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Abstract

How, when, and why do organisms, their tissues, and their cells age remain challenging issues, although researchers have
identified multiple mechanistic causes of aging, and three major evolutionary theories have been developed to unravel
the ultimate causes of organismal aging. A central hypothesis of these theories is that the strength of natural selection
decreases with age. However, empirical evidence on when, why, and how organisms age is phylogenetically limited,
especially in natural populations. Here, we developed generic comparisons of gene co-expression networks that quantify
and dissect the heterogeneity of gene co-expression in conspecific individuals from different age-classes to provide
topological evidence about some mechanical and fundamental causes of organismal aging. We applied this approach
to investigate the complexity of some proximal and ultimate causes of aging phenotypes in a natural population of the
greater mouse-eared bat Myotis myotis, a remarkably long-lived species given its body size and metabolic rate, with
available longitudinal blood transcriptomes. M. myotis gene co-expression networks become increasingly fragmented
with age, suggesting an erosion of the strength of natural selection and a general dysregulation of gene co-expression in
aging bats. However, selective pressures remain sufficiently strong to allow successive emergence of homogeneous age-
specific gene co-expression patterns, for at least 7 years. Thus, older individuals from long-lived species appear to sit at an
evolutionary crossroad: as they age, they experience both a decrease in the strength of natural selection and a targeted
selection for very specific biological processes, further inviting to refine a central hypothesis in evolutionary aging
theories.

Key words: mutation accumulation theory, antagonistic pleiotropy theory, disposable soma theory, longitudinal
transcriptomics, evolution of aging.

Introduction
Aging studies confront us with major, pressing questions:
how, when, and why do organisms, their tissues, their cells,
and their molecules age? Decades of scientific work have
identified a diversity of plausible mechanistic causes of aging
(Harman 1956; Finch 1990; Vijg 2007; Kenyon 2010). In addi-
tion to such proximal causes of aging (Mayr 1961), during the
past 70 years, three compatible, mutually nonexclusive evo-
lutionary theories have sought to unravel the ultimate causes
of aging in a diversity of organisms (Kirkwood 2005; Johnson
et al. 2019). These evolutionary theories rest on a common
argument: all organisms inevitably die from extrinsic sources,
be it by accident, predation, disease outbreak, or due to ex-
ceptionally harsh conditions (Reichard 2017). Because no in-
dividual is immortal, irrespective of the existence of aging, as
progressively fewer individuals within populations escape
these extrinsic sources of mortality and are thus able to

experience the effects of natural selection, from an evolution-
ary viewpoint the later periods of any organisms’ lives are
predicted to be less important than their early periods
(Reichard 2017). Thus, the mutation accumulation (MA) the-
ory of aging (Medawar 1952) predicts that late-expressed
deleterious mutations will accumulate in organismal
genomes, when the strength of natural selection has dimin-
ished so much that it cannot purge the older members of the
populations from their “rotten” late-expressed genes or fur-
ther postpone the expression of these genes in the lifetime of
organisms. Hence, senescence, the gradual decrease in biolog-
ical functions, occurs when such detrimental genes contrib-
ute to the decline of organisms late in their lives. The
antagonistic pleiotropy (AP) theory of aging (Williams
1957) also fundamentally explains senescence by the decreas-
ing strength of natural selection acting on chronologically
aging individuals. As external death is inevitable, the selection
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for genes that benefit organisms should be more active early
in their lives, even when these genes with early positive fitness
effects, known as AP genes, impair the survival of their bearers
later in life. Finally, the disposable soma (DS) theory
(Kirkwood 1977; Kirkwood and Holliday 1979) stresses that,
because resources are limited, most organisms will be more
successful if they invest their finite energy into their germline
and into their reproduction rather than into the maintenance
of their soma (Reichard 2017). Thus, according to DS, as se-
lection will tend to favor investment in early reproduction
over long-term somatic maintenance, evolutionary trade-offs
get established in populations and natural selection is
expected to weaken with age. This drives senescence, when
investing energy in mechanisms that fight against somatic
aging becomes, from an evolutionary perspective, exceedingly
costly (Kirkwood and Rose 1991; Johnson et al. 2019). Of note,
in contrast with MA, which should primarily explain senes-
cence in preserved populations (e.g., human beings benefiting
from medical progresses, or animals living in protected niches
outside their natural environment) (Medawar 1952; Nussey
et al. 2013), AP and DS can also be mobilized to explain
senescence beyond such protected or medicalized popula-
tions (Nussey et al. 2013). This difference in explanatory scope
matters, because senescence is commonly detected in nature
in birds, mammals, other vertebrates and insects, whose free-
living populations present age-related changes in adulthood,
including decrease in survival probability, decline in reproduc-
tive performance traits or functional alterations of other
physiological or behavioral traits (Nussey et al. 2013).

Reassuringly for the classic evolutionary explanations of
aging, analyses of aging phenotypes in model species returned
observations compatible with the central hypothesis that the
strength of natural selection decreases with age. Longitudinal
studies conducted in various species generally report an in-
crease in variation across traits as a function of age
(Mendenhall et al. 2021), which ultimately suggests that nat-
ural selection exerts a weaker constraint on late than on early
phenotypes. This increasing variation across traits with age
has been proposed to result from increased gene expression
changes within aging organisms. For example, chromosomal
instability might produce major disturbances in gene expres-
sion with age in mammals (Doll�e et al. 2000; Doll�e and Vijg
2002; Vijg 2007). Likewise, it has also been proposed that
cumulative somatic mutations, disrupting the transcriptional
networks that regulate cell structure and function, might
contribute to the aging process (Bahar et al. 2006).

Supporting these proximal explanations of aging, (Bahar
et al. 2006) reported a significant increase in transcriptional
noise of nuclear genes in single postmitotic cardiomyocytes
collected from fresh heart tissue samples in old male mice
with respect to young male mice. This observation was con-
sidered to result from an accumulation of somatic DNA dam-
age during aging, with detrimental effects on normal cell
functioning. Similarly, Martinez-Jimenez et al. (2017) reported
that cell-to-cell transcriptional variability upon immune stim-
ulation increases with aging in memory CD4þ T cells in
young and old mice, and in two divergent species. Likewise,
single-cell transcriptome analysis of human pancreatic cells

showed that islet endocrine cells from older donors display
significantly increased levels of transcriptional noise with re-
spect to that of younger donors (Enge et al. 2017). Moreover,
single-cell transcriptomics analyses across 30 cell types of
young and old mice suggested that aging leads to increased
transcriptional noise in most cell types, suggestive of a deregu-
lated epigenetic control (Angelidis et al. 2019). Altogether,
these results were interpreted to support an association be-
tween animal aging on the one hand, and an increased tran-
scriptional dysregulation caused by a stochastic gradual
accumulation of both epigenetic and genetic errors, on the
other hand.

Yet, Warren et al. (2007) nuances these simple correlations.
The analysis of gene expression noise for six different mRNA
transcripts in four hematopoietic cell types from phenotyp-
ically equivalent cells in young and old mice revealed a trend
toward higher transcript levels in cells isolated from old ani-
mals, but no significant increase in transcriptional heteroge-
neity with age (Warren et al. 2007). These authors concluded
that large-scale regulatory destabilization is not a universal
hallmark of aging, but rather that transcriptional dysregula-
tion may be primarily a relevant aging mechanism in non-
renewing tissues. Similarly, Kimmel et al. (2019) analyzed
single-cell transcriptomic from three tissues in young and
old mice and reported both increased and decreased varia-
tions in gene expression with age, depending on the genes
and on the cell types investigated. Overall, longitudinal single-
cell transcriptomic analyses presently support a subtle con-
sensual view; that is, that increased cell-to-cell variation in
transcription appears as a hallmark of aging for some genes,
in some tissues (Mendenhall et al. 2021).

This nuanced conclusion raises novel questions about the
ultimate causes of aging. Increased gene expression heteroge-
neity within older organisms is surely compatible with a re-
laxation of the selective pressures exerted on gene expression
and with a random accumulation of damage within individ-
uals with age (Tarkhov et al. 2019). However, if some somatic
tissues and cells can resist a stochastic deregulation of their
gene expressions with age (e.g., as they genuinely maintain
homogeneous gene expression profiles), more elaborated
models on the strength of selective pressures acting on aging
organisms and their eventual targets in older individuals may
be warranted. Furthermore, there seems to be a theoretical
tension between explanations of aging that rely on a general
weakening of natural selection with age, and explanations
that hold that natural selection actively shapes some trade-
offs and some longevity programs, operating until very late in
organismal life. On the one hand, selection would then ap-
pear too weak to sustain the fitness of older organisms,
whereas, on the other hand, selection would be sufficient
to enforce regular expression of late biological processes
throughout their lives. Such seemingly different expectations
on the influence of selective pressures suggest that the causes
of aging are probably more complex than an increasing evo-
lutionary neglect with time. Therefore, scientists need to
know more about whether, when and how a decrease in
the strength of natural selection contributes to aging
(Cohen et al. 2020), especially in natural populations.
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To this end, we introduce a generic network approach that
quantifies and compares the heterogeneity of gene co-
expression profiles in conspecific individuals from different
age-classes (e.g., young, old, and very old). Our approach fo-
cuses on gene co-expression, because aging involves multiple
interacting biological pathways (Huang et al. 2019), which can
be tracked using gene co-expression networks (GCNs).
Comparisons of GCNs constructed for successive age-
classes within a population effectively provide a systemic
view on the changes affecting gene co-expression over time
for a broad range of biological processes. Unlike past applica-
tions of GCNs that mostly focused on identifying co-
expression modules associated with aging (Southworth
et al. 2009; Baumgart et al. 2016; Huang et al. 2019), our novel
approach exploits the whole topology of GCNs to determine
1) how aging occurs (e.g., what sets of co-expressed genes are
affected by aging or are age-specific); 2) when aging occurs
(e.g., which age-classes present altered co-expression patterns
associated with aging); and 3) what ultimate causes may drive
topological changes detected between GCNs representing
different age-classes (e.g., whether GCNs are increasingly frag-
mented with age, a topological dynamics suggestive of a
weakening of natural selection). These three goals can be
simultaneously achieved. How organisms age can be
addressed because GCNs are commonly used to discover
the molecular bases, mechanisms, and regulations of complex
processes (Fuente 2010; Meng et al. 2018; Chowdhury et al.
2020), using module-centered approaches, hub gene finding,
guilt by association analysis, or by identifying genes with
strongly altered connectivity under different conditions
(Fuente 2010; Chowdhury et al. 2020), in our case under dif-
ferent age-classes. When organisms age is deducible because
GCNs can help in understanding disease progression, by iden-
tifying genes that show similar co-expression across different
stages of a disease (Chowdhury et al. 2020). Consistently, by
discovering local and global topological similarities between
networks from different age-classes (e.g., by detecting com-
mon subnetworks between young and intermediate bats,
between intermediate and old bats, etc.), it can be assessed
in which age-classes differences in co-expression associated
with aging occurs. Finally, interpreting the loss of network
connectivity associated with age as an effect of relaxed selec-
tive constraints offers a way to address why organisms age.

We applied this network approach on longitudinal blood
transcriptomes from a natural population of greater mouse-
eared bats (Myotis myotis), a suitable species to investigate
the complexity of proximal and ultimate causes of aging
phenotypes, due to their remarkable long lifespans, given
their small body size and high metabolic rate (Austad 2010;
Munshi-South and Wilkinson 2010; Wilkinson and Adams
2019; Gorbunova et al. 2020). Whereas some authors have
recently postulated that longer lifespan could be correlated
with a smaller litter size in bats compared with other mam-
mals (Garbino et al. 2021), the unusual longevity of bats is
traditionally explained by genetic and epigenetic adaptations
that counteract aging until late in their lives. Namely,
Wilkinson et al. (2021) compared DNA methylation
(DNAm) profiles across 26 bat species to identify epigenetic

changes associated with age and longevity. This study showed
that DNAm accurately predicts chronological age, and that
longevity was negatively associated with the rate of DNAm
change at age-associated sites. Huang et al. (2020) conducted
a comparative genomic and transcriptomic study on long-
lived versus short-lived bats. Expression analysis of 2,086 genes
with significant differences indicated that long-lived bats
exhibited a transcriptomic profile of enhanced DNA repair
and autophagy pathways. These results were further con-
firmed by a phylogenomic longitudinal analysis across euthe-
rian mammals, which uncovered ten autophagy-associated
genes under selective pressure in bat lineages (Kacprzyk
et al. 2021). Thus, according to the evolutionary theories of
aging, aging bats should display a general dysregulation of
their individual transcriptomes with age; yet the unusual lon-
gevity of bats is conversely traditionally explained by adapta-
tions that counteract aging until late in their lives.
Consistently, we observed that bats GCNs become signifi-
cantly more fragmented with age, which testifies of an in-
creased heterogeneity in gene co-expression with age,
compatible with a decrease of the strength of natural selec-
tion acting on older bats. However, GCN analyses also unrav-
eled a succession of age-specific biological processes,
unraveled by age-specific rewiring of co-expression networks,
and the persistence of core functional processes. Altogether,
these observations suggest that, despite an overall weakening
regulation of gene co-expression with time, aging bats are still
under sufficient selection to experience a transition toward a
new, age-specific biology, superimposed onto persistent cen-
tral biological programs.

Results

Introducing an Original Network-Based Approach to
Study Aging
We constructed GCNs from longitudinal transcriptomes of
blood, sampled in natural populations of greater mouse-
eared bats (Huang et al. 2019). These networks were inferred
by age-class, by applying weighted gene co-expression net-
work analysis (WGCNA) on 16 blood samples for each age-
class, with a double stringency condition to consider gene co-
expression as significant (e.g., P value < 0.05 and Pearson
coefficient > 0.8) (see Materials and Methods). In these net-
works, nodes correspond to protein-coding genes, connected
by weighted edges that represent the strength of their co-
expression. Thus, each of our GCNs features the global set of
significant gene co-expression, homogeneously shared by in-
dividual adult bats from a given age-class.

GCNs have already been used to unravel a broad range of
subtle age-related transcriptional variations across tissues and
across individuals within species (Somel et al. 2010; Baumgart
et al. 2016; Pacifico et al. 2018; Huang et al. 2019), with a
traditional focus on the heuristic detection of network mod-
ules (densely connected sets of nodes), associated with aging
(Southworth et al. 2009; Ferreira et al. 2021). Here, we devel-
oped the use of GCNs for aging studies in another direction
by exploiting different aspects of their architectures via com-
parisons of the general and local topological properties of
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GCNs constructed for different age-classes. Our goal was to
characterize some under-exploited data, informative about
both the proximal and ultimate causes of aging. For this,
we quantified the general and local connectedness within
each network (see Materials and Methods) and assessed
how these metrics change with age. In particular, when
GCNs produced from a similar number of samples between
age-classes become increasingly disconnected with age, this
topological change indicates that gene co-expression has be-
come increasingly heterogeneous with age, a pattern com-
patible with a general decrease of the strength of natural
selection on aging organisms. We hypothesize that this is
because younger individuals have their gene co-expression
more constrained by natural selection and are less exposed
to the impact of individual random damage accumulation,
and therefore tend to express more similar sets of genes
within their age-class. By contrast, the gene co-expression of
older individuals was predicted to be more affected by chance
events (due to their different experiences and the decrease of
natural selection strength).

GCN Topologies Are Compatible with a Decreasing
Strength of Natural Selection with Age
We computed simple exact statistics on GCNs constructed
from the same number of samples from three age-classes,
corresponding to young (1–2 years old), intermediate (3–
4 years old), and older (6–7 years old) adult bats, respectively,
at three increasingly high stringency thresholds of correlation
values (see Materials and Methods, supplementary fig. S1,
Supplementary Material online). These metrics show that
the general and local topological properties of the GCNs pro-
duced for different age-classes vary markedly, regardless of
stringency thresholds. Analyses of the distributions of cluster-
ing coefficient values (supplementary fig. S2 and tables S3 and
S4, Supplementary Material online) and of shortest path
lengths (supplementary fig. S2 and tables S3 and S4,
Supplementary Material online) show that GCNs from differ-
ent age-classes present significantly different profiles of local
connectedness and of general connectedness, first investi-
gated with the minimal distances between any pairs of nodes.
The clustering coefficient values significantly decrease with
age, meaning that local networks from older bats appear
less connected than local networks from younger bats.
Moreover, the lengths of the shortest paths significantly in-
crease with age, suggesting that nodes in networks are in-
creasingly distant with age. However, the distributions of
clustering coefficient values and that of shortest path lengths
from young, intermediate, and older bats are too entangled to
be amenable to any simple biological interpretation, meaning
that these two indices are not the simplest ones to interpret
for this data set.

By contrast, other network metrics obviously show that
heterogeneity in gene co-expression increases with age. First,
GCNs from older bats are smaller (comprising less nodes and
edges) than GCNs from young and intermediate bats (table 1),
even though the numbers of transcripts are comparable
among individuals and age-classes. This reduction in network
size implies that, in terms of absolute numbers, there is less

homogeneous gene co-expression detected in older bats than
in younger bats. More importantly, in addition to getting
smaller, GCNs become increasingly fragmented with age (ta-
ble 1). Accordingly, the numbers of disconnected subgraphs
(i.e, connected components in table 1) increase in GCNs as-
sociated with increasingly older bats (fig. 1A). This increased
disconnectedness is noticeable even for GCNs with compa-
rable numbers of nodes (e.g., for stringency thresholds of P
value < 0.05 and Pearson coefficient > 0.9), so it is not triv-
ially caused by the reduced size of the GCN from older bats.
These first series of observations indicate an increased het-
erogeneity in gene co-expression with age.

Statistical comparisons of the normalized degrees of nodes
in GCNs from increasingly old age-classes support a similar
conclusion (fig. 1): nodes of increasingly older bats have sig-
nificantly fewer direct neighbors with age (Wilcoxon rank-
sum tests, P value < 2.10�16 for all comparisons between
pairs of GCNs from different age-classes built at identical
stringency). In figure 1, this trend is illustrated by the progres-
sively fading red coloring: the GCN from younger bats con-
tains a higher proportion of high degree nodes than the GCN
of intermediate bats, which itself presents more highly con-
nected nodes than the much more pale-colored GCN of older
bats.

Likewise, analyses of the distributions of closeness values
unravel a significant decrease in the closeness of nodes be-
longing to the older age-class (fig. 2). These distributions are
significantly different between age-classes (Wilcoxon rank-
sum tests, P value < 2.10�16 for all comparisons between
pairs of GCNs from different age-classes built at identical
stringency), and increasingly shift to lower values of closeness
with age. These measures indicate that nodes are further
away from one another in GCNs from increasingly older
bats, consistent with a general fragmentation of the GCNs.
In figure 3, this is illustrated by the progressively fading red
coloring with age: the GCN from younger bats contains a
higher proportion of nodes with higher closeness values
than the GCN of intermediate bats, which itself presents
more central nodes than the much more pale-colored GCN
of older bats.

Overall, our topological analyses report an increasing local
and general fragmentation of GCNs with age, which strongly
suggests that gene co-expression becomes increasingly het-
erogeneous across individuals from the same age-class.
Moreover, heterogeneity in gene co-expression is also notice-
able when considering the numbers and proportions of genes,
expressed by individuals within an age-class, that are not in-
tegrated into the GCN of that age-class. Such genes do not
display any significant co-expression patterns, so they cannot
be connected to other genes, which stresses the uniqueness
of their expression. These “singletons” represent 10% (for the
1–2 and 3–4 year-old bats) to 14.1% (for the 6–7 year-old
bats) of expressed genes with more than 10 total read counts
(i.e., for the 1–2 year-old bats: 1,232 singletons in 12,240
expressed genes; for the 3–4 year-old bats: 1,224 singletons
in 12,160 expressed genes; for the 6–7 year-old bats: 1,681
singletons in 11,859 expressed genes).
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Importantly, such a pattern is compatible with a general
decrease of the strength of natural selection with age, leading
to the presence of different transcriptional noises in distinct
individuals from the same age-class, possibly as a result of
distinct random damage accumulations in distinct aging
organisms. Accordingly, any increasingly old organism would
present increasingly stochastically perturbed genetic interac-
tions, which reduces the likelihood that all or most individuals
from the same old age-class would express the same sets of
genes, with the same intensity. This interindividual variation
in gene co-expression results in increasingly fragmented
GCNs, compatible with the central hypothesis that natural
selection generally exerts weaker constraints on the biological
processes implemented as organisms age. Moreover, the in-
crease in heterogeneity in gene co-expression may be due to
individual-specific experience. By definition, over time, differ-
ent individuals are increasingly exposed to different situations,
so they are expected to express increasingly different genes. In
this case, an increased heterogeneity in gene co-expression
would also reflect the passage of time: it would correlate with
aging, but not necessarily be a cause of aging.

Under all these interpretations, the partial homogeneity of
gene co-expression observed between age-classes and within
age-classes, especially for the older bats, requires some specific
explanation, because it appears increasingly difficult for aging
adult bats to maintain stable, cohesive gene co-expression.

Gene Co-expression Resists the Decreasing Strength of
Natural Selection with Age
Comparisons of GCNs from different age-classes unraveled
another remarkable topological property of these networks. A
small proportion of the genetic co-expression realized in bats
(hereafter called “core” and corresponding to white nodes
and edges in fig. 4) are conserved in the GCNs across age-
classes (for at least 7 years), reporting homogeneous persis-
tent gene co-expression across age-classes. For example, at a
stringency threshold of P value< 0.05 and Pearson coefficient
> 0.8 (see Materials and Methods), identical connections
between identical nodes are observed in GCNs from younger,
intermediate, and older bats. This core network represents
18.1% of the nodes and 1.1% of the edges of the GCN of
younger bats, 18.2% of the nodes and 4% of the edges of
the GCN of intermediate bats, and 19.4% of the nodes and
6.4% of the edges of the GCN of older bats (supplementary
table S5, Supplementary Material online). The existence of a
small core GCN, corresponding to a modest yet larger

proportion of age-specific GCNs with age, implies that a
part of the GCNs, actually their most central part in terms
of closeness centrality (fig. 5), can resist the general fragmen-
tation of networks with age, hence the general dysregulation.

There are several possible interpretations for such a per-
sistent, albeit limited in size, network pattern. First, core nodes
and edges may correspond to more robust biological pro-
cesses, that, for systemic reasons, better resist the transcrip-
tomic stochastic dysregulation induced by evolutionary
neglect in older individuals. For example, their regulation is
maybe more redundant, and robust to failure. Accordingly,
core co-expressed genes may belong to biological processes
that keep on running in organisms in spite of their aging. In
theory, such biological processes may even have detrimental
fitness effects, as in the theoretical case of quasi-programs
(Blagosklonny 2006), which, despite deleterious effects are
not turned-off due to the weakening of natural selection. In
the long run, some of the core gene co-expressions may then
be involved in aging, or they may correspond to basic, vital
processes, whose failure would be lethal. Second, the stability
of core nodes and edges in the face of a decreasing natural
selection fragmenting the rest of the GCN may reflect the
ability of renewing cells within blood to resist, at least partly, a
general dysregulation in older bats, consistently with the work
by Warren et al. (2007). This resistance to dysregulation with
age may be expected, for example, for transcripts from he-
matopoietic cells, which escape the worst effects of genomic
instability, as such damaged cells are rigorously purged from
the population (Warren et al. 2007), or for transcripts of
granulocyte and naı̈ve B and T cell populations in the periph-
eral blood, which are continuously renewed from the stem
cell pool in the bone marrow (Warren et al. 2007). The turn-
over rate of granulocytes is especially rapid—perhaps less
than a day (Galbraith et al. 1965)—meaning that these cells
are in some respect younger than many other components of
the organism. Yet, our longitudinal analysis also shows that,
even within a tissue composed of renewing cells like blood,
there are obvious signs that GCNs become generally more
fragmented with age, hence signs of a general dysregulation of
gene co-expression in older organisms. Third, within renewing
cells, and within blood, the decreasing strength of natural
selection with age may unevenly affect different genetic pro-
cesses and different genes, some of them being submitted to
more targeted selective pressures than the rest of the pro-
cesses and genes of the genomes.

Table 1. Summary of the Analyzed GCN Topological Properties.

Correlation Threshold Age-Classes Number of Nodes Number of Edges Number of Connected Components

0.80 1–2 years old 11,013 932,579 142
3–4 years old 10,956 255,767 164
61 years old 10,233 157,058 264

0.85 1–2 years old 8,730 377,443 288
3–4 years old 8,006 95,315 417
61 years old 6,801 50,402 592

0.9 1–2 years old 5,404 92,685 291
3–4 years old 4,074 21,850 335
61 years old 2,770 9,438 397
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A functional analysis of these core nodes does not allow to
distinguish among these alternative explanations, but it
shows that core gene co-expression encompasses a function-
ally biased set of genes with respect to the general proteome
in Myotis bats (supplementary fig. S6, Supplementary Material
online). Core co-expressed genes are involved in a variety of
enriched biological processes, associated with renewing blood
cell biology, but also with ongoing viral and bacterial infection.

At any rate, GCNs of bats seem at an evolutionary crossroads,
with some but not all of their gene co-expression becoming
increasingly variable with age.

The labeling of GCNs nodes and edges by the age of their
hosts (1–2, 3–4, or 6–7 years, or a combination of these ages,
see Materials and Methods) unravels another remarkable pat-
tern in GCNs from Myotis bats (fig. 4). In addition to con-
served, core gene co-expression, each GCN contains

FIG. 1. GCNs for three age-classes with normalized degree values. All these GCNs are built for P value< 0.05 and Pearson coefficient> 0.9. (A) The
GCN for the younger bats. (B) The GCN for the intermediate bats. (C) The GCN for the older bats. The node degree (the number of direct edges
connecting a node to others) is normalized by dividing the degree of each node by the total number of nodes�1 within each network. Nodes are
colored based on their normalized degree value (from white, lowest degree to red, highest degree), using the same scale for all networks.

Bernard et al. . doi:10.1093/molbev/msab302 MBE

6

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab302#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab302#supplementary-data


significantly peripheral nodes (Wilcoxon rank-sum test, cor-
rected P value < 0.05) involved in age-specific gene co-
expressions (fig. 5). That is that, for this data set, younger,
intermediate, and older bats appear to homogeneously co-
express distinct sets of genes. Remarkably, the proportion of
age-specific co-expression edges within a GCN significantly
decreases across age-classes, at all stringency thresholds tested
(Unilateral Z-test, P value < 0.05, supplementary table S5,
Supplementary Material online), consistently with the hy-
pothesis that natural selection decreases with age. For exam-
ple, the analyses performed at a minimum Pearson threshold
of >0.8 show that 90.7% of the edges in the GCN of younger
bats, 75.1% of the edges in the GCN of intermediate bats, and
59.6% of the edges in the GCN of older bats are detected only
in the corresponding age-classes. Thus, proportionally and in
absolute numbers of edges, increasingly older bats show less
homogeneous age-specific gene co-expression, but still they
harbor age-specific gene co-expression.

To further demonstrate that aging correlated with notice-
able topological changes in age-specific subnetworks, we used
the labels associated with the different age-classes to decom-
pose the GCNs constructed from young, intermediate, and
older bats into subnetworks only containing core nodes and
edges (“core-only” subnetworks), or only containing nodes
connected by age-specific gene co-expression edges
(“younger-only”, “intermediate-only” and “older-only” sub-
networks). Topological analyses of these subnetworks also
show that, at all stringency thresholds, age-specific subnet-
works are significantly more fragmented (e.g., composed of
significantly more connected components) than the core
subnetwork from a given GCN.

We compared the sizes of the connected components (i.e.,
number of edges) associated exclusively with younger,

intermediate, and older bats, respectively. At each stringency
threshold, we observed that age-specific connected compo-
nents from older bats are significantly smaller, both in abso-
lute and normalized numbers of edges (Wilcoxon rank-sum
test, corrected by the Bonferroni method, supplementary ta-
ble S7, Supplementary Material online), than age-specific con-
nected components from younger age-classes (see Materials
and Methods). Assuming that the number of edges within a
connected component of an age-specific subnetwork reflects
the number of realized molecular interactions supported by
the co-expressed genes, then age-specific gene co-expressions
would likely support shorter biological processes (in numbers
of involved interactions) with age. Therefore, the ability to
implement novel, age-specific complex biological processes or
to maintain complex biological processes would be reduced
in older bats with respect to younger bats. This conclusion
would also be compatible with a decrease of selective pres-
sures with age.

To confirm this interpretation, we computed statistics
based on motifs (network patterns that are significantly
enriched with respect to null networks of similar sizes and
degree distributions than each of our GCNs [Milo et al.
2002]). The existence of motifs in networks is often (but
not always [Stone et al. 2019]) considered as topological ev-
idence for selection on a network architecture (Shen-Orr et al.
2002). Specifically, we quantified the ratio of triangles over all
motifs of size n¼ 3 nodes in each GCN. This metrics is nor-
malized, can be compared between networks and reflects the
connectivity within the network. By definition, this ratio
equals 1 for a maximally connected GCN. Under the common
assumption that the detection of motifs suggests the impact
of some selection on network topology, our motif analyses
also showed that bats GCNs are under selection. First, GCNs

FIG. 2. Distribution of closeness values for GCN from different age-classes, at different stringency levels. X-axis values correspond to closeness
values. Y-axis values correspond to the kernel density estimation of the histogram computed by the R package ggplot2. (A) The histogram of
frequencies for nodes in GCNs built for P value< 0.05 and Pearson coefficient> 0.8. (B) The histogram of frequencies for nodes in GCNs built for P
value< 0.05 and Pearson coefficient> 0.85. (C) The histogram of frequencies for nodes in GCNs built for P value< 0.05 and Pearson coefficient>
0.9. Blue bars indicate values for older bats, orange bars indicate values for intermediate bats, and red bars indicate values for younger bats.
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from aging bats are more densely connected than expected
by chance (hence under selection) (supplementary table S8,
Supplementary Material online). Second, the strength of this
selection is greater in the networks from younger bats (i.e., the
ratio of connected motifs significantly decreases with age in
GCNs [supplementary table S9, Supplementary Material
online]).

Yet, although various lines of evidence suggest that natural
selection could be decreasing, selective pressures on gene co-
expression would still be sufficiently strong to constrain the
implementation of multiple homogeneous age-specific bio-
logical processes after 6 or 7 years of life.

We complemented these topological analyses by a func-
tional analysis. For all tested networks, regardless of the

FIG. 3. GCNs for three age-classes with closeness values. All these GCNs are built for P value< 0.05 and Pearson coefficient> 0.9. (A) The GCN for
the younger bats. (B) The GCN for the intermediate bats. (C) The GCN for the older bats. The closeness value (a measure of a node centrality, and
distance to any other nodes in the network) is bounded between 0 and 1. Nodes are colored based on their closeness value (from white, lowest
closeness value to red, highest closeness value), using the same scale for all networks.
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stringency level, genes involved in core processes are signifi-
cantly enriched in the functional Eukaryotic orthologous
groups (KOG) category T (signal transduction mechanisms)
with respect to genes involved in age-specific co-expression
(supplementary fig. S10, Supplementary Material online). By
contrast, noncore genes were depleted in the functional cat-
egories T and Z (cytoskeleton) for all age-classes at all

thresholds of Pearson correlations (supplementary fig. S11,
Supplementary Material online). Moreover, for each func-
tional KOG category, finer functional ontology enrichment
analyses (see Materials and Methods) show that age-specific
processes are enriched in similar GO functions in the different
age-classes with respect to the proteome (supplementary fig.
S12, Supplementary Material online), suggesting that GCNs

FIG. 4. Core and age-specific interactions within GCNs from younger, intermediate, and older bats. All these GCNs are built for P value< 0.05 and
Pearson coefficient> 0.8. (A) The GCN for the younger bats. (B) The GCN for the intermediate bats. (C) The GCN for the older bats. Edge and node
colors indicate with which age-class the co-expression of two genes is associated: white for core, co-expressed genes present in all age-classes, green
for co-expressed genes exclusively associated with younger bats, pink for co-expressed genes exclusively associated with intermediate bats, blue for
co-expressed genes associated with both younger and intermediate bats, red for co-expressed genes exclusively associated with older bats, and
orange for co-expressed genes associated both with intermediate and older bats.
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are rewired with age but encode similar functions through
different genetic associations. In addition, functional analysis
of expressed genes absent of GCNs, or singletons, show that
they are enriched in mitosis-, apoptosis- and stress response-
related terms, suggesting that interindividual expression var-
iation is at least in part associated to differences in white
blood cells rates of proliferation and death, and experienced
external stresses, a likely consequence of the variable external
stimuli encountered by individual wild bats in their natural

environment (supplementary fig. S13A, Supplementary
Material online).

Overall, although their general and local gene co-
expression patterns differ with age, in terms of enriched bio-
logical functions, aging bats do not seem to rely on a funda-
mentally novel biology during the courses of their lives.
Rather, despite an age-specific rewiring of the GCNs, older
bats seem to realize the same functions (or a subset of the
functions) also achieved by younger and/or intermediate

FIG. 5. Closeness distribution in age-specific subnetworks in bats. For each Pearson correlation threshold and each age-class, the distribution of the
closeness centrality metric is displayed for each age-specific network in box plots, colored as in figure 3 and as indicated in the legend. Distributions
were compared using the unilateral Mann–Whitney U test to determine whether subnetworks indicated by the longest bracket branch had
significantly higher values of closeness. *: closeness was significantly higher than the indicated distribution (P < 0.05); NS: closeness was not
significantly higher.
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bats. These results suggest that as they age, adult bats main-
tain a largely similar biology, implemented however through
different, age-specific gene co-expression patterns. This obser-
vation suggests either than gene regulation for achieving the
same enriched functions is age specific in bats, and thus that
some gene regulatory networks change with age; or it sug-
gests that our data set subsampled the whole sets of gene co-
expression truly involved to realize these enriched functional
categories, with the result that different sets of gene co-
expression supporting these functions were reported in the
networks for different age-classes. Future enhanced transcrip-
tomic sampling will allow to distinguish between these two,
mutually nonexclusive hypotheses. Yet, remarkably, because
even older bats continue to display the same enriched bio-
logical processes realized by younger bats, some selection
seems still active that preserves the decline of these particular
functions in aging organisms, in spite of an increased hetero-
geneity of gene co-expression in aging bats.

Network Analyses of Longitudinal Blood
Transcriptomes from Mice
To learn whether our findings on bats aging were specific to
this species, we compared them with observations gathered
from a model aging species, the short-lived mouse Mus
musculus.

Although our differential network-based analysis of aging
bats blood transcriptomes from three age-classes is not di-
rectly comparable with the module-centered differential gene
co-expression analyses of 13 tissues realized for a smaller sam-
ple of mice from two adult age-classes (16-month-old and 24-
month-old mice) by Southworth et al. (2009). These two
studies are the closest one can compare. They suggest com-
monalities and differences in bats and mice aging at the level
of their gene co-expression. Although the networks from ag-
ing mice do not become significantly smaller in terms of
number of edges, they present a significant loss of connectiv-
ity within modules with age (Southworth et al. 2009). This
pattern dynamics suggests that, as for bats, some aspects of
gene co-expression would become more heterogeneous in
mice with age. However, whereas some inflammation path-
ways become constitutively induced in the older mice
through the high activity of NF-jB, we did not detect any
sign of age-specific activation of NF-jB target genes in aging
bats. Rather, we noticed that the functional category KOG T,
corresponding to the Toll-like receptor cascades, was even
depleted in old bats (in the least stringent of our GCNs
[Pearson > 0.8]), a seemingly opposite trend in aging bats
and in aging mice.

In general, regarding the functions affected during mice
and bats aging, systematic comparisons of the functions
found enriched by Metascape in our analysis of bat age-
specific subnetworks with the functions from modules signif-
icantly correlated with age in mice according to Southworth
et al. (2009) suggest some similarities (e.g., a decrease in ribo-
nucleoprotein complex biogenesis and assembly [KOG A],
DNA replication [KOG L], microtubule cytoskeleton [KOG
Z], etc.) but also some differences (in the ER to Golgi vesicle-

mediated transport, in the response to DNA damage stimu-
lus, etc.).

To further test this conclusion, we reanalyzed publicly
available blood transcriptomes from mice using the same
methodology than for bats (see Materials and Methods).
Specifically, we analyzed GCNs for two age-classes of mice
(2–3 and 4–9 months old, respectively) with similar numbers
of individuals than bats age-classes. Importantly, wild bats and
lab mice have very different lifestyles and lifespans. Although
the mice we studied were chronologically aging, their two
age-classes remained composed of biologically young individ-
uals (Flurkey et al. 2007). Thus, although the mice data set can
be used to track effects of aging in the same tissue than for
bats, one has to bear in mind that the two age-classes we
could analyze for mice span over a time period where lab
mice are known to be healthy, without reported reduction in
their fertility, hence physiologically healthy aging adults
(Flurkey et al. 2007). Therefore, these two age-classes from
mice have a priori no reason to match with the lifecycle stages
captured by the age-classes for bats, themselves composed of
aging adults, which may well be physiologically more aged
than mice from the other data set. Consequently, GCNs from
these aging bats and mice likely differ, and comparative inter-
pretations can only be speculative and careful.

Still, some differences between aging bats and aging mice
GCNs are worth mentioning to highlight the originality of the
findings made for aging bats. First, despite these species har-
boring close genome sizes (typical of mammals [Kapusta et al.
2017] with a genome size of 2,148.63 MB and a median pro-
tein count of 61,156 for M. myotis versus a genome size of
2,689.66 MB and a median protein count of 61,156 for M.
musculus), GCNs from mice were much larger than GCNs
from bats, for all age-classes, at all considered thresholds, both
in terms of nodes and edge numbers (supplementary table
S14, Supplementary Material online). Thus, wild bats always
displayed a much greater heterogeneity in co-expression than
lab mice. Second, although GCNs from bats displayed marked
topological differences and appeared increasingly fragmented
with aging, GCNs from mice up to 9 months old did not
display topological evidence of fragmentation (supplemen-
tary table S15, Supplementary Material online). Rather,
GCNs topologies from our two age-classes of mice were
much more similar than that of aging bats. Core nodes rep-
resented 52.8% (Pearson correlation> 0.8; 40.3% at Pc> 0.85;
33.1% at Pc > 0.9) of the younger mice GCN and 51.6%
(Pearson correlation > 0.8; 38.5% at Pc > 0.85; 28.6% at Pc
> 0.9) of the older mice GCN. Likewise, conserved co-
expression edges (core edges) represented 25.6% (Pearson
correlation > 0.8; 22% at Pc > 0.85; 17.4% at Pc > 0.9) of
the younger mice GCN and 23.7% (Pearson correlation> 0.8;
21.4% at Pc> 0.85; 18.2% at Pc> 0.9) of the older mice GCN.
Age-specific gene co-expression in mice were largely periphe-
ric, forming notably small-sized connected components in
their GCNs (supplementary fig. S16, Supplementary
Material online), which are responsible for slight statistical
differences in the network metrics for 2–3 month-old mice
and for 4–9 month-old mice (supplementary fig. S17,
Supplementary Material online). Therefore, although mice
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aged of 2–3 months implement common as well as some
different gene co-expression with respect to mice aged of
4–9 months, no general process of functional decline that
would result in detectable increased gene co-expression het-
erogeneity was identified in aging mice for this data set.
Consistently, the proportion of singletons was stable and
represented�8% of expressed genes with more than 10 total
read counts for 2–3 and 4–9 month-old mice age-classes (for
2–3 month-old mice: 1,646 singletons in 20,803 expressed
genes; for 4–9 month-old mice: 1,650 singletons in 21,242
expressed genes). Thus, the relative topological stability with-
out evidence of fragmentation for mice GCNs between 2 and
9 months of life, compared with the topological changes ob-
served for bats GCNs between 1 and 6þ years of life, unravels
a greater heterogeneity in gene co-expression during aging in
wild bats than in lab mice, which may be related to differences
in lifestyle, lifespan, and aging rates throughout the lifecycle of
these two species, and the fact that mice are inbred to be
genetically homogeneous.

Finally, in terms of functions, genes involved in core co-
expression in mice, on the one hand and in bats in the other
hand, were rather similar. They only consistently differed at all
Pearson correlation thresholds for the KOGs I (lipid transport
and metabolism), O (posttranslational modification), U (in-
tracellular trafficking, secretion, and vesicular transport), R
(general function prediction only), and S (function unknown).
The functions enriched in the KOG V (defense mechanisms)
do not indicate a generalized inflammation associated with
aging in these young mice (supplementary fig. S18,
Supplementary Material online). We also analyzed the func-
tions associated with age-specific genes in bats and mice
(supplementary fig. S19, Supplementary Material online). At
the level of KOG distributions, the two species only consis-
tently differed for the KOG T (signal transduction mecha-
nisms) at all Pearson correlation thresholds.

By contrast, bats and mice differed at the level of
singletons-associated functions, that is, genes expressed by
individual mice or bats whose expression was not correlated
with that of other genes within a given age-class, correspond-
ing to the most heterogenous population of genes one can
associate with aging (supplementary fig. S13B, Supplementary
Material online). Interestingly, mice did not display an enrich-
ment in functions associated with cell proliferation, cell death,
and stress responses, but rather in functions associated with
organismal development and hormonal control. Such a result
may be explained by the controlled, standardized artificial
laboratory environment in which mice were raised, which
may lead to more interindividual co-expression regarding
blood transcriptional responses to external stimuli than for
bats living in nature. Interindividual variation between aging
mice would rather appear to originate from differences in
growth mechanisms, possibly affected by differential epige-
netic regulation (Lathe 2004; Voelkl et al. 2020). Overall, these
results suggest that our findings regarding topological
changes in GCNs from blood transcriptomes of aging bats
reflect aspects specific of the aging of bats in their environ-
ment, which were not recovered for the same tissue in mice
aging in the lab.

Discussion
We tested the hypothesis that variation of overall gene co-
expression would increase with age in bats, using network-
based differential gene co-expression analyses that provide a
holistic view of how gene co-expression relationships change
during aging. Taking advantage of the tools and concepts of
network science to quantify the general and local topological
properties of GCNs, we used exact network metrics to cir-
cumvent debates associated with modules definitions
(Kleinberg 2002; Fortunato 2010; Habib and Paul 2010; de
Montgolfier et al. 2011), rather than performing mainstream
module-centered analyses of GCNs (Gaiteri et al. 2014; Meng
et al. 2018; Chowdhury et al. 2020), typically conducted using
WGCNA. Although module-centered analyses are important,
our original approach based on exact metrics reported an
increase in variation of overall gene co-expression, supported
by a general pattern of network fragmentation, which could
not have been trivially predicted through differential gene
expression analyses. Indeed, differential expression is not read-
ily correlated with differential co-expression: differential ex-
pression can be positively, negatively correlated or even
uncorrelated with differential co-expression (Oldham et al.
2006; Fuente 2010; Lui et al. 2015; Zamora-Fuentes et al.
2020). Moreover, we observed that, although a core subnet-
work seems to be robust during bat aging, other subnetworks
appear age-specific. Thus, on the one hand, GCN compari-
sons identified which interactions are conserved during aging.
This characterized some essential housekeeping processes
that provide a basic life support to bats. On the other
hand, GCN comparisons detected age-specific co-expression
with similar associated biological functions, providing evi-
dence of a re-wiring in the architecture of the bat interactome
with age. The core subnetwork and the rewiring of GCN with
age would also not have been predictable from differential
gene expression studies alone (Ideker and Krogan 2012;
Anglani et al. 2014; Gaiteri et al. 2014; M€ahler et al. 2017;
Meng et al. 2018; Zamora-Fuentes et al. 2020). Furthermore,
we interpreted the size reduction and the loss of connectivity
during aging in bats as the result of a weaker constraint
exerted by natural selection later in life. This interpretation
is consistent with studies on gene co-expression connectivity
and selection that suggest the existence of selective forces in
the overall design of at least some genetic pathways to main-
tain a highly connected class of genes, associating high con-
nectivity in GCNs with purifying and/or stabilizing selection
(Stuart 2003; Oldham et al. 2006; M€ahler et al. 2017). This
interpretation was also reinforced by motif analysis (Milo
et al. 2002; Shen-Orr et al. 2002), showing that the ratio of
triangular motifs over all size 3 motifs significantly decreases
in aging bats, a metrics compatible both with the existence of
selection in GCNs of aging bats, and with the decrease of that
selection with age.

Ancestral bats species were already long lived (Wilkinson
and Adams 2019) and specific adaptations have further en-
hanced the longevity of extant species, such as the Brandt’s
bat (Myotis brandtii), which can live up to 41 years, or the
greater mouse-eared bat (M. myotis), which can live up to
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37 years (Foley et al. 2018). Although classic theories of aging
predict that the strength of natural selection should decrease
in older bats, and should consequently lead to a general
dysregulation of individual transcriptomes with age, con-
versely the unusual longevity of M. myotis is traditionally
explained by adaptations that counteract aging until late in
their lives. Accordingly, longitudinal transcriptomes studies of
free-living populations of Myotis bats (Huang et al. 2016) have
characterized some genetic bases for such adaptations.
Previous studies have shown that DNA repair and DNA dam-
age signaling pathways are maintained throughout M. myotis
lifespan, consistent with low levels of cancer (Huang et al.
2016), which indicates robust strategies for genome mainte-
nance. Moreover, bats are also able to tolerate active DNA
transposons, possibly through evolved dampened mecha-
nisms of cytoplasmic DNA sensing. Bat species are also re-
markably resistant to oxidative damage, thanks to efficient
mitochondria, which produce less H2O2 per unit oxygen con-
sumed (Brunet-Rossinni 2004). Consistently, M. myotis
presents low rates of age independent oxidative lesions, which
suggests that this species evolved efficient repair or removal of
damaged mitochondria (Jebb et al. 2018). Overall, M. myotis
does not show the same transcriptomic changes with age as
commonly observed in humans and other mammal species,
but rather exhibit a unique, age-related gene expression pat-
tern associated with DNA repair, autophagy, immunity, and
tumor suppression, beneficial for the maintenance of cellular
functions into old age and therefore suspected to drive their
extended healthspans (Huang et al. 2019).

Our results are consistent with traditional empirical find-
ings on gene expression and with evolutionary theories of
aging. It is likely that gene co-expression, affected by random
damage accumulation, becomes more stochastic with age
within individual bats. This individual stochasticity of gene
co-expression results in heterogeneous gene co-expression
within an age-class. Consequently, at the same age, individual
bats co-express different sets of genes, and, for this reason,
GCNs from older age-classes are more fragmented (i.e., more
disconnected and of smaller sizes) than GCNs from younger
age-classes, even though, based on the longevity record for
M. myotis, the older age-classes are still rather young for this
species. Such a topological change is therefore compatible
with a decrease of the strength of natural selection acting
on older bats. We found that this decrease of the strength of
natural selection seems to affect age-specific gene co-
expressions, because the age-specific subnetworks present
in the GCNs of aging bats were, in particular, markedly re-
duced in size with age. However, despite this signal of a weak-
ening regulation of the biological processes with time, aspects
of the GCN of older bats suggest that these organisms are still
under sufficient selection to experience a transition toward a
new, age-specific biology and to maintain a fraction of central
biological programs that were already running in young
adults.

A possible interpretation of these contrasted results (a
fading yet present selection) is that older bats simultaneously
experience a decrease of the strength of natural selection and
the robust resistance to this form of evolutionary neglect by a

fraction of homogeneous gene co-expressions. If this is correct
after 7 years, an individual bat is not simply progressively
succumbing to wear and tear (and possibly failing to turn-
off some of its ongoing programs) as natural selection recedes,
this bat also seems to keep on adapting, even if less effectively,
some of its biological processes.

This claim is compatible either with the existence of suc-
cessive stages of homogeneous age-specific gene co-
expressions, or with a biased subsampling of the bat popula-
tion in the different age-classes. In the first case, whereas
stochastic gene co-expression increases with age, some selec-
tion would then remain active as individual bats age. In the
second (nonmutually exclusive) case, older bats would con-
stitute a nonrepresentative subset of the younger bats pop-
ulation from which they arose. Namely, subpopulations of
older bats would be enriched in individuals which are able
to implement a particular gene co-expression, and to keep on
performing critical biological functions that affect survival,
because different aging individuals are constrained to rely
on shared genetic co-expression, which support the same
sets of biological functions. Although within each individual
aging appears largely stochastic, the existence of constraints
imposing critical gene co-expression and critical functional
implementation to survive, would explain that at the popu-
lation level, aging is not completely random. As a result, in-
creasingly older individuals would be genuinely different on
many accounts, and in particular would display heteroge-
neous gene co-expression (which results in smaller, more dis-
connected GCNs for increasingly old age-class and a higher
proportion of singletons), but at the same time, these increas-
ingly older bats would share some critical features without
which they simply would not survive. In other words, there
would be many ways for bats to age, but less ways to survive
to aging.

Under both scenarios, older bats from long-lived species
seem to experience a remarkable evolutionary crossroad: as
they age, their long lives make them both experience a de-
crease in the strength of natural selection, yet their belonging
to long-lived species makes them benefit from inherited
adaptations that partly resist the raising neglect of natural
selection with age, through a targeted selection for very spe-
cific biological processes or a biased selection for surviving
older individuals, relying on similar gene co-expression to
perform convergent critical biological functions.

Importantly, our approach is generic, and could be applied
to any longitudinal transcriptomic data set, from single-cells
(Mendenhall et al. 2021) to tissues, to analyze how, when, and
why these cells, tissues, or their host organisms are aging. It
would be fascinating to use this approach on long-lived indi-
viduals from long-lived species, as such organisms have plenty
of opportunities not only to experiment aging but also to
evolve adaptations counteracting aging and enhancing their
longevity. A succession of distinct longevity and trade-off
programs may well be running, under some form of selection,
in the older individuals of long-lived species. Thus, interacting
molecular components contributing to such processes may
possibly be captured through comparisons of age-associated
GCNs as shared late age-specific gene co-expression patterns.
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Beyond bats, it would be fascinating to use comparisons of
longitudinal GCNs to analyze the causes of aging for many
other exciting species (e.g., theoretically immortal/extremely
long-lived species [Johnson et al. 2019]) or humans, whose
average lifespan has considerably expanded in the past cen-
tury. This would allow one to determine whether gene co-
expression variation increases with age in these species, com-
patible with a weakening of natural selection, or instead,
maybe, to observe that their GCNs do not show many signs
of such an increased heterogeneity, but possibly rather some
plateau in the fragmentation of networks associated with
increasingly old individuals, as their general topological prop-
erties and connectedness become stable past a given age.

Conclusion
We presented an approach that can simultaneously show
how organisms age (i.e., what gene co-expressions change
over time, hence what potential biological processes are as-
sociated with aging), when organisms age (i.e., after which age,
GCNs of older individuals present significant topological dif-
ferences with respect to GCNs of younger individuals), and
also offers topological clues on why they age (assuming that
an increased fragmentation, i.e., a disconnectedness and size
reduction of networks, and a depletion in triangular motifs, is
compatible with a weakening of natural selection).
Investigating gene co-expression in a long-lived bat species
(M. myotis), we observed a general dysregulation of gene co-
expression with age, compatible with a progressive weakening
of natural selection, which is already detectable in younger
bats (i.e., 3–4 years old). However, we also detected a succes-
sion of age-specific shared gene co-expression, indicating that
the decrease in strength of natural selection was not detri-
mental to the evolution of adaptations, even reduced, as
organisms age and are increasingly neglected by natural se-
lection. Our results appear compatible with classic theories of
aging predicting that natural selection on older organisms
decreases in natural populations, but they also indicate that
theoretical refinements are needed to account for the persis-
tence of early biological processes and for the emergence of
(likely noisy) biological processes later in life in a context
where natural selection is fading, but remains active, in
some cells and on some targets.

Materials and Methods

Data Collection and Sampling of Bats
We collected the gene expression counts of 12,263 protein-
coding genes from 88 bats (M. myotis) from the original data
published in Huang et al. (2019), most kindly provided by
these authors. The data set is composed of individuals ranging
from 0 to 7þ years old. Bats were aged as follows as described
in Huang et al. (2019). Myotis myotis individuals have been
marked with unique transponders since 2010, and the initial
ages of bats when first captured were determined by exam-
ining the epiphyseal cartilage in their finger bones. Individuals
were recorded as juvenile (0 year old) if the epiphyseal plates
in their finger bones were open; otherwise, they were
recorded as adult (1þ years old, true age unknown) .In our

study, we focused on adult bats only (1þ year old) and re-
moved individuals marked as 5 and 5þ due to a lack of
samples to allow robust network construction for this partic-
ular age-class, using WGCNA (Langfelder and Horvath 2008),
which recommends a minimum of 15 samples per age-class
to infer GCNs. Accordingly, blood samples were pooled into
three age-classes: 1–2, 3–4, and 6þ. We then randomly se-
lected 16 samples for each category for a total of 48 samples.
This protocol, resulting in younger, intermediate, and older
bats with comparable numbers of individuals, reduces sam-
pling size biases between age-classes, whereas providing
enough signal to reduce the risk of missing data.

Data Collection and Sampling of Mice
Publicly available whole peripheral blood Illumina transcrip-
tomic data sets containing RNAseq data from wild-type con-
trol, C57BL/6 mice of documented age were collected from
the Gene Expression Omnibus (GEO) repository (https://
www.ncbi.nlm.nih.gov/geo/, last accessed October 20, 2021)
to build a longitudinal mouse blood supertranscriptome for
two age-classes corresponding to ages 2–3 and 4–9 months
old (supplementary table S20, Supplementary Material on-
line). After controlling for batch effects using the function
removeBatchEffect() from the limma package, matrices of
raw counts were generated after mapping reads from the
selected data sets to the most recent reference genome as-
sembly (GRCm39/mm39) using STAR (default parameters,
genome indexes were recomputed for each class of read
lengths, by setting sjdbOverhang to read length minus one,
as advised), to calculate correlation coefficients and perform
GCN analysis. Then, we performed similar analyses on these
longitudinal blood transcriptomes from mice than we had
conducted for bats.

Gene Co-expression Network Inference for Bats
To infer the GCN of each age-class, we used the R packages
DEseq2 (Love et al. 2014) and WGCNA (Langfelder and
Horvath 2008). We first normalized the raw counts of the
12,263 protein-coding genes using the variance stabilizing
transformation (VST, from the DEseq2 package), and used
the normalized count matrix as input for WGCNA. We used
the function corAndPvalue() to compute the Pearson corre-
lations and associated Student P values. In the GCN, nodes
represent protein-coding genes and edges represent the
Pearson correlation between two genes. For each age-class,
we produced three GCNs using three minimum stringency
thresholds: 0.8, 0.85, and 0.9 (to be able to detect any poten-
tial threshold effects). With such high thresholds, only strong
correlations are preserved in the GCNs, thus reducing the size
of the networks while removing uninformative signal.

Metrics of Networks Fragmentation
For bats and mice, we compared the topology of the GCN for
each age-class using standard network topological properties
and seven different network metrics: 1) number of nodes, 2)
number of edges, 3) node degrees, 4) node closeness, 5) local
clustering coefficients, 6) the number of distinct connected
components (i.e., disconnected subsets of connected nodes)
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within the network, and 7) the shortest paths between pairs
of nodes. More precisely, the node degree is the number of
edges connecting a node to its neighbors (supplementary fig.
S1A, Supplementary Material online). The normalized degree
of a node is the degree of this node divided by the number of
nodes of the component it belongs to minus 1, therefore
ranging from 0 to 1. The shortest path (supplementary fig.
S1B, Supplementary Material online) is the shortest distance
(i.e., the minimum number of edges) between any pair of
nodes. The closeness centrality (formula in supplementary
fig. S1C, Supplementary Material online) measures how cen-
tral a node is within a connected component (i.e., how close it
is to the other nodes). Because our GCNs were composed of
multiple connected components, the closeness of a node is
only computed over the component it belongs to, without
loss of generality. The clustering coefficient (formula in sup-
plementary fig. S1D, Supplementary Material online) meas-
ures how close from being a clique (a complete graph) are the
neighbors of a node (i.e., the connectivity of a node’s neigh-
borhood). These metrics were used to quantify different
aspects of the fragmentation within each network and be-
tween networks. Thus, networks were said to be increasingly
fragmented with age, when their constitutive nodes present
less direct neighbors (node degree decreases), when their
nodes become less central (node closeness decreases),
when the neighbors of each of their nodes become less inter-
connected (local clustering coefficient decreases), when the
shortest distances between pairs of their nodes increase, and
when these networks present an increasing number of con-
nected components with respect to networks associated with
younger age-classes. Moreover, in addition to these metrics of
disconnectedness, we also consider that networks were in-
creasingly fragmented when they were smaller (i.e., presenting
less nodes and less edges at increasing age-classes). Therefore,
what we used to define fragmentation were general proper-
ties of network disconnectedness and network sizes; and the
term of fragmentation does not therefore necessarily imply
that fragmented networks from older age-classes are built
from subsets of nodes and of edges from networks from
younger age-classes. To compute these topological properties
and metrics, we used an in-house Java program based on the
Java library Grph (Hogie et al. 2014).

Statistical Analyses on Metrics Distribution
The R package ggplot2 was used to generate the distributions
of network metrics for the GCNs of each age-class, at three
stringency thresholds, for bats and mice, respectively.
Statistical significance of the differences between these metric
distributions, at each stringency threshold, was assessed using
the nonparametric Wilcoxon rank-sum test and corrected by
the Bonferroni method for multiple tests.

Statistical Analyses on Motifs
For bats or mice GCNs (i.e., for each age-class at the three
stringency thresholds), we used the R package igraph to enu-
merate all possible motifs of size three (Csardi and Nepusz
2006) and computed the ratio (ratioR) of triangle motifs di-
vided by the sum of the three other types of disconnected

motifs. Using the same package, we generated for each GCN
999 random networks with the same number of nodes and
the same degree distribution as in the original GCN. Using the
distribution of motifs in random GCNs, two distinct statistical
comparisons among age-classes were performed. First, we
tested the hypothesis that the ratioR of the original GCN is
significantly larger than the ratioR of random GCNs. Second,
we computed, at each stringency threshold, three values to
compare ratioR at different age-classes (i.e., x12 ¼ (ratioR
young GCN � ratioR intermediate GCN); x13 ¼ (ratioR
young GCN � ratioR old GCN); x23 ¼ (ratioR intermediate
GCN � ratioR old GCN)) and tested the hypothesis that
these values (x12, x13, and x23) in the original GCNs are
significantly larger than the corresponding values computed
from random GCNs.

Core Subnetworks and Age-Specific Subnetworks
For bats and mice, we used an in-house Java script to achieve
pairwise comparisons of GCNs, generated at a given strin-
gency threshold. We define as “core nodes” and “core edges,”
the nodes and edges shared by the GCNs from the younger,
intermediate, and older age-classes. Nodes exclusively associ-
ated with a GCN from a single age-class were labeled as
specific for that age-class. Nodes shared by a pair of networks
were labeled as present in these two age-classes. In addition,
we implemented specific labels for edges shared by young and
intermediate bats, and for edges shared by intermediate and
older bats. The absolute sizes of all connected components of
all subnetworks composed of core-only or age-specific-only
nodes and edges (obtained from GCN built for each age-class
at all stringency thresholds) were measured in number of
edges. Moreover, these absolute sizes were normalized by
dividing the number of edges of each connected component
of a subnetwork of interest (e.g., all connected components
exclusively found in older bats) by the total number of edges
in the GCN. This normalization takes into account the fact
that GCNs from aging bats have a reduced size and a reduced
connectedness with respect to GCNs from bats from younger
age-classes, and therefore may display smaller age-specific
connected components for this reason. The absolute and
normalized size distributions of age-specific connected com-
ponents, resulting from these computations, were respec-
tively compared across age-classes using a Wilcoxon rank-
sum test corrected by the Bonferroni method to assess
whether some age-classes were comprised of significantly
smaller age-specific connected components.

Functional Enrichment Analysis
For bats and mice, co-expressed genes involved in core inter-
actions, co-expressed genes not involved in core interactions,
and co-expressed genes associated with a given age-specific
interactions were respectively binned by age-class and func-
tionally annotated using KOG (Tatusov et al. 2003). This ap-
proach returned a general functional profile that was
represented as a bar plot presenting the proportion of age-
specific and core co-expressed genes for distinct KOG cate-
gories. Distributions of these KOG categories were compared
using pairwise Z tests between subgroups to identify
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statistical differences in the amount of co-expressed genes
involved in interactions at different ages or with robust co-
expression in all age-classes. The functional ontology of these
classes of co-expressed genes were analyzed with greater ac-
curacy by performing functional enrichment analyses to iden-
tify enriched functions of age-specific and core co-expressed
genes, within each KOG category when a large number of
genes (>3,000) were analyzed, or in bulk for bat core genes,
using Metascape (Zhou et al. 2019). Moreover, genes
expressed at more than 10 total read counts but absent
from GCNs were defined as “singletons,” and “noncore co-
expressed genes” were defined as the sum of co-expressed
genes not involved in core interactions and co-expressed
genes associated with a given age-specific interactions. Both
singletons and “noncore co-expressed genes” were function-
ally analyzed similarly as above.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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