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Abstract 
In order to describe droplet spatial distribution in a spray, a numerical study is carried out to 

firstly, analyse theoretically distributions which could be used to model droplet spatial 

distribution and secondly, to investigate the influence of acquisition parameters of the optical 

Mie scattering measurement technique on the experimental characterization of droplet spatial 

distribution. To this end, the first four moments of the probability density function are compared 

for the randomly uniformly distribution, the inhomogeneous Poisson distribution and the 

preferential segregation distribution. Furthermore, a parametric study based on laser sheet 

thickness and image resolution is performed to determine their influence on droplet spatial 

distribution. Results show that the first four moments of the inhomogeneous Poisson and the 

preferential segregation distributions deviate from their theoretical values based on randomly 

uniformly distribution. Moreover, it is shown that the acquisition and the processing of Mie 

scattering images acquired from a spray in a three dimensional flow leads to bias on the 

probability density function and the characterization of the droplet spatial distribution.  
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Nomenclature and Units 
 

Latin symbols  

𝐺 Group combustion number [-] 

𝐿𝑒 Lewis number  [-] 

𝑆𝑐 Schmidt number [-] 

𝑅𝑒 Reynolds number [-] 

𝑁 Number of droplets  [-] 

𝑑 Droplet diameter [m] 

𝐷𝑖 Mean distance between droplet barycentre [m] 

𝑛 Droplet density number [m-3] 

𝑟𝑓  Radius of the flame which surrounds a droplet [m] 

𝑑𝑛𝑛 Nearest-neighbour inter-droplet distance [m] 

𝑑𝑛𝑛 Mean nearest-neighbour inter-droplet distance [m] 

𝑁𝑑 Number of droplets in the computational volume [-] 

𝐿 Side length of the cubic computational volume [m] 

𝑒 Slice thickness  [m] 

𝑁𝑠 Number of slices [-] 

𝑆𝑡 Stokes number [-] 

𝑆𝑡𝑐 Critical Stokes number [-] 

𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 The relative difference between the nearest-neighbour inter-droplet distance 

calculated inside the computational volume and the nearest-neighbour inter-

droplet distance calculated on the image after the 3D-2D transition [-] 

𝑅 Image resolution [m-1] 

 

 

Greek symbols 

𝛼 Dimensionless mean of the nearest-neighbour inter-droplet distance distribution [-] 

𝛽 Dimensionless standard deviation of the nearest-neighbour inter-droplet distance 

distribution [-] 

𝛿  Dimensionless skewness of the nearest-neighbour inter-droplet distance distribution

 [-] 

𝜖  Dimensionless kurtosis of the nearest-neighbour inter-droplet distance distribution

 [-] 

𝜎𝑑𝑛𝑛 Standard deviation of the mean nearest-neighbour inter-droplet distance [µm²] 

𝜂 Droplet regular distance [m] 

𝜏𝑘 Kolmogorov time scale [s] 

𝜏𝑝  Particle relaxation time [s] 

(Δ𝑛)𝑎𝑑𝑖𝑚 dimensionless droplet density number gradient [-] 

Δ(𝑝𝑥) Size of a pixel [m] 

 

 

Subscripts and superscripts 

2𝐷 Two dimensions 

3𝐷 Three dimensions 

 

 

Acronyms 

PLIF Planar Laser Induced Fluorescence 
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ILIDS Interferometry Laser Imaging for Droplet Sizing 

LACOM Laboratoire de Combustion Multiphasique  

PIV Particles Image Velocimetry  

HC Hertz-Chandrasekhar 

DNS – DPS  Direct Numerical Simulation coupled with Discrete Particle Simulation  

PDF Probability Density Function   
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1 Introduction 
Gaseous combustion inside a combustion chamber has been studied for decades due to 

its importance in several industrial applications. In aeroengines, liquid fuel is injected into the 

combustion chamber as a spray in order to increase heat and mass transfer surfaces between 

fuel and oxidizer, and thus, improves combustion efficiency. Nevertheless, spray combustion 

requires a specific attention because it involves a two-phase flow where many phenomena such 

as atomization, droplet dispersion by turbulence or spray evaporation affect the combustion 

process and interact with each other. Among all these questions, a point of interest is to 

determine the influence of the collective effects between droplets on their evaporation and 

combustion. 

In order to better understand the spray combustion, many theoretical, numerical and 

experimental studies have been conducted about both academic and more realistic 

configurations. Experimentally, seminal works provided by Godsave (1953) and Spalding 

(1953) are focused on the ideal case of an isolated droplet burning in a quiescent atmosphere. 

Nonetheless, isolated droplet is not representative of a spray. To be more realistic, complexity 

has been gradually added by studying monodispersed droplet streams (Labowsky 1976; 

Silverman et al. 1994; Orain et al. 2005) and polydispersed spray (Li et al. 1993; Chen et al. 

1997; Mikami et al. 2009). In parallel, several models have been developed in order to describe 

more accurately spray evaporation and combustion in attendance of convective effects 

(Williams 1973; Abramzon et al. 1989; Jiang et al. 1995; Sirignano 2014). Moreover, some 

research groups have proposed theoretical models in order to describe better spray evaporation 

and combustion. We can mention Chiu and co-workers (Suzuki et al. 1971; Chiu et al. 1977, 

1982) which have used parameters such as inter-droplet distance and droplet diameter to 

describe and model the evaporation and the combustion of a monodisperse spray where droplets 

are distributed according to a simple regular grid. As a result, the “group combustion theory” 

has been proposed where droplets can burn according to four combustion regimes: single 

droplet combustion, internal group combustion, external group combustion and external sheath 

combustion. These regimes are determined from the group combustion number G defined by: 

 

𝐺 =
1.5𝐿𝑒 ∗ (1 + 0.276 ∗ 𝑆𝑐

1
3 ∗ 𝑅𝑒

1
2) ∗ 𝑁

2
3 ∗ 𝑑

𝐷𝑖
  

(1-1) 

 

where 𝐿𝑒, 𝑆𝑐 and 𝑅𝑒 are, respectively, the Lewis, the Schmidt  and the Reynolds numbers, 𝑁 

represents the total number of droplets contained in the group, 𝑑 is the droplet diameter and 𝐷𝑖 
is equal to the mean distance between droplet barycentre. 𝐷𝑖 is deduced from the droplet density 

number of the group 𝑛. In the 2000’s, Réveillon et al. (2005) performed direct numerical 

simulation of dilute spray and proposed some improvements to this theory. We could also 

mention Kerstein et al. (1982) which proposed the “percolate combustion model” for a partially 

premixed flow where three combustion regimes can be distinguished. Each regime is defined 

according to the following criterion:  

 

𝑆 = 𝑛𝑣

1
3 ∗ 𝑟𝑓 =

𝑟𝑓

𝛿𝑠
  

(1-2) 

 

where 𝑛𝑣 is the droplet number density, 𝑟𝑓 is the radius of the flame which surrounds a droplet 

and 𝛿𝑠 is the distance between two droplets. The value of S defines the combustion regime. For 

𝑆 < 0.41, the configuration corresponds to a dilute spray where small groups of droplets are 

surrounded by flames. For 𝑆 > 0.73, the configuration is that of a dense spray where pockets 



5 

of gas are surrounded by flames. In the intermediate combustion regime, both previous 

situations occur. The isolated droplet combustion regime is reached as a particular regime when 

𝑆 tends to zero. 

In these theoretical models, it is usually assumed that the droplet spatial distribution is 

fixed as a simple regular grid distribution, so the droplets are regularly arranged in the spray, 

and the droplet distance is deduced from the mean density of droplet in the spray (Chiu et al. 

1982; Paulhiac 2015). These assumptions have been used in several numerical simulations and 

experiments. For example, in the numerical study of multi-droplet arrays by Imaoka et al. 

(2005) and the experimental study by Chauveau et al. (2006), droplets are regularly arranged 

along the edges of a cube in order to understand the influence of the droplet localisation in the 

group and the inter-droplet distance on their evaporation and combustion. Results show that the 

ambient temperature, the number of droplets in the array and their localisation as well as the 

distance between droplets have an influence on their evaporation and combustion. However, 

this assumption of a simple regular grid distribution is an oversimplification of the real spatial 

droplet distribution in a spray. For this reason, it is important to be able to describe more 

precisely the droplets distribution in a spray. A brief literature survey shows that this issue is 

also relevant to a variety of research fields. This includes, for example, meteorology, in the 

context of cloud formation (Kostinski et al. 2001; Shaw et al. 2002) or astrophysics, for stellar 

dynamics (Chandrasekhar 1943). For the last quoted, a theoretical uniform random distribution 

law, also called Hertz-Chandrasekhar law (Hertz 1909; Chandrasekhar 1943), has been 

proposed in order to describe the motion of stars from the average distribution of the other 

distant stars.  

However, these models are only theoretical and, so far, only a few studies are in the 

open literature attempt to verify their predictions. Numerically, Squires et al. (1991) and Février 

et al. (2001) have studied the influence of the turbulence on particle distribution in a turbulent 

flow. Results highlight the emergence of a phenomenon of preferential segregation and show 

that this effect does not rely on a specific turbulent scale in the flow but rather on the response 

time of the particle. Experimentally, Sahu et al. (2014, 2016, 2018) have realized one of the 

most comprehensive study to attempt to describe and understand the interactions between the 

turbulent flow, the droplet spatial distribution and the droplet evaporation. They have used 

simultaneously the optical laser techniques of Interferometry Laser Imaging for Droplet Sizing 

(ILIDS) and Planar Laser Induced Fluorescence (PLIF) to investigate a non-evaporating water 

spray and an evaporating acetone spray at atmospheric pressure and ambient temperature. This 

works provides correlations between spray density, vapour mass fraction and droplet velocity 

and size. Moreover, the authors have found that the vapour spatial concentration was 

heterogeneous in the flow and connected to the presence of droplet clusters. Finally, it is 

interesting to note that they have used a parameter 𝐺𝑣, which corresponds to the group 

evaporating number defined in Chiu’s theory.  

In order to study spray behaviour under reactive and non-reactive conditions, the 

experimental test rig PROMETHEE has been developed at the ONERA (Vicentini 2015; 

Rouzaud et al. 2016). This facility provides flow conditions close to those encountered inside 

aero-engine combustion chamber. In the studies carried out later on PROMETHEE data 

(Rousseau et al. 2021; Rouzaud et al. 2021), the authors are especially interested to the nearest-

neighbour inter-droplet distance which represents the smallest Euclidian distance between a 

droplet and its nearest-neighbour in the spray. They show that, for non-reactive and reactive 

conditions, a linear relationship between the inverse square root of the droplet density number 

and the mean (resp. standard deviation) nearest-neighbour inter-droplet distance exists, 

although with different slopes. Moreover, the study of the dimensionless mean of the nearest-

neighbour inter-droplet distance distribution 𝛼 and the associated standard deviation 𝛽, 

demonstrates that the experimental droplet spatial distribution, obtained from Mie scattering 
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images, is close to the theoretical 2D uniformly randomly distribution at least for droplet density 

number over 100 droplets per cm². In addition, in order to compare theoretical distribution with 

experimental results, Rousseau et al. (2021) shows the evolution of the mean nearest-neighbour 

inter-droplet distance and the standard deviation according to the mean droplet density number 

by means of a scatter plot, also called mean (resp. standard deviation) dnn – droplet density 

diagrams. The slope of the scatter plot corresponds to 𝛼 (resp. 𝛽). From these diagrams, the 

authors have observed two different regions. The first one corresponds to high droplet density 

numbers and the scatter plot is almost perfectly aligned on the random 2D Hertz-Chandrasekhar 

distribution. The second one corresponds to low droplet density numbers and there is a slope 

discontinuity where the scatter plot deviates from the 2D Hertz-Chandrasekhar distribution and 

its spreading increases. The origin of this discrepancy has not been clearly identified but the 

authors suggest two possibilities. Firstly, the planar Mie scattering technique provides only two-

dimensional images. Therefore, calculating the nearest-neighbour inter-droplet distance, or any 

distance, from the images implies necessarily some approximations since the transversal 

dimension is not taken into account. Secondly, Rouzaud et al. (2016, 2021) and Boutsikakis 

(2020) show that preferential segregation effects have also an influence on 𝛼 and 𝛽 and thus 

can impact the scatter plot of the dnn – density diagram.  

This short review shows that the droplet spatial distribution is an essential information 

for theoretical models and for numerical and experimental studies about evaporation and 

combustion phenomena in a spray. Having in mind the characterization of the droplet spatial 

distribution in a spray, this paper focuses on two specific objectives. The first one is to compare 

theoretically the Hertz-Chandrasekhar distribution, the inhomogeneous Poisson distribution 

and the preferential segregation distribution, which may be used to describe the droplet spatial 

distribution in a spray. Their first four moments and their probability density function are 

studied in order to see how they could be useful to distinguish experimentally these three 

distributions. The second objective is to study the influence of some experimental acquisition 

parameters, specific to optical measurement technique, on the characterization of the droplet 

spatial distribution. The attention is focused on the Mie scattering techniques and its image 

processing developed by Rousseau et al. (2021). The influence of the laser sheet thickness and 

the image resolution are studied. 

The paper is organised as follow. The first part is dedicated to the presentation of the 

theoretical laws used to define the distributions studied. Afterwards, the experimental and 

numerical databases and the data processing employed in this study are described. In the second 

part, the comparison of the Hertz-Chandrasekhar, inhomogeneous Poisson and preferential 

segregation distributions is firstly shown. Then comes the study of the influence of the laser 

sheet thickness on the Hertz-Chandrasekhar distribution and on the preferential segregation 

distribution. The third part is devoted to the parametric study of the image resolution according 

to droplet density number in order to see the influence of this parameter on the characterization 

of the 2D Hertz-Chandrasekhar distribution. Finally, to show an example of application on 

experimental results, a section is dedicated to a preliminary study of the droplet spatial 

distribution characterization for the experimental Mie scattering image data for a reactive case. 

The paper ends with a summary of the main findings and the perspectives.   
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2 Materials and methods 
 

2.1 Mathematical tools to describe droplet spatial distribution  
 

2.1.1 Characterisation of a distribution  
With the aim of characterizing a spray, it is interesting to consider its nearest-neighbour 

inter-droplet distance (named dnn throughout the paper), possibly at a local scale, and its spatial 

distribution. The dnn represents the smallest Euclidian distance between a droplet “𝑑” and its 

nearest-neighbour “𝑑∗” and is expressed in the three-dimensional case as: 

 

𝑑𝑛𝑛3𝐷
𝑑  =  √(𝑥𝑑 − 𝑥𝑑∗)2 + (𝑦𝑑 − 𝑦𝑑∗)2 + (𝑧𝑑 − 𝑧𝑑∗)2   

(2-1) 

 

 

 

or, in the two-dimensional case as: 

 

𝑑𝑛𝑛2𝐷 = √(𝑥𝑑 − 𝑥𝑑∗)2 + (𝑦𝑑 − 𝑦𝑑∗)2  
(2-2) 

 

Hereinafter, we describe the probability density function (pdf) of the nearest-neighbour 

inter-droplet distance 𝑑𝑛𝑛 inside a spray. In order to do so, the values of the first four moments 

will be calculated in the subsequent paragraphs.  

 

According to Lumley (1970), the values of the first four moments give information 

about the shape of the pdf. While the first moment provides the mean value of the distance 𝑑𝑛𝑛, 

the second moment 𝜎𝑑𝑛𝑛 gives information about the width of the pdf. The third moment 

corresponds to the “skewness” 𝛿𝑑𝑛𝑛 and its value enables to know if the density function is 

symmetrical or asymmetrical. If  𝛿𝑑𝑛𝑛 is equal to zero, the pdf is symmetrical. If 𝛿𝑑𝑛𝑛 is 

positive, the tail which represents larger values than the mean is larger than the tail which 

represents lower values and conversely when 𝛿𝑑𝑛𝑛 is negative. Finally, the fourth moment 

corresponds to the “kurtosis” 𝜖𝑑𝑛𝑛 and represents the spreading of the tails toward low and high 

values. The pdf of the different 𝑑𝑛𝑛 distribution presented in the paper will be compared to the 

theoretical law proposed by Hertz-Chandrasekhar (Hertz 1909, Chandrasekhar 1943) thanks to 

these four first order moments. 

 

2.1.2 Theoretical laws 
The regular grid distribution supposes that droplets are regularly arranged inside the 

spray. This distribution is commonly used in several theoretical or computational studies like 

those of Chiu et al. (1977) or Paulhiac (2015) but is very far from any true experimental 

distribution and will not be considered in this paper. Moreover, Rouzaud et al. (2021) and 

Rousseau et al. (2021) have shown that their experimental results are closer to the Hertz-

Chandrasekhar distribution (HC). The HC dnn distribution is derived for a uniform random 

independent distribution of particles associated to the Poisson distribution of the droplet density 

number: 

 

𝑃(𝜆, 𝑘) =
𝜆𝑘

𝑘!
exp(−𝜆) 

(2-3) 
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where 𝑘 is the number of droplets enclosed in a volume, ! is the factorial function, 𝜆 is the mean 

droplet number enclosed in the volume which corresponds to the product of the mean droplet 

density number and the volume and 𝑃(𝜆, 𝑘) the probability to find 𝑘 droplets when the mean 

droplet number is equal to 𝜆.  

 

In the three-dimensional case (3D), the first four moments of the HC distribution can be 

expressed according to the following relationships: 

 

{
 
 

 
 𝑑𝑛𝑛3𝐷 = 𝛼3𝐷 × 𝑛3𝐷

 − 
1
3

𝜎𝑑𝑛𝑛3𝐷 = 𝛽3𝐷 × 𝑛3𝐷
 − 
1
3

𝛿𝑑𝑛𝑛3𝐷 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝜖𝑑𝑛𝑛3𝐷 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 
(2-4) 

 

where 𝑛3𝐷  is the mean 3D droplet density number, 𝛼3𝐷 the corresponding 3D dimensionless 

mean value of the  pdf, 𝛽3𝐷 the 3D dimensionless standard deviation of the pdf,  𝛿𝑑𝑛𝑛3𝐷 the 

skewness and 𝜖𝑑𝑛𝑛3𝐷 the kurtosis. These last two values do not depend on the volume droplet 

density number. In order to study distribution of cluster, Milchev (1994) considers stochastic 

properties and proposes an expression for the dimensionless mean value in three and two 

dimensions. To complete the definition of these dimensionless parameters, after some algebraic 

calculations the values of the dimensionless parameters are equal to: 

 

{
 
 
 
 
 

 
 
 
 
 

𝛼3𝐷 = Γ(
4

3
) × (

3

4𝜋
)

1
3
≈ 0.5539

𝛽3𝐷 = (
3

4𝜋
)

1
3
× (Γ (

5

3
) − Γ (

4

3
)
2

)

1
2

≈ 0.2013

𝛿𝑑𝑛𝑛3𝐷 =
3Γ(2)

4𝜋𝛽3
−
3𝛼3𝐷
𝛽3𝐷

− (
𝛼3𝐷
𝛽3𝐷

)
3

≈ 0.1788

𝜖𝑑𝑛𝑛3𝐷 = Γ(
7

3
) ×

(
3
4𝜋)

4
3

𝛽3𝐷
4 −

3𝛼3𝐷Γ(2)

𝜋𝛽3𝐷
4 +

6𝛼3𝐷
2

𝛽3𝐷
2 + 3 (

𝛼3𝐷
𝛽3𝐷

)
4

≈ 2.6659

 
(2-5) 

 

The same approach stands in the two-dimensional case and the first four moments of 

the 2D dnn distribution are similarly expressed but using the 2D mean droplet density number 

𝑛2𝐷. The values of the dimensionless parameters are approximated as: 

 

{
 

 
𝛼2𝐷 ≈ 0.50
𝛽2𝐷 ≈ 0.2613
𝛿𝑑𝑛𝑛2𝐷 ≈ 0.6343

𝜖𝑑𝑛𝑛2𝐷 ≈ 3.2377

 
(2-6) 
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2.2 Experimental database 
 

2.2.1 Experimental test rig and operating conditions 
In order to study experimentally the spray behaviour under non-reacting and reacting 

conditions, the experimental test rig PROMETHEE (Figure 1) has been developed and installed 

on the ONERA LACOM test facility. The flow configuration has been designed to provide flow 

conditions close to those encountered inside a gas turbine combustion chamber. A full 

description of this experimental rig has been previously done (Vicentini 2016; Rouzaud et al., 

2021) so only a brief description is given here. The LACOM facility enables to supply an air 

mass flow up to 1 kg.s-1 at a maximal temperature of 900 K and a sonic nozzle is used to 

measure the mass flow rate value. The maximal liquid fuel mass flow rate is equal to 100 g.s-1 

and the liquid is injected inside the circuit at the ambient temperature. Between its entrance in 

the circuit and its injection inside the combustion chamber by the injector, the liquid is heated 

through conduction by the air flow. A Coriolis flow controller provides the actual mass flow 

rate value during the experiments. The reference combustion chamber has a rectangular shape 

with an internal square section of 120 x 120 mm² and is cooled by a water circuit under reacting 

conditions. Its four walls are equipped with UV–transparent fused silica windows in order to 

allow non–intrusive optical measurement. To initiate the combustion, a hydrogen–oxygen torch 

device is used to ignite the fuel–air mixture. Finally, the burnt gases flow into the exhaust pipe 

where they are cooled down by means of a water injection shower prior to their ejection in the 

atmosphere. 

 

Concerning the PROMETHEE test rig, a flow generator located downstream of the 

sonic nozzle creates a turbulent flow of which the turbulence level is controlled by using several 

grids. A trapezoidal-shape bluff-body is placed at the entrance of the combustion chamber and 

is used as a flame holder. It also serves to support the flat-fan spray nozzle for the liquid fuel 

injection. The nozzle is fixed at the rear of the bluff-body, in the central position. It generates 

an elliptical-shaped polydisperse spray approximately located around the vertical median plane 

of the combustion chamber. Due to the presence of the obstacle, vortex shedding occurs under 

non-reacting conditions with a Strouhal number based on the bulk airflow velocity and the 

height of the obstacle of 0.28 while the main frequency of the vortex shedding is around 23 Hz. 

Under reacting conditions, the shedding disappears as expected (Shanbhogue et al. 2009).  

 

Several tests have been conducted under both non–reacting and reacting conditions 

(Vicentini, 2016). The incoming air flow is heated at 450 K and is at standard atmospheric 

pressure. The liquid fuel is 𝑛-decane at 95 % of purity and is injected in the combustion chamber 

with an initial temperature of 330 K since the warm air flow heated it. Fuel and air mass flow 

rates are, respectively, equal to 1 g.s-1 and 58 g.s-1 and the global ratio is around 0.24. The mean 

air flow velocity is equal to 5.8 m.s-1, such that the Reynolds number based on the height of the 

bluff – body is about 22 000. 

 

2.2.2 Measurements techniques  
Several optical measurement techniques have been used to characterize the two-phase 

flow inside the combustion chamber under non-reacting and reacting conditions and, 

subsequently, to build an experimental database. Such a database aims at providing a better 

understanding of the two-phase flow behaviour and at supporting the validation of the 

numerical tools. The gaseous phase is characterized by means of the Particles Image 

Velocimetry (PIV) technique and pressure transducers located on the upper and the lower parts 

of the bluff-body. PIV allows measuring the velocity field and highlighting some of the 
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macroscopic structures of the flow like the recirculation zone located behind the obstacle. The 

pressure transducers are only used to detect the vortex-shedding phenomenon occurring under 

non–reacting conditions. The liquid phase is characterized by the Mie scattering and Phase 

Doppler Anemometry (PDA) techniques. The first technique provides the droplets location in 

the flow, thus allowing to deduce the spatial droplet distribution in the spray. The second one 

provides local information about droplet diameter and velocity. Under reacting conditions, the 

OH Planar Laser–Induced Fluorescence (OH-PLIF) and the chemiluminescence emission from 

OH* (where * indicates that the radical is in an excited electronic state) techniques have also 

been applied in order to detect the flame front and investigate its interaction with the spray.  

In this paper, we will only present the results from Mie scattering images, thus only the 

Mie scattering installation is described. This technique operates by a Nd:YLF laser (from 

Quantronix) which has a wavelength of 527 nanometres, a pulse duration about 200 

nanoseconds and an energy per pulse equal to 10 milliJoules. The laser beam is transformed 

into a 1 mm thickness laser sheet that illuminates the two-phase flow. A Phantom V341 high-

speed camera located at 90° from the laser sheet propagation collects the Mie scattering signal. 

The camera is equipped with an 1800 x 1660 pixel² array and its dynamic range is 12 – bit 

digitization (0 – 4095 counts). In order to have an adequate image resolution to study the flow 

phenomena, the field of view is chosen smaller than the height of the combustion chamber. The 

observed field represents 51 x 46 mm² so the spatial resolution is roughly 29 micrometers per 

pixel. Therefore, to visualize two-phase flow behaviour in the whole combustion chamber, the 

upper part of the combustion chamber and the lower part are observed.  

 

2.2.3 Mie scattering images collection 
For non-reacting conditions, only the upper part of the channel flow has been visualized. 

The data set is composed of around 3 800 raw Mie scattering images and is linked with the 

differential pressure signal recorded simultaneously. The pressure signal is periodic due to the 

presence of a von Karmàn street downstream the bluff-body. The combination of the Mie 

images and this signal enables to obtain phase-averaged values. 

 

For reacting conditions, upper and lower part of the combustion chamber have been 

visualized and the data set is still composed of around 3 800 raw Mie scattering images. 

Conversely, to the non-reactive case, the pressure signal is no longer periodic with the 

occurrence of the combustion.   

 

2.2.4 Mie scattering image processing algorithm 
With the aim of studying the 𝑑𝑛𝑛 and evaluate the droplet number density, a processing 

algorithm for the Mie scattering images has been developed by Vicentini (2016) and 

subsequently improved  by Rousseau et al. (2020). The main steps of this algorithm are detailed 

hereafter.  

 

Firstly, a combination of morphological dilatations with a disk-shaped structuring 

element and arithmetic operations is applied to the images in order to extract the droplet shapes. 

Secondly, a binarization operation is performed to the image of the droplet contours to bring 

droplets out of the image background. Afterwards, a blob analysis is used to identify all the 

droplets and the locations of their barycentre providing, for each image, the barycentre map. 

Finally, geometrical and statistical studies on the barycentre maps allow to obtain the map of 

the 2D droplet density number  𝑛2𝐷 (Figure 2 a), and the map of the mean (𝑑𝑛𝑛2𝐷) (Figure 2 

b) and of the standard deviation (𝜎𝑑𝑛𝑛2𝐷) of dnn. From these maps, we obtain two diagrams 

(Figure 2 c and d) describing the mean dnn (resp. standard deviation) values versus the inverse 
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of the square root of the 2D droplet density number. The green line corresponds to the 2D 

dimensionless mean and standard deviation of the simple regular model while the red one 

corresponds to the dimensionless mean and standard deviation of the 2D HC distribution. From 

these two figures, the spray distribution is very close to the 2D HC while the simple regular 

grid model provides a poor estimation of the spray distribution. Consequently, we will only 

consider the Hertz-Chandrasekhar distribution throughout this paper.  

 
 

2.3 Numerical data processing 
This paragraph describes the main mathematical definitions used to perform the data 

processing presented hereafter. We describe processes used in the subsequent analysis of the 

data. The first process concerns the transition from a 3-dimensional droplet field to its 2-

dimensional projection on an image acquired by an optical diagnosis (laser sheet + camera in 

our case). This is schematically described in Figure 3 and it will be called the 3D-2D transition 

process throughout the paper.  

 

This process is subdivided into two steps: firstly, the transition from a 3D cubic droplet 

field to a 3D slice (representative of a laser sheet) and secondly, the projection of this slice on 

a 2D surface (representative of an image acquired by a camera). These two steps are 

respectively called the slice restriction step and the projection step. In the figure, the lengths 𝐿 

and 𝑒 correspond respectively to the cube/slice/image side and to the slice thickness. Since each 

geometry has its own number of droplets, some further notations are introduced to specify the 

associated droplet density numbers and the nearest-neighbour droplet distance. In the 3D cubic 

volume with 𝑁𝑑 droplets, the mean droplet density number is written as 𝑛3𝐷 = 
𝑁𝑑

𝐿3
 while the 

mean nearest-neighbour droplet distance is defined as: 

 

𝑑𝑛𝑛3𝐷 =
1

𝑁𝑑
∑𝑑𝑛𝑛3𝐷

𝑑

𝑁𝑑

𝑑=1

 
(2-7) 

 

where the distance 𝑑𝑛𝑛3𝐷
𝑑  between a droplet “𝑑” and its nearest-neighbour “𝑑∗” has been 

previously defined by equation (2-1). 

 

To evaluate the influence of the restriction step on the 𝑑𝑛𝑛 value, the 3D volume is 

divided into a number 𝑁𝑠 of slices of thickness 𝑒 with 𝑁𝑠 =
𝐿

𝑒
. Similarly to the 3D cubic volume, 

we can define the 𝑑𝑛𝑛 value 𝑑𝑛𝑛3𝐷
𝑑,𝑠

 between a droplet “d” and its nearest-neighbour “d*” inside 

the slice 𝑠. Its mean value is given by: 

 

𝑑𝑛𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 

 ∑ (∑ 𝑑𝑛𝑛3𝐷
𝑑,𝑠𝑁𝑑

𝑠

𝑑=1 )𝑁𝑠
𝑠=1

∑ 𝑁𝑑
𝑠𝑁𝑠

𝑠=1

 
(2-8) 

 

where 𝑁𝑑
𝑠 is the number of droplets contained inside the 𝑠-th slice. This mean value is not 

necessarily equal to 𝑑𝑛𝑛3𝐷 due to the slice restriction process since some droplets inside the 

slice may have their nearest-neighbour droplet out of the slice leading to an error in the 

estimation of the 𝑑𝑛𝑛. For the same reason, a 3D restriction error is associated to the 3D cubic 

volume and is called the cubic restriction error.  
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Next, the droplets contained in any slice 𝑠 are projected on a 2D image of area 𝑆𝑖. For 

the sake of convenience, the number of images is noted 𝑁𝑖 and is equivalent to 𝑁𝑠. We can 

define a mean surface density number of droplets 𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 and a mean value for the 𝑑𝑛𝑛 

(𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

) associated to the images as: 

 

{
 
 

 
 𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
=
∑ 𝑁𝑑

𝑖𝑁𝑖
𝑖=1

𝑁𝑖 × 𝑆𝑖

𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

=
∑ (∑ 𝑑𝑛𝑛2𝐷

𝑑,𝑖𝑁𝑑
𝑖

𝑑=1 )
𝑁𝑖
𝑖=1

∑ 𝑁𝑑
𝑖𝑁𝑖

𝑖=1

 
(2-9) 

 

where the distance 𝑑𝑛𝑛2𝐷
𝑑,𝑖

 between a droplet “𝑑” and its nearest-neighbour “𝑑∗” in a 2D image 

has been previously defined by equation (2-2). It is important to notice that the 𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 

is generally lower than the 𝑑𝑛𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛. The distance between droplets in the slice are, indeed, 

most of the time greater than their projected 2D counterparts, which is called throughout the 

paper the projection effect. The same kind of evaluation has been used for the standard 

deviation, the skewness and the kurtosis. 

 

 In another way, it is interesting to see how we can obtain a 3D cubic droplet field from 

a 2D image data. Experimental data can be used indeed to verify some assumptions and give 

some information for numerical simulations. However, experimental images provide two-

dimensional results while numerical simulations used generally three-dimensional input/output. 

To this end, the second process is an extrapolation of the 2D image data to obtain a 3D cubic 

droplet field. This process is called 2D-3D extrapolation process and corresponds to the 

opposite of the 3D-2D transition since the first step is the extrapolation of the 2D image to a 

3D slice and then an extrapolation of the restricted 3D slice to a 3D cubic volume. At first, a 

2D image 𝑖 is defined by its mean droplet density number equal to 𝑛2𝐷 =
𝑁𝑑
𝑖

𝐿2
 and its mean 

nearest-neighbour droplet distance equal to: 

 

𝑑𝑛𝑛2𝐷 =
1

𝑁𝑑
𝑖
∑𝑑𝑛𝑛2𝐷

𝑑

𝑁𝑑
𝑖

𝑑=1

 
(2-10) 

 

where 𝑑𝑛𝑛2𝐷
𝑑  is the distance between a droplet “d” and its nearest-neighbour “d*” in the image 

𝑖 (equation (2-2)). 

 

 In order to create the extrapolated 3D restricted slice, the mean droplet density number 

associated to the slice is defined as: 

 

𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =

𝑛2𝐷
𝑒

 
(2-11) 

 

Moreover, we assume that if a 2D droplets field is distributed according to the 2D HC 

distribution then its extrapolation to a 3D field follows the 3D HC law. In this case, the mean 

nearest-neighbour inter-droplet distance is calculated by: 

 



13 
 

𝑑𝑛𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝛼3𝐷

𝐻𝐶 ∗ 𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛

 − 
1
3
 

(2-12) 

 

Lastly, the extrapolation from the 3D restricted slice to the 3D cubic volume is obtained 

assuming that the droplet density number is homogeneous along the slice’s thickness axis so  

𝑛3𝐷 = 𝑛3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 and 𝑑𝑛𝑛3𝐷 = 𝑑𝑛𝑛3𝐷

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛. 

 

 Finally, 2D synthetic images are processed as the same way than the experimental 2D 

images. For further details, please refer to the section 2.2.4. 

 

 

2.4 Numerical database 
 

2.4.1 Hertz-Chandrasekhar database 
A Monte-Carlo simulation tool has been developed in MATLAB© to create cubic 

computational volumes where droplets are uniformly randomly distributed. According to the 

case under consideration, the mean droplet density number 𝑛3𝐷, the number of droplet 𝑁𝑑 and 

the side length of the computational volume 𝐿 vary according to the following relationship: 

 

𝑛3𝐷 =
𝑁𝑑
𝐿3

 
(2-13) 

 

Thereafter, throughout the paper, the droplet regular distance 𝜂3𝐷 is used to make the 

3D length values dimensionless and is defined as: 

 

𝜂3𝐷 = 𝑛3𝐷
 − 
1
3 

(2-14) 

 

To investigate the relevancy of the generated database, its statistical convergence has 

been addressed. To carry out this study, four droplet density number values have been selected 

from 100 to 3 000 droplets per cm-3, nine dimensionless size of the computational cube (
𝐿

𝜂3𝐷
)  

values from approximately 30 up to 90 and the number of droplets 𝑁𝑑 varies between 30 000 

and 800 000. These droplet density numbers are representative of the aforementioned 

experimental flow (section 2.2.4). Note that in order to save up some computational time, only 

one draw has been achieved for each configuration. Assessment of the convergence is based on 

the calculation of the relative error of the variable 𝑋𝑖 defined as: 

 

relative error (𝑋𝑖)  =
𝑋𝑖 − 𝑋𝑖

𝐻𝐶

𝑋𝑖
𝐻𝐶  

(2-15) 

 

where 𝑋𝑖 represents any of the statistical parameters 𝛼3𝐷 , 𝛽3𝐷 , 𝛿3𝐷 , 𝜀3𝐷 estimated from the 

numerical database and 𝑋𝑖
𝐻𝐶  corresponds to the theoretical HC value. The results are presented 

in Figure 4, the relative errors being plotted versus the dimensionless size of the computational 

volume.  

 

At first, let us consider a fixed droplet density number. Increasing the dimensionless 

size is thus equivalent to have a larger statistical sample. As expected, the relative errors of the 

𝛼3𝐷 and 𝛽3𝐷 parameters decrease with 𝐿 𝜂3𝐷⁄  in such a case. However, the evolutions of the last 
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two parameters are less monotonous, in particular for the kurtosis. This observation can be 

explained by the fact that only one draw is carried out by configuration. Consequently, the value 

of the dimensionless parameter, and thus of the relative error, can varies around a mean value. 

This behaviour is more obvious when the moment of the pdf is large (see appendix). One can 

also consider that the convergence of the parameters 𝛼3𝐷 , 𝛽3𝐷 is reached even for the smaller 

values of the dimensionless size since the relative error is lower than 5% in any case. For the 

kurtosis 𝜀3𝐷, the agreement with the HC value is weaker but is around 5% for the highest values 

of the dimensionless size (𝐿 𝜂3𝐷⁄  greater than 55). The convergence of the skewness parameter 

𝛿3𝐷 is poorer, the relative error starting around 45% in the worst case and slowly decreasing 

around 10 % for 𝐿 𝜂3𝐷⁄  greater than approximately 65. Despite these deviations for 𝛿3𝐷 and 

𝛽3𝐷, the results demonstrate that the numerical generation reproduces quite fairly a uniformly 

random distribution. Numerical data provided by the Monte-Carlo simulation tool will be used 

in the next part (section 3).  

 

Secondly, for the whole droplet density numbers and over a certain value of 𝐿/𝜂3𝐷, the 

points are superimposed which means that the estimation of the relative error for dimensionless 

parameters is universal. It is interesting since they provide a means to evaluate the quality of 

the sample. More precisely, given a mean value of the droplet density number, one can derive 

very simply the minimal size of the volume to reach a certain convergence level based on the 

previous figures. This value can be compared to the size 𝐿 provided by a numerical (size of a 

3D sampling volume) or an experimental data (size of an image) to estimate the quality of the 

under study configuration.  

 

Figure 5 shows the comparison of the pdf for the dimensionless distance 𝑑𝑛𝑛/𝜂3𝐷 

between the theoretical 3D HC distribution and the results of the Monte-Carlo simulation for 

the case of 3D droplet density number equals to 1 000 droplets per cm3 and the dimensionless 

size of the computational cube equals to 56. Red solid line corresponds to the pdf of the 3D 

Hertz-Chandrasekhar distribution function calculated with the mean droplet density number 

value 𝑛3𝐷 of the Monte-Carlo data and blue histogram corresponds to the pdf obtained with the 

Monte-Carlo simulation. This figure is consistent with the previous results since it shows that 

the pdf of the simulation is really close to the theoretical pdf so the numerical generation 

reproduces quite farily a uniformly random distribution.  

 

2.4.2 Preferential segregation numerical database 
To study the effects of the preferential segregation, six Direct Numerical Simulation 

coupled with Discrete Particle Simulation (DNS – DPS) (Fede et al., 2015) have been used. 

The computational volume is a cube that contains 140 367 spherical particles with a constant 

diameter and with a volume droplet density number around 6 x 10-4 droplet per cm-3. 

Consequently, the dimensionless cube size is around 53 and, according to the conclusions of 

the previous section and assuming that the tendencies drawn for the HC distribution apply to a 

preferential segregation case, such a value is sufficient to ensure 𝛼3𝐷, 𝛽3𝐷 and 𝜖3𝐷 are 

statistically converged. The numerical issue leads to a deviation around 0.5 % on 𝛼3𝐷, 1.5 % 

on 𝛽3𝐷, 18 % on 𝛿3𝐷 and 5.5 % on 𝜖3𝐷. The gaseous flow used is the same for all the simulations 

and its characteristics are the following. The fluid density is equal to 1 kg.m-3, the dynamical 

viscosity is equal to 10−3 kg.m-1.s-1, the Kolmogorov distance scale (𝜂𝐾) is around 17.55 

millimetres, the Kolmogorov time scale (𝜏𝐾) is around 0.3088 seconds and the Kolmogorov 

velocity scale is around 0.5691 m.s-1. To highlight the preferential segregation effect, the 

particle mass density varies from 12.5 kg.cm-3 to 1 250 kg.cm-3. The Stokes particle number is 

between 0.33 to 14.42 and is defined as follows: 
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𝑆𝑡 =
𝜏𝑝

𝜏𝑘
 (2-16) 

 

where 𝜏𝑝 is the particle relaxation time. Figure 6 shows slices of the droplet spatial distribution 

in the computational volume according to four different Stokes numbers. For Stokes numbers 

equal to 1.37 (b) and 5.06 (c), preferential segregation is clearly observed.  

 

2.4.3 Inhomogeneous Poisson database 
To reproduce droplet fields with droplet density gradient as observed in the combustion 

chamber (Figure 2 a), an inhomogeneous Poisson simulation tool has been developed in 

MATLAB©. This way, 3D and 2D fields are created where droplets are distributed according 

to an inhomogeneous Poisson law (Shaw et al., 2002). In this case, the probability that a droplet 

is located between two positions 𝑥1 and 𝑥2 for a given droplet density number is defined by: 

 

𝑃(𝑁, 𝑥1, 𝑥2) =
(∫ 𝜆(𝑥)𝑑𝑥

𝑥2
𝑥1

)
𝑁

𝑁!
exp (−∫ 𝜆(𝑥)𝑑𝑥

𝑥2

𝑥1

) 
(2-17) 

 

where 𝑥 ∈ [𝑥1; 𝑥2], 𝑁 = ∫ 𝜆(𝑥)𝑑𝑥
𝑥2

𝑥1
 is the mean droplet density number in this interval and 𝜆 

is a variable process rate. 

 

 

3 Results 
 

3.1 Comparison specific droplet spatial distributions with respect 

to the Hertz-Chandrasekhar distribution  
 

In this section, in order to characterize droplet spatial distribution in 3D and 2D, we 

compare two specific droplet distributions with respect to the HC distribution. Firstly, we study 

the 3D distribution that takes into account the preferential segregation effects. Secondly, we 

study in 2D and 3D the inhomogeneous Poisson distribution that takes into account the droplet 

density gradient.  

 

3.1.1 Preferential segregation distribution  
Figure 7 shows the evolution of the dimensionless parameters 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 

according to the Stokes number. The dashed black line corresponds to the results of DNS-DPS 

simulations (dimensionless cube size equals 53) and these curves are compared to the 

theoretical values given by the Hertz–Chandrasekhar distribution (HC law, red line). Different 

observations can be done. Firstly, the evolution of 𝛼3𝐷 is opposite to those of 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷. 

Secondly, for all of the parameters, the largest discrepancy according to the theoretical value is 

reached for the same Stokes number called “critical Stokes” (𝑆𝑡𝑐) and equal to 1.37. Thirdly, 

for the smallest Stokes number, parameter values tend to their theoretical values. When the 

Stokes number increases, 𝛼3𝐷 decreases while 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 increase and they all deviate 

from their theoretical values. For Stokes numbers higher than 𝑆𝑡𝑐, when the Stokes number 

increases, 𝛼3𝐷 increases while 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 decrease and they all tend towards the 

theoretical values for the higher Stokes numbers. This result is consistent with the literature 
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(Vicentini 2015; Boutsikakis 2020). This can be explained as follows. When the Stokes number 

is very small, droplets behave as fluid elements and are dispersed everywhere, which is similar 

to the 3D HC distribution. If the Stokes number increases, the inertia of the particle raises and 

preferential segregation appears and leads to a clear variation of 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 

parameters when 𝑆𝑡 = 𝑆𝑡𝑐. Finally, with increasing Stokes number, particles become very 

inertial and do not track the gaseous flow anymore, leading to a droplet spatial distribution close 

again to the 3D HC distribution. Therefore, deviations of the dimensionless parameters 𝛼3𝐷, 

𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 are clearly highlighted and can serve as a marker of the presence of 

preferential segregation.  

 

The study of the dnn Probability Density Function (PDF) is a complementary way to 

observe preferential segregation. Figure 8Error! Reference source not found. shows the PDFs 

for the dimensionless distance 
𝑑𝑛𝑛3𝐷

𝜂3𝐷
 for four different Stokes numbers. Red solid line 

corresponds to the PDF of the 3D Hertz-Chandrasekhar distribution function calculated with 

the mean droplet density value 𝑛3𝐷 of the DNS-DPS data and blue histogram corresponds to 

the PDF obtained with the simulations. In any case, the distributions associated to the 

preferential segregation are shifted towards the left with respect to the theoretical PDF, so the 

values of the 𝑑𝑛𝑛3𝐷 distance are lower than that for theoretical distribution. The shift value 

varies with the Stokes number, firstly increasing and then decreasing with a maximal shift 

obtained for the critical Stokes number 𝑆𝑡𝑐. The overall behaviour of the preferential 

segregation PDFs corroborates the evolution of the dimensionless mean parameter. According 

to the linear relationship between 𝛼3𝐷, 𝑛3𝐷 and 𝑑𝑛𝑛3𝐷 (equation (2-4)), decreasing 𝛼3𝐷 is 

equivalent to decreasing 𝑑𝑛𝑛3𝐷 and inversely for a fixed droplet density number. Furthermore, 

when the PDF is shifted at the left then the asymmetry of the PDF increases and, by definition, 

𝛿3𝐷 increases.  

 

3.1.2 Inhomogeneous Poisson distribution 
In Figure 2 a, the local mean droplet density number 𝑛2𝐷 value decreases along the 

injector axis and the height of the combustion chamber. Therefore, there is a droplet density 

gradient inside the combustion chamber. In order to estimate its influence on the dimensionless 

parameters, 3D and 2D numerical test cases have been built with the inhomogeneous Poisson 

tool (see section 2.4.3).  

 

3D study: 

Three computational parallelepiped volumes have been created with dimensions 

respectively of 30 x 30 x 30 mm3, 40 x 30 x 30 mm3 and 50 x 30 x 30 mm3 following the axis 

[�⃗� �⃗� 𝑧]. The dimensions have been chosen in order to have a number of droplets sufficient to 

perform the analysis but limited to save up some computational time. The droplet density 

gradient applies along the �⃗� axis. For this study, we choose the following input parameters. The 

step between 𝑥1 and 𝑥2 is constant and equal to one millimetre. The maximum droplet density 

number is located at the volume inlet 𝑥 = 0 and, for each computational volume, is equal to 

7 000 droplets per cm3 and 8 000 droplets per cm3. The minimum droplet density number is 

located at the volume outlet x=L (L = 30 mm, 40 mm or 50 mm according to the computational 

volume) and varies between 500 droplets per cm3 and 6 000 droplets per cm3 with a step of 500 

droplets per cm3. The variation of the droplet density number between step is calculated as: 

 

𝑛3𝐷(𝑥) = ∫ (𝑛3𝐷𝑚𝑎𝑥 −
(𝑛3𝐷𝑚𝑎𝑥 − 𝑛3𝐷𝑚𝑖𝑛)

𝐿
𝑥1)𝑑𝑥

𝑥2

𝑥1

 
(3-1) 
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For the most restrictive case, which means a minimal droplet density number of 500 

droplets per cm3, a maximal droplet density number of 7 000 droplets per cm3 and L = 30 mm, 

the volume contains 98 325 droplets. According to the Figure 4, the error committed on 

dimensionless parameter values compared to the theoretical value is around 0.7 %, 2 %, 17 % 

and 6 % for respectively 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷. Figure 9 shows an example of this 

inhomogeneous Poisson distribution of droplets. 

 

Hereinafter, we define a configuration as a set of one value for each parameter 𝐿 and 

𝑛𝑚𝑎𝑥 and where 𝑛𝑚𝑖𝑛 varies between 500 and 6 000 droplets per cm3. Table 1 summarizes all 

the configurations to study the influence of the 3D droplet density gradient on dimensionless 

parameters 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷.  

 

We use the relationships (2-1), (2-4) and (2-7) to calculate the global 𝑑𝑛𝑛3𝐷 and 𝑛3𝐷 on 

the volume and estimate 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 values depending on the global value of the 

dimensionless droplet density number gradient. The dimensionless droplet density number 

gradient is defined according to the relationship: 

 

(Δ𝑛3𝐷)𝑎𝑑𝑖𝑚 =
Δ𝑛3𝐷
𝑛3𝐷

  
(3-2) 

 

where Δ𝑛3𝐷 corresponds to the droplet density number difference |𝑛3𝐷̅̅ ̅̅ ̅(𝑥 = 𝐿) − 𝑛3𝐷̅̅ ̅̅ ̅(𝑥 = 0)| 
and 𝑛3𝐷 is the total droplet density number in the volume. According to the configuration, the 

minimal and maximal dimensionless gradient values are respectively equal to 0.1 and 1.80.  

 

Figure 10 shows the evolution of the dimensionless parameters 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 

according to the dimensionless gradient for the six numerical configurations. For each set-up, 

the dimensionless parameters deviate from the theoretical values for a homogeneous Poisson 

distribution. When the dimensionless gradient value increases, 𝛼3𝐷 decreases while 𝛽3𝐷, 𝛿3𝐷 

and 𝜖3𝐷 increase. A similar evolution is observed when, for Stokes number lower than 𝑆𝑡𝑐, the 

Stokes number increases and the preferential segregation effects are developed in the spray. 

Nevertheless, the study of the dimensionless parameters according to the Stokes number is 

linked to the droplet dynamic while the study of the dimensionless parameters according to the 

dimensionless droplet density gradient is linked directly to the spatial distribution. For this 

reason, a relationship between preferential segregation and droplet density gradient cannot be 

drawn. However, it is possible to say that their influence on dimensionless parameters 𝛼3𝐷, 𝛽3𝐷, 

𝛿3𝐷 and 𝜖3𝐷 are similar and we can find some droplet density gradient in the spray when 

preferential segregation effect is present. Finally, the points are superimposed which means that 

the estimation of the deviation of dimensionless parameter due to the dimensionless gradient is 

universal. 

 

While the inhomogeneous case described here is purely theoretical, the existence of 

droplet density gradient inside a flow is obvious. Such a fact associated to these results means 

that the deviation of the first four moments can be attributed either to preferential segregation 

or to an inhomogeneous distribution of the droplets. One can also note that, for the range of 

gradients selected, the relative error on the 𝛼3𝐷 parameter is at most equal to 4% while the 

relative errors for the other parameters are relatively small up to (Δ𝑛3𝐷)𝑎𝑑𝑖𝑚 = 0.7 and 

becomes much more significant above this threshold.   

 

 



18 
 

 

2D study: 

In the same way as for the 3D study, numerical test case has been built in order to 

estimate the influence of the 2D droplet density gradient on the dimensionless parameters 𝛼2𝐷, 

𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷. The computational surface is a rectangle with dimensions respectively of 40 

x 40 mm², 50 x 40 mm² and 60 x 40 mm² following the axis [�⃗� �⃗�]. The droplet density gradient 

is along the �⃗� axis and droplets are distributed according to the inhomogeneous Poisson law 

defined by the equation (equation (2-17)). The step between 𝑥1 and 𝑥2 is constant and equal to 

one millimetre. The maximum droplet density number is located at the volume inlet 𝑥 = 0 and, 

for each computational volume, is equal to 4 000 droplets per cm2 and 4 500 droplets per cm2. 

The variation of the droplet density number between step is calculated as: 

 

𝑛2𝐷(𝑥) = ∫ (𝑛2𝐷𝑚𝑎𝑥 −
(𝑛2𝐷𝑚𝑎𝑥 − 𝑛2𝐷𝑚𝑖𝑛)

𝐿
𝑥1)𝑑𝑥

𝑥2

𝑥1

 
(3-3) 

 

The minimum droplet density number is located at the surface outlet x=L (L = 40 mm, 

50 mm or 60 mm according to the surface) and varies between 10 droplets per cm2 and 3500 

droplets per cm2. Table 2 summarizes all the configurations to study the influence of the 2D 

droplet density gradient on dimensionless parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷. For the most 

restrictive case, which means a minimal droplet density number of 10 droplets per cm², a 

maximal droplet density number of 4 000 droplets per cm² and L = 40 mm, the surface contains 

31 264 droplets. In this way, 𝐿/𝜂2𝐷 is equal around 180 and a statistical study allows us to 

confirm that the statistical convergence is assumed. 

 

The processing algorithm to calculate dimensionless parameters is the same than is 

previously used for 3D case and depending on the global value of the dimensionless surface 

droplet density number gradient defined as: 

 

(Δ𝑛2𝐷)𝑎𝑑𝑖𝑚 =
Δ𝑛2𝐷
𝑛2𝐷

 
(3-4) 

 

where Δ𝑛2𝐷 corresponds to the surface droplet density difference |𝑛2𝐷̅̅ ̅̅ ̅(𝑥 = 𝐿) − 𝑛2𝐷̅̅ ̅̅ ̅(𝑥 = 0)| 
and 𝑛2𝐷 is the total number of droplets divided by the suface. According to the configuration, 

the minimal and maximal dimensionless gradient values are respectively equal to 0.1 and 2.2.  

 

Figure 11 shows the evolution of the dimensionless parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷 

values according to the dimensionless gradient for the numerical configurations. Similarly to 

the 3D case, when the dimensionless 2D density gradient increases the dimensionless 

parameters deviate from the theoretical values for homogeneous Poisson distribution: 𝛼2𝐷 

decreases while 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷 increases according to the theoretical value. Just as for 3D 

case, preferential segregation and inhomogeneous density have a similar influence on the 

dimensionless parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷. Nevertheless, a direct correlation between 

these two effects cannot be established.  
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3.2 Study of the 3D – 2D transition  
 

3.2.1 Hertz-Chandrasekhar case 
Experimental images provide information about a two-dimensional droplet spatial 

distribution from the three-dimensional droplet field inside the combustion chamber. In order 

to better understand the experimental results, it is necessary to see the influence of this transition 

from the 3D to the 2D on the dimensionless parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖3𝐷 and on the dnn 

– droplet density number diagram. To this end, a numerical test case has been built from the 

Monte-Carlo simulation tool described in the section 2.4.1 and the numerical data processing 

described in section 2.3 is applied. The computational volume is a cube where 200 000 droplets 

are distributed according to the 3D HC distribution. In order to find the same order of magnitude 

for the surface droplet density number 𝑛2𝐷 after the 3D-2D transition than in our experiment 

(Rousseau et al. 2021), 𝑛3𝐷 is defined from the 𝑛2𝐷. Since 𝑛2𝐷 varies between 100 and 5 000 

droplets per cm² and the slice thickness 𝑒 varies between one and three millimetres with a step 

of one millimetre then the volume droplet density number 𝑛3𝐷 varies between 300 droplets per 

cm3 and 50 000 droplet per cm3. For the most restrictive case, 𝐿/𝜂3𝐷 is around 60 which means 

that, according to Figure 4, the error committed on dimensionless parameter values compared 

to the theoretical value is around 0.5 %, 2 %, 18 % and 5 % for respectively 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 

𝜖3𝐷.   

 

Firstly, the creation of the slice leads to an anisotropic volume where the thickness is 

much smaller than the two other sides equal to 𝐿. A restriction effect appears which can modify 

the dimensionless parameters 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷. To this reason, it is interesting to study 

the influence of the slice thickness on the relative error of the dimensionless parameters (see 

equation (2-15)). In the same way as for the cubic computational volume, the slice thickness is 

dimensionless by 𝜂3𝐷 calculated according to the initial 𝑛3𝐷. Figure 12 shows the evolution of 

the relative error of 𝛼3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 𝛽3𝐷

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 𝛿3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 and 𝜖3𝐷

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 according to the 

dimensionless thickness 𝑒/𝜂3𝐷 and for three values of the slice thickness 𝑒. Several 

observations can be drawn. Firstly, the relative error calculated for the four dimensionless 

parameters is considerabely higher than the relative error due to the Monte-Carlo simulations 

which means that this error can be associated to the restriction effect. Secondly, for 𝛼3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 

the relative error is positive and when the dimensionless thickness increases the relative error 

decreases to tends towards zeros. If the relative error is positive then 𝛼3𝐷
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is higher than 

the theoretical value for the 3D HC distribution and the mean dnn in the slice is higher than the 

theoretical value. This behaviour is expected since some droplets are not taking into account to 

calculate the dnn which leads to an increase of the dnn value.  

 

The projection step (define in section 2.3) can leads to modification of the droplet spatial 

distribution. The influence of the slice thickness on the relative error of the dimensionless 

parameters is studied. Figure 13 shows the evolution of the relative error of 𝛼2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 

𝛽2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 𝛿2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 and 𝜖3𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 according to the dimensionless thickness 𝑒/𝜂2𝐷 and for 

three values of 𝑒. For each dimensionless parameters, the relative error is included in the 

interval of the relative error due to the Monte-Carlo simulations. It means that 𝛼2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 

𝛽2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 𝛿2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 and 𝜖3𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 values are close to the theoretical value for the 2D HC 

distribution. From this observation, it can be said that the projection of a 3D droplet field 

obeying the 3D HC distribution leads to a 2D droplet field obeying the 2D HC distribution, 

thus: 
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{
𝛼2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛼2𝐷
𝐻𝐶

𝛽2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛽2𝐷
𝐻𝐶

 
(3-5) 

 

 In the opposite way, it is also interesting to determine the relationship that links a 2D 

droplet field to a 3D one especially useful for numerical simulations. It is interesting to define 

a 3D dnn distribution from the 2D dnn distribution calculated according to 2D images (and 

particularly experimental Mie scattering image). For this reason, it is necessary to evaluate the 

difference committed on 𝑑𝑛𝑛3𝐷 and 𝑑𝑛𝑛2𝐷 due to the 3D-2D transition.   

 

If the droplet density number is homogeneous in the laser sheet then the relationship 

between the 3D droplet density number due to the restriction effect and this due to the projection 

is defined as: 

 

𝑛3𝐷 =
𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝑒
 

(3-6) 

 

From the equation (3-6), the relationship between 2D droplet density number obtained after 

projection and the 2D mean dnn (resp. the 2D standard deviation dnn) is defined as follow: 

 

{
 

 𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛼2𝐷
𝐻𝐶 ∗ 𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 − 
1
2

𝜎𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛽2𝐷
𝐻𝐶 ∗ 𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 − 
1
2

 
(3-7) 

 

The relative difference between 𝑑𝑛𝑛3𝐷 calculated inside the volume and the 2D mean 𝑑𝑛𝑛 

calculated on the image after the 3D-2D transition is thus defined as: 

 

𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑛, 𝑒) =
𝑑𝑛𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
− 𝑑𝑛𝑛3𝐷

𝑑𝑛𝑛3𝐷
 

(3-8) 

 

This relative difference can be calculated theoretically as: 

 

𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑛3𝐷 , 𝑒) =
𝛼2𝐷
𝐻𝐶

𝛼3𝐷
𝐻𝐶 ∗ 𝑒

− 
1
2 ∗ 𝑛3𝐷

 − 
1
6 − 1 

or, equivalently 

𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 𝑒) =
𝛼2𝐷
𝐻𝐶

𝛼3𝐷
𝐻𝐶 ∗ 𝑒

− 
1
3 ∗ 𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 − 
1
6
− 1 

(3-9) 

 

The previous numerical test case created to estimate the influence of the relative error 

on the dimensionless parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷 (Figure 12 and Figure 13) is used again 

to confirm the equation (3-9). From the characteristics of the projected 2D field, an 

extrapolation transition from the 2D images to the 3D volume is carried out. It is important to 

notice that since the 2D field is provided by a projection, there may be some difference 

according to the theoretical 2D Hertz-Chandrasekhar distribution. Indeed, some droplets in the 

3D field can be superimposed or grouped together due to the projection in the 2D field. Error! 

Reference source not found.Figure 14 shows the evolution of 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 according to the 
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dimensionless thickness. The red line represents the theoretical law defined by the equation 

(3-9) for the case where 𝑛3𝐷 is fixed and the thickness slice varies continuously. The blue 

circles, the black squares and the green stars represent the results for the Monte-Carlo 

simulation in the case of thickness slice 𝑒 equal respectively to 1, 2 and 3 millimetres. First of 

all, the results of the test case are really close to the theoretical law which means that a 3D field 

where droplets are distributed according to the 3D HC distribution is obtained from a 2D droplet 

field where droplets are distributed according to the 2D HC distribution. Consequently, the 2D-

3D extrapolation process defined in section 2.3 is validated. Secondly, it is interesting to notice 

that the evolution of the relative difference according to the dimensionless thickness 
𝑒

𝜂3𝐷
 is 

universal. In summary, for the Hertz-Chandrasekhar case, if the slice thickness 𝑒 and the 𝑛2𝐷 

are known then 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 can be determine with the equation (3-9). Consequently, 𝑑𝑛𝑛3𝐷 can 

be deduce and allow to calculate 𝑛3𝐷 from the Hertz-Chandrasekhar relationship (equation 

(2-4)). 

 

3.2.2 Preferential segregation case 
It is necessary to extend the study of the 3D-2D transition to a more general case that 

includes the influence of the preferential segregation effect on the droplet spatial distribution. 

For this reason, it is interesting to evaluate the difference between the 𝑑𝑛𝑛3𝐷 and the 𝑑𝑛𝑛2𝐷 

due to the 3D-2D transition for a droplet field when preferential segregation effects exist.  

 

It is fair to assume that the relationship between the droplet density number, the slice 

thickness and 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 has the same shape than the one given for the Hertz-Chandrasekhar 

case (equation (3-9)). However, 𝛼3𝐷 value depends at least on the Stokes number (section 

3.1.1). Moreover, previous work (Rousseau et al., 2021) shows that, for the preferential 

segregation case, 𝛼2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 and 𝛽2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 have a similar behaviour than 𝛼3𝐷 and 𝛽3𝐷 

according to the Stokes number but their values vary according to the slice thickness 𝑒. 

Therefore, we assume that the relationship for the relative difference between 𝑑𝑛𝑛3𝐷 and 

𝑑𝑛𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 is defined as: 

 

{
 
 

 
 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝑛3𝐷 , 𝑒, 𝑆𝑡,

𝑒

𝜂3𝐷
) =

𝛼2𝐷
𝛼3𝐷

(𝑆𝑡,
𝑒

𝜂3𝐷
) ∗ 𝑒− 

1
2 ∗ 𝑛3𝐷

 − 
1
6 − 1

𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝑛2𝐷
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

, 𝑒, 𝑆𝑡,
𝑒

𝜂2𝐷
) =

𝛼2𝐷
𝛼3𝐷

(𝑆𝑡,
𝑒

𝜂2𝐷
) ∗ 𝑒− 

1
3 ∗ 𝑛2𝐷

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 − 
1
6
− 1 

 
(3-10) 

 

In order to estimate 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛, it is necessary to evaluate the evolution of  𝛼2𝐷/𝛼3𝐷 

according to the Stokes number and the slice thickness. To this aim, we have reproduced 

numerically the 3D-2D transition starting from the DNS-DPS simulations in order to create 2D 

images for with several slices thickness 𝑒 and estimate an evolution of the ratio 𝛼2𝐷/𝛼3𝐷 

according to the Stokes number and the slice thickness.  

 

Figure 15 shows the evolution of 𝛼2𝐷/𝛼3𝐷 according to the dimensionless thickness for 

the six different Stokes numbers of the DNS/DPS simulations. Several remarks can be done. 

Firstly, the behaviour of the ratio according to the dimensionless thickness is similar for each 

Stokes number. Starting from a dimensionless thickness value null, the ratio decreases until to 

reach a minimum value. Afterwards, the ratio increases and tends towards an asymptotic value. 

Secondly, for each Stokes number, the minimal value of the ratio is obtained for a dimensionless 

thickness close to 0.75. Thirdly, the minimum value of the ratio and the asymptotic value 
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depend on the Stokes number. Starting from a null Stokes number, when the Stokes number 

increases up to its critical value 1.37, the minimum value of 𝛼2𝐷/𝛼3𝐷 decreases and the 

asymptotic value increases. Above the critical value, when the Stokes number increases, the 

minimum value of the ratio increases and the asymptotic value decreases and both values tend 

towards 
𝛼2𝐷
𝐻𝐶

𝛼3𝐷
𝐻𝐶. It could be interesting to model the evolution of this ratio in further works. 

 

 

3.3 Influence of the experimental image acquirement  
The ability of an image to reproduce the observed field depends on its resolution 𝑅 

which represents the number of pixel per millimetre. In order to have a better study of the 

droplet spatial distribution, it is interesting that the image resolution is selected to match with 

droplet size implying that droplets are mostly represented by several pixels and are more easily 

detected. In the following, the size in millimetres of a pixel Δ(𝑝𝑥) is defined by: 

 

Δ(𝑝𝑥) =
1

𝑅
 

(3-11) 

 

The resolution can be modified in two ways. Firstly, the camera used is equipped with 

a fixed pixel array, which is an intrinsic characteristic of the equipment. Therefore, for a same 

size of observed field, if the camera is changed for another with a larger pixel array, the 

resolution becomes higher and the pixel size smaller. The second one is by considering a smaller 

or larger observed field. The largest the field is, the lower the resolution is and inversely. 

Besides, the droplet detection on the images is linked to image resolution since a droplet with 

a diameter smaller than the pixel size is represented by one pixel while a droplet with a diameter 

larger than the pixel size is represented by at least two pixels. Likewise, two droplets have to 

be separated by at least one pixel in order to be observed separately, otherwise the processing 

algorithm detects only one droplet.  

 

In order to quantify the influence of the image resolution on the dimensionless 

parameters 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷 and the PDF of the dnn, synthetic images have been produced 

considering different image resolutions. The geometry corresponds to a square surface with a 

length size of 80 millimetres. Firstly, droplets have been distributed according to the 2D Monte-

Carlo distribution with six surface droplet density numbers varying between 100 and 4 000 

droplets per cm² which represents a ratio 𝐿/𝜂2𝐷 varying between around 80 and 660. Note that 

these droplets are only points since they have no diameter. The density numbers are 

representative values extracted from our experimental data (Rousseau et al., 2021). Starting 

from these data, a mesh representing the pixel array is built with a uniform step in order to 

determine the spatial locations of the droplets and to define the coordinates of their barycentre, 

thus a mesh cell is equivalent to a pixel in a real image. Four different values of the mesh step 

are used to reproduce the variation of the resolution: 10 pixels per millimetre (pixel length size 

0.1 millimetre), 20 pixels per millimetre (pixel length size 0.05 millimetre), 40 pixels per 

millimetre (pixel length size 0.025 millimetre) and 60 pixels per millimetre (pixel length size 

0.0167 millimetre). For each configuration of image resolution and surface droplet density 

number, 30 synthetic images have been created. If one numerical droplet is located inside the 

pixel, the level of the pixel is equal to one while it is zero when the pixel is not occupied. If the 

cell is occupied by more than one numerical droplet, one considers that there is only one droplet 

attached to this cell and its pixel level is one. Such a process is called droplet aggregation. Table 

3 summarises the percentage of droplets loss throughout the transition between the 2D field and 

the 2D synthetic image due to the droplet aggregation according to the initial configuration. 
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This phenomenon involves a droplet loss in the numerical image between 0.03 % and 17.61 %. 

For a droplet density number, if the image resolution increases then the pixel size decreases and 

the percentage of droplet loss decreases. For example, for a reference initial 𝑛2𝐷 of 4 000 

droplets per cm², 𝑛2𝐷 after the creation of the synthetic image is around 3 296 droplets per cm² 

for Δ(𝑝𝑥) equal to 0.1 mm and around 3 950 droplets per cm² for Δ(𝑝𝑥) equal to 0.0167 mm. 

Inversely, for a fixed pixel size, if the droplet density number increases, the droplet loss 

increases.  

 

In a second step, we apply the image processing developed for the study of the 

experimental Mie scattering image (see part. 2.2.4). The blob analysis is performed on the 

synthetic image to detect all the droplets and their locations on the mesh. During this stage, 

some droplets are also merged together because their barycentre are located in neighbouring 

cells. Table 4 summarises the percentage of lost droplets due to the merging involved during 

the image process. This percentage is calculated with the number of droplets existing after the 

creation of the synthetic image. Similarly to the aggregation phenomenon, the droplet loss 

increases when the droplet density number increases or the image resolution decreases. To 

illustrate this point, for a pixel size of 0.1 mm, the droplet density number 𝑛2𝐷 calculated after 

the droplet detection from the image processing is equal to 96, 398, 624, 736, 598 and 375 

droplets per cm² whereas the initial reference value of 𝑛2𝐷 is equal respectively to 100, 500, 

1 000, 2 000, 3 000 and 4 000 droplets per cm². Finally, dnn distributions are calculated on the 

whole set of the synthetic image, and the PDF and the dimensionless 𝛼2𝐷, 𝛽2𝐷, 𝛿2𝐷 and 𝜖2𝐷 are 

obtained. For the most critical case where initial 𝑛2𝐷 is equal to 100 droplets per cm² and pixel 

size is equal to 0.1 mm, the study is carried out with around 180000 distances. According to the 

Figure 4, the error committed on dimensionless parameter values compared to the theoretical 

value is around 0.6 %, 1.5 %, 15 % and 5 % for respectively 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷.  The 

parameter 𝜂2𝐷, which is equal to 𝑛2𝐷
 − 

1

2, is used to make the pixel size and the dnn values 

dimensionless. It is important to mention that the value of 𝑛2𝐷 corresponds to the value obtained 

once the blob analysis has been performed on the synthetic image and is called in the following 

the “degraded droplet density number”.  

 

Figure 16 shows the evolution of the PDF for the dimensionless distance 𝑑𝑛𝑛2𝐷/𝜂2𝐷 

for the initial 𝑛2𝐷 equal to 250 droplets per cm² and for four dimensionless pixel size Δ(𝑝𝑥)/𝜂2𝐷 

values. The red line corresponds to the PDF of the 2D HC distribution function calculated with 

degraded 𝑛2𝐷 and the blue histogram to the PDF obtained with the dnn calculated on the 

synthetic images.  

 

Several conclusions can be drawn from these results. Firstly, if the dimensionless pixel 

size is low enough (high image resolution), the PDF of the synthetic image seems to match, 

visually, with the theoretical distribution (Figure 16 a and b). Secondly, increasing the 

dimensionless pixel size makes appear a cut-off value on the lowest values of the dnn and the 

values lower than 2Δ(𝑝𝑥) are no longer seen (c and d). This cut-off is explained by the artificial 

aggregation of the numerical droplets present in the same pixel and the artificial merging of 

some numerical droplets represented on different pixels but not separated by at least one pixel. 

Moreover, the PDF becomes less smooth. Indeed, there are some dnn which are predominant 

compared to other according to the theoretical HC distribution. Thirdly, this behaviour is similar 

for each initial 𝑛2𝐷. From these observations, the PDF of the dimensionless distance 

𝑑𝑛𝑛2𝐷/𝜂2𝐷 clearly depends on the dimensionless pixel size Δ(𝑝𝑥)/𝜂2𝐷. 
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In order to highlight the influence of the image resolution on the dimensionless 

parameters, Error! Reference source not found.Figure 17 describes the evolution of 𝛼2𝐷, 𝛽2𝐷, 

𝛿2𝐷 and 𝜖2𝐷 according to the dimensionless pixel size for several surface droplet density 

numbers 𝑛2𝐷. The red line represents the values of the dimensionless parameter associated to 

the 2D Hertz-Chandrasekhar law. At first, for all the droplet density numbers, the evolution of 

each parameter is similar and their values are practically superimposed, thus we can assume 

that this evolution is universal. This implies that, for a given experimental configuration, if the 

surface droplet density number is known and we assume that the droplets distribution follows 

an Hertz-Chandrasekhar distribution, we are able to quantify the relative error for 𝛼2𝐷, 𝛽2𝐷, 

𝛿2𝐷 and 𝜖2𝐷 values due to the image resolution. Secondly, for dimensionless pixel size values 

lower than 0.13, the relative errors between the simulation with synthetic image and the 

theoretical values are lower or around 10 % for each parameter. With the increase of the 

dimensionless pixel size, the absolute value of the relative errors of the parameters increase 

significantly at least for a certain interval. This behaviour is consistent with the visual 

observations on Figure 16 the previous paragraph where the theoretical and simulated PDFs are 

really close and then deviate more and more with the dimensionless pixel size. Thirdly, the 

evolution of 𝛼2𝐷 and 𝛽2𝐷 is monotonous according to the dimensionless pixel size in the studied 

interval values for dimensionless pixel size while the evolution of 𝛿2𝐷 and 𝜖2𝐷 is not 

monotonous. When Δ(𝑝𝑥)/𝜂2𝐷 increases, 𝛼2𝐷 increases and 𝛽2𝐷 decreases. However, for a 

dimensionless pixel size under 0.2, 𝛿2𝐷 and 𝜖2𝐷 increase when Δ(𝑝𝑥)/𝜂2𝐷 increases and then 

decreases when the dimensionless pixel size is larger than 0.2 and the value increases. For the 

moment, we cannot explain this observation. Finally, it is interesting to mention that when the 

image resolution is not sufficient according to the droplet density number then 𝛼2𝐷 and 𝛿2𝐷 

increase, which is a different behaviour than the one observed when there is preferential 

segregation effects (𝛼 decreases while 𝛿 increases). This observation can serve to determine if 

the deviation of the dimensionless parameters is due to only to preferential segregation effects 

or image resolution effect or by both simultaneously.  

 

 

3.4 Application to the experimental data for the reactive case 
The previous study of the experimental data for the reactive case (Rousseau et al., 2021) 

provides results such as the mean dnn – droplet density diagram (Figure 2 c) and the standard 

deviation dnn – density diagram (Figure 2 d). From these diagrams, it is observed that the 

droplet spatial distribution in the spray is closer to the Hertz-Chandrasekhar distribution than 

the simple regular grid distribution. Moreover, on the mean dnn – droplet density diagram, two 

regions can be observed. For surface droplet density numbers higher than 100 droplets per cm² 

(𝑛2𝐷
 − 

1

2 < 1 000 µ𝑚), the scatter plot is almost perfectly aligned on the random 2D HC 

distribution and 𝛼2𝐷 is around 0.46. For surface droplet density numbers lower than 100 

droplets per cm², there is a slope discontinuity where 𝛼2𝐷 is around 0.36 and the cloud of points 

deviate slightly of the 2D HC distribution. In addition, the dispersion of the scatter plot 

increases in this diagram part.  

 

In this section, we apply the results of the previous numerical study on the experimental 

results described above. More precisely, we try to estimate the errors committed on 𝛼2𝐷 and 

𝛽2𝐷 values due to the experimental data acquisition and processing. From this application, we 

want to provide some answers to explain the difference of behaviour for the cloud of points 

according to the droplet density number reminded above. 
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Firstly, we want to estimate the errors due to the image resolution on 𝛼2𝐷 and 𝛽2𝐷 

values, and consequently on 𝑑𝑛𝑛2𝐷 and 𝜎𝑑𝑛𝑛2𝐷. In the case under consideration, the image 

resolution is equal to 40 pixels per millimetre thus Δ(𝑝𝑥) is equal to 0.025 millimetre. 

Figure 18Error! Reference source not found. shows the dimensionless pixel size map for the 

lower part of the combustion chamber for the reactive case. In this field, the dimensionless pixel 

size varies between 0.02 in the areas of lowest droplet density number and 0.12 for the areas of 

highest droplet density number.   

 

 From this map and Figure 17Error! Reference source not found., we assume that 𝛼2𝐷 

value is overestimated around 6 % for the very dense regions and around 1 % for the low density 

regions. On the contrary, 𝛽2𝐷 value is underestimated about 12 % where the droplet density 

number is high and around 2 % for the low droplet density number. Lastly, 𝛿2𝐷 and 𝜖2𝐷 are 

overestimated around respectively 34 % and 14 % for the very dense regions while this 

overestimation decreases around respectively 8 % and 5 %. In view of these results, the 

observed field can be separated in two areas. The first area is close to the injector and the image 

resolution leads to some deviations on the parameters according to the theoretical HC 

distribution. The second, further from the injector, where the image resolution matches with the 

droplet density number that implies that the value of the dimensionless parameters are not 

influenced by the image resolution. Consequently, the characterization of the droplet spatial 

distribution is more complicated for the first area than for the second area due the influence of 

the image resolution.  

 

 Since the slope discontinuity in the mean dnn-density diagram (Figure 2 c) appears for 

droplet density number lower than 100 droplets per cm² and the image resolution matches with 

these droplet density numbers then this discontinuity cannot be explained only by the data 

acquisition and processing. For this reason, the comparison of the PDF of the dimensionless 

distance with the 2D HC is useful to determine if this discontinuity is explained by a preferential 

segregation effect in the flow. To this end, three areas of the lower part of the combustion 

chamber with different values of the surface droplet density number have been studied 

(Figure 19 a). In the first two areas, 𝑛2𝐷 is higher than 100 droplets per cm² while the third 𝑛2𝐷 

is lower. The number of droplets contained in each area are around 818 000, 988 000 and 

142 000 respectively for zone 1, zone 2 and zone 3 

 

In the first and second areas, a cut-off is observed for the lower values of the 

dimensionless distance. It can be explained by the image resolution that is not sufficient 

according to the droplet density number and leads to an artificial merging of droplets (see 

section 3.3). For 
𝑑𝑛𝑛2𝐷

𝜂2𝐷
 values higher than this cut-off, the histograms are close to the 2D HC 

distribution. On the contrary, for the third area, there is a small cut-off but the PDF is shifted 

towards the lowest values of 
𝑑𝑛𝑛2𝐷

𝜂2𝐷
 which reflects the presence of preferential segregation in 

this area according to the conclusions of the section 3.1.1.  

 

From these observations, there are two distinguishable areas in the spray for the lower 

part of the combustion chamber.  

 

The first one is located close to the injector and extends from 𝑋 included between 10 

mm and 50 mm and 𝑌 included between 30 mm and 60 mm. This area is represented on the 

mean dnn-density diagram by the cloud of points close to the 2D HC distribution and where the 

global 𝛼2𝐷 value deduced from all these points is equal to 0.46. Nevertheless, since the droplet 
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density number varies significantly (from around 200 droplets per cm² and 2500 droplets per 

cm²) then the dimensionless pixel size varies too and locally the 𝛼2𝐷 value, and consequently 

𝑑𝑛𝑛2𝐷, are overestimated by about 2 % to 6 %. Therefore, it can be possible to estimate the 

global 𝛼2𝐷 value around 0.43 and 0.45. Moreover, the study of the dnn histograms in this area 

shows that, despite a cut-off for the lowest value of dnn, shows that dnn histograms are close 

to the 2D HC distribution. The combination of these two observations leads to think that the 

droplet spatial distribution in this area is close to the HC distribution even if the characterization 

is not complete due to the poot image resolution according to the droplet density number. In the 

section 3.2.1, we have shown that the transition from a 3D field where droplets are distributed 

according to the 3D HC law gives a 2D field where spatial droplet distribution follows the 2D 

HC law, and conversely. Thus, we can assume that inside the combustion chamber and in this 

first area, the droplets are distributed according to the 3D HC distribution.  

The second area is located far away from the injector and is represented on the mean 

dnn-density diagram by the cloud of points which deviate from the 2D HC distribution. The 

global 𝛼2𝐷 value deduced from all these points is equal to 0.36 and the image resolution matches 

with the droplet density number in this area which means that this estimation is accurate. This 

deviation of 𝛼2𝐷 value is consistent with the dnn histogram in this area which shows that 

preferential segregation effects occur. We can assume that the combustion phenomenon has an 

influence on the droplet spatial distribution and leads to the preferential segregation droplet 

distribution. The group combustion theory (Chiu et al., 1977) could explain partially the 

preferential segregation effect since the “internal group combustion”, the “external group 

combustion” and the “external sheath combustion” are configurations where droplets burn 

together.   

 

 

4 Conclusion 
This paper proposes a study in order to better understand how characterize droplet 

spatial distribution from experimental data and especially Mie scattering images.    

 

To this end, we compare firstly the first four moments of the PDF 𝛼, 𝛽, 𝛿 and 𝜖 (resp. 

mean, standard deviation, skewness and kurtosis) associated to the droplet spatial distribution 

for the cases of the Hertz-Chandrasekhar, the preferential segregation and the inhomogeneous 

Poisson distributions. In presence of a preferential segregation or on inhomogeneous Poisson 

distribution, the values of the moments deviate from their theoretical values based on the Hertz-

Chandrasekhar distribution. More precisely, the mean value 𝛼 is lower than its theoretical value 

while the other three values are greater. Such a feature could be helpful to distinguish between 

the distributions observed experimentally or numerically.  

 

Secondly, the study of the 3D-2D transition process shows that the transition from a 3-

dimensional droplet field to its 2-dimensional projection images generates a restriction error 

and a projection bias. The first one is due to the transition from a 3D cubic droplet field to a 3D 

slice representative of the laser sheet. The second one is due to the projection of this slice on a 

2D surface representative of experimental images. The errors depend on the combination of the 

slice thickness and the droplet density number. Moreover, it is shown that the projection of a 

3D droplet field obeying to the 3D Hertz-Chandrasekhar distribution leads to a 2D droplet field 

obeying to the 2D Hertz-Chandrasekhar distribution. Finally, in order to recreate a 3D droplet 

field from a 2D droplet field, a relationship for the estimation of the relative difference between 

𝑑𝑛𝑛3𝐷 and 𝑑𝑛𝑛2𝐷 which takes into account the slice thickness 𝑒, the surface droplet density 
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number 𝑛2𝐷 and the ratio between 𝛼2𝐷 and 𝛼3𝐷 is proposed. When the two parameters are fixed 

by the 2D droplet field for any case, the ratio 𝛼2𝐷/𝛼3𝐷 depends on the distribution. For a Hertz-

Chandrasekhar distribution, this ratio equals to the ratio of the theoretical values respectively 

for 2D and 3D Hertz-Chandrasekhar distribution. For the preferential segregation distribution, 

this ratio depends on the Stokes number and the ratio of the dimensionless slice thickness 

𝑒/𝜂2𝐷. It could be interesting that this relationship would be modelled in further works.  

Thirdly, the study about the influence of the image resolution on the characterization of 

the spatial droplet distribution shows that a poor image resolution according to the droplet 

density number leads to a deviation of the first four moments of the PDF. When the image 

resolution is degraded then 𝛼, 𝛿 and 𝜖 values increase while 𝛽 value decreases. Furthermore, a 

cut-off value on the lowest values of the dnn appears which is due to the poor resolution of the 

image and the algorithmic process (merging of the droplets).  

 

Finally, the end of the paper is dedicated to the application of the previous conclusion 

to experimental data obtained under reactive conditions from the Mie scattering images 

acquired. It is found that the observed field is constituted of two areas. The first area is close to 

the injector and the image resolution is not sufficient according to the droplet density number. 

Thus, analysing the droplet spatial distribution is not obvious. However, that may be a droplet 

spatial distribution which seems close to the Hertz-Chandrasekhar distribution. Far away from 

the injector, the image resolution matches the droplet density number and the deviation of the 

PDF shows the spatial droplet distribution involves preferential segregation effects.  

 

 

 

Appendix 
Ten samplings of the Monte-Carlo simulation for the configuration of 50 000 droplets 

in the computational volume, a droplet density number 𝑛3𝐷 equals to 100 droplets per cm-3 and 

a dimensionless size of the computational volume 𝐿/𝜂3𝐷 equals to 37 have been carried out. 

Figure 20 shows the relative error on the dimensionless parameters 𝛼3𝐷, 𝛽3𝐷, 𝛿3𝐷 and 𝜖3𝐷 for 

each draw. The symbols correspond to the relative error value for each draw and the solid red 

line corresponds to the mean value of the relative error. This figure shows that, for each 

dimensionless parameters, the value of the relative error fluctuates around a mean value. 

However, this variation is marginal for 𝛼3𝐷 and 𝛽3𝐷 while it is more important for 𝛿3𝐷 and 𝜖3𝐷.  
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Figures 
 

a)  

b)  
Figure 1 : General description of the test rig  a) View of the LACOM device and PROMETHEE test rig  

b) Sketch of the flow under non-reacting conditions 

 

a)  b)  

c) d)  
Figure 2 :  In the case of reacting conditions for the lower part of the combustion chamber a) mean 

droplet density number map b) mean dnn map c) mean dnn – droplet density number diagram and d) 

standard deviation dnn – droplet density number diagram 
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Figure 3: transition steps from the 3D data to the 2D data 

 

a)   b)  

c)   d)  
Figure 4 : Evolution of the relative error for the a) 3D dimensionless mean b) 3D dimensionless standard 

deviation c) 3D skewness and d) 3D kurtosis according to the dimensionless cube size for the Monte-Carlo 

approach 

 

 
Figure 5 : Comparison of the pdf between the theoretical case (red line) and the Monte-Carlo simulation 

(blue) for the case of 𝒏𝟑𝑫 equals to 1000 droplet per cm3 and 𝑳/𝜼𝟑𝑫 equals to 56 
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Figure 6 : Visualizations of droplets spatial distribution  a) St = 0.33  b) St = 1.37  c) St = 5.06  d) = 14.42 

 

a)  b)  

c)  d)  
Figure 7 : Evolution of a) dimensionless mean b) dimensionless standard deviation c) dimensionless 

skewness and d) dimensionless kurtosis according to the Stokes number for DNS – DPS simulations 
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a)  b)  

c)  d)  
Figure 8 : Comparison between Hertz – Chandrasekhar distribution PDF and distribution with 

preferential segregation PDF for a) St = 0.32 b) St = 1.37 c) St = 5.06 and d) St = 14.41 

 

 
Figure 9 : Droplets distribution in a Y-plane with a density gradient 
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a)   b)  

c)  d)  
Figure 10 : Evolution of the a) dimensionless mean b) dimensionless standard deviation c) dimensionless 

skewness and d) dimensionless kurtosis according to the mean dimensionless 3D density gradient 

 

a) b)  
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c) d)  
Figure 11 : Evolution of the a) dimensionless mean b) dimensionless standard deviation c) dimensionless 

skewness and d) dimensionless kurtosis according to the mean dimensionless 2D density gradient 

 

a) b)  

c) d)  
Figure 12 : Evolution of the relative error due to the restriction effect for a) 3D dimensionless mean b) 3D 

dimensionless standard deviation c) 3D dimensionless skewness and d) 3D dimensionless kurtosis according 

to the dimensionless thickness 
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a)  b)  

c)  d)  
Figure 13: Evolution of the relative error for a) 2D dimensionless mean b) 2D dimensionless standard 

deviation c) 2D dimensionless skewness and d) 2D dimensionless kurtosis according to the dimensionless 

thickness 

a)   
Figure 14: Evolution of the relative difference between 𝒏𝟑𝑫 and 𝒏𝟐𝑫 after the 3D-2D transition according 

to the dimensionless thickness 
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Figure 15 : Evolution of the ratio of 2D dimensionless mean to 3D dimensionless mean according to the 

dimensionless thickness and the Stokes number 

 

 

 

 

 

 

 

a)  b)  

c)  d)  
Figure 16 : PDF of the dnn in 2D for initial 𝒏𝟐𝑫 equals to 250 droplets per cm² according to the 

dimensionless pixel size for a) 
𝚫(𝐩𝐱)

𝛈𝟐𝐃
= 0.026 b) 

𝚫(𝐩𝐱)

𝛈𝟐𝐃
= 0.039 c) 

𝚫(𝐩𝐱)

𝛈𝟐𝐃
= 0.077 d) 

𝚫(𝐩𝐱)

𝛈𝟐𝐃
= 0.149 
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a) b)  

 

c) d)  
Figure 17: Evolution of a) dimensionless mean b) dimensionless standard deviation c) dimensionless 

skewness and d) dimensionless kurtosis according to the dimensionless pixel size 

 
Figure 18 : Dimensionless pixel size map in the case of reacting conditions for the lower part of the 

combustion chamber. The image resolution is around 40 pixels per millimetres 
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a) b)

c) d)
Figure 19 : a) Map of the location of the studied areas  b) dimensionless distance PDF for the zone 1 where 

the surface droplet density number is high  b) dimensionless distance PDF for the zone 2 where the surface 

droplet density number is medium  d) ) dimensionless distance PDF for the zone 3 where the surface droplet 

density is low 
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a)  b)  

c) d)  
Figure 20 : Evolution of the relative error for the a) 3D dimensionless mean b) 3D dimensionless standard 

deviation c) 3D skewness and d) 3D kurtosis according to the draw Monte-Carlo simulation for the case of 

50 000 droplets in the computational volume, 𝒏𝟑𝑫 equals 100 droplets per cm-3 and 𝑳/𝜼𝟑𝑫 equals to 37 
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Tables  
 

Configuration 𝑳 [mm] 𝒏𝒎𝒂𝒙 [𝒅𝒓𝒐𝒑𝒍𝒆𝒕𝒔. 𝒄𝒎
−𝟑] 𝒏𝒎𝒊𝒏 [𝒅𝒓𝒐𝒑𝒍𝒆𝒕𝒔. 𝒄𝒎

−𝟑] 
1 30 7000 500 : 500 : 6000 

2 30 8000 500 : 500 : 6000 

3 40 7000 500 : 500 : 6000 

4 40 8000 500 : 500 : 6000 

5 50 7000 500 : 500 : 6000 

6 50 8000 500 : 500 : 6000 
Table 1 : Sum up of the different test configuration for the 3D droplet density gradient study 

Configuration 𝑳 [𝒎𝒎] 𝒏𝒎𝒂𝒙  [𝒅𝒓𝒐𝒑𝒍𝒆𝒕𝒔. 𝒄𝒎
−𝟐] 𝒏𝒎𝒊𝒏  [𝒅𝒓𝒐𝒑𝒍𝒆𝒕𝒔. 𝒄𝒎

−𝟐] 
1 40 4 000 [10;25;50;100;250;500 : 500 : 

3 500] 

2 40 4 500 [10;25;50;100;250;500 : 500 : 

3 500] 

3 50 4 000 [10;25;50;100;250;500 : 500 : 

3 500] 

4 50 4 500 [10;25;50;100;250;500 : 500 : 

3 500] 

5 60 4 000 [10;25;50;100;250;500 : 500 : 

3 500] 

6 60 4 500 [10;25;50;100;250;500 : 500 : 

3 500] 
Table 2 : Sum up of the different test configuration for the 2D droplet density gradient study 

 

𝚫(𝒑𝒙) [𝒎𝒎] 
𝒏𝟐𝑫 [𝒄𝒎

−𝟐] 
0.1 0.05 0.025 0.0167 

100 0.5 0.12 0.03 0.03 

500 2.45 0.60 0.15 0.15 

1 000 4.84 1.24 0.31 0.31 

2 000 9.38 2.47 0.62 0.62 

3 000 13.64 3.66 0.94 0.94 

4 000 17.61 4.85 1.25 1.25 

Table 3 : Evolution of the percentage of droplets lost per numerical image due to droplet aggregation 

phenomenon after the creation of the numerical image 

𝚫(𝒑𝒙) [𝒎𝒎] 
𝒏𝟐𝑫 [𝒄𝒎

−𝟐] 
0.1 0.05 0.025 0.0167 

100 3.91 1.02 0.27 0.10 

500 18.51 4.90 1.24 0.45 

1 000 34.43 9.65 2.47 0.92 

2 000 59.41 18.55 4.92 1.85 

3 000 76.93 26.82 7.27 2.74 

4 000 88.62 34.39 9.61 3.64 

Table 4 : Evolution of the percentage of droplets lost per numerical image due to droplet merging 

phenomenon after the Mie scattering image processing 
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