
HAL Id: hal-03820457
https://hal.science/hal-03820457

Submitted on 19 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-harmonic Periodic Disturbance Compensation for
Dead-Time Processes with Online Identification of Input

Delay
Adam Peichl, Michal Kuchar, Can Kutlu Yuksel, Silviu-Iulian Niculescu,

Tomas Vyhlidal

To cite this version:
Adam Peichl, Michal Kuchar, Can Kutlu Yuksel, Silviu-Iulian Niculescu, Tomas Vyhlidal. Two-
harmonic Periodic Disturbance Compensation for Dead-Time Processes with Online Identification of
Input Delay. TDS 2022 - 17th IFAC Workshop on Time Delay Systems, Sep 2022, Montréal, Canada.
�10.1016/j.ifacol.2022.11.336�. �hal-03820457�

https://hal.science/hal-03820457
https://hal.archives-ouvertes.fr


Two-harmonic Periodic Disturbance Compensation
for Dead-Time Processes with Online Identification

of Input Delay ⋆

Adam Peichl ∗ Michal Kuchař ∗ Can Kutlu Yuksel ∗,∗∗
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Abstract: As in the case of the Smith predictor, when applied to dynamical systems with delay in the
input, the stability of the internal model control (IMC) system can be very sensitive to the mismatch
that can occur between the plant delay and the identified delay. In this paper, we propose an online
identification technique for the plant with input delay, which is used to adapt an IMC controller
designed to reject periodic disturbances consisting of two harmonics. The proposed method is based
on wavelet analysis and cross-correlation of the measured output. Moreover, the proposed controller
structure introduces a novel analytical approach which makes it suitable for the adaptive application. The
practical motivation of the study is to address the delay mismatch that can be caused by approximating
time-varying high-order systems by first-order models with input delay. The approach is numerically
validated.

Keywords: Delay; vibration control; frequency-domain; time-varying delay; delay estimation;

1. INTRODUCTION

Some processes, mainly industrial processes, require tasks to
be performed in a repetitive manner. In such scenarios, these
processes may be exposed to periodic disturbances inherently
occurring due to wearing over time or manufacture fault of
the machine, which in return reflects on the output each cycle
during the repetitive task. Moreover, control of such industrial
processes may involve time-delays stemming from mainly two
different sources. First, the physical setup of the process can
impose a time-delay due to sensor placement and communi-
cation, for instance, in the case of hot rolling mills (Yuksel
et al. (2021a)). Second, delays can be introduced artificially
by approximating high-order process dynamics by first-order
models with input delay. Such an approximation finds wide
applications in the industry since, in general, simple time-delay
models can sufficiently capture the main dynamics of complex
processes required for the control design. Combined together,
these two types of delays can make the overall model of the pro-
cess to have a time-delay larger than the model time-constant.
Therefore, the time-delay becomes essential in the design of
control.

⋆ This work was supported by the Czech Science Foundation project No.
21-07321S - Persistent problems of repetitive control. The work of the first
three authors was also supported by the Grant Agency of the Czech Tech-
nical University in Prague, student grants No. SGS21/152/OHK2/3T/12 and
SGS20/159/OHK2/3T/12. The work of the third and fourth authors was also
supported by a public grant overseen by the French National research Agency
(ANR) as part of the Investissements d’Avenir program, through the ”ADI
2020” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

A controller that can address both the time-delay and the pe-
riodic disturbance can be obtained by modifying several dif-
ferent controller structures. For instance, repetitive controllers,
which are renowned for their capabilities in periodic output
regulations, can be modified to address input time-delays by
introducing another delay component to the control-loop as
in Omura et al. (2015). Alternatively, the well-known Smith’s
predictor to compensate time-delays can be modified to reject
periodic disturbances as in Zhou et al. (2007).

Another promising controller design approach is the Internal
Model Control (IMC) framework. For instance, two different
IMC controllers to remove periodic disturbances from sys-
tems with dead-time, one utilizing a lumped delay (Yuksel
et al. (2021a)) and the other a distributed delay (Yuksel et al.
(2021b)), were recently proposed in the open literature. In
contrast to the repetitive control, IMC employs the model of
the controlled plant instead of the signal model. Under ideal
settings, i.e. when the plant and the model perfectly match,
the controller can be designed as if the control system is of
feedforward.

Under non-ideal conditions, however, as similarly observed for
Smith predictors (Morărescu et al. (2007)), the characteristic
equation of the IMC applied to a plant with input delay cor-
responds to a quasipolynomial with two distinct exponential
terms i.e.

∆(s) = N(s) +M1(s)e
−sτ1 +M2(s)e

−sτ2 = 0, (1)

where the polynomials N(s) and Mi(s) satisfy deg (N(s)) ≥
deg (Mi(s)) and τ1, τ2 > 0, i = 1, 2. Such type of character-
istic equations corresponds to those of time-delay systems and
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the stability of the system is assured if all the roots of (1) are
located on the left hand plane of the complex plane (Michiels
and Niculescu (2007)). It is a known fact that the location of
the roots can be very sensitive to the relative difference of the
delays (Gu et al. (2005)), leading to a questionable robustness
for application. For this reason, delay identification methods
and delay adaptive controller designs received attention as an
alternative to robust design methods.

As stated in Bjorklund and Ljung (2003), delay identification
methods can be grouped under four main classes: (i) methods
that derive delay from an approximated model, under which
cross-correlation (Azaria and Hertz (1984)) and function esti-
mation (Gawthrop and Nihtilä (1985)) can be found, (ii) meth-
ods treating delay as an explicit parameter (Orlov et al. (2003)),
(iii) methods that exploit properties of certain responses (Wang
et al. (2001)), and finally, (iv) methods with higher-order statis-
tics (Nikias and Pan (1988)).

Forming an adaptive controller for systems with varying or
uncertain delays was shown to be possible by replacing the
delays with their rational function approximation (De Souza
et al. (1988)) or with transport partial differential equations
(Bresch-Pietri et al. (2012)). A delay adaptive Smith predictor
was also discussed in Bahill (1983).

1.1 Problem Statement

The control problem treated in this paper is to design an
adaptive IMC controller that allows a plant, for which its only
time-varying property is its input delay, track a given step input
meanwhile it is subjected to an output disturbance composed of
two harmonics i.e.

d(t) = a1 sin(ω1t+ ϕ1) + a2 sin(ω2t+ ϕ2) (2)
where a1, a2 are amplitudes, ω1, ω2 are commensurable exci-
tation frequencies and ϕ1, ϕ2 are phase shifts. The interest in
such a disturbance model stems from the fact that, in the hot
rolling process, the disturbance caused by the eccentricity in the
rolls can be usually characterized by the sum of two sinusoidal
signals.

The paper is organized as follows. Section 2 introduces the
structure of the IMC controller and the adaptive modification
rule for tuning the parameters. In Section 3, the simulation
results of the proposed adaptive control for a prescribed delay
change are presented, and in Section 4, the general points of
implementation and design are discussed. Section 5 concludes
the paper.

2. DELAY ADAPTIVE IMC CONTROLLER

Internal Model Control is the control arrangement depicted in
Figure 1, in which the model of the controlled plant is employed
in the control loop to compare the actual output of the plant with
the estimated one.

IMC was initially and extensively studied by Garcia and Morari
(1982). Further extensions of the IMC with various adaptive
methods were introduced in Gao et al. (2003) and also in
Marino and Tomei (2014) for periodic disturbance rejection
and in Hahn et al. (2002) for delay compensation. A robust
filter-based IMC design for removing periodic disturbance from
systems approximated by first-order models with dead-time
was proposed initially in Vyhlı́dal and Zı́tek (2001).
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Fig. 1. Conventional internal model control scheme for periodic
disturbance compensation

We consider the plant and its model to be composed of two
parts, namely, invertible and non-invertible parts. The invertible
part, denoted by Gp and Gm for the plant and the model
respectively, encapsulates the first-order dynamics. The non-
invertible part corresponds to the delays τp and τm of the plant
and the model, respectively. The controller is treated in a similar
manner where the transfer function is denoted by Q and the
user-definable time-delay by θ.

The sensitivity transfer function S(s) of the scheme in Fig. 1 is
given as

S(s) =
1−Q(s)Gm(s)e−s(τm+θ)

1 +Q(s)(Gp(s)e−s(τp+θ) −Gm(s)e−s(τm+θ))
. (3)

Following the proposed design by Vyhlı́dal and Zı́tek (2001),
the transfer function of the controller is given by

Q(s) =
1

Gm(s)
F (s), (4)

where F (s) is the filter that needs to be strictly proper.

2.1 Non-adaptive Controller Design

To form a non-adaptive IMC controller that asymptotically
tracks the reference r and rejects a periodic disturbance of the
form (2), we make the following assumptions:

(i) plant and model transfer functions Gp(s) and Gm(s) are
identical i.e.

Gp(s) = Gm(s) =
K

Ts+ 1
(5)

where K and T are the gain and the time-constant of the
dynamics, respectively.

(ii) plant and model time delays τp and τm are identical
(denoted only by τ )

(iii) controller Q(s) is of the form (4)

If all three conditions mentioned above are met, the sensitivity
(3) can be simplified to

S(s) = 1− F (s)e−s(τ+θ). (6)
In order to track a step input and cancel periodic disturbance (2)
we need to make sure that S(0) = S(jωi) = 0, i = 1, 2. This
can be achieved by fulfilling the following set of conditions:

lim
s→0

F (s) = 1, (7)

|F (jωi)| = 1, (8)

argF (jωi)− ωi(τ + θ) = 2kπ, (9)

Preprints, Joint SSSC, TDS, LPVS 2022
September 27-30, 2022, Montreal, Canada

150



where k ∈ Z, i = 1, 2. To satisfy the conditions, we propose
the filter F in the form of

F (s) =
p(s)− z(s)

p(s)
, (10)

where polynomials z(s) and p(s) are defined as

z(s) = s(s2 + ω2
1)(s

2 + ω2
2), (11)

p(s) =

5∏
i=1

(s− pi), (12)

pi ∈ C with Re(pi) < 0.

Consequently, the filter satisfies conditions (7) and (8) since

F (jωi) =
p(jωi)− z(jωi)

p(jωi)
=

p(jωi)

p(jωi)
= 1, i = 1, 2 (13)

which simplifies the condition (9) to
ωi(τ + θ) = 2liπ, i = 1, 2, (14)

where l1, l2 ∈ N, due to

argF (jωi) = arctan
Im(F (jωi))

Re(F (jωi))
= 0, i = 1, 2. (15)

Moreover, since ω1 and ω2 are commensurable, i.e. ∃k1, k2 ∈ Z
such that ω1

ω2
= k1

k2
with gcd(k1, k2) = 1, the base frequency

defined as ωb := ωi

ki
yields an equation for the smallest θ

satisfying (14):

θ =
2lbπ

ωb
− τ ≥ 0, (16)

where lb =
⌈
τωb

2π

⌉
.

2.2 Online Delay Identification
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Fig. 2. Proposed adaptive internal model control scheme.

We propose an adaptive scheme shown in Fig. 2 that tracks
the changes in time delay and updates the delay parameters
in the controller θ and in the model τm. The adaptation of
the time delay τm is based on the discrete cross-correlation of
discretized input:
u(t) = [u(t−((N−1)∆t), u(t−(N−2)∆t), . . . , u(t)] (17)

and estimated output:
ỹ(t) = [ỹ(t−((N−1)∆t), [ỹ(t−(N−2)∆t), . . . , ỹ(t)] (18)

of the controlled system within a sliding window
TW = N ·∆t:

ϑ[nφ] = (u ⋆ ỹ)[nφ] =

N∑
i=1

u[i] · ỹ[i+ nφ]. (19)

Where nφ ∈ [−N,N ] ⊂ Z (because we use full implemen-
tation of cross-correlation) is a discrete-time shift between the
signals, N is a number of signal samples in the sliding window,
and ∆t is a discretization time step that satisfies ∆t ≪ τ and
TW ≫ φ(ω)/ω, where φ(ω) is a phase shift of the controlled
system Gp

φ(ω) = arg(G(jω)e−jωτ ) = −τω − arctan(Tω). (20)

The estimated output ỹ(t) = y(t) − d̂(t) is a measured output
y(t) subtracted by the identified disturbance d̂(t). The distur-
bance identification is described in the next section.

According to (20) the cross-correlation consists of the delay
influence and time constant influence. For the separation of
these two parameters, it is also necessary to know the frequency
of the signal ω = 2πf = 2π/Tω . The method is derived
for single-frequency signal. However, when the signal contains
more than one frequency, the cross-correlation is influenced. To
avoid the influence of the second frequency, we filter the inputs
to the cross-correlation using the low-pass Butterworth filter,
where the cutoff frequency ωc must satisfy ω1 < ωc < ω2.
After filtering, we use cross-correlation only for the frequency
ω1.

An example of the result of the cross-correlation of periodic
signals is visualized in Fig. 3 of the simulation example which
follows. The result has several peaks where the position of each
peak represents the total time shift between the signals. The
distance between these peaks corresponds to the base period of
the signals Tω = 2π/ω1. For a successful identification of the
time shift, it is necessary to have an a priori estimate of the
time delay τ̃0. The error of the time delay estimate must satisfy
|τ − τ̃0| ≪ Tω/2. Otherwise, the identified delay would have
an error k · Tω, k ∈ N. It is possible to express the total time
shift between the signals as the position of a peak:

ñ = argmax
nφ

|ϑ[nφ]|

s.t. A ≤ nφ ≤ B
(21)

in a specified range of time shift nφ ∈ [A,B] ⊂ Z using
the estimate of time delay, which should narrow the cross-
correlation range to identify only one position of a peak. The
range is calculated from the intital total time shift estimate
φ̃0(ω̃) = −τ̃0 · ω̃ − arctan(T · ω̃), where ω̃ is the identified
frequency, and from a period range modificator C:

A =

(
φ̃0(ω̃)

ω̃
− C

Tω̃

2

)
1

∆t
, C ∈ (0, 1) (22)

and

B =

(
φ̃0(ω̃)

ω̃
+ C

Tω̃

2

)
1

∆t
, C ∈ (0, 1). (23)

From (20) and (21) it is possible to express the identified time
delay τ̃ :

τ̃ = ñ ·∆t+
arctan(T · ω̃)

ω̃
. (24)

The resolution of the peak position is ∆t. To improve the
accuracy of the peak position, we interpolate the neighborhood
of the identified τ̃ with a cubic spline (visible in the lower
graph in Fig. 3). The finer resolution is then possible to obtain
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Fig. 3. Cross-correlation of two shifted periodic signals within
sliding window TW = 1 s and time-step ∆t = 0.01 s
(upper graph) and the detail of estimated range of the total
time shift (lower graph).

by finding the maximum of such a spline on the interval (τ̃ −
∆t, τ̃ +∆t).

2.3 Disturbance identification

The disturbance is identified when the system runs without
control. The approach is similar to the time delay tracking. It
is based on tracking small inaccuracies in the initial estimate.
In our case, we assume that the disturbance has character
according to (2). There are six parameters to identify: ω1, ω2,
a1, a2, ϕ1, ϕ2. For the identification of disturbance frequencies
ω1, ω2 and phase shifts ϕ1, ϕ2, the discrete convolution of an
adaptive Morlet wavelet and an output signal y(t) is used:

Γ[n, ω] = (y ∗Ψ)[n, ω] =

N∑
k=1

y[k] ·Ψ[n− k, ω]. (25)

Where N is the number of samples in the sliding window and
ω is changing in the desired range of frequency identification.
The wavelet is a symmetrically damped cosine function:

Ψ̄[k, ω] = exp

(
(−k∆t)2

2σ[ω]2

)
· cos (ω · k∆t). (26)

The damping is proportional to the period of oscillations:

σ[ω] = 2 · Tω =
4π

ω
. (27)

The resulting wavelet should have a sum equal to 1 for each ω.
Thus, every wavelet is divided by its sum:

Ψ[k, ω] =
Ψ̄[k, ω]

N∑
k=1

Ψ̄[k, ω]

. (28)

The identified frequency is considered that ω, for which the sum
of squared convolution Γ[n, ω] (25) is maximized:

ω̃ = argmax
ω

N∑
k=1

Γ2[k, ω]. (29)

The identified time shift is calculated from the position of a
peak in convolution for identified ω̃:

ñ = argmax
n

Γ[n, ω̃], (30)

where the shift in radians is:

k · ϕ̃ =

(
ñ∆t− Tω̃

4

)
· ω̃, k ∈ Z. (31)

One wavelet can identify one ω̃ and one ϕ̃. Thus, it is necessary
to use two wavelets to identify both sine components.

After identification of the frequencies and phase shifts of both
sine components, the amplitudes a1, a2 are identified using the
discretized vector of y(t) and the discretized vector of d̂(t),
which is calculated by substituting ω̃1, ω̃2, ϕ̃1, ϕ̃2 in equation
for disturbance (2). The amplitudes a1 and a2 are identified
by sweeping around the expected values minimizing the sum
of squared error between measured signal and the model of
disturbance:

a1, a2 = arg min
a1,a2

N∑
k=1

(
y[k]− d̂[k, a1, a2, ω̃1, ω̃2, ϕ̃1, ϕ̃2]

)2

.

(32)

2.4 Algorithm

The simplified algorithm scheme is shown in Fig. 4. To identify
the initial disturbance, it is necessary to run the system without
control. After identifying the disturbance, the controller is
activated and it is possible to track the time shift between the
input to the system from the controller u(t) and the output
of the system subtracted by the estimated disturbance ỹ(t) =

y(t) − d̂(t). If the average output values y(t) in the sliding
window TW are damped below the user-defined limit ȳ(t) <
ylim and the change in the identified delay τ̃(t) is less than the
user-defined limit ∆τ̃(t) < τlim, then the identified delay is
held as the maximum value τ̃(t) = max(τ̃ (t)), where τ̃ is:
τ̄ (t) = [τ̃(t−((M−1)∆t), τ̃(t−(M−2)∆t), . . . , τ̃(t)] (33)

in the sliding window of length:

M =
2 · Tω

∆t
. (34)

We hold the maximum value because the identified τ̃(t) oscil-
lates. The oscillations are caused by the mismatch of the length
of sliding window and the integer multiple of the disturbance
period Tω .

3. NUMERICAL VALIDATION

The proposed method was simulated in Matlab-Simulink using
the ODE45 solver, with max. step size equal to ∆t and relative
tolerance equal to 10−9. The exact parameters of the system,
controller, and adaptive algorithm can be seen in Table 1.

The first five seconds of simulation are without control, as you
can see in Fig. 5, then the controller is activated. The evolution
of the variable delay is shown in Fig. 6. The delay is equal to
the initial estimate at the beginning of the simulation and the
controller is able to suppress the disturbance very quickly. The
delay changes after 15 seconds of simulation by 10 % with a
slope of 0.1, and after 30 seconds it increases by 20 % with the
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Fig. 4. Simplified algorithm of time delay tracking

Table 1. Parameter values for simulation

Parameter: Value:

p = [p1 p2 p3 p4 p5] [-15 -30 -45 -60 -75]

T [s] 0.017

K [-] 0.587

τ [s] 0.211

∆t [s] 0.01

ω = [ω1 ω2] [rad·s−1] [8π 16π]

θ [s] 0.039

C [-] 0.2

ylim [mm] 0.05

τlim [-] 0.005

TW [s] 5

same slope. The speed of tracking the delay change depends on
the length of the sliding window TW .

The response to the delay change is promising. The oscillations
in the case of a 10 % change are less than 1.5 mm, which is
much smaller than the disturbance amplitude (3.5 mm), and the
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Fig. 5. Simulation without control at the beginning. Control
started after 5 seconds.
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Fig. 7. Response to 10 % delay change after 15 seconds of
simulation.

oscillations are damped in less than 5 seconds (Fig. 7). As can
be seen in Fig. 8, the oscillations caused by the 20 % change are
less than 15 mm, which is more than the original disturbance,
but they are also damped quickly in less than 10 seconds.

4. DISCUSSION

The simulation in Matlab-Simulink provides promising results,
but there are few points for further discussion. In this case,
we simulated only a variable time delay, and the adaptive
wavelet was used only for initial disturbance identification. The
disturbance features are considered constant and without any
other noise. Our approach needs the update of the disturbance
parameters, because even for small inaccuracies of disturbance
identification, the time delay tracking can fail in a long time
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Fig. 8. Response to 20 % delay change after 30 seconds of
simulation.

frame. Another problem can occur in case the frequencies of
the disturbance are close to each other. Then it would be neces-
sary to pay attention to Butterworth filter design. This method
cannot deal with disturbance and time delay identification at
the same time. Another problem is the separation of the impact
of the system time constant T , which is considered known and
constant. Time delay tracking would fail if the delay change is
greater than the base period Tω , because the algorithm would
track a different position of the peak in cross-correlation. How-
ever, the main purpose of the application of this algorithm is
to handle small and slow changes in time delay because even
small changes can lead to instability.

5. CONCLUSION

An adaptive IMC controller design to suppress two-harmonic
disturbances acting on a first-order system with dead-time has
been proposed and numerically validated. The proposed filter
structure for the IMC controller explicitly distinguishes the
controller parameters responsible for delay compensation and
disturbance rejection, allowing fast adaptation of the controller
parameters for a newly identified system delay.
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