
HAL Id: hal-03820478
https://hal.science/hal-03820478v1

Submitted on 19 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Complexity Approach to Tree Algebras: the
Polynomial Case

Thomas Colcombet, Arthur Jaquard

To cite this version:
Thomas Colcombet, Arthur Jaquard. A Complexity Approach to Tree Algebras: the Polynomial Case.
47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), Aug
2022, Vienna, Austria. pp.1868-8969, �10.4230/LIPIcs.MFCS.2022.37�. �hal-03820478�

https://hal.science/hal-03820478v1
https://hal.archives-ouvertes.fr

A Complexity Approach to Tree Algebras:
the Polynomial Case
Thomas Colcombet
Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Arthur Jaquard
Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
In this paper, we consider infinitely sorted tree algebras recognising regular language of finite trees.
We pursue their analysis under the angle of their asymptotic complexity, i.e. the asymptotic size of
the sorts as a function of the number of variables involved.

Our main result establishes an equivalence between the languages recognised by algebras of
polynomial complexity and the languages that can be described by nominal word automata that
parse linearisation of the trees. On the way, we show that for such algebras, having polynomial
complexity corresponds to having uniformly boundedly many orbits under permutation of the
variables, or having a notion of bounded support (in a sense similar to the one in nominal sets).

We also show that being recognisable by an algebra of polynomial complexity is a decidable
property for a regular language of trees.

2012 ACM Subject Classification Theory of computation → Tree languages; Theory of computation
→ Regular languages

Keywords and phrases Tree algebra, nominal automata, language theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.37

Funding Thomas Colcombet: Supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No.670624)
and the DeLTA ANR project (ANR-16-CE40-0007).

1 Introduction

Among the many different approaches to language theory, the algebraic one focalises toward
the understanding of the expressive power of regular languages based on the properties of
algebraic recognizers. The first work in this direction [11] characterized star-free languages,
and initiated a very fruitful branch of research. While algebraic theories for word languages
(both finite and inifinite) are already well developed, the corresponding picture remains
incomplete for e.g. languages of trees (both finite or infinite) or graphs. Finding an effective
characterization of the regular languages of trees definable in first order logic remains for
instance a long standing open problem.

When designing algebras for tree languages or graph languages, one is naturally inclined to
consider infinitely sorted algebras. The case of tree algebras (such as preclones, ω-hyperclones,
operads [8, 1]) is typical: plugging a subtree into another one requires a mechanism for
identifying the leaf/leaves in which the substitution has to be performed. Notions such as
variables, hole types, or colors are used for that. Another example is the one of graphs
(HR- and VR- algebras [7]) in which basic operations (a) glue graphs together using a set of
colors (sometimes called ports) for identifying the glue-points, or (b) add all possible edges
between vertices of fixed given colors. In these examples, the algebras are naturally sliced
into infinitely many sorts based on the number of variables/hole types/colors that are used
simultaneously.

© Thomas Colcombet and Arthur Jaquard;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6529-6963
https://orcid.org/0000-0001-7407-684X
https://doi.org/10.4230/LIPIcs.MFCS.2022.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 A Complexity Approach to Tree Algebras: The Polynomial Case

However, a technical difficulty arises immediately when using such algebras. Even when
all sorts are finite (what we call a finite algebra), these algebras are not really finite due
to the infinite number of sorts. This forbids, for instance, to explicitely describe the whole
algebra in a finite way, which is of course a problem for designing algorithms. This hurdle to
handle infinitely sorted algebras can, arguably, be seen as one of the causes of the many years
that it took before having a good definition of an algebra for infinite trees [2], or the time
that it took before it was possible to characterize logically the expressiveness of recognizable
properties of graphs under bounded tree-width hypothesis [4].

Complexity of algebras. To cope with this difficulty, the notion of complexity for infinitely
sorted algebras was introduced in [5]. In each of the above cases, the sorts are naturally
indexed by a natural number parameter: the number of variables, or hole types, or colors.
Hence an algebra A would have a carrier of the form

(An)n∈N

together with suitable operations that depend on the particular algebra type. Such an algebra
is called finite if all the An are finite and, in this case, the complexity map cA : N→ N of
the algebra is defined as:

cA(n) = |An| , for all n ∈ N.

This approach gives rises to the classification of finite algebras depending on the asymptotic
growth of cA: algebras can have bounded complexity, polynomial complexity, etc. It is then
possible to study the expressive power of algebras in a prescribed complexity class.

In all of the mentioned examples of algebras, there is a natural operation that performs a
renaming of the variables/hole types/colors. This renaming is parameterized by a bijection
over variables/hole types/colors, and this permutation acts on the corresponding sort. Thus,
there is an action of the symmetric group over n elements, Sym(n) over An. The orbit-
complexity map c◦ : N→ N is then naturally defined as:

c◦
A(n) = |An/Sym(n)| , for all n ∈ N.

The notions of bounded orbit-complexity, polynomial orbit-complexity, etc. are then defined
accordingly.

Along with the definitions of complexity and orbit-complexity, a precise description of
the languages recognized by tree algebras of bounded complexity was given in [5]1. In this
article we endeavor to study tree algebras of polynomial complexity.

Tree algebras. The notion of tree algebra that we presented above is a bit unpractical,
because the variables/hole types/colors are unnamed (we will simply call them variables
from now on). We instead consider tree algebras with a carrier of the form

(AX)X finite set of variables

for which the notions of complexity and orbit-complexity can be easily adapted. Given a
finite X, a tree is then seen as an element of AX whenever all the variables on the leaves of
the tree are in X. This notion of tree algebras may have different flavors:

1 Let us emphasize that the algebras used in [5] are different, since all variables are furthermore required
to appear at least once. This apparently inocuous modification has consequences on the results.

T. Colcombet and A. Jaquard 37:3

Unrestrained tree algebras in which there is no additional constraint, as in this paper.
Affine tree algebras: all variables must appear on at most one leaf of the tree [2].
Relevant tree algebras: all variables must appear on at least one leaf of the tree [5].
Linear tree algebras: all variables must appear on exactly one leaf of the tree [8, 9].

We could also consider variants in which the variables are ordered. For instance, starting
from linear tree algebras and adding the condition that, when read from left to right, the
variables are monotone, corresponds to preclones [8]. The expressive power of relevant tree
algebras of bounded complexity was precisely described in [5].

Contributions of the article. In this article, we study unrestrained tree algebras (or simply
tree algebras from now on) of polynomial complexity.

We introduce a way to encode finite trees into data words, and thus to encode languages
of trees into languages of data words (we say that the language of trees is described by the
language of data words).

We then establish that tree algebras of polynomial complexity and of bounded orbit-
complexity have the same expressive power, thus answering a question from [5] (for un-
restrained tree algebras). Moreover, the languages that they recognize are exactly those
described by regular languages over our data alphabet (in which the notion of regular lan-
guage is defined using orbit-finite nominal automata [10, 3], a mild generalization of register
automata that fit nicely into our algebraic setting).

Our main result is the following Theorem 1. It states the above described equivalences,
and add a third item that will be formalised in the body of the paper.

▶ Theorem 1. For a regular language of finite trees, the following properties are equivalent:
1. Being recognized by a finite tree algebra of polynomial complexity.
2. Being recognized by a finite tree algebra of bounded orbit complexity.
3. Being recognized by a finite tree algebra that has a bounded and stable system of supports.
4. Being described by a coding automaton.
Our second theorem, Theorem 22, establishes the decidability of this class.

Structure of the paper. In Section 2, we recall some classical definitions, and introduce the
notion of algebras. In Section 3, we explain our encoding of trees into data words, and prove
Proposition 16 corresponding to the implication from Item 4 to Items 1 and 2 of Theorem 1.
In Section 4, we look in detail at the properties of tree algebras of polynomial complexity and
bounded orbit-complexity. Doing this, we prove Propositions 19 and 20, that correspond to
proving implications from Items 1 and 2 to Item 3, and from Item 3 to Item 4 of Theorem 1.
We also address the decidability question an prove Theorem 22. Section 5 concludes.

2 Definitions

We denote by N the set of all non-negative integers. Given n ∈ N, we write [n] = {0, 1, ..., n−
1}. The symmetric group (resp. alternating group) of a set X is denoted Sym(X) (resp.
Alt(X)). We fix a finite ranked alphabet Σ; the arity of a symbol a ∈ Σ is denoted ar(a). It is
a constant if ar(a) = 0, and is unary if ar(a) = 1. For k ∈ N, we set Σk = {a ∈ Σ | ar(a) = k}.
A∗ is the set of finite words over A, and A+ = A∗ \ {ε}.

MFCS 2022

37:4 A Complexity Approach to Tree Algebras: The Polynomial Case

2.1 Trees
In this section, we introduce notions and notations for trees.

We fix a countable set of variables V. Given a finite set of variables X, a Σ, X-tree is,
informally, a tree in which nodes are labelled by elements of Σ and leaves also possibly by
variables of X. Formally, a Σ, X-tree is a partial map t : N∗ → Σ ⊎X such that dom(t) is
non-empty and prefix-closed, and furthermore, for every u ∈ dom(t) there exists n ∈ N such
that {i | ui ∈ dom(t)} = [n], and

either t(u) ∈ Σn (symbol node), or
t(u) ∈ X and n = 0 (variable node). Note that a variable node is always a leaf.

Σ, ∅-trees are simply called Σ-trees. The elements in dom(t) are called nodes. The prefix
relation over nodes is called the ancestor relation. The node ε is called the root of the tree.
The tree t is finite if it has finitely many nodes. A branch of a tree t is a maximal set of
nodes ordered under the ancestor relation. Let Trees(Σ, X) bet the set of finite Σ, X-trees,
for every finite set of variables X.
▶ Remark 2. Note that Σ, X-trees are also Σ, Y -trees whenever X ⊆ Y . This is in contrast
with [5] in which all variables were assumed to appear at least once.

Building trees. We introduce now some operations on trees. See Fig. 1.
εx, where x is a variable, denotes the Σ, {x}-tree consisting of a single root node labelled x.
a(x0, . . . , xn−1), for x0, . . . , xn−1 variables and a ∈ Σn, denotes the Σ, {x0, . . . , xn−1}-tree
consisting of a root labelled a, and children 0, . . . , n−1 labelled with variables x0, . . . , xn−1
respectively.
s ·x t, for two trees s ∈ Trees(Σ, X), t ∈ Trees(Σ, Y) and a variable x ∈ V, is the
Σ, (X \ {x}) ∪ Y -tree s in which t is substituted for every occurrence of the variable x,
which may not be present in s at all.
σ̃(t), for a tree t ∈ Trees(Σ, X) and a map σ : X → Y , is the Σ, Y -tree obtained as t in
which variable σ(x) has been substituted to x for every x ∈ X. Note that σ̃ ◦ τ̃ = σ̃ ◦ τ .
t[x0 ← t0, . . . , xn−1 ← tn−1] denotes the tree of sort X \ {x0, . . . , xn−1} ∪

⋃
i Yi obtained

from t by simultaneously substituting the tree ti for the variable xi for every i ∈ [n],
where t is a tree of sort X, x0, . . . , xn−1 ∈ V, and t0, . . . , tn−1 are trees of sort Yi for
every i ∈ [n]. Note that this operation is equivalent to a combination of the previous
ones.
a(t0, ..., tn−1), for a ∈ Σn, denotes the tree of root a and children t0, . . . , tn−1 at respective
positions 0, . . . , n−1. Again, this operation is equivalent to a combination of the previous
ones.

▶ Example 3. Throughout this paper, we use the map createX
x : X → X ∪ {x}, acting as

the identity, in which X is a finite set of variables and x ∈ V. ˜createX
x is thus a mapping

from Trees(Σ, X) to Trees(Σ, X ∪ {x}) that maps every tree to itself. Most of the time, we
will simply write createx(t) when X is clear from the context.

▶ Lemma 4. All finite trees can be obtained from the trees of the form εx and a(x0, . . . , xn−1)
using the operations “·”.

Expressions denoting finite trees. For X a finite set of variables, a tree-expression of
sort X (over the alphabet Σ) is an expression built inductively as follows:

εx is a tree-expression of sort {x} for every variable x,
a(x0, . . . , xn−1) is a tree-expression of sort {x0, . . . , xn−1} for every symbol a ∈ Σn,

T. Colcombet and A. Jaquard 37:5

a
x y

a

x b
x

a
z z

a

a
x y

b
x

a

x □{y}

t = a(x, y) t ·y b(x) σ̃(t) t[x← t, y ← b(x)] a(x,□{y})

Figure 1 Trees and contexts with their notations. Here σ(x) = σ(y) = z.

S ·x T is a tree-expression of sort X \ {x} ∪ Y for all tree-expressions S of sort X, all
tree-expressions T of sort Y , and all variables x ∈ V (substitution),
σ̃(T) is a tree-expression of sort Y for all tree-expressions T of sort X, and map σ : X → Y

(renaming). Note that σ needs not be bijective here.
For a tree-expression T of sort X, [[T]] denotes its evaluation into a finite Σ, X-tree using the
operations of substitution and renaming.

Contexts. We define now contexts, which are terms with a specific leaf called the hole.
Since we work in a multi-sorted algebra, the hole itself has a sort. Essentially, to a hole of
sort X will be substituted a term of sort X. Formally, for fixed finite set of variables Y , a
context of sort X with hole of sort Y (or simply a context) is defined inductively as a tree
expression of sort X, using the extra construction □Y (the hole of sort Y) which is a context
of sort Y with hole of sort Y . This new construction must appear exactly once in a context.

For C a context of sort X with hole of sort Y , [[C]] : Trees(Σ, Y) → Trees(Σ, X) is the
function which to a tree of sort Y t associates the tree of sort X obtained by evaluating the
operations as above, interpreting □Y as t.

2.2 Finite tree algebras
Our notion of tree algebra is the natural notion associated to finite trees equipped with the
above operations. We give here a more formal definition, though the detail of identities is
more for reference. What matters is that it is defined such that the free algebra coincides
with finite trees. A tree algebra A consists of an infinite collection of carrier sets AX indexed
by finite sets of variables X, together with operations:

εA
x ∈ A{x} for every variable x,

a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables x0, . . . , xn−1,
·Ax : AX ×AY → AX\{x}∪Y for all finite sets of variables X, Y and x ∈ V,
σA : AX → AY for every renaming σ : X → Y ,

that satisfy the expected identities, i.e. the ones guaranteeing that several ways to describe
the same tree yield the same evaluation in the algebra. Formally, for all s, t, u that belong
to AX , AY , AZ respectively,

εx ·x t = t for every x ∈ V,
t ·x εx = t for every x ∈ Y ,
(s ·Ax t) ·Ay u = s ·Ax (t ·Ay u) for all x ∈ X and y ∈ X \ Y (horizontal associativity), and
(s ·Ax t) ·Ay u = s ·Ax (t ·Ay u) for all x ∈ X and y ∈ Y \X ∪ {x} (vertical associativity),

for all s, t that belong to AX , AY , x ∈ X and renaming σ : X → Y ,
σA(s ·Ax t) = σA(s) ·Ax t if σ−1(σ(x)) = {x} and σ(y) = y for every y ∈ X ∩ Y \ {x},
σA(s ·Ax t) = s ·x σA(t) if σ(y) = y for every y ∈ X ∩ Y \ {x},

for all maps σ : X → Y and τ : Y → Z, (τ ◦ σ)A = τA ◦ σA, and for all
maps σ : {x0, . . . xn−1} → Y and a ∈ Σn, σA(a(x0, . . . , xn−1)A) = a(σ(x0), . . . , σ(xn−1))A.
In practice, we shall not explicitly use these identities, and simply write two elements of the
algebra equal as soon as they obviously come from expressions denoting the same trees. A
tree algebra is finite if the AX ’s are all finite.

MFCS 2022

37:6 A Complexity Approach to Tree Algebras: The Polynomial Case

A morphism of tree algebras from A to B is a family of maps αX : AX → BX for every
finite sets of variables X which preserves all operations, i.e. αY (σA(s)) = σB(αX(s)) for
every map σ : X → Y , α(a(x0, . . . , xn−1)A) = a(x0, . . . , xn−1)B, and αX\{x}∪Y (s ·Ax t) =
αX(s) ·Bx αY (t) for all s ∈ AX , t ∈ AY and x ∈ V.

The Trees(Σ, X) sets equipped with the operations of substitution and renaming form a
tree algebra (it is the free tree algebra generated by ∅). For A a tree algebra, its associated
evaluation morphism is the unique morphism from Trees(Σ) to A.

A congruence ∼ over a tree algebra A is a family ∼ of equivalence relations over the
AX ’s (each denoted ∼) such that, for any a ∼ b ∈ AX , c ∼ d ∈ AY , y ∈ Y and σ : X → Y :
c ·y a ∼ c ·y b; c ·y a ∼ d ·y a and σ̃(a) ∼ σ̃(b). From such a congruence, one can define the
quotient algebra A/ ∼ in the natural way.

2.3 Languages and syntactic algebras
A language of finite Σ-trees L is a set of Σ-trees. It is recognized by a tree algebra A if there
is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation morphism of A.

The syntactic congruence ∼L of a language L of finite Σ-trees is defined in the following
way s ∼L t for s, t finite Σ-trees if, for every context C, [[C]](s) ∈ L if and only if [[C]](t) ∈ L.
It is easy to prove that ∼L is indeed a congruence. The quotient algebra Trees(Σ)/∼L

is
called the syntactic algebra of L, and this algebra recognizes L.

▶ Example 5. The language of all finite trees in which the symbol a appears on the leftmost
branch has for syntactic tree algebra the algebra with sorts AX = {⊥,⊤}⊎X for every finite
set of variables X. Let t be a Σ, X-tree, we define α as follows: αX(t) = ⊤ if there is an a on
the leftmost branch of t, αX(t) = x if the leftmost branch of t ends with an x but contains
no a, and αX(t) = ⊥ otherwise. The operations of the algebra are defined so that α becomes
the evaluation morphism.

2.4 Complexity
Following [5], we define the notion of complexity and of orbit-complexity of a tree algebra A.

Complexity. We start by highlighting the fact that any bijection σ between finite sets of
variables X and Y induces a bijection σ̃ between AX and AY . As such, it is meaningful to
define the complexity map of the algebra cA : N→ N as follows:

cA(|X|) = |AX | , for every finite set of variables X.

A tree algebra A has bounded complexity if cA is bounded. It has polynomial complexity if
there is a polynomial P such that cA(n) ⩽ P (n) for every n ∈ N.

Orbit-complexity. Similarly, we define the orbit-complexity map c◦
A : N→ N as:

c◦
A(|X|) = |AX/Sym(X)| , for every finite set of variables X,

in which AX/Sym(X) is the set of all orbits of AX under the action of Sym(X). A tree
algebra A has bounded orbit-complexity if c◦

A is bounded.

▶ Example 6. The tree algebra A from Example 5 has polynomial complexity and bounded
orbit-complexity: cA(n) = n + 2 and c◦

A(n) = 3 for every n ∈ N.

T. Colcombet and A. Jaquard 37:7

To check whether a language of trees is recognized by an algebra with a prescribed
complexity, one only needs to look at its syntactic algebra.

▶ Lemma 7. If L is a language of Σ-trees recognized by a tree algebra B, then its syntactic
tree algebra A has lower complexity:

cA(n) ⩽ cB(n) and c◦
A(n) ⩽ c◦

B(n) , for all n ∈ N.

2.5 Tree automata

A tree automaton B = (Q, I, (δa)a∈Σ) over Σ has a finite set Q of states, a set of accepting
states I ⊆ Q and a transition relation δa ⊆ Q × Qar(a) for every symbol a ∈ Σ. A run of
B over a finite tree t is a mapping ρ : dom(t) → Q such that, for any vertex u ∈ dom(t)
with t(u) = a ∈ Σ, (ρ(u), (ρ(u0), ..., ρ(u(ar(a)− 1)))) ∈ δa. A run is accepting if ρ(ε) ∈ I. A
language L of finite trees is called regular if it is recognized by a tree automaton B, meaning
the trees in L are exactly those for which there is an accepting run in B.

Example 8 below shows the translation from tree automata to tree algebra.

▶ Example 8 (Automaton algebra). Consider a regular language L of finite trees recognized
by the tree automaton B = (Q, q0, (δa)a∈Σ). Consider some finite set of variables X. An
X-run profile is a tuple τ ∈ Q × P(Q)X . For a Σ, X-tree t, τ = (p, (Ux)x∈X) is a run
profile over t if there exists a run ρ of the automaton over Q such that ρ(ε) = p and for
every variables x ∈ X, Ux is the set of states assumed by ρ at leaves labelled x. We define
a tree algebra A that has as elements of sort X sets of X-run profiles. The definition of
the operations is natural, and is such that the image of a Σ, X-tree t under the evaluation
morphism yields the set of run profiles over t. It naturally recognizes the language L.

Note that this definition yields an algebra of doubly exponential complexity (and hence,
this is an upper bound for regular languages). Of course, in practice, one can restrict the
algebra to the reachable elements, and this may dramatically reduce the complexity.

The converse translation is also true (it is for instance proved for preclones in [8]), yielding
the following result.

▶ Proposition 9. A finite tree language is regular if and only if it is recognized by a finite
algebra. Moreover, every regular tree language is recognized by an algebra of doubly exponential
complexity.

2.6 Group actions and orbit-finite sets

To conclude this list of definitions, we recall some notions on group actions.

Group actions. A (left) group action of a group G on a set X is given by a function
· : G×X → X such that e · x = x and σ · (τx) = (στ) · x for all x ∈ X and σ, τ ∈ G, where e

is the neutral element of G. A set X equipped with such an action is called a G-set.

Orbits. For every x in a G-set X, the set G · x = {σ · x | σ ∈ G} is called the orbit of x. A
G-set is partitioned by the orbits of its elements, and it is said to be orbit-finite whenever it
has only a finite number of different orbits.

MFCS 2022

37:8 A Complexity Approach to Tree Algebras: The Polynomial Case

Equivariant subsets and relations. Given a G-set X, a subset Y of X is equivariant if
σ · Y = Y for every σ ∈ G. Accordingly, a relation R ⊆ X × Y between G-sets X and Y is
equivariant if it is an equivariant subset of the G-set X × Y equipped with the point-wise
action of G. In particular, a function f : X → Y is equivariant exactly when f(σ ·x) = σ ·f(x)
for all x ∈ X and σ ∈ G.

Support and nominal sets. From now on, we will only be looking at the group G = Sym(V).
Consider then a Sym(V)-set X. A set S ⊆ V supports an element x ∈ X if σ · x = x for
every σ ∈ Sym(V \ S), where Sym(V \ S) is seen as a subgroup of Sym(V). A Sym(V)-set
is called a nominal set if all of its elements are supported by a finite set.

Given an element x ∈ X that is finitely supported, it admits a least support. The least
support of an element x from a nominal set X will be denoted supp(x).

Whenever A and B are Sym(V)-sets, the set of all functions from A to B may be equipped
with the action that maps f : A→ B to σ·f defined for every a ∈ A by (σ·f)(a) = σ·f(σ−1 ·a).
When seen in this way as a Sym(V)-set, a function f : A → B is supported by X ⊆ V
whenever f(σ · x) = σ · f(x) for every σ ∈ Sym(V \X).

3 Nominal word automata for tree languages

We start our presentation by showing how nominal word automata can be used to describe
regular languages of finite trees. To this end, we first explain in Section 3.1, how to encode
trees into data words. In Section 3.2, we exploit this to interpret data languages as tree
languages, using the notion of coding automata. In Section 3.3 we establish Proposition 16
stating that languages of trees that are described by coding automata are recognized by
tree algebras of polynomial complexity and bounded orbit complexity (thus proving the
implication from Item 4 to Items 1 and 2 of Theorem 1).

3.1 Coding languages
In this section, we show how to encode finite trees into data words.

Coding alphabet. We begin by defining the nominal alphabet used for this encoding:
Let CV be the set of elements [x] for x ∈ V.
Let CV,Σ be the set of elements [·xa(x0, ..., xn−1)] for a ∈ Σn and x, x0, ..., xn−1 ∈ V.
Let C = CV ⊎ CV,Σ. It is called the coding alphabet.

The coding alphabet is naturally made into a Sym(V)-set, by defining, for every σ ∈
Sym(V), σ[x] = [σ(x)] and σ[·xa(x0, ..., xn−1)] = [·σ(x)a(σ(x0), ..., σ(xn−1))] for all [x] and
[·xa(x0, ..., xn−1)] in the coding alphabet. It is obviously both orbit-finite and nominal.

Tree coding. A coding is a word in Codings = CVCV,Σ
∗. We shall describe now how codings

can be evaluated to trees. This is natural since, forgetting the bracket notation, codings
can be seen as tree expressions. The evaluation T (c) of a coding c is defined as follows:
T ([x]) = x, where [x] ∈ CV and T (c[·xa(x0, ..., xn−1)]) = createx(T (c)) ·x a(x0, ..., xn−1),
where c is a tree coding and [·xa(x0, ..., xn−1)] ∈ CV,Σ.

▶ Example 10. According to the definition of evaluation, T ([x][·xa(x, y)]) = x ·x a(x, y) =
a(x, y). Similarly, T ([x][·xa(x, y)][·xc][·xd]) = ((x ·x a(x, y)) ·x c) ·y d = a(c, d).

T. Colcombet and A. Jaquard 37:9

We will be particularly interested in codings c that evaluate to trees without variables
(meaning T (c) ∈ Trees(Σ, ∅)). Let Codings∅ be the set of these codings that evaluate to
variable-less trees.

Describing languages of trees. A language of codings K is said to describe a language L of
trees without free variables if, for every coding c ∈ Codings∅, c ∈ K if and only if T (c) ∈ L.
The crucial point in this definition is that the language K may also contain codings that do
not evaluate to a tree without free variables.

▶ Example 11. Let L be a language of trees without free variables, and let K be the language
of all codings that evaluate to trees in L. Then both K and K ′ = K∪{[x][·xa(x, y)]} describe
L. That is because [x][·xa(x, y)] /∈ Codings∅.

However, not all languages of codings describe tree languages.

▶ Example 12. Let Σ = Σ0 ∪ Σ2 with Σ0 = {c} and Σ2 = {a, b}, and consider the language
K of codings in which the third letter is [·xc] for any choice of x ∈ V.

Let c = [x][·xa(x, y)][·yc][·xa(y, y)][·yc] and c′ = [x][·xa(x, y)][·xa(y, y)][·yc], then c is in K

but not c′. Note however that T (c) = T (c′) = a(a(c, c), c), and thus K does not describe a
language of trees.

3.2 Coding automata
Let us now look at acceptance of coding languages by automata. We start by recalling the
notion of nominal automata [10], which is used to recognize data languages over orbit-finite
nominal alphabets.

Nominal automaton. A deterministic G-automaton is given by
an orbit-finite G-set A (the alphabet),
a G-set Q (the states),
an empty supported q0 ∈ Q called the initial state,
an equivariant subset F ⊆ Q of final states,
and an equivariant function δ : Q×A→ Q called the transition function.

Acceptance of a word w ∈ A∗ is then defined in the standard way. A deterministic G-
automaton is called orbit-finite whenever Q is. It is called nominal when G = Sym(V) and
when A and Q are both nominal sets. In this paper, we only consider orbit-finite nominal
automata.

Coding automata. An orbit-finite nominal automaton A over the coding alphabet is called
a coding automaton if it recognizes a language that describes a tree language. We also assume
that there is no transition toward the initial state. The tree language described by a coding
automaton is the language L of trees without free variables described by the language K

recognized by A. In other words, it is the language

L = {T (c) | c ∈ Codings∅, A accepts c} .

▶ Example 13. Let Σ = Σ0 ∪ Σ2 with Σ0 = {c} and Σ2 = {a, b}, and consider the language
L of trees such that the total number of nodes labelled a appearing on the leftmost branch
and the rightmost branch is even. We give a coding automaton that describes L. Its set
of states is Q = {q0} ⊎ {ε(x) | x ∈ V} ⊎ {i(x, y) | i ∈ [2], x, y ∈ V ∪ {∗}}, and the action of
Sym(V) on Q is the one naturally obtained by permuting the variables. Its transitions are
defined in the natural way so that:

MFCS 2022

37:10 A Complexity Approach to Tree Algebras: The Polynomial Case

q0 is the initial state,
ε(x) is reached from q0 by reading [x],
δ(q0, c) = i(x, y), in which i is the total number of nodes labelled a on the leftmost and
rightmost branches of t modulo 2, and x (resp. y) is the variable on the leaf of the
leftmost (resp. rightmost) branch (∗ if there is no such variable), for t = T (c).

Setting the only accepting state to be 0(∗, ∗), this automaton describes L.

A coding automaton is thus a device that takes as input a top-down description of a tree
(a coding), and that decides its belonging to a language while remembering only boundedly
many variables. Intuitively, such a device can only remember what happens along boundedly
many branches. The subtlety of the model is that it must always yield the same result for a
given tree, nonwithstanding the actual coding that was provided.

Minimization. Coding automata can be minimized, in the sense that a coding automaton
can be effectively turned into another one that describes the same tree language and is
minimal. This property turns out to be key to prove Theorem 1. The construction, though
similar to the classical one for minimizing nominal automata recognizing a word language, is
not the same. One subtlety is that in our case, there are states in the automaton that may
accept both codings in Codings∅ and codings outside of Codings∅. Standard constructions
are not able to cope with such a phenomenon.

We start by defining the Myhill-Nerode relation (or congruence) of a tree language L over
codings by c≡L c′, for codings c, c′, when

T (cv)∈L⇔ T (c′v) ∈ L for all v ∈ CV,Σ
∗ such that cv ∈ Codings∅ and c′v ∈ Codings∅ .

Note here that the trees coded by c and c′ may have a different set of free variables. This is
the only subtlety in the proof of the following expected statement.

▶ Lemma 14. The Myhill-Nerode relation of a tree language L is an equivariant congruence
in the sense that it is an equivalence and cv ≡L c′v for all codings c, c′ such that c≡L c′, and
every v ∈ CV,Σ

∗.

It is now standard (see e.g. [10]) to define the minimal automaton MinL = (Q, q0, F, δ)
of a tree language L as follows:

Q = {q0} ⊎ Codings/≡L
, in which q0 is the (fresh) initial state,

F = {[c]≡L
| [c]≡L

⊆ L},
the transition function δ is given by δ(q0, [x]) = [[x]]≡L

and δ([c]≡L
, v) = [cv]≡L

,
where [c]≡L

is the ≡L-class of c ∈ Codings.

▶ Lemma 15. For L a a tree language described by a coding automaton, MinL is effectively
a coding automaton which describes L.

3.3 From coding automata to tree algebras
Our next result is Proposition 16 below, which corresponds to the implication from Item 4
to Items 1 and 2 of Theorem 1.

▶ Proposition 16. Every tree language L described by a coding automaton is also recognized
by a tree algebra that has both polynomial complexity and bounded orbit-complexity.

T. Colcombet and A. Jaquard 37:11

This is proved by transforming the minimal automaton MinL = (Q, q0, F, δ) that describes
a language L, into a tree algebra A that recognizes the same language and has both polynomial
complexity and bounded orbit-complexity. We only outline this construction, which is similar
to the monoid of transitions of a word automaton.

Let Q− be Q \ {q0}. Given a state q ∈ Q−, a variable x and a tree t possibly with free
variables, we define:

δt(q, x) := δ(q, v)

in which v ∈ CV,Σ
∗ is such that T ([x]v) = t and does not contain a letter of the form

[·ya(z0, ..., zar(a)−1)] in which y ∈ supp(q) \ {x}. This definition is shown to be meaningful,
in the sense that it does not depend on the choice of v.

The elements of A are then defined to be the δt’s, and the operations of the algebra are
defined so that the image of a tree t under the evaluation morphism is δt. This algebra
recognizes L and we show, this is the difficult part of the proof, that it has both polynomial
complexity and bounded orbit-complexity.

4 Tree algebras

We now tackle the study of tree algebras of polynomial complexity and bounded orbit-
complexity, and prove the remaining implications of Theorem 1. We first define in Section 4.1
the notion of system of supports of a tree algebra that appears in Theorem 1. In Section 4.2,
we make use of this notion to prove Theorem 1. Finally we state Theorem 22, our decidability
result, in Section 4.3.

4.1 Syntactic tree algebras and systems of supports
We start this section by defining systems of supports of a tree algebra. We then prove
Lemma 17 which states that a syntactic tree algebra always has a minimal system of
supports, and that it is stable (this property is mentionned in Item 3 of Theorem 1). Finally,
we prove Proposition 19, corresponding to implications from Items 1 and 2 to Item 3 in
Theorem 1.

System of supports. We now introduce the notion of system of supports. It is a way to
transport the notion of support from Sym(V)-sets to tree algebras, which are a collection of
Sym(X)-sets for X finite.

For every finite set of variables X, a subset Sa of X is a support of a ∈ AX if σ(a) = a

for every σ ∈ Sym(X \ Sa). A system of supports for an algebra A is a family (Sa)a∈A such
that Sa is a support of a for all finite X and a ∈ AX .

Stability. The notion of system of supports is however lacking to describe properties of tree
algebras, as there is no relation between the supports of the different elements, we introduce
different notions of stability to cope with this issue.

We define the following properties for a system of supports (Sa)a∈A:
Being stable under renamings if Sσ(a) ⊆ σ(Sa) for a ∈ AX , X finite, and renaming σ.
Being stable under internal substitutions if Sa·xb ⊆ (Sa \ {x})∪ Sb for all a ∈ AX , x ∈ Sa

and b ∈ AY , for finite X and Y .
Being stable under external substitutions Sa·xb ⊆ Sa for all a ∈ AX , x ∈ X \ Sa and
all b ∈ AY , for finite X and Y .

MFCS 2022

37:12 A Complexity Approach to Tree Algebras: The Polynomial Case

Being stable under substitutions if it is both stable under internal and external substitu-
tions.

Finally, a system of supports is stable if it is both stable under renamings and substitutions,
and it is bounded if there is a bound K such that |Sa| ≤ K for every a ∈ A.

Our main result concerning systems of supports, Lemma 17, states the existence of a
canonical support for syntactic tree algebras. Moreover, this system of supports (Sa)a∈A is
minimal, meaning that Sa ⊆ Ta, for every a ∈ A and every (Ta)a∈A with the same stability
properties.

▶ Lemma 17. Let A be a syntactic tree algebra. Then A has a minimal stable system of
supports.

The proof of this result is lengthy and relies on the fact that a Σ, X-tree t can be seen as
a Σ, Y -tree for all X ⊆ Y , allowing one to use standard techniques from nominal set theory.
The system of supports introduced in Lemma 17 is the canonical system of supports of A.

▶ Example 18. We once again take a look at the tree algebra introduced in Example 5. Its
canonical system of supports is given, for all finite X, by:

S⊤ = S⊥ = ∅ , Sx = {x} for all x ∈ X .

We now establish Proposition 19 below, corresponding to implications from Item 1 to
Item 3 and from Item 2 to Item 3 of Theorem 1. According to Lemma 7, it is enough to prove
the results for syntactic tree algebras, meaning we only need to prove that the canonical
system of supports is bounded.

▶ Proposition 19. Let A be a finite syntactic tree algebra that has either polynomial complexity
or bounded orbit complexity. Then A has a bounded and stable system of supports.

4.2 From tree algebras to coding automata
Our next result is Proposition 20 below, corresponding to implication from Item 3 to Item 4
of Theorem 1.

▶ Proposition 20. Let L be recognized by a finite tree algebra with a bounded and stable
system of supports. Then there is a coding automaton that describes L.

The following Lemma 21 shows that we only need to consider syntactic tree algebras.

▶ Lemma 21. Let L be a language of trees. If L is recognized by a tree algebra that has
a bounded and stable system of supports, then the syntactic tree algebra of L can also be
equipped with such a system of supports.

From tree algebra to coding automata. Fix a language of trees L, let A be its syntactic
tree algebra, and let (Sa)a∈A be its canonical system of supports, which is bounded (by say
K) and stable. In order to prove Proposition 20, we extract from A a coding automaton
AutoA that describes L. Intuitively, because (Sa)a∈A is stable and bounded, A is uniquely
determined by the AX ’s for |X| ≤ K. This is used to defined an appropriate automaton,
whose set of states is orbit-finite.

This concludes the proof of Proposition 20 and thus the proof of Theorem 1.

T. Colcombet and A. Jaquard 37:13

4.3 Decidability
Our last result is the following.

▶ Theorem 22. There is an algorithm which, given a regular tree language, decides whether
it is recognizable by a tree algebra of polynomial complexity.

The proof informally consists in constructing the expected coding automaton, dropping
when possible the variables that are irrelevant for deciding the membership to the language
(in the sense that, whatever tree is plugged in it, it does not change the membership to
the language). The crucial point is to prove that a bounded number of variables suffices.
Regular cost functions over finite trees provide a straightforward technique for solving this
boundedness question [6].

5 Conclusion

We analyzed the expressive power of unrestrained tree algebras of polynomial complexity.
Theorem 1 shows a link between combinatorial properties (being recognized by tree algebras
of polynomial complexity, or of bounded orbit-complexity) and an algebraic one (being
described by a coding automaton). Doing so, it gives a crisp description of the expressive
power of this class of tree algebras, which we also proved to be decidable.

Other types of tree algebras. This theory is easily ported to affine tree algebras, for which
we get the same equivalence and decidability results. In the case of relevant and linear tree
algebras, however, the breaking point is the existence of a canonical system of supports.
At the cost of a much more technical proof, it remains possible to prove the equivalence of
Items 1, 3, and 4 in Theorem 1. We conjecture Theorem 1 to still hold.

Future work. A natural extension to this work is to study the expressive power of tree
algebras of exponential complexity, which we conjecture to be the same as the one of tree
algebras of polynomial orbit-complexity. Such tree algebras are much more expressive than
those studied in this article. It is for instance easy to check that both of these classes subsume
the one of languages recognized by top-down deterministic tree automata.

References
1 Achim Blumensath. Recognisability for algebras of infinite trees. Theoretical Computer Science,

412(29):3463–3486, 2011. doi:10.1016/j.tcs.2011.02.037.
2 Achim Blumensath. Regular Tree Algebras. Logical Methods in Computer Science, Volume 16,

Issue 1, February 2020. doi:10.23638/LMCS-16(1:16)2020.
3 Mikołaj Bojanczyk. Slightly infinite sets, 2016. A draft of a book available at https:

//www.mimuw.edu.pl/~bojan/paper/atom-book.
4 Mikolaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs

of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’16,
New York, NY, USA, July 5-8, 2016, pages 407–416. ACM, 2016. doi:10.1145/2933575.
2934508.

5 Thomas Colcombet and Arthur Jaquard. A complexity approach to tree algebras: the bounded
case. In 48th International Colloquium on Automata, Languages, and Programming (ICALP
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

MFCS 2022

https://doi.org/10.1016/j.tcs.2011.02.037
https://doi.org/10.23638/LMCS-16(1:16)2020
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508

37:14 A Complexity Approach to Tree Algebras: The Polynomial Case

6 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 70–79. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.36.

7 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

8 Zoltán Ésik and Pascal Weil. Algebraic recognizability of regular tree languages. Theor.
Comput. Sci., 340(1):291–321, 2005. doi:10.1016/j.tcs.2005.03.038.

9 Zoltán Ésik and Pascal Weil. Algebraic characterization of logically defined tree languages.
Int. J. Algebra Comput., 20(2):195–239, 2010. doi:10.1142/S0218196710005595.

10 Sławomir Lasota, Bartek Klin, and Mikołaj Bojańczyk. Automata theory in nominal sets.
Logical Methods in Computer Science, 10, 2014.

11 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.1016/j.tcs.2005.03.038
https://doi.org/10.1142/S0218196710005595

	1 Introduction
	2 Definitions
	2.1 Trees
	2.2 Finite tree algebras
	2.3 Languages and syntactic algebras
	2.4 Complexity
	2.5 Tree automata
	2.6 Group actions and orbit-finite sets

	3 Nominal word automata for tree languages
	3.1 Coding languages
	3.2 Coding automata
	3.3 From coding automata to tree algebras

	4 Tree algebras
	4.1 Syntactic tree algebras and systems of supports
	4.2 From tree algebras to coding automata
	4.3 Decidability

	5 Conclusion

