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Abstract—This paper deals with the observer design problem
for bilinear photovoltaic-thermal (PV/T) thermal model to esti-
mate its states. The objective is to construct an observer subjected
to an unknown input. This study proposes an improvement in the
design compared to the work in the literature on the application
of a state observer with unknown input for photovoltaic-thermal
systems where x̂ is estimated by knowing Ṫwi. A Lyapunov
approach is used to ensure stability and a Linear Matrix
Inequality (LMI) is solved simultaneously in order to find a
positive definite symmetric matrix subject to linear equality
constraint. Necessary and sufficient conditions for the existence of
such approach are given. A design procedure is summarized and
the proposed technique is finally illustrated through simulations.
Results indicate that the state estimation error converges to zero
for all the states, thus displaying effectiveness of the presented
scheme.

Index Terms—photovoltaic-thermal systems, unknown input
observer, state observation, LMI, Lyapunov stability.

I. INTRODUCTION

A photovoltaic-thermal (PV/T) system combines photo-
voltaic and solar thermal modules into one integrated unit.
These systems provide heat and electricity simultaneously.
The measurements of all system states may not be possible
in certain systems because of incomplete information on the
internal state of the system and for this reason, observers
are designed. Observers are the dynamic systems that provide
an estimate of the internal state of a plant using its input-
output measurements [1]. A real-time Luenberger type state
observer is designed by Kicsiny and Varga [2] for solar thermal
heating system and the algorithm for the practical use is
presented. Wang et al. [3] designed a non-linear observer
for solar thermal water heater system considering only four
components to estimate the missing state variables. Ouhsaine
et al. [4] constructed heat transfer model for PV/T systems
in the context of a new consideration of heat conduction
with a time fractional-order derivative. The temperature of the
nodes are estimated using the fractional-order observer where
the observer gain is computed by solving the linear matrix
inequality (LMI).

A simple method to design a full-order observer for linear
systems with unknown inputs was presented by Darouach et
al. [5] along with two examples and necessary conditions
for the existence of the observer were provided. A full-order

state observer for bounded inputs bilinear systems subjected
to unknown disturbances was designed and investigated by
Rafaralahy et al. [6] based on gain optimization of both
the linear and the bilinear parts of the observation error
dynamics. It was concluded that the proposed observers are
applicable to a large class of bilinear systems subjected to
unknown disturbances. An unknown input fuzzy bilinear fault
diagnosis observer was designed by Saoudi et al. [7] for
dynamic systems that can be described by Takagi-Sugeno
fuzzy bilinear models subject to unknown disturbance. The
effectiveness of the proposed observer has been accompanied
by a dynamic system example. A design procedure for full-
order and reduced-order observers with unknown inputs was
presented using two different approaches by Hui and Żak
[8]. The state of the observed system was decomposed into
known and unknown components in the first approach whereas
the second approach combines sliding modes and the second
method of Lyapunov resulting in a non-linear observer. Gao et
al. [9] presented an unknown input observer for the augmented
system to decouple partial process disturbances and linear
matrix inequality optimization technique is implemented to
make sure that the estimation error dynamics to be stable. The
existence conditions of the proposed observer are addressed.

In this study, an observer is designed for the PV/T system
subjected to an unknown input, an improvement in the design
compared to our previous studies. The idea is to estimate
the states of the system even in the presence of unknown
inputs and they can represent faults, disturbances or neglected
dynamics in the system. To our knowledge there is no work
in the literature on the application of a state observer with
unknown input for photovoltaic-thermal systems. An important
aspect of this study is that it is possible to construct an
observer for systems affected by unmeasurable disturbances.
The designed observer is efficient in estimating the states of
the system and the error converges to zero for all the states.

The paper is organized as follows: section II provides
system description and a multiple model of a PV/T system
with an unknown input. Next, an observer is designed in
section III for the system subjected to an unknown input.
Sufficient conditions for the existence of this observer are
given. Section IV is devoted to simulation results and the paper
ends with conclusions and are found in section V.



II. THE MODEL WITH UNKNOWN INPUT

The main aim of the system is to generate electricity and
provide warm water by harnessing the solar radiation collected
from the sun. The cross-sectional view of a water-based PV/T
collector is presented in Figure 1 and consists of; a glass that
is open to the surrounding environment, a PV cell layer which
is followed by a tedlar film, an absorber layer, a metallic tube
pressed between multiple layers through which fluid (water)
flows, and an insulated frame to avoid thermal losses. Few
assumptions have been considered for the thermal model such
as: pressure losses, dust and partial shading are neglected.
Temperature is assumed to be homogeneous for each layer.
Tg , Tc, Tt, Tr, Tm, Tw and Ti are the temperatures of various
components of the collector.

Fig. 1: Sectional view of water-based photovoltaic-thermal
(PV/T) collector.

A multiple thermal model is constructed by Rachid and Ul
Abdin [10] using the boundedness of nonlinear terms, based
on a convex polytopic transformation of non-linear scalar
functions. The thermal model can be expressed in state space
form as: ẋ(t) =

2∑
i=1

µiAix(t) +Bx(t)u(t) +Gv(t)

y(t) = Cx(t)− Twi

(1)

where x is defined as;

x =
[
Tg Tc Tt Tr Tm Tw Ti

]T
The output y is the outlet water temperature Two, Twi is water
inlet temperature, mass-flow rate ṁw is defined as controlled
input u, v contains non-controlled inputs and can be written
as:

v =
[
Tam Isun Twi

]T
The matrices B and G are provided in previous studies, which
are omitted here for brevity. Temperature of the fluid Tw is
respectively given by:

Tw =
Twi + Two

2

A new sixth state θw is introduced, and is given by:

θw = Tw − Twi, (2)

As a result, an equivalent system with change of variable can
be constructed as follows: ẋ(t) =

2∑
i=1

µiAix(t) +Bx(t)u(t) +Gv(t)− PṪwi

y(t) = Cx(t) + Twi

(3)

where Ṫwi is unknown input, x contains state variables and is
defined as;

x =
[
Tg Tc Tt Tr Tm θw Ti

]T
The variation of Twi is unknown and the noise is highly
amplified when make a derivative. High frequency gives high
values and taking a derivative of it will give much higher
values and considering it as unknown input could avoid the
trouble. It should be noted that the only dissimilar term in x
and x is the sixth state and the actual state x6 can be calculated
using the relation:

x6 = x6 + Twi

The new measured output Y (t) can be written as:

Y (t) = y(t)− Twi (4)

For the corresponding model, Y (t) is given by:

Y (t) = Cx(t) (5)

For the Ai matrix, the only varying term is a22:

a22 = h(Isun) = b2 + b3Isun, (6)

where h(Isun) is bounded: b2 + Isunb3 ≤ h(Isun) ≤ b2 +
Isunb3 where Isun = min{Isun}, Isun = max{Isun}.

The 2 possible local models available with A1 containing
a22 as b2 + Isunb3 whereas for A2, it is b2 + Isunb3 and Ai

is described as follows

Ai =



a11 a3 0 0 0 0 0
b1 a22 b4 0 0 0 0
0 c1 a33 c2 c3 0 0
0 0 d1 a44 d2 0 d3
0 0 e1 e2 a55 e3 e4
0 0 0 0 f1 −f1 0
0 0 0 g1 g2 0 a77


C =

[
0 0 0 0 0 2 0

]
B, G, and P are constant matrices and are given as:

B =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −f2 0
0 0 0 0 0 0 0



G =

 k11 0 0 0 0 0 g3
a5 b5 0 0 0 0 0
0 0 0 0 e3 −f1 0

T

P =
[
0 0 0 0 0 1 0

]T
The parameters a, b, c, d, e, f , g, and k are defined in the
appendix section.



III. DESIGN OF THE OBSERVER

In this section, an observer is designed for estimating
the states of the multiple model. Designing observers is a
challenging problem due to its importance in automatic control
design. Necessary and sufficient conditions for the existence
of such approach are given by [5], [6], [11].

Theorem 1:

If there exist Di, E, Li, J , and H matrices with appropriate
dimensions satisfying the constraints, the observer error is
exponentially stable such that Di is Hurwitz. If one can make
the following constraints hold:

ETX +XE = O (7)

DT
i X +XDi < 0 for i = 1, 2 (8)

DiS − SAi + LiC = 0 (9)

J − SG = 0 (10)

SP = 0 (11)

ES − SB +HC = 0 (12)

S = I7 −MC (13)

then x̂ converges to x.
The existing conditions for the observer were given by [5],

[6], [11]. A constant gain unknown input observer for the
system (3) is described with the following structure

ż(t) =
2∑

i=1

µiDiz(t) + Ez(t)u(t) +
2∑

i=1

µiLiY (t)

+Jv(t) +Hu(t)Y (t)

x̂(t) = z(t) +MY (t)

,

(14)
where z is the state vector of dynamic system (14) and x̂
represents the estimation of states. The system is unknown
input state observer if and only if

lim
t→∞

∥ x̂(t)− x(t) ∥= 0

holds irrespective of the initialisations, the measured input and
the unknown input.

Proof:

Let estimation error e be the difference between estimated
and the actual states, and using the output equation in (14),
one has

e(t) = x̂(t)− x(t) = z(t) +MY (t)− x(t) (15)

the dynamics of the state estimation error is as follows:

ė =

2∑
i=1

µiDie+

2∑
i=1

µi(DiS−SAi +LiC)x+(J −SG)v

− SP Ṫwi + Eue+ u(ES − SB +HC) (16)

If constraints (9)-(12) hold, state estimation error dynamics
(16) reduces to

ė(t) =

2∑
i=1

µiDie(t) + Eu(t)e(t) (17)

To prove the stability, let a function V = eTXe be a Lyapunov
candidate for error dynamic system (17) and X be a positive
definite symmetric matrix. The time derivative of the lyapunov
function, respectively gives

V̇ = eT (

2∑
i=1

µi(D
T
i X +XDi) + (ETX +XE)u(t))e(t),

(18)
or equivalently

V̇ = eTT (u)e(t), (19)

where

T (u) =

2∑
i=1

µiXi +Xou(t), (20)

with Xi = DT
i X +XDi and Xo = ETX +XE.

The asymptotic stability is ensured with constraints (7) and
(8) if the derivative of the Lyapunov function is negative if
and only if T (u) is negative definite for all admissible u(t).
The constraint (8) is satisfied if Di is made Hurwitz, that
is, ℜ(λ(Di)) < 0 then there exists X which is a symmetric
positive definite matrix. The proof is completed.

Now, let us find the unknown matrices of (14) using the
constraints provided in Theorem 1. Taken into account the
constraint (13), (11) yields:

P −MCP = 0 (21)

the solution of this equation depends on the rank of matrix
CP , M exists if rank (CP ) = rank (P ). The general solution
of (21) exists and can be written as:

M = P (CP )+ + ξ(I − (CP )(CP )+),

where ξ is an arbitary matrix with appropriate dimension and
(CP )+ is the generalized inverse of (CP ). [5] shown that ξ
must be choosen such that M is of maximal rank and the
obvious choice of matrix is ξ = 0 and this yields

M = P (CP )+ (22)

Theorem 2:

The necessary conditions for the existence of structure (14)
are

i) rank(CP ) = rank(P )

if it holds then, (21) is solvable otherwise observer cannot
be constructed.

ii) The pair (C, SAi) is detectable (observable) if and only
if the rank condition holds

rank
[

sI7 −A P
C 0

]
= 7 + rank(P )

for all s with ℜ(s) ≥ 0, but s ̸= 0.



Suppose if these conditions are satisfied, then matrix Di can
be made stable and observer (14) exists.

Using (13) in (9), the equation reduces to

Di = SAi −KoiC, (23)

where
Koi = Li −DiM for i = 1, 2 (24)

and Di should be Hurwitz, for that, (SAi, C) should be
detectable. Koi can be computed by pole placement for the
pair (SAi, C) and (24) can be written as:

Li = Koi +DiM (25)

Substituting (23) in (8), LMI is solved for X and has a positive
definite solution X if Di is Hurwitz.

Substituting (13) in (7), the equation reduces to

E = SB −KC, (26)

where
K = H − EM (27)

Using (26) in (7), yields

(SB −KC)TX +X(SB −KC) (28)

or equivalently

(SB)TX +X(SB) = (KC)TX +X(KC) (29)

if a new variable ζ is introduced that is equal to (29) and par-
ticular solution of left hand side of (29) is XKC = (XKC)T

then ζ can be written as:

ζ = 2XKC, (30)

where the solution of (30) exists only if rank(CT ) =
rank[CT (X−1ζ)T ] and K is then given by:

K =
1

2
X−1ζC+, (31)

where (C+) is the generalized inverse of C.
If the above assumption does not holds, the solution can be

obtained by minimizing ∥ KC − 1

2
X−1ζ ∥2, given by (31)

with (C+) = CT (CCT )−1.

Remark 1:

The solar radiation Isun and ambient temperature Tamb are
not choosen as unknown inputs because assumption (i) in
theorem 2 is not satisfied. It is necessary condition to ensure
the existence of such observer. Infact, the product of matrices
C and P becomes zero.

Remark 2:

Fluid inlet temperature Twi cannot be taken as unknown
input because measured output Y (t) contains it and will make
impossible for us to design such scheme for it.

Remark 3:

In order to simplify B, we made a change of variable θw
as given in (2) and this change results in an introduction of
time derrivative of inlet water temperature. Since, Ṫwi in (3)
cannot be found directly so x̂ is estimated without knowing
it.

The unknown input observer of the form (14) can be
constructed by following the design procedure provided in
section below.

Algorithm:

The design procedure can be summarised as follows:
1) Verify if assumption (i) is satisfied
2) Compute M using (22)
3) Compute S using (13)
4) Compute Di in (23) by pole placement
5) Compute L using (25)
6) Using (8) and (23), compute X using LMI toolbox
7) Compute K using (31)
8) Compute E using (26)
9) Compute H using (27)

IV. SIMULATION RESULTS

The multiple thermal model of a photovoltaic-thermal
collector (1) is simulated using MATLAB/Simulink
by randomly choosing systems initial condition x0 =
[23 25 23 23 23 3 20]T and observers initial condition z0
= [23 27 23 23 24 5 20]T . Figure 2 show respectively the
evolution of the estimation error between the actual system
variables and their corresponding observer ones. It can be
seen that the state estimation error converges asymptotically
tends to zero for all of the states even though, the unknown
input is present.
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Fig. 2: State estimation errors: e1 through e7.

To estimate the states of the system, the system was initially
simulated without any unknown input. In Figure 3, it can be
observed that there is a reasonable agreement between the true
and estimated states of the system. The system real states (x)
are tracked by the observer states (x̂). It is obvious that the PV
component has a higher temperature than other components.
We consider now the same previous system subject to a
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Fig. 3: True states and their estimations without unknown
input.

sinusoidal input Twi and is is injected with similar conditions.
Figure 4 illustrates that it affects the state θw whereas there
is a small effect on the state x5. However, the estimation
of the state remained, which shows the robustness of the
observer. The estimation error converges to zero even if the
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Fig. 4: True states and their estimations with sinusoidal input
Twi.

initial conditions for the observer are changed.

V. CONCLUSIONS

Water-based photovoltaic-thermal system continue to gain
popularity as the reliance on fossil fuels decreases. In this
study, an observer is designed subjected to unknown input for
PV/T system thermal multiple model. The existence conditions
are given using Lyapunov stability approach. The estimation
error converges to zero for all of the states, thus displaying the
effectiveness of the proposed approach. The observer showed
high robustness against unknown input and estimation of
the states remained very accurate. Experimental investigations
are in progress to validate the concrete applicability of the
proposed design.

NOMENCLATURE

Symbols
A area
Amod module area of a PV panel
C specific heat capacity
di inner diameter of the tube
do outer diameter of the tube
Isun solar radiation
M mass
T temperature
hc conduction heat transfer coefficient between two com-

ponents
hr radiation heat transfer coefficient between two com-

ponents
hv convective heat transfer coefficient between two com-

ponents
Greek letters
α absorptivity
β packing factor
βp temperature coefficient
ηref reference efficiency
τ transmissivity
Subscripts
am ambient
c PV cell
g glass cover
i thermal insulator
m tube
r absorber
s sky
t tedlar
w fluid (water)

APPENDIX

a1 =
Amod

MgCg
, a2 =

Amodhv,am

MgCg
, a3 =

Amodhc,gc

MgCg
,

a4 =
0.0552Amod

MgCg
, a5 =

Amodαg

MgCg

b1 =
Amodhc,gc

McCc
, b2 =

Amod(−hc,gc − hc,ct)

McCc
,

b3 =
Amodηrefβp

McCc
, b4 =

Amodhc,ct

McCc
,

b5 =
Amodτgαcβ − ηref − ηrefβpTc,ref

McCc
,

c1 =
Amodhc,ct

MtCt
, c2 =

Atrhc,tr

MtCt
, c3 =

Atmhc,tm

MtCt
,

d1 =
Atrhc,tr

MrCr
, d2 =

Armhc,rm

MrCr
, d3 =

Arihc,ri

MrCr
,

e1 =
Atmhc,tm

MmCm
, e2 =

Armhc,rm

MmCm
, e3 =

Amwhv,mw

MmCm
,

e4 =
Amihc,mi

MmCm
, f1 =

Amwhv,mw

MwCw
, f2 =

2Cw

MwCw
,



g1 =
Arihc,ri

MiCi
, g2 =

Amihc,mi

MiCi
, g3 =

Amodhv,iam

MiCi
,

a11 = −(a1hr,gs + a2 + a3), a22 = b2 + b3Isun,

a33 = −(c1 + c2 + c3), a44 = −(d1 + d2 + d3),

a55 = −(e1 + e2 + e3 + e4), a77 = −(g1 + g2 + g3),
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