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ABSTRACT

Monitoring mechanical properties of structures such as
bridges, buildings, or wind turbines, is important to detect
early stage failures. Operational modal analysis is a testing
method to estimate these properties from vibration measure-
ments. Taking advantage of works on motion estimation,
several video modal analysis methods have emerged in the
last decade. This paper compares two strategies about sub-
pixel phase-based motion estimations thanks to multi-scale
decomposition. Synthetic videos of a vibrating cantilever
beam are generated to assess the robustness of these meth-
ods against motion amplitude, gray scale quantization, white
noise, and blurring.

Index Terms— phase-based motion estimation, sub-pixel
motion, multi-scale decomposition, vibration, mechanical
structure

1. INTRODUCTION

As mechanical properties reflect the health of civil structures,
their analysis helps to detect early stage failure. Operational
modal analysis (OMA) has been developed to estimate struc-
ture mechanical properties, such as mode shape and natu-
ral frequencies, from acceleration, velocity, or displacement
measurements [1]. These measurements are generally ac-
quired by contact sensors such as accelerometers or linear
variable differential transformers. However, as these sensors
are physically mounted on structures, their setup is costly and
time-consuming. Therefore, video-based methods have been
recently developed to perform cheap remote measurements
from observations by still cameras [2–5]. As vibration can
be defined as a periodic small motion of surface elements
observed by the camera, motion should be estimated at sub-
pixel definition. Chen et al. [6] use the phase complex re-
sponse of quadrature filters applied to video frames to esti-
mate motion and perform vibration analysis of simple struc-
tures. Chou et al. [5] experimentally show that among avail-
able classical video motion estimation methods, the phase-
based one is faster and provides a dense sub-pixel motion es-
timation. Furthermore, phase-based methods do not require
speckle patterns mounted or projected on the structure.

Two approaches exist to estimate motion thanks to multi-
scale pyramid decomposition of each frame. Wadhwa et al. [7]
take the pyramid scales into account to estimate motion at
each pixel, so that one single OMA is performed, whereas
Yang et al. [8] determine the motion at a given scale.

Because no study compares phase-based motion estima-
tion methods, we propose to assess their performances using
synthetic videos that represent a vibrating vertical cantilever
beam. We then compare estimated displacements to ground-
truth ones. Videos are generated with different motion ampli-
tudes to study sub-pixel efficiency. Robustness against gray
scale quantization, additive noise, and blurring is also studied.

2. PHASE-BASED MOTION ESTIMATION

2.1. Complex steerable pyramid decomposition

Let I(x, y; t) be the intensity at pixel (x, y) at frame t. One
wants to densely estimate the motion field along horizontal
and vertical directions at each frame t:

δ(x, y; t) =

(
δh(x, y; t)
δv(x, y; t)

)
∈ R2. (1)

Assuming illumination is spatially and spectrally constant
over time, the intensity at a pixel associated to a given surface
element can be considered as constant:

I(x, y; 0) = I(x+ δh(x, y; t), y + δv(x, y; t); t). (2)

The following methods rely on a complex steerable pyra-
mid (CSP) decomposition to split each frame in space fre-
quency sub-band using quadrature complex filters. Spatial
frequencies of each frame are decomposed as (ωh, ωv) =
(ωr cos(θ), ωr sin(θ)) into polar coordinates correspond-
ing to different scales r = 1, . . . ,Nr and orientations
θ = 0, . . . , Nθ−1

Nθ
π, where Nr and Nθ are the number of

scales and orientations.
Magnitude and phase of the complex response Sr,θ(x, y; t) =

Gr,θ ∗ I(x, y; t) of the filter Gr,θ applied to frame I are de-
noted as ρr,θ(x, y; t) and φr,θ(x, y; t).



2.2. Phase-based motion estimation

Filter response at frame 0 can be expressed from motion at
frame t:

Sr,θ(x, y; 0) = Gr,θ ∗ I(x, y; 0) (3)

=

∫ ∞

−∞

∫ ∞

−∞
I(x̃, ỹ; 0) ·Gr,θ(x− x̃, y − ỹ) dx̃ dỹ (4)

(2)
=

∫ ∞

−∞

∫ ∞

−∞
I(x̃+ δh(x̃, ỹ; t), y + δv(x̃, ỹ; t); t)·

Gr,θ(x− x̃, y − ỹ) dx̃ dỹ.

(5)

Assuming that δh and δv are constant in the support (of size
bhr × bvr ) of the filter Gr,θ at each frame t, we have:

Sr,θ(x, y; 0) =

∫ x+bhr

x−bhr

∫ y+bvr

y−bvr

I(x̃+ δh(t), ỹ + δv(t); t)·

Gr,θ(x− x̃, y − ỹ) dx̃ dỹ. (6)

Using the changes of variables x̂ = x̃ + δh(t) and ŷ = ỹ +
δv(t), filter response at frame 0 can be deduced from filter
response at frame t as:

Sr,θ(x, y; 0) =

∫ x−δh(t)+bhr

x−δh(t)−bhr

∫ y−δv(t)+bvr

y−δv(t)−bvr

I(x̂, ŷ; t)·

Gr,θ(x+ δh(t)− x̂, y + δv(t)− ŷ) dx̂ dŷ

(7)

= Sr,θ(x+ δh(t), y + δv(t); t). (8)

For each sub-band, filter response magnitude and phase are
thus expressed as:

ρr,θ(x, y; 0) = ρr,θ(x+ δh(t), y + δv(t); t), (9)

φr,θ(x, y; 0) = φr,θ(x+ δh(t), y + δv(t); t). (10)

By considering that δh(t) and δv(t) depend on pixel location,
we deduce that filter response magnitude and phase at a pixel
associated to a surface element are nearly constant:

ρr,θ(x, y; 0) ≈ ρr,θ(x+ δh(x, y; t),y + δv(x, y; t); t), (11)

φr,θ(x, y; 0) ≈ φr,θ(x+ δh(x, y; t),y + δv(x, y; t); t). (12)

We suppose that φr,θ ∈ C1 for all r, θ, and t to apply a first-
order Taylor expansion to Eq. (12):

φr,θ(x, y; 0)−φr,θ(x, y; t) ≈ ∇φr,θ(x, y; t)·δ(x, y; t). (13)

Because phase gradient ∇φr,θ is approximately equal to
the filter central spatial frequencies [9], motion can be esti-
mated by replacing ∇φr,θ by (ωh, ωv) in Eq. (13). Let us
use the Dirac comb to sample continuous space-time quan-
tities I , ρr,θ, and φr,θ, and denote them in discrete space
as I[x, y; t], ρr,θ[x, y; t], φr,θ[x, y; t], and δ[x, y; t], with
[x, y; t] ∈ J1,NxK × J1,NyK × J0,NtK, where Nx, Ny and
Nt are the number of pixel columns, pixel rows, and frames.
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Fig. 1. Ideal Simoncelli and Freeman frequency filters Gr,θ

support of a pyramid with Nr = 2 scales and Nθ = 4 orien-
tations.

2.3. Multi-scale motion estimation

To decompose each frame into a CSP, Wadhwa et al. [7] use
Simoncelli and Freeman [10] frequency filters whose sup-
port are represented in Fig. 1. They solve a weighted least
square (WLS) problem to estimate motion δ̂ by fusing sub-
band phases:

δ̂[x, y; t] = argmin
δ[x,y;t]

∑
r,θ

9∑
k=−9

9∑
ℓ=−9

G[k, ℓ]·

ρ2r,θ[x+ k, y + ℓ; t] ·
[ (

ωh, ωv
)
· δ[x, y; t]

−
(
φr,θ[x+ k, y + ℓ; 0]− φr,θ[x+ k, y + ℓ, t]

)]2
.

(14)

Weights are based on the squared filter response magni-
tude ρ2r,θ used for sub-band decomposition. Indeed, the phase
at a sub-band is meaningful only if the associated magnitude
is high. The authors also assume that the motion is locally
constant and add a spatial constraint. Therefore, they apply
a Gaussian kernel G with a standard deviation of 3 px and a
support of 19 × 19 px. Furthermore, the phase φr,θ[x, y; t] is
wrapped in (−π, π]. Before solving Eq. (14), it is temporally
unwrapped to compare phase shift between frames t and 0. In
Eq. (14), φr,θ and ρr,θ are bi-cubic interpolated for r ≥ 2 to
get the same spatial resolution as φ1,θ and ρ1,θ.

2.4. Single-scale horizontal motion estimation

Yang et al. [8] also use the frequency filters [10] of Fig. 1
for CSP frame decomposition. Furthermore, they assume that
vertical displacement in their vertical cantilever beam videos
can be neglected (i.e., δv(x, y; t) ≈ 0), such that Eq. (10)
yields:

φr,θ(x, y; 0) ≈ φr,θ(x+ δh(x, y; t), y; t). (15)

Therefore, using Taylor expansion and phase partial deriva-
tive approximation [9], Eq. (13) becomes:

φr,θ(x, y; 0) = φr,θ(x, y; t) + ωh · δh(x, y; t). (16)

The authors only use the response of horizontal filters (θ = 0)
and estimate horizontal motion at scale r ∈ {1, 2} by:

δ̂hr [x, y; t] =
φr,0[x, y; 0]− φr,0[x, y; t]

ωr
. (17)



Force f 0.04 0.08 0.16 0.33 0.65 1.31 2.62 5.24 10.47
δh at top 0.016 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00

δh at middle 0.005 0.01 0.02 0.04 0.09 0.18 0.35 0.70 1.40

Table 1. Amplitude of true horizontal motion δh at top and
middle edge pixels (px) vs. input force f (N).

Phase is also temporally unwrapped before motion estima-
tion. δ̂h1 is computed at frame resolution whereas δ̂h2 is first
computed with sub-sampled phase φ2,0, then up-sampled us-
ing bi-cubic interpolation to get the frame full spatial resolu-
tion.

3. EXPERIMENTS

3.1. Experimental setup

To compare these methods, we generate synthetic videos of
a vertical cantilever beam. This model requires adjusting the
following physical beam parameters : length L (m), section
area (m2), Young modulus E (Pa), moment of inertia J (m4)
and mass per unit length µ (kg·m−1). The center line of the
vertical beam is defined in the scene coordinates system by
the point set {(g(Y, t), Y ; t) ∈ R × [0, L] × J0,Nt − 1K},
where g is solution of the Euler-Bernoulli equation:

EJ
∂4g(Y, t)

∂Y 4
+ µ

∂2g(Y, t)

∂t2
= f(Y, t). (18)

In this experiment, the input force f (N) is represented by a
time and space Dirac function to simulate a hammer impact at
the free end of the beam. Besides, to simulate the behavior of
our experimental beam, we set its volume to 900×30×6mm3,
its mass to 1.413 kg, and its Young modulus E to 210 ·109 Pa.

Frame definition is set to 720× 40 px and since the beam
covers 97% of the frame height, the pixel size is 1.289mm.
Frame rate is set to 436 fps, which fits our experimental cam-
era. Vibrations with frequency lower than 218Hz can then
be studied during 2.3 s thanks to the analysis of Nt = 1000
frames. Each pixel intensity value is computed with the area
of the intersection between the pixel in the image plane and
the projected beam. Values are then scaled between 30 and
225 to encode the gray level of each pixel on Nb = 8 bits.

We focus on two edge pixels, hereafter called top and
middle edge pixels (see Fig. 2). Table 1 shows the ampli-
tude of the true (model-based) horizontal motion δh computed
at these pixels for a given input force f . At the top edge
pixel, the amplitude of δh is approximately three times that
at the middle edge pixel. Examples of synthetic videos of the
cantilever beam can be downloaded from the following link:
https://bit.ly/3ynSEN1.

To estimate δh, each video is analyzed by the multi-scale
approach using Eq. (14) with Nr = 2 and Nθ = 4 to obtain
δ̂h, and by the single scale approach using Eq. (17) to com-
pute δ̂h1 and δ̂h2 . As the thickness of the beam covers 5 px, we
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Fig. 2. Edge pixels of interest at equilibrium (left part) and
during movement (right part) for motion estimation.
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Fig. 3. True and estimated motions (px) for f = 10.47N.

use a different Gaussian kernel G in the multi-scale approach
with a standard deviation of 1 px and a support of 7 × 7 px.
For illustration purpose, true and estimated horizontal mo-
tions are displayed in Fig. 3 for a beam excited by an input
force f = 10.47N. This figure shows that δ̂h and δ̂h1 under-
estimate true motion, whereas δ̂h2 overestimates it. Note that
motions are not centered around 0 px since they are estimated
with respect to the first frame; their temporal mean are prac-
tically removed to get centered motions.

3.2. Robustness against motion amplitude

We perform a sensitivity study on motion amplitude to high-
light sub-pixel efficiency. To this end, we generate nine
videos with an input force f ranging from 0.04N to 10.47N
according to a logarithmic step (see Table 1). We then com-
pute the Pearson correlation coefficient between δh and es-
timated motion δ̂h (or similarly δ̂h1 or δ̂h2 ) at top and middle
edge pixels as:

Cδhδ̂h =

∑
t δ

h[t]δ̂h[t]√∑
t δ

h[t]2
√∑

t δ̂
h[t]2

. (19)

https://bit.ly/3ynSEN1
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Fig. 4. Correlation between estimated and true motions vs.
force (a), or, when f = 0.08N, vs. number of quantization
bits (b), noise (c) and blur (d) standard deviations.

The results are displayed on Fig. 4(a). Only correlations
higher than 0.8 are shown to highlight relevant estimations.

When f ranges from 0.08N to 5.24N, estimators δ̂h and
δ̂h2 reach similar high correlations, whereas Cδhδ̂h1

is slightly
lower. No motion is correctly estimated at middle edge pixel
for small motion amplitude (f = 0.04N).

3.3. Robustness against gray level quantization

Since outside illumination is not controlled, image con-
trast may vary. Therefore, we quantize gray levels on
Nb ∈ J2, 8K bits before motion estimation. This study is
performed on two videos with true motions of large and small
amplitudes generated by input force f of 2.62N and 0.08N.

The three methods estimate large motions with a corre-
lation higher than 0.95 when Nb ≥ 4 (no figure for f =
2.62N). For small amplitudes (f = 0.08N), Cδhδ̂h2

≥ 0.9

when Nb = 7, whereas Nb = 8 bits are necessary to estimate
small motions by δ̂h and δ̂h1 (see Fig. 4(b)).

3.4. Robustness against noise

For this study, Gaussian noise with standard deviation σn is
added to each video frame (Nb = 8 bits) before motion esti-
mation.

For large amplitudes, correlations are always close to 1.0
for both pixels (no figure for f = 2.62N). For small ampli-
tudes (f = 0.08N), δ̂h is more robust against noise than δ̂h1
and δ̂h2 (see Fig. 4(c)). This figure shows that the WLS es-
timator successfully reduces the impact of noise perturbation
thanks to the Gaussian spatial constraint.

3.5. Robustness against blur

As the distance between the camera and outside mechanical
structure can vary, optical setup may not be always optimal.
Therefore, we also study robustness against blur by applying a
Gaussian filter (with varying standard deviation σb) on video
frames.

All methods succeed in estimating large motion with cor-
relations close to 1.0 (no figure for f = 2.62N). Figure 4(d)
shows that δ̂h and δ̂h2 provide similar estimations of small mo-
tions (f = 0.08N) whatever σb. At both edge pixels, Cδhδ̂h1
is the lowest correlation, whatever the blur level.

4. CONCLUSION

In this paper, we compare the performances reached by phase-
based motion estimators in terms of correlation with true sub-
pixel motion. For this purpose, synthetic videos are computed
thanks to a physical model that simulates vertical cantilever
beam vibrations. Beam vibrations cause small or large mo-
tion, according to the considered element location along the
beam. Since motion amplitude gets larger towards the beam
free end, motion is estimated at top and middle edge pixels.
Motion is either estimated by a multi-scale approach using a
WLS solution to merge phases at different scales or by a fast
single-scale horizontal estimator. The latter approach pro-
vides the worst estimations on first scale in most cases. On
second scale, however, it globally provides the best estima-
tions and is the most robust to gray scale quantization. The
multi-scale estimator takes several motion directions into ac-
count. It also gives good results and is the most robust against
noise while being the most time-consuming. Therefore, this
experimental study shows that selection of a relevant scale is
the key problem to estimate motion with varying amplitude.
However, as this study focuses on horizontal displacement,
performances should be assessed when no assumptions are
made about motion direction. For the purpose of future vibra-
tion analysis of outside mechanical structures, these experi-
ments will be coupled with operational modal analysis meth-
ods.
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