continualized model when adopting high-order terms.

The present investigations focus on simulations of the non-local elastic response of a one dimension bar under longitudinal harmonic vibrations. Some previous studies have applied the SPH method to solve an 1D vibration problem (for instance, see [START_REF] Dyka | Stress points for tension instability in SPH[END_REF][START_REF] Reveles | Development of a total Lagrangian SPH code for the simulation of solids under dynamioc loading[END_REF]), but without a focus to represent non-local responses of the method (i.e. maintaining infinitesimal sizes of the smoothing length). In this work, we allow the size of the support domain of the kernel function to become finite and investigate the relation between this numerical parameter and the non-local response in the vibration frequency. The paper is organised as follows: first, we recall the discrete lattice analytical model and then a gradient-based continuous analytical model that can capture small-scale effects. Secondly, the CSPH framework is briefly described with some highlights on its advantages and drawbacks. Then, numerical results are compared with the analytical non-local solutions, discussing the energy conservation, different SPH kernel functions, and distinct formulae adopted to represent the momentum equation. Also, we discuss the influence of the non-local parameter 0 on the analytical continuum models. Finally, conclusions and outlooks are presented.

Analytical models

This part is devoted to a brief presentation of analytical elasticity models in 1D vibration problems, focusing on a summary of the Lagrange lattice discrete and the continuum models as presented and discussed in recent works by Aydogdu [START_REF] Aydogdu | Axial vibration of the nanorods with the nonlocal continuum rod model[END_REF][START_REF] Aydogdu | Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity[END_REF] and Challamel [START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF][START_REF] Challamel | Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models[END_REF]. These models will be helpful as a test basis for the evaluation of our numerical approach.

1D lattice discrete model

Lagrange's investigations of longitudinal vibrations on the lattice and discrete spring studies introduced the research of the small scale effect [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF][START_REF] Lagrange | Méchanique Analitique. Desaint[END_REF]. Consider the equivalent model of concentrated masses constituting a Born-Kármán lattice system of total length. Clamped-clamped and Clamped-free boundary condition systems are composed of + 1 point masses separated by the distance = ∕ (Fig. 1). Consider that all points have the same mass except the free end mass in Fig. 1b which is halved.

The 1D local constitutive law in terms of the axial force is introduced as:

= (1)
where is the local displacement along the -axis, is the transverse section surface and is elastic Young modulus. The momentum equation, in its continuum form, with respect to the local displacement is given by:

2 2 = 2 2 (2) 
where = ∕( × ) is mass per unit of volume and relates the time. Hence, in order to represent (Eq. 2) in a discrete form, for the left-hand-side, consider harmonic displacement of each -index mass ( ) = where = √ -1 and is the angular vibration frequency. For the right-hand-side, consider the finite difference principle for lattice equations. It follows that:

+1 + 2 2 2 -2 + -1 = 0 (3) 
where the non-dimensional local frequency parameter 2 is defined as:

2 = 2 2 (4) 
The discrete displacement of a particle can be written in the following trigonometric form:

= 1 cos( ) + 2 sin( ) with = arccos (1 - 2 2 2 2 ) (5) 
with 1 and 2 some constants. The detailed procedure to obtain this solution and its validity conditions are recalled in Appendix A. In addition, the kinetic energy ̂ and the internal or elastic potential energy ̂ can be described, respectively, by their continuous and discrete forms (as presented in [START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF]):

̂ = ∫ 0 2 2 = -1 ∑ =1 1 2 2 + 1 4 0 2 + 2 (6a) ̂ = ∫ 0 2 2 = -1 ∑ =0 1 2 +1 - 2 (6b) 
Furthermore, analytical expressions relate the Lagrange frequency 2 to value for each of -th eigenmode of vibration. These expressions are also recalled in detail in Appendix A. Clamped-clamped (CC) longitudinal vibration discrete model: for a discrete lattice chain clamped at both ends 0 = = 0 and the discrete frequency parameter 2 which takes into account the non-local effect is the following:

2 = 2 sin 2 2 (7) 
Clamped-free (CF) longitudinal lattice: for clamped-free lattice configuration, one has the following boundary conditions: 0 = 0 and the axial force = 0. It leads to the analytical Lagrange-type frequency 2 for the -th eigen mode:

2 = 2 sin (2 -1) 4 2 (8) 
Furthermore, for both boundary conditions, ∕ is equal to the inverse of the number of point masses inside the domain. The asymptotic behaviour of (Eqs. 7 and 8) shows that the values of the frequency parameter 2 tend to a local value (Eq. 4) when ∕ → 0, otherwise their values decrease with the increase of ∕ in both boundary conditions. These analytical lattice solutions will be used for comparison with our numerical non-local model.

1D non-local continuum bar model

Here, the non-local elasticity through the differential stress-based formulation is recalled (as presented by Eringen in [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]), in order to apply it to a 1D bar of length and cross-section under longitudinal vibration (Fig. 2). The detailed procedures to obtain the results described in this section are recalled in Appendix B.

Stress gradient non-local continuum bar model

The non-local wave equation can be written by introducing the non-local form of the axial force = -( 0 ) 2 2 2 into the local governing equations (Eqs. 1 and 2), such as:

2 2 - 2 2 + ( 0 ) 2 4 2 2 = 0 ( 9 
)
where 0 is a dimensionless parameter that depends on the material properties and is an internal characteristic length corresponding to the spring length in lattice model. We observe that when 0 = 0, this model reduces to the local model (Eq. 2). Consider the longitudinal bar displacement ( , ) = ( ) sin( ) (as in [START_REF] Aydogdu | Axial vibration of the nanorods with the nonlocal continuum rod model[END_REF]), a new form of (Eq. 9) can be obtained as:

2 2 2 + 2 = 0 ( 10 
)
where 2 = 2 1-0 2 2
and 2 is the dimensionless frequency parameter presented in (Eq. 4). Hence, this differential equation yields a solution of the following form:

( ) = 1 cos( ) + 2 sin( ) (11) 
Clamped-clamped (CC) longitudinal bar: Adopting the boundary conditions for a bar fixed at both extremities ( (0, ) = ( , ) = 0) into (Eq. 10 and 11) leads to the following non-local formulation of the continuum 2 frequency parameter:

2 = ( ) 2 1 + 2 0 2 ( ) 2 (12) 
with the dimensionless factor ∕ representing the influence of the small scale on the macro-scale.

Clamped-free (CF) longitudinal bar: Now, introducing clamped-free boundary conditions ( (0, ) = 0 and ( , ) = 0) into (Eq. 10 and 11) results in a non-local form of the 2 frequency parameter for a CF configuration:

2 = (2 -1) 2 2 1 + 2 0 2 (2 -1) 2 2 
(13)

Continualization model towards a high-order non-local parameter 0

The adoption of higher-order terms in analytical non-local continuum models was first introduced by Kunin [START_REF] Kunin | Elastic media with microstructure. i: One-dimensional models[END_REF][START_REF] Kunin | Elastic media with microstructure. ii: Three-dimensional models[END_REF] and then considered by Eringen [START_REF] Eringen | Theory of nonlocal elasticity and some applications[END_REF]. This higher-order adoption seeks to correct the qualitative description of the discrete Born-Kármán model through a continuous model. Such matching procedure is recalled in Appendix B. Also, Lazar et al. [START_REF] Lazar | On a theory of nonlocal elasticity of bi-Helmholtz type and some applications[END_REF] used a higher-order differential operator to construct a link between integral-based and gradient-based (resulting in the so-called bi-Helmholtz type model). The continualization model presented in this section does not use any matching operation between continuum and discrete models. We recall here this different approach because we noticed in different analytical studies (see for instance [START_REF] Şimşek | Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach[END_REF][START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF][START_REF] Vila | Nonlinear continuum models for the dynamic behavior of 1D microstructured solids[END_REF][START_REF] Challamel | Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models[END_REF]) the adoption of zeroth-order approximation of 0 in the continuum governing equations. It may leads to significant deviations between the discrete model (Sec. 1.1) and the Eringen's stress gradient continuum model (Sec. 1.2.1), these discrepancies are more important for larger non-local conditions (i.e. ≫ 0).

We start this part by adopting the second order centred finite difference form, where the interactions are limited to the closest neighbour of each cell and the inherent scale effects are well reproduced by differential operators. Hence, following Rosenau's development [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF], we revisit the right-hand term of the 1D wave equation as presented in (Eq. 2) by introducing a new operator and its expansion , such as:

2 2 ≡ ( , ) with ≈ (2) (14) 
where traduces a differential operator and the superscript (.) its n-th order (e.g. (2) = 2 ∕ 2 ). We note that the expansion order of has a direct influence in . Thus, we consider the secondorder central finite difference approximation obtained after the sum of the Taylor expansions of ( -) and ( + ) (considering a more important expansion order of than that presented by [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF] though):

( + ) -2 ( ) + ( -) 2 = 1 + 1 12 2 (2) + 1 360 4 (4) + 1 20160 6 (6) (2) ( ) +  8 (15a) = 1 + 1 12 2 (2) + 1 360 4 (4) + 1 20160 6 (6) (15b)
We recall that is the distance between two discretized points corresponding to the spring characteristic length in the discrete lattice model. However, in continuum models, it can be interpreted in many different ways (for instance, we present in the next section another interpretation for such quantity when the governing equations are discretized through kernel functions). In order to obtain the non-local form of (Eq. 14), we invert using a Padé approximation [0,6] [66]:

-1 = 1 - 1 12 2 (2) + 1 240 4 (4) - 1 6048 6 (6) (16) 
Then, introducing the sixth-order expansion (Eq. 16) into (Eq. 14) allows us to find the nonlocal form of the wave equation (as presented in its 2nd order in Eq. 9):

2 2 - 1 - 1 12 2 (2) + 1 240 4 (4) - 1 6048 6 (6) 2 2 = 0 (17) 
It shows that the continualized model (Eq. 17) results exactly in the same higher-order wave equation found by calibration between discrete and continuum model (Eq. 55). We also note that when the length-scale parameter → 0, this model reduces to the local model (Eq. 2). Hence, considering an 1D harmonic vibration, the analytical longitudinal displacement fields (Eq. 11) for different boundary conditions have the following forms:

Clamped-clamped (CC): ( , ) = 2 sin sin ( ) (18a) 
Clamped-free (CF):

( , ) = 2 sin (2 -1) 2 sin ( ) (18b) 
By introducing the respective temporal and spatial derivatives of (Eqs. 18) into (Eq. 17), we obtain a dimensionless frequency parameter 2 determining numerically the values of a high-order form of the non-local parameter 0 .

Clamped-clamped (CC):

For a clamped-clamped bar ( (0, ) = ( , ) = 0), we get the same nonlocal formulation of the non-local 2 as found in (Eq. 12), but here 0 has a higher-order expansion in terms of ∕ :

2 0 = 1 12 + ( ) 2 240 2 + ( ) 4 6048 4 +  ( ) 6 ( 

19) method

Clamped-free (CF): Introducing the clamped-free boundary conditions ( (0, ) = 0 and ( , ) = 0) into (Eq. 17), results in the following CF non-local form of the 2 , with 0 depending on ∕ represented here in a high-order form:

2 0 = 1 12 + ((2 -1) ) 2 960 2 + (2 -1) 4 96768 4 +  ( ) 6 (20) 
High-order stress gradient models as introduced by Kunin [41] are capable of enhancing nonlocal response in isotropic elastic continuum remaining the interaction between the nearest neighbours. The continualized method resumed here provides the mathematical development of the high-order terms using a different mathematical development bus also without change the condition that only direct neighbours interact with each other. It is worth noting that the high-order 0 values shown in (Eqs. 19 and 20) are exactly equal to the high-order values of 0 obtained by calibration between continuum and lattice discrete model after Taylor series expansion at ∕ → 0. Different authors adopted calibration method [START_REF] Challamel | Analytical length scale calibration of nonlocal continuum from a microstructured buckling model[END_REF][START_REF] Wang | Eringen's small length scale coefficient for vibration of axially loaded nonlocal Euler beams with elastic end restraints[END_REF][START_REF] Zhang | Modelling vibrating nano-strings by lattice, finite difference and Eringen's nonlocal models[END_REF], some arguments were considered to justify their choice of a 0th order expansion of 0 : the assumption that the non-local effect is the influence of the infinitesimal value of ∕ on the macro-scale properties of a material, which simplifies the solution of the mathematical expressions significantly (see for instance [START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF][START_REF] Vila | Nonlinear continuum models for the dynamic behavior of 1D microstructured solids[END_REF][START_REF] Challamel | Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models[END_REF]).

At the end of this paper, we compare solutions with 0 at different orders, which allows us to reach a larger validity domain (we adopt 0 < ∕ ≤ 1). Furthermore, it is worth noting that all non-local constitutive laws might fulfil the translational invariance principle and have normalised forms. Hence, we introduce the investigated vibration problem in the next section through our mesh free method to be compared with the analytical models of the present section. Besides, we aim at verifying that the proposed model can well reproduce non-local behaviour in small and large deformations.

Non-local SPH model

The SPH method can be described as a Lagrangian particle method that does not use a fixed mesh. Instead, it adopts a spatial discretization on material points that is computed through a weighted sum over an elementary area. The SPH calculation procedure can be split in two main steps: First, the weighted sum average at a given material point is calculated using a smoothing function (also called kernel function). We note that SPH adopts the same form of the integralbased models as introduced by Mindlin and Tiersten [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF] and Toupin [START_REF] Toupin | Theories of elasticity with couple-stress[END_REF], which means that SPH does not present linear interaction between the closest material points (commonly seen in discrete lattice models) and that this higher-order neighborhood interaction produces non-local quantities. In a second time, seeking to construct a numerical-friendly form, the non-local quantities are approximated through a discrete summation that represents the spatial discretization. That said, a non-negligible number of material points is required inside the kernel smoothing length in order to ensure the accuracy of the approximations. Considering that a material point must have interaction with multiple neighbors (and not only the closest ones), it leads to the statement that SPH is an inherent non-local method and that the size of the kernel smoothing length will govern such high-order response. Thus, being the SPH a continuum integral-based model, we aim to compare our CSPH results to the existing discrete and continuum gradient-based analytical solutions.

In this context, this section presents the elastic model, followed by the numerical framework adopted in this paper. The mechanical approach adopted here constructs the governing equations by using material coordinates (usually called Total Lagrangian CSPH -see [START_REF] Rabczuk | Stable particle methods based on Lagrangian kernels[END_REF][START_REF] Vignjevic | SPH in a total lagrangian formalism[END_REF][START_REF] Reveles | Development of a total Lagrangian SPH code for the simulation of solids under dynamioc loading[END_REF] for more details).

1D large deformations elastic model

In order not to be limited by small vibration amplitudes, we adopt a large deformations Lagrangian approach in this work. For completeness, we recall here classical notations, governing equations, and constitutive laws used. The deformation gradient F is expressed through the displacement = -at time :

F = = 1 + (21) 
Considering the 1D finite deformation theory in a Lagrangian description, we use the Green-Lagrange strain , which is defined as (see for instance [START_REF] Bathe | Large displacement analysis of three-dimensional beam structures[END_REF]):

= + 1 2 2 ( 22 
)
The equation of conservation of mass uses the Jacobian to assess the density from the reference configuration 0 :

= -1 0 (23)
where is usually defined as equal to F = ∕ for 1D configuration [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], and in 2D or 3D = det | |. The momentum conservation in a Total Lagrangian configuration is given with respect to the 1st Piola-Kirchhoff stress , such as:

2 2 = 1 0 (24)
The conservation of internal energy in absence of thermal effects reads [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]:

0 = F = GL (25) 
where the 2nd Piola-Kirchhoff stress in 1D can be written as = -1 .

In the considered large deformations framework, different mechanical approaches can be adopted. In the present case, we adopt the 1D energy density function 0 defined by the Saint Venant-Kirchhoff constitutive model:

0 = 1 2 2 ( 26 
)
which results in the 1D state law between and , where stands for the Young modulus: 

= 0 = (27) 

CSPH numerical model

The principle of the SPH method is based on the approximation of a point of coordinate of a function by means of a convolution with a given smoothing function in analogy to the following formula using Dirac's delta function .

( ) = ∫ ( ′ ) ( -′ )d ′ (28) 
The value of is replaced by an integration over a finite size neighbourhood with a kernel function such that:

⟨ ( )⟩ = ∫ ( ′ ) ( -′ , ℎ)d ′ + ℎ ( 29 
)
The angle brackets ⟨⋅⟩ denotes the SPH kernel approximation, ℎ is called the smoothing scale and is related to the kernel function smoothing length and ℎ is the approximation error. Usually, function is chosen such that ℎ = (ℎ 2 ) (see [START_REF] Liu | Smoothed particle hydrodynamics (SPH): An overview and recent developments[END_REF]). Thus, it is possible to define the smoothed form of as (Eq. 29) is:

⟨ ( )⟩ = ∫ ( ′ ) ( -′ , ℎ)d ′ (30) 
Its derivatives can be obtained in the simplest way from the divergence theorem and the integration by parts ( [START_REF] Liu | Smoothed particle hydrodynamics (SPH): An overview and recent developments[END_REF]):

⟨∇ ( )⟩ = ∫ ( ′ )∇ ( -′ , ℎ)d ′ (31) 
Several kernel functions can be chosen to achieve high accuracy and numerical stability in different applications. To ensure the method consistency, has to fulfil some conditions (Eq. 32): it must converge to the Dirac function when ℎ tends to zero, it usually has a finite support domain and must be normalised, even and positively defined. The fact that has to be positively defined inside the support domain has a physical meaning when computing properties by a weighted sum. Moreover, the function must satisfy (Eq. 32c), which correspond to the conservation of angular and linear momentum.

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ lim ℎ→0 ( , ℎ) = ( ) ∫ ( , ℎ)d ′ = 1 ∫ ( -′ ) ( -′ , ℎ)d ′ = 0 (32a) (32b) (32c) 
where = ‖ -′ ‖. The following 1D Gaussian function presented by Gingold [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] is a good choice to achieve accuracy and stability, but has a high computation cost given its infinite support domain, which implies the adoption of periodic boundary conditions.

( , ℎ) = 1 ℎ √ exp - ℎ 2 (33) 
For computational convenience, smoothing functions are often represented by truncated polynomial forms. Among the most common formulations are quadratic and cubic spline functions [START_REF] Liu | Smoothed particle hydrodynamics (SPH): An overview and recent developments[END_REF] which are frequently employed in hydrodynamics framework (see more in [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF]). The following 1D cubic spline smoothing function is used most of the time in the present work.

( , ℎ) = 1 ℎ ⎧ ⎪ ⎨ ⎪ ⎩ 2 3 -( ℎ ) 2 + 1 2 ( ℎ ) 3 if 0 ≤ < ℎ 1 6 (2 - ℎ ) 3 if ℎ ≤ < 2ℎ 0 if ≥ 2ℎ (34) 
Following the characteristics of a kernel function, the relation between the smoothing length and ℎ may vary (see [START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF][START_REF] Violeau | On the maximum time step in weakly compressible SPH[END_REF] for more details). Here, = 2 √ 2ℎ for Gaussian function and = 2ℎ for cubic spline function.

Its discrete form can approximate the continuous integral presented in (Eq. [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-i[END_REF], where the value of in discrete material point is computed using a weighted sum over ̂ points in its neighbourhood.

( ) = ̂ ∑ ( -, ℎ) (35) 
The volume of each particle is defined by = ∕ . Furthermore, the sum approximation of continuous integrals presented before generates an error estimated as = (Δ∕ℎ), with Δ the length scale characterising the average distance between material points [START_REF] Tartakovsky | Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media[END_REF]. Fig. 3 presents the SPH concept of smoothing in one dimension.

Inspired in the correction procedure of the kernel function as proposed in the RKPM method by Liu et al. [START_REF] Liu | Reproducing kernel particle methods for structural dynamics[END_REF], the mixed correction of the kernel functions and their gradients we adopted in this Modeling non-local elasticity in 1D vibrating rods using Corrected Smoothed Particle Hydrodynamics method paper (CSPH) has been proposed by Bonet and Lok [11]. This corrected form is denoted by the superscript ∼. Quinlan et al. [START_REF] Quinlan | Truncation error in mesh-free particle methods[END_REF] already demonstrated similar accuracy when comparing CSPH and RKPM for an 1D approximation. In appendix D we recall [START_REF] Bonet | Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[END_REF] this correction procedure and compare accuracy and convergence of its corrected gradient operators.

The deformation gradient F is the only non-local variable in our system before computing the SVK state law (Eq. 27) which reads in a CSPH discrete form:

F = ⎡ ⎢ ⎢ ⎣ ̂ ∑ =1 ,0 - ∇ ,0 ̃ ,0 ⎤ ⎥ ⎥ ⎦ + 1 (36) 
The index and identify, respectively, each material point of the CSPH system and its ̂ neighbours. In order to fix some drawbacks often present in elastic solid simulations through the original form of CSPH like particle disorder and tensile instability (see for instance [START_REF] Libersky | High strain lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response[END_REF][START_REF] Attaway | Coupling of smooth particle hydrodynamics with PRONTO[END_REF]), this study adopts a Total Lagrangian form that states the initial state of the system as reference state (see [START_REF] Rabczuk | Stable particle methods based on Lagrangian kernels[END_REF][START_REF] Vignjevic | SPH in a total lagrangian formalism[END_REF][START_REF] Reveles | Development of a total Lagrangian SPH code for the simulation of solids under dynamioc loading[END_REF] for detailed discussion). Thus, the discrete CSPH forms of governing equations (Eqs. [START_REF] Şimşek | Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory[END_REF][START_REF] Şimşek | Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach[END_REF][START_REF] Cuss | Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone. Clays in Natural and Engineered Barriers for Radioactive Waste Confinament[END_REF] as presented by Young [START_REF] Young | Modelling elastic dynamics and fracture with coupled mixed correction Eulerian Total Lagrangian SPH[END_REF] are respectively:

= -1 ,0 (37a) 2 2 = - 1 ̂ ∑ =1 ,0 ,0 ∇ ,0 ̃ ,0 -∇ ,0 ̃ ,0 (37b) 
= ̂ ∑ =1 ,0 ,0 - ∇ ,0 ̃ ,0 (37c) 
where is the internal energy as introduced in (Eq. 25). We note that 2 2 and are also computed through CSPH interpolation. In addition, the sum of energies inside an isolated CSPH system is given by:

= ̂ + ̂ ( 38 
)
where the total kinetic energy ̂ and the total internal energy ̂ for a CSPH system composed of material points are written as:

̂ = ∑ 1 2 2 (39a) ̂ = ∑ (39b)
For time integration, we implement a Predict-Evaluate-Correct Leap-Frog explicit scheme (as presented in [START_REF] Young | Modelling elastic dynamics and fracture with coupled mixed correction Eulerian Total Lagrangian SPH[END_REF]). The time step must respect the following Courant-Friedrich-Levy conditions to insure the numerical stability (see [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] for more details).

Δ ≤ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 0.25 ℎ | | 0.25 √ ℎ | | ℎ √ (40) 
In the following, we use analytical solutions and numerical models previously introduced to present the 1D longitudinal vibration problem results.

CSPH simulations with ∕ → 0

We consider a bar of length and discretized by CSPH material points, as presented in previous sections. Two types of boundary conditions are used: clamped at both ends (as presented in Fig. 4a) and clamped-free (as presented in Fig. 4b). By adopting the same material point discretisation over all simulations, this work investigates the influence of the ratio ∕ and its relation with the previously used ratio ∕ . Table 1 presents all parameters considered for CSPH simulations.

In this section, we validate the Total Lagrangian CSPH method, introduced in Sec. 2, with respect to the discrete and continuum analytical solutions from Sec. 1. The cubic spline kernel (Eq. 34) is used, and all the simulations are conducted in the limit of ∕ → 0. Where 2 = ∕2000 is a chosen small constant amplitude and is the angular frequency as defined in (Eq. 4). The initial conditions are imposed via the velocity profiles corresponding to the time derivative of (Eqs. 18):

Clamped-clamped (CC):

( , ) = 2 sin cos ( )

Clamped-free (CF):

( , ) = 2 sin (2 -1) 2 cos ( ) (41b) 
For this simulation, the value of ∕ = 0.025 and the first mode = 1 are used. The three first periods of oscillation are shown in (Fig. 5) for CC and (Fig. 6) for CF. From the oscillation period obtained from local minima (Figs. 5a and6a) we calculate = 2 ∕ in (Eq. 4). We plot the longitudinal displacement over time at different positions along the bar (CC -Fig. 5a and CF -Fig. 6a), computed by means of the CSPH method and compared to the analytical solutions (Eqs. 18). Fig. 5b for CC and Fig. 6b for CF, present the velocity over time at the same positions and compared with the analytical solutions (Eqs. 41). Finally, following (Eqs. 38 and 39) we give the total energy evolution over time (CC -Fig. 5c and CF -Fig. 6c) as compared with the analytical solutions (Eqs. 6). It can be seen that the total energy is conserved and we find a very good agreement with the analytical solutions for all variables.

Figs. 5 and 6 confirm that our CSPH framework can reproduce with good accuracy the 1D longitudinal vibration phenomenon. The use of a small ratio ∕ results in a close agreement between the numerical and the analytical solutions without non-local effects, showing that, in this limit, the CSPH method behaves as expected as a simple PDE solver. It is worth mentioning that the values cannot become smaller than the distance between the closest material points, which is a necessary condition for the CSPH to compute neighbour contributions during the smoothing procedure.

Non-local effects using CSPH method

In this part, we assess the capability of the CSPH method to introduce non-local behaviour when adopting finite ∕ values. Also, some insight is given about the role of different variables and conditions on the observed non-local behaviour.

Simulations with ∕ = (1) towards non-local effects

The small scale effects in a longitudinal vibration problem are expected to change the macroscopic properties of the bar, resulting in a slower vibration and thus in a decrease of the dimensionless frequency parameter 2 . Hence, we reconsider a clamped-clamped configuration presented in Fig. 4a, with a ratio ∕ = (1) and for = 1.

The displacement (Fig. 7a) and the velocity (Fig. 7b) evolution presents an increase of the period (thus the angular frequency decreases, as expected). The maximal amplitude of the displacement increases compared to the local analytical case ( ∕ → 0). This is because we impose the same initial conditions by predefining the velocity evolution for all values of ∕ . The amplitudes of displacement and velocity are proportional. Therefore, these results also confirm the prediction of a change in the vibration frequency (softening). What is more, Fig. 7c shows that the total energy of the system remains constant despite the use of a finite value of ∕ , which might have led to a significant numerical dissipation. In addition, we observe that the CSPH approach allows us to explore non-local effects beyond those studied by the Lagrange lattice spring system as summarised by Challamel et al. [START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF] (where the discrete variable = ∕ ≥ 2). Here, ∕ is not only the inverse of , but becomes a continuous variable with the possibility to exceed 1∕2. This observation justifies the adoption of the ratio ∕ as abscissas in the following subsections. Moreover, in the subsequent results and figures, the subscript will be used for all results obtained from the CSPH method. For the analytical solutions, the subscripts , and denote, respectively, the local solution ( 0 = 0) and the analytical discrete and continuum non-local solutions ( 0 > 0).

CSPH simulations with finite and infinite support kernel functions

In the previous subsection, it has been shown that the CSPH method can account for non-local effects when adopting finite ∕ values. Here, we perform multiple simulations to quantify the non-local effects by the variation of the frequency parameter 2 as a function of ∕ . In this context, we check the influence of the choice of the Gaussian and cubic spline kernel functions. We note that the cubic spline function has a finite support length equal to 2ℎ. At the same time, its smoothing length is also equal to 2ℎ. Notwithstanding, it is not the case for the Gaussian function that has a finite smoothing length = 2 √ 2ℎ but an infinite support length (treated by periodic boundary conditions). To compare the response following these two different kernel functions, Fig. 8 shows the variation of 2 with ∕ for = 1 ( for clamped-clamped and for clamped-free boundary conditions).

These results prove that the numerical solution using cubic spline kernel (Eq. 34) presents a very similar behaviour to that with the Gaussian kernel (Eq. 33), in spite of much smaller computing cost due to its finite support length. For both kernel functions, the increase of the parameter ∕ leads to a significant decrease of 2 as compared to the local behaviour (constant value, dashed line). Furthermore, we observe that the best agreement between the CSPH results and the nonlocal analytical solutions is obtained by taking = in (Eqs. 7, 8, 12 and 13). The dots represent the discrete lattice solution which fits better with the CSPH solution for larger ∕ values. The solid lines represent the continuum analytical solution with a development of 2 0 parameter with respect to ∕ to the order ( ∕ ) 0 as showed in Eqs. 19 and 20 and adopted by Challamel et al. in [START_REF] Challamel | Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure[END_REF][START_REF] Challamel | Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models[END_REF]. In addition, we present also the continuum analytical solution (dash-dotted line) with 2 0 of ( ∕ ) 4 order following Eqs. 19 and 20. It is noteworthy that the discrete solutions for 2 from (Eqs. 7 and 8) have a domain limited such as ∕ ∈ ]0; 1∕2] (i.e.

≥ 2). From these results of 2 , we observe a rising difference between the discrete and the 0 ℎ order continua analytical solutions over the increase of ∕ . The numerical CSPH results show a good agreement with the discrete and the 4 ℎ order continua analytical solutions. Also, we note that the analytical form with a higher-order of 0 presents a closer approximation to the lattice discrete analytical solution and good agreement with our numerical model when ∕ → 1.

Effects of initial amplitudes

In the previous subsection, we showed that thanks to CSPH non-local nature, the increase of ∕ leads to a 2 decrease (as a result of the so-called softening effect). On the other hand, Şimşek [START_REF] Şimşek | Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory[END_REF][START_REF] Şimşek | Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach[END_REF] has stated that the increase of the initial displacement amplitude in a vibration phenomenon of a bar raises the longitudinal stretching due to the large deflections, which implies higher vibration frequencies (this phenomenon is called "spring hardening").

Seeking to investigate such adverse effect, we show in Fig. 9 CSPH simulation results with different initial velocity amplitudes 2 (present in Eqs. 41) which lead to different maximal displacements for the following non-local parameter values ∕ = 2.5%, 12.5%, 22.5% and 32.5%. In order to obtain stable solutions for all configurations, we adopt here a higher number of material points = 600. We observed that beyond ∕ ≥ 0.5, the CSPH solutions become unstable. We note that for higher initial velocity amplitudes, the increase of particles was necessary because the very important amplitudes lead to bigger displacements between neighbours, which results in a smaller number of material points inside the support length of the kernel function.

Fig. 9a presents the normalised 2 over the dimensionless quantity ∕ and shows, as expected from the previous section, that for small initial amplitudes ( ∕ → 0), the frequency 2 decreases with the increase of the non-local parameter ∕ . However, increasing initial amplitudes raises the values of 2 for all ∕ configurations, showing that the amplitude value has a preponderant influence in these cases.

Besides, in Fig. 9b we present the dimensionless frequency over the maximal values of displacement , resulting in the infinitesimal strain for a small deformations theory (as described in Liu and Liu [START_REF] Liu | Smoothed particle hydrodynamics (SPH): An overview and recent developments[END_REF]) and the large deformations Green-Lagrange strain obtained with our large deformations CSPH method by solving the Saint Venant-Kirchhoff constitutive model. The behaviour of both strain formulations are qualitatively similar, and, as expected, the effect of large deformations becomes more sensible with a higher ratio of ∕ . These tests confirm that our Total Lagrangian CSPH approach can represent strain ranges where large-deformation conditions are significant. Moreover, it can also present good accuracy and stability in the softening and hardening phenomena due to changing the non-local parameter and the initial velocity amplitude.

Frequency parameter 2 for different eigen modes

After demonstrating the capacity of the CSPH method to introduce non-locality in small and large deformation formulations, our goal is now to investigate further the role of eigen modes. The higher value of , the steeper are the gradients to be solved, so that the numerical method may be inefficient or unstable. For that, we come back to the parameters presented in Table 1 and consider again a constant small amplitude 2 = ∕2000. We obtain 2 parameter for the three first vibration eigen modes through our numerical model and compare it to the discrete (Eqs. 7 and 8) and continuum (Eqs. 12, 13, 19 and 20) analytical solutions. Fig. 10 shows the 2 values in a clamped-clamped boundary condition. In addition, Fig. 11 presents the CSPH results for the clamped-free configuration.

For both boundary conditions, we obtain stable solutions of the CSPH numerical results, and both continua analytical solutions (( ∕ ) 0 and ( ∕ ) 4 ) are quite close to the discrete analytical solutions. As expected from the analytical models, the decrease of the non-local frequency with ∕ ratios is dependent on the vibration eigenmode, being more important for larger values. Also, for higher the difference from this solution appears at lower values of ∕ . These results also highlight the important relative discrepancies of the continuum analytical solutions compared to the discrete analytical solutions for larger ∕ . These differences reach maximum values for = 3 at ∕ = 0.5. It shows that our CSPH model can reach close results to the 4 ℎ order continuum model. It also can well represent such phenomena even in larger values of ∕ .

Stress-based and strain-based non-local models

In this work, we observed that the non-local effect in the CSPH numerical framework comes from its smoothed character that can be applied to any local variable. Thus, based on the constitutive law (Eq. 27), different discretizations of the momentum equation can be generate, for instance: stress-based (Eq. 24) or strain-based (Eq. 42) forms. In this section, we investigate the individual behaviour between these two formulations in the context of non-locality by introducing these method equations into the CSPH integral convolution procedure (Eq. 30). The excellent agreement of results from both CSPH forms confirms the equivalence of these models. Challamel has presented in [START_REF] Challamel | Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models[END_REF] the equivalence between the displacement-based and the strain-based non-local models. Here, our CSPH tool shows that such equivalence is also verified for the stress-based form. Challamel also argued that the incompatibility of the stress-based model in a finite domain is due to the infinite nature of the Gaussian kernel, which does not allow a normalisation in a truncated domain. However, it can be corrected by using periodic boundary conditions. In this work, we adopted a finite support spline kernel and an infinite support Gaussian kernel (with periodic boundary condition), demonstrating that the non-local nature of our numerical CSPH solution is inherent, independently of the variable-based or the finite or infinite kernel support domains.

= 0 ( ) (42) 

Higher-order non-local parameter 0

In this section we come back to the results presented in Sec. 4.2 and Sec. 4.4, but we modify the presentation in order to extract the behaviour of 0 parameter itself. We show in Figs. [START_REF] Challamel | Analytical length scale calibration of nonlocal continuum from a microstructured buckling model[END_REF] non-local parameter 0 (represented here by its inverse squared form -for sake of clearness) for ∕ values for = 1, 2 and 3. These values were obtained by introducing 2 values into 2 from the continuum analytical model (Eqs. 12 and 13).

the

As expected, the non-local parameter found by CSPH tends to the zero-th order error analytical solution (Eqs. 19 and 20), represented by the dashed line, when ∕ → 0. However, when ∕ > 0, the CSPH results show that 2 0 is not constant with ∕ . Thus, we plot also the 2nd and the 4th order expansions of the analytical solution of 2 0 (Eqs. 19 and 20). The highest-order analytical It can be noted some discrepancies around the small values of ∕ . In our code, the material point density is inversely proportional to the smoothing length. Hence, its reduction may generate significant discretisation errors that can be corrected by a higher material point density, demanding though more significant computing cost. Besides, we observe that the adoption of lower-order expansion of 0 in continuum analytical solutions may become a significant source of error.

Concluding remarks

In this paper, we study the numerical properties of the CSPH method for non-local elasticity. The physical laws adopted in our numerical model do not present any additional terms to account for the non-locality, and the scale effect is expected to be carried out by the kernel smoothing, which is a fundamental ingredient of the CSPH method. However, we do not use the CSPH in its classical way (as a mere PDE solver with infinitesimal sizes for the smoothing length of the kernel function), which has a proven convergence with the smoothing scale ℎ → 0, but we explore its properties in a finite ℎ domain. The computations are performed in a 1D bar under longitudinal harmonic vibrations using a mixed normalised-corrected form of the Total Lagrangian CSPH method.

The discrete lattice analytical model, the continuum stress-based gradient model and the continuum continualization model were recalled in order to validate and discuss our numerical results. The obtained results show that the proposed CSPH approach can capture in clamped-clamped and clamped-free boundary conditions problems the expected small-scale influence on vibration frequency with good accuracy and stability for softening effects. In addition, our solver can also capture the hardening effects after the increase of the initial amplitude of vibration. Therefore, we have shown that finite and infinite kernel functions with two distinct formulations for the momentum equation lead to the same responses. The introduction of the Saint Venant-Kirchhoff constitutive model in the Total Lagrangian CSPH approach has also allowed us to represent strain ranges where large-deformation conditions appear. 0 approximations up to ( ∕ ) 4 seems to be the best fit for the CSPH results, both for the non-local parameter itself and also for the frequency parameter 2 .

In our paper, we demonstrated the capability of the CSPH method to capture small scale effects is much larger than the well-known damage localisation as shown in other researches [START_REF] Vignjevic | A treatment of zero-energy modes in the smoothed particle hydrodynamics method[END_REF][START_REF] Vignjevic | SPH in a total lagrangian formalism[END_REF][START_REF] Vignjevic | Sph as a nonlocal regularisation method: Solution for instabilities due to strain-softening[END_REF]. Our methodological study can serve as a starting point to study non-local phenomena with an integral-based CSPH approach which present several numerical advantages such as parallel computing. To better understand the importance of non-local behaviour through SPH, elastic models in higher dimensions deserve to be further investigated. It will also be useful to better analyse the results of CSPH models in more complex and coupled applications, like the gas migration in deformable porous media, where the non-locality may appear due to CSPH nature and to discretisation limitations. The modeling of such a complex phenomenon has been at the heart of this domain in last decades, but it is still poorly understood. Such analysis is a key application in the context of nuclear safety assessment and will be helpful to better describe the response of clayey rocks (represented by elastic materials) coupled to a multiphase flow.

We observe that when the non-local parameter 0 = 0 this model reduces to the local model (Eq. 2). Thus, considering the displacement of a bar in harmonic vibrations after separation of variables (as proposed by [START_REF] Aydogdu | Axial vibration of the nanorods with the nonlocal continuum rod model[END_REF]).

( , ) = ( ) sin( )

A new form of (Eq. 9) in function of ( ), after the introduction of the bar length , is then defined as:

1 - 2 0 2 2 2 2 + 2 2 = 0 (62) 
from what, we identify the dimensionless frequency parameter 2 = 2 2 , such as:

2 2 2 + 2 1 -2 0 2 2 = 0 (63) 
Thus, introducing a new dimensionless parameter:

2 = 2 1 -2 0 2 2 (64) 
It results in the following reduced form of the non-local wave equation:

2 2 2 + 2 = 0 ( 10 revisited) 
The second degree differential (Eq. 10) yields to a solution of form:

( ) = 1 cos( ) + 2 sin( ) ( 11 

revisited)

Clamped-clamped boundary conditions: Adopting the boundary conditions for a bar fixed at both extremities:

(0, ) = ( , ) = 0 (65) 
where the complete expression of the displacement along the bar is given by:

( , ) = [ 1 cos( ) + 2 sin( )] sin( ) (66) 
Applying the boundary conditions (Eq. 65) into (Eq. 66), 1 = 0 and 2 sin( ) = 0. It results that = , where = 1, 2, 3... denotes the vibration eigen modes. It leads to a non-local formulation of the 2 frequency parameter: Clamped-free boundary conditions: Now, considering a clamped-free boundary condition configuration:

(0, ) = 0 (67a) ( , ) = 0 (67b)
where the complete expression of the the axial force ( , ) along the bar reads:

( , ) = = [- 1 cos( ) + 2 sin( )] sin( ) (68) 
After introducing (Eq. 67a) into (Eq. 66) we obtain 1 = 0. In the following, introducing (Eq. 67b) into (Eq. 68) led to 2 cos( ) = 0. It yields that = (2 -1) 2 , resulting in a non-local form of the 2 frequency parameter for a CF configuration: 

D. Appendix: Accuracy analysis of the mixed normalised and corrected SPH

Particle disorder and truncated boundaries are well-known SPH drawbacks. Sigalotti et al. [START_REF] Sigalotti | On the kernel and particle consistency in smoothed particle hydrodynamics[END_REF] observed that a loss accuracy in SPH is mainly due to a loss of consistency, where the accuracy depends only on the number of particles within the smoothing length and does not depend on the smoothing length itself. The ensured order of consistency leads to the + 1 order of accuracy. The first condition that ensures the 0 ℎ order consistency on a kernel function was presented in Eq. (32b). Quinlan et al. [START_REF] Quinlan | Truncation error in mesh-free particle methods[END_REF] developed a truncation error analysis to study the influence of the smoothing length ℎ and the ratio of particle spacing to the smoothing length Δ ℎ on consistency order. They observed that the non-uniform distribution of particles increases the discretization error in SPH. Liu and Liu [START_REF] Liu | Restoring particle consistency in smoothed particle hydrodynamics[END_REF] showed that the 1 order consistency can be ensured if condition presented in Eq. (32c) is respected. For that, Liu et al. [START_REF] Liu | Reproducing kernel particle methods for structural dynamics[END_REF] followed by Bonet and Lok [START_REF] Bonet | Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[END_REF] have proposed by introducing a corrected kernel form (here denoted by a over-text ∼) fulfilling the following conditions:

̂ ∑ =1 ̃ = 1 (69a) ̂ ∑ =1 ̃ = 0 (69b) 
Aiming to ensure the 1 order consistency, ̃ is redefined in the following general form dependent on functions ( ) and Φ( ):

̃ = ( ) 1 + Φ( ) ⋅ (70) 
Introducing the corrected kernel presented above into Eq. (69b) leads to:

̂ ∑ =1 ( ) 1 + Φ( ) ⋅ = 0 (71) 
Φ( ) and ( ) are obtained, respectively, by rearranging Eq. ( 71) and replacing it into Eq. (69a), such that:

Φ( ) = - ̂ ∑ =1 ⊗ -1 ̂ ∑ =1 (72a) ( ) = ̂ ∑ =1 1 + Φ( ) ⋅ -1 (72b) 
This new interpolation function can ensure the angular momentum conservation since respecting the following condition:

̂ ∑ =1 ∇ ⊗ = 1 (73) 
However, given the dependency of and Φ on , this form is computationally expensive to calculate. Thus, a simpler formulation, so-called Shepard's interpolation [START_REF] Bonet | Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[END_REF], that considers Φ( ) = 0 is adopted as following:

̃ = ∑ ̂ =1 (74) 
Although this correction can ensure a 0 ℎ order consistency without expensive computations, it cannot ensure the angular momentum conservation. This issue will be treated through a kernel gradient correction. Thus, seeking to restore the first order consistency and to ensure the angular momentum conservation of the kernel derivatives, we recall the correction procedure presented by Randles and Libersky [START_REF] Randles | Smoothed particle hydrodynamics: Some recent improvements and applications[END_REF], that uses a matrix function of the gradient of the kernel function ( ), applied to the original gradient, such as:

∇ = ∇ (75) 
where the correction matrix is computed as:

(∇ ) = ̂ ∑ =1 ∇ ⊗ -1 (76) 
This correction is then able to ensure the necessary condition presented in Eq. [START_REF] Vila | Nonlinear continuum models for the dynamic behavior of 1D microstructured solids[END_REF]. In order to correct drawbacks due to underpopulated or truncated support domains in gradient calculations, the gradient of the corrected kernel form is calculated by applying the quotient rule to the Shepard's interpolation (Eq. 74 -as presented by Bonet and Lok [START_REF] Bonet | Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[END_REF]).

∇ ̃ = ∇ ∑ ̂ =1 - ∑ ̂ =1 ∇ ∑ ̂ =1 2 (77) 
Modeling non-local elasticity in 1D vibrating rods using Corrected Smoothed Particle Hydrodynamics method Point Method ∕ error (%) (0.5,0.5) Analytical solution 0.0291 -CSPH 0.0288 1.03 ULPH [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF] 0.0286 1.72 SPH [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF] 0.0285 2.06 MPS [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF] 0.0287 1.37

Table 2

Comparison between analytical solution, CSPH and different particle methods (from [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF]) with 421 uniform distributed particles.

As showed in Eq. ( 76), the correction matrix depends on the kernel gradient function ∇ , thus, the term ∇ ̃ = (∇ ̃ ) ∇ ̃ must be constructed in order to ensure the mixed normalisation and correction of the kernel function and its gradient. Such correction is capable to ensure the angular moment conservation and restore the 1 order consistency in SPH simulations.

Recently, Yan et al. [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF] proposed a comparison between different particle methods: Updated Lagrangian Particle Hydrodynamics (ULPH), Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS). In the present paper, we adopt the mixed normalised and corrected Smoothed Particle Hydrodynamics method (CSPH). The common point between these methods is the use of a kernel function (improved Gaussian for ULPH, SPH and MPS, and cubic spline for CSPH), with the smoothing scale ℎ = 1.2Δ and Δ the grid size.

[79] proposed to study the interpolation error of the gradient field of the following hyperbolic secant function in two dimensions: 

Seeking at reproducing the validation test propose by Yan et al. [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF], a square domain was discretised in 441 material points with uniform distribution (21x21 particles). Due to the fact we do not have the exact input data of spacial coordinates of the irregular distribution, we do not compare this case. In Tab. 2, numerical results the the gradient operator obtained by our mixed normalised and corrected CSPH is then compared to the numerical results found in Yan et al. [START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF] and the analytical solution (Eq. 79) for the particles located at point (0.5,0.5).

In the following, we compute the global interpolation error of the given function ( 2 -norm) by means of the root mean square error (RMSE):

RMSE( ) = √ √ √ √ ̂ ∑ =1 - ̂ ( 80 
)
In order to verify the convergence rates following the different particle methods, we increase the method 
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 3 Figure 3: One dimension SPH principle with weighted neighbours contribution following the smoothing kernel function with finite domain (e.g. cubic spline).

  Clamped-free boundary conditions.
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 4 Figure 4: CSPH bar system.

  (a) Analytical local displacement (Eq. 18a) x CSPH results for CC configuration. (b) Analytical local velocity (Eq. 41a) x CSPH results for CC configuration. (c) Analytical global kinetics and elastic energy (Eqs. 6) x CSPH results for CC configuration.
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 5 Figure 5: Displacement, velocity and energy evolution in CSPH results with ∕ = 2.5%.

  (a) Analytical local displacement (Eqs. 18b) x CSPH results for CF configuration. (b) Analytical local velocity (Eq. 41b) x CSPH results for CF configuration. (c) Analytical global kinetics and elastic energy (Eqs. 6) x CSPH results for CF configuration.
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 6 Figure 6: Displacement, velocity and energy evolution in CSPH results with ∕ = 2.5%.
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 7 Figure 7: CSPH method results for ∕ = (1) in a clamped-clamped configuration for the first vibration mode = 1.

  (a) Clamped-clamped configuration: Frequency parameter 2 found through CSPH versus discrete (Eq. 7) and continuum (Eqs. 12 and 19) analytical solutions.(b) Clamped-free configuration: Frequency parameter 2 found through CSPH versus discrete (Eq. 8) and continuum (Eqs. 13 and 20) analytical solutions.
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 8 Figure 8: Study of the dimensionless frequency parameter 2 compared to analytical discrete and continua solutions for two different kernel functions, = 1.

  (a) Normalised frequency 2 for increasing velocity amplitude ratios ∕ in large deformations description. (b) Normalised frequency 2 for different maximal values of small and large deformations longitudinal strains.
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 9 Figure 9: Study of the dimensionless frequency parameter 2 for different initial velocity amplitudes and = 1.
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 10 Figure 10: Clamped-clamped configuration: Normalised 2 obtained by CSPH, discrete (Eq. 7) and continuum (Eqs. 12 and 19) analytical solutions by increasing the ratio ∕ for for k=1,2 and 3.

Fig. 12

 12 Fig.12presents the dimensionless frequency parameter 2 for clamped-clamped and Fig.13for clamped-free configurations for two different momentum equation forms: stress-based and the strain-based.
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 11 Figure 11: Clamped-free configuration: Normalised 2 obtained by CSPH, discrete (Eq. 8) and continuum (Eqs. 13 and 20) analytical solutions by increasing the ratio ∕ for for k=1,2 and 3.
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 12 Figure 12: Clamped-clamped configuration: Strain and stress-based behaviour of the dimensionless frequency parameter 2 following strain and stress-based momentum equations for the three first eigen modes.
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 13 Figure 13: Clamped-free configuration: Strain and stress-based behaviour of the dimensionless frequency parameter 2 following strain and stress-based momentum equations for the three first eigen modes.

Figure 14 :

 14 Figure 14: Sensibility analysis of the non local parameter 0 by increasing the ratio ∕ for k=1,2 and 3.
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 15 Figure 15: The RMSE of the x-spatial gradient of function (from Yan et al. [79]).

  material point number from 421 to 251001, keeping a regular distribution into the domain ∈ [-1, 1] and ∈ [-1, 1]. The results obtained are shown in Fig.15, where the conventional SPH method presented a positive slope (diverging from the analytical solution as highlighted by Yan et al.[START_REF] Yan | Updated lagrangian particle hydrodynamics (ulph) modeling and simulation of multiphase flows[END_REF]). On the other side, the ULPH, MPS and CSPH presented increasing convergence rates, with the present mixed normalised and corrected CSPH showing the best accuracy and convergence rate between the compared results.The presented results attest the convergent character and good accuracy of our CSPH solver when compared to analytical solutions and other numerical models.CRediT authorship contribution statementRafael C. Deptulski: Data curation, Software, Writing -Original draft preparation. Magdalena Dymitrowska: Data curation, Software. Djimédo Kondo: Conceptualization of this study, Methodology.
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 1 Input data for 1D bar CSPH simulations.
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A. Appendix: Discrete lattice model elements

Based on Goldberg's [START_REF] Goldberg | Introduction to difference equations: with illustrative examples from economics, psychology, and sociology[END_REF] solution for a finite difference value problem (also resumed in [START_REF] Challamel | Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua[END_REF]), we write the following auxiliary form of (Eq. 3) where = Ψ :

We define such as:

The equation [START_REF] Lagrange | Méchanique Analitique. Desaint[END_REF] admits two solutions:

with = √ -1. Then, considering the Moivre's theorem adapted to this problem:

We can write, with respect to its real part, the discrete displacement from (Eq. 3) of a -th particle .

= 1 cos( ) + 2 sin( )

where 1 and 2 are arbitrary constants.

Clamped-clamped boundary conditions: Adopting the boundary conditions clamped at both extremities:

1 = 0 by applying the boundary conditions (Eq. 47) to (Eq. 5). Thus, noting that ( + 1) = ∕ , it leads to:

where = 1, 2, 3... denotes the vibration eigen modes. Considering the trigonometric identity:

The introduction of (Eq. 48) into (Eq. 5) leads to a non-local form for the 2 frequency parameter:

revisited) method

Clamped-free boundary conditions: Adopting the clamped-free boundary conditions configuration:

where is the axial force at the mass of the free end. Applying the boundary conditions (Eq. 50) into (Eq. 5) we get 1 = 0. Considering = ∕ , it results in:

Considering again the same trigonometric identity:

and introducing (Eq. 51) into (Eq. 44) we obtain the non-local form for the 2 frequency parameter for this case:

B. Appendix: Matching procedure from discrete lattice model to continuum gradient model

Based on the matching procedure from the discrete lattice model that resulted in the continuum gradient model as presented by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF], consider the discrete Born-Kármán lattice model for the clampled-clamped (CC) boundary condition. The Taylor expansion of the discrete frequency parameter 2 (Eq. 7) at a/L=0 reads:

We note that this same expression is presented in (Eq. 3.21) of Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] and when the ratio = 0 it leads to a local value 2 = ( ) 2 . This expanded frequency parameter can also be rewritten through a Padé approximation [0,6] [66] in function of the non-local parameter 2 0 as presented in the continuum model, such as:

We also remark that the expanded form of the discrete frequency parameter 2 matches exactly with its counter-part continuum frequency parameter 2 (present in Sec. 1.2.1). In addition, we can write the following general higher-order continuum non-local wave equation: method where the constants = 1 12 , = 1 240 , = 1 6048 and denotes a differential operator and the superscript (.) its n-th order (e.g. (2) = 2 ∕ 2 ). Thus, considering a second-order Taylor's expanded form of 2 , as proposed by Kunin [41], Eringen [START_REF] Eringen | Theory of nonlocal elasticity and some applications[END_REF], we obtain the matching form as follows:

from which the following 2nd-order continuum non-local wave equation reads:

with = 1 12 and = 1 240 . In addition, we can then obtain a simpler 0th-order form from this calibration procedure between discrete and continuum models (as adopted by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]), such as:

It results in the 0nd-order continuum non-local wave equation of form:

where = 0 relates the non-local wave equation (Eq. 9).

C. Appendix: Non-local stress gradient model elements

The non-local stress gradient model, as proposed by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF], relates the local and the non-local force quantities:

where 0 is a dimensionless material parameter and is an internal characteristic length. Thus, combining the non-local relation (Eq. 60) and the non-local versions of (Eqs. 1 and 2) we obtain a non-local form of the wave equation (as detailed by Aydogdu [START_REF] Aydogdu | Axial vibration of the nanorods with the nonlocal continuum rod model[END_REF] and Challamel et al. [START_REF] Challamel | A dispersive wave equation using nonlocal elasticity[END_REF]): • In a 1D vibration problem, CSPH results show an excellent agreement with the analytical discrete lattice solution. It compares well to two analytical continuum elasticity solutions: stress gradient and continualized models for different order approximations.

• We demonstrate the CSPH invariance by using finite or infinite domain kernel functions and by non-locality characterisation between stress-based and strain-based gradients.