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About switched affine system
interconnected with fast LTI dynamics

Ying Tang* , Christophe Fiter * , Laurentiu Hetel *

* Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000
Lille, France

Abstract: We study an interconnection between a slow switched affine system and a fast
LTT system. The lower dimensional slow and fast subsystems are computed via the singular
perturbation approach. We consider the classical stabilization method based on the existence
of a stable convex combination (while ignoring the fast dynamics) and we provide an LMI
condition for checking ultimate boundedness when the fast dynamics is taken into account.

Numerical example illustrates the main result.

Keywords: switched affine system, multiple time scales, Lyapunov method, singular

perturbation

1. INTRODUCTION

The interest in study of switched affine systems comes from
their wide use in various fields in physics and engineering.
For example, in DC-DC power converters, the switched
circuit topology indicates different modes of operation
that have no common equilibrium, can be considered
as such systems [Beccuti et al. (2005); Buisson et al.
(2005); Deaecto et al. (2010)]. Different approaches have
been considered for the stability and the stabilization of
such systems: Hurwitz convex combinations [Bolzern and
Spinelli (2004); Beccuti et al. (2005)], Lyapunov techniques
[Hetel and Fridman (2013); Kader (2017)], Adaptive based
method [Beneux et al. (2017)], Hybrid approach [Sanchez
et al. (2019)], etc. Besides dealing with switching among
various equilibria in such electronic devices one also has
to handle the slow and fast variables (for example, in such
systems we usually have fast variables such as currents
interconnected with slow variables such as voltages).

Motivated by such control problems we study in this
paper the interconnection between a slow switched affine
system and a fast linear time invariant (LTI) system. The
powerful singular perturbation techniques [Kokotovié et al.
(1986); Khalil (1996)] existing in the literature are not
applicable to the case under study. We deal with systems
with state-dependent switching, which results in complex
phenomena such as sliding modes and non unique Filippov
solutions. The main contribution of this work is to provide
a method of stability analysis for slow switched affine
systems interconnected to fast LTI dynamics. We consider
the classical stabilization method based on the existence
of a stable convex combination (while ignoring the fast
dynamics) and we provide an LMI condition for checking
ultimate boundedness when the fast dynamics is taken
into account. To the best of our knowledge, this setting
is new in the literature. However, some results exist in
a different context with time-dependent switching [Rejeb
et al. (2018); Yang et al. (2020); Malloci et al. (2010);
Hachemi et al. (2012)].

The paper is organized as follows. Section 2 is dedicated
to preliminary results concerning the Filippov solution of
switched affine systems. Section 3 presents the system
under consideration and the decomposition of both fast
and slow subsystems via the singular perturbation method.
Section 4 states the stability properties of such system
under a state-dependent switching law. In Section 5, the
main result is illustrated by numerical examples. Finally,
concluding remarks end the paper.

Notation. Given a matrix M, M~! and M T represent
the inverse and the transpose matrix of M respectively.
M = 0 (M =< 0) means that the matrix M is positive
(negative) semi-definite. M > 0 (M < 0) means that the
matrix M is positive (negative) definite. For a symmetric
matrix, * denotes the symmetric part. || || denotes the
usual Euclidean norm in R™. For a positive integer N,
Zn denotes the set {1,...,N}. The n dimensional open
ball in R™ centred on a with radius r is denoted by
B(a,r) :={b € R": |a—b] <r}. udenotes the Lebesgue
measure. The convex closure of the set S is denoted by
Conv{S}, and Ay stands for

N
AN{ = [vl,...,vN]T € RNIZ%‘ =1,v; > 0,Vi EIN}.
i=1

2. PRELIMINARIES

We present some preliminary results about the solution of
switched affine systems which will be used in the sequel.
Let us consider the following switched affine systems

T = Aa(a:)x + bo’(w) = g(l’), (1)
where 2z € R™ is the state variable, o(z) is the switching
law and ¢ € Iy = {1,2,...,N}. A; fori € {1,2,...,N}
are the evolution matrices of the subsystems, b, € R"”
presents the affine term.

The system (1) does not admit classical solutions since the
right-hand side is discontinuous. While we can consider
Filippov solution [Filippov (1988)] of (1) if the map g :



R™ — R"™ is locally bounded and discontinuous. In this
sense, the differential equation (1) is associated to a set-
valued map taking into account all the possible values
of the derivative. Then we may consider the convex hull
of the possible trajectories over the discontinuities, and
differential inclusions are used to construct the solutions.

The differential inclusion associated to (1) is given by

L(t) € Flgl(z), (2)
with the set-valued map

Flol(z) = 0 . Conv{g(B(x,6)\ S)},

Vo € R™.

3)

The solutions of (1) in the sense of Filippov are defined as
follows.

Definition 1. Consider the system (1) and its associated
differential inclusion (2). A Filippov solution [Filippov
(1988)] of the system on the interval I = [tq,t2] € [0, +00)
is an absolutely continuous map E : [t1, ta] — R™ such that
E(t) € Flg](E(t)) is satisfied for almost every t € [t1,ta],
with F[g](z) given by (3). O

The existence of at least one solution of the differential
inclusion (2) for some initial conditions is guaranteed if
F is locally bounded and takes nonempty compact and
convex values.

3. PROBLEM STATEMENT

Consider the following interconnection

= Aa(x )Ts + A(1f2($s)xf + bg(ms), (4&)
ety = Az + A*xy, (4b)
where the state variables are xz, € R", xy € R™ and

the switching law is ¢ € Zny = {1,2,..., N}. The small
perturbation parameter ¢ satisfies 0 < € <« 1. The affine
term is b; € R™ for ¢ € {1,2,...,N}, and the matrices
A A2 A%L) A22 are of appropriate dimensions.

Due to the small parameter ¢, the dynamics of the sys-
tem (4) evolve according to two time scales. We follow
the standard singular perturbation approach [Kokotovié
et al. (1986)] to decompose (4) into the slow and fast
subsystems. Assuming A2?? invertible and setting € = 0
n (4b), we have

= AT A2, (5)
Replacing xy in (4a) by the right-hand side of (5), we

obtain the slow subsystem which is a switched affine
system

Ty = Ai(xs)fvs + ba(ms), (6)
where

Adpy = AL, — A2 427 A2 (7)

To compute the fast subsystem, we first perform the
following change of variable
_ 22—1 491

y=2xy +A A Ts,

we then write

5?) = AQQQ + E(Ga(a: )‘,I"S + Go’(a: Yy + AQQ?lAlea’(ms))a
where
Gl( — A2~ 1A21A9( iy GQ( )—A22 1A21A12( "

Using a new time scale 7 =
subsystem is computed as

é and € — 0, the fast LTI

dy 22
—= = A“%y.
I Yy (8)

The standing assumptions using in this work are given as
follows.

Assumption 1. Assume that there exists o« € Ay such
N

> a;b; = 0, and

i=1

that the convex combinations b(a) =

N
> a;A? is Hurwitz, that is
i=1

A (a) =

A*(a) TP+ PA*(a) < —c,P, (9)
with a matrix P = PT > 0, and a scalar ¢, > 0. O
Remark 1. In Assumption 1, let us remark that the con-
N

dition b(a) = > ayb; = 0 is a necessary condition [Hetel

i=
and Bernuau (2015)] for the existence of the switching law
o(xs) such that 0 is an equilibrium of the differential inclu-
sion associated with system (6). Moreover, it is worth to
emphasize that condition (9) does not require the stability

of each mode of the slow subsystem (6). 0
Assumption 2. A?? is Hurwitz, that is

A2 Q4+ QA < —csQ, (10)
with a matrix @ = Q" = 0, and a scalar ¢y > 0. |

Remark 2. Condition (10) is a standard stability condi-
tion of LTT systems. Thus the stability of the fast subsys-
tem is ensured. a

In the following, we rewrite the whole system (4) in the
coordinate (zs,y) as

() - H(an) = {12z 0@

Y hQE(IS,y,G(I’S))
Aan®s + Aslony + o), (11)
A22y + (Ga(w Tg + Go’(m Y+ A2271A21b0(zs)) .

Considering system (11), we propose a state-dependent
switching law
o(xs) € arg m}n{x:(AfTP + PAS)x, + 2] Pb;}. (12)
1€ELN

In order to define the Filippov solution of the closed-
loop system (11) and (12), we introduce the following
differential inclusion associated to the closed-loop system

s (t)
. € FlH|(zs,y),
with the set-valued map

FiH)@ow) = 0, 0 Conv{H(B((z..).

(13)

5)\S)}
(14)

Definition 2. Consider system (11) with the switching
law (12) and its associated differential inclusion (13). A
Filippov solution [Filippov (1988)] of the system on the
interval I = [t1,t2] € [0,+00) is an absolutely continuous

map Z : [ty,ts] — R™ such that Z(t) € F[H](Z(t))



is satisfied for almost every t € [t1,t2], with F[H|(zs,y)
given by (14). O

The objective of this work is to study the stability proper-
ties of the system (11) under the state-dependent switching
law (12). The stability notion adopted in the work is given
as follows.

Definition 3. Let S be a neighborhood of the origin. The
closed-loop system (11) and (12) is said to be Uniformly
Ultimately Bounded in S if for all a > 0 there exists

T(a) > 0 such that, for any H xyé((o())) ’ < a, the solutions

(Iyé?) € 8, for all t > T(a). a

4. STABILITY ANALYSIS

In this section, we aim at showing the stability properties
of the system (11) under the switching law (12).

The main result is stated as follows.

Theorem 1. If symmetric matrices P, Q satisfy Assump-
tions 1-2 for some positive scalars c,,cy and if there exist
constants ¢ > 0,60 > 0, 0 < ¢* < 1 such that for i € Iy

—c,P+0P 0 Ver(PA2 + G Q)
x —0cl Ver (QAZ T A2, T
* x —Q+eN (G QHQGH +0Q

(15)

then, for e € (0,&*], system (11) with the state-dependent
switching law (12) is uniformly ultimately bounded with
an estimation of the ultimate bounded set

wer-{(5) () (1) )=}

where ¢* = max{c} satisfies (15).

Proof. The proof is based on the Lyapunov analysis.
First, for z; € R™ we define the set of minimizers in which
the switching law choose values as

T (xs) ={i € In : x] (A5 P+ PA)x, + 22] Pb; <
al (ASTP + PAS)x, + 23] Pb;,Vj € In}.  (16)

For the system (11) with the switching law (12), we define
the set-valued map F*[H|(zs,y) for s € R",y € R™ and

i€ T*(xs)
Aizs + A12y+bi
Conv A22 _ .
ez (@) |\ v + (Clas + Gly + 4727 A7)

(17)

FrH](zs,y) =

We can remark that the set-valued map F[H]|(zs,y) given
n (14) satisfies

FlH|(zs,y) € F*[H](2s,y). (18)

More precisely, if there is only one mode satisfies (16) (i.e.

I*(zs) = {i}) then F[H|(zs,y) = F*[H]|(zs,y). Other-
wise, we have F[H|(z,,y) C F*[H](zs,y) if there are sev-
eral modes verify (16). The set-valued map F*[H](zs,y)
is locally bounded, has a nonempty, compact and con-

vex values. Then the differential inclusion (Z?g?) €

F*[H](zs,y) admits at least one solution for some initial
conditions. Due to the relation given in (18), this also holds

for the differential inclusion <ché((5)) € FlH|(zs,y).

Then, we consider the following candidate Lyapunov func-
tion

V(zs,y) = a! Prs+y' Qy, (19)
with P and @ satisfying (9) and (10) respectively. For all
i € I*(xs), we have

2 ha(zeryole

§) =1)

=2l (43T P+ PAS)x, 4 2z] Pb; + 2¢] PA2y. (20)

From (16), the switching law gives that

] (ASTP 4 PAS)x, + 22 Pb;

<a](AsTP 4 PAS)a, +22] Pb;Vj € Iy. (21)

=<0, Let o € Ay. We deduce from equation (21)

aj(z] (A3T P+ PAS)x, + 2z] Pb))

M=

j=1
N
<Y aj(a] (AT P+ PAS)x, + 22] Pb;).
j=1
N
Then using ) «; = 1, we have
j=1

] (AST P+ PAS)x, + 22 P,
z] (A%(a) TP+ PA(a))x, + 22] Pb(a).

From Assumption 1 and recalling hq(xs,y,o(zs)) defined

n (11), we deduce, for i € Z*(x)

ov
Ox

S) = Z)

9

(A5TP 4 PAS)xy + 2] Pb; + 22] PAM?y
(—csP)ws + 2z PAy.

hi(xs,y,0(x

=
;r (22)

Moreover, by recalling ho. (x5, y, o(x
have

s)) defined in (11

), we

ov .
aithe(xsa Y, U(xs) - 7’)

=T (42704 QA% 4262 Q+Q6Y) )y

12T G Qu + 2y T QA% A2,
Under Assumption 2, inequality (23) becomes

(23)



9% .
aiyh%(msa Y, 0‘(1‘5) = Z)

< %yT (—CfQ +e(G2TQ+ QG?)) y

1217 G Qy + 2y T QAT A%y, (24)

In view of (22) and (24), we have

v
7h S
oz, 1(@s,y) +

1
<al(—eP)r+ -y’ (—e;Q+2(G2 Q+QGY)y

w207 (PAR+ G Q) y+2y7 QA% A%,

ov
87th5 (l'sa y)

AT [P0 PARLGHQ .
( 1 ) x 0 (QA22_1A21bi)T ( 1 >
y . @ +G2T Q62| \Y

D filxs,y), 1€ T (xy).

(25)

In the case where the switching law allows to choose several
modes i € I*(x), we can define the set A%, such that

In this case (17) becomes

FrH|(xs,y)
Aszg+ APy +b;
s | A2 -
Z ’ — Yt (Glay + G2y + A2 A%p,)

i=1

Bi € A } (27)

The relation (18) also holds for F*[H](zs,y) given in (27).

Consequently, due to the compactness of the set Aj‘v(ws)
and in view of (27) and (18), we have

sup
(h1,h2e)eFIH](zs,y)

ov aVv
{arshl(xsay) + 8yh26(xsvy)}

B L
(h1,hae) €F* [H](wery) | OTs

{Z &( (A3TP + PA%)z, + 22] Pb;

oV
+ Fyh%(xsa y)}

1
+20T (427Q+ QA% +(G2Q+ QA )y

+20] (PAZ+GQ)y+ 2yTQA221A21bi> }

N
= max {Zﬂl< T(ASTP 4+ PAY)x, + 22 PO,
N(zs) =1
+2yT (4270 + QA7 +o(62TQ+ QY )y

+2x] (PA}2 + G}TQ) Y+ 2yTQA22_1A21bi> }
(28)

Since f; = 0 for all i € Iy \ Z*(z,) and Z B; = 1, for

i € I*(xs), in view of (22), the following holds

Z@( (A5TP 4+ PAS)z, +22] Pb)

= > Gl

1€T*(zs)
<zl (—cP)z,. (29)

Substituting (10) and (29) into (28) and reorganizing it,
the following holds

(ATP 4 PAS)a, + 22] Pb; )

sup
(hl h2s)€}- H]( Ts, y)

{Zﬁzfz s,y }

with f;(xs,y) defined in (25).

In the following we prove that f;(zs,y) < 0, for ¢ €
I*(xs). By using the Schur complement, condition (15)
is equivalent to

oV oV
{a‘rs hl(ﬂfs, y) + aiyhﬂa('rsa y)}

(30)

—csP+0P 0
( * —96[) <0 (31)
and
—crQ + (G2 Q +QG?) +0Q
T
L[ PAZ+GLQ
€ (QA22_1A21b-)T
—csP+60P 0 PAl12 +G%TQ 0 (32)
* —fcl (QA22_1A21bi)T =0

The above inequality (32) can be rewritten as follows



{(-L2+ 6o roc)

PA2 +G1TQ '
(QA22 1A21b )

—e.P+0P 0 \ [ PAR G Q
( * —0(3[) <(QA22_1A21bi)T +0Q < 0.

(33)

Since 0 < ¢* < 1, 6§ > 0, and @ > 0, inequality (33)
implies

(—Cif) +62Q+ QG?)
PA2 +G1TQ !
(QA” 1A21b )

(—csP—i-HP 0 +G61TQ

A12
* 0c[) (QA22_1A21bi)T +0Q <0.

(34)

In view of (31
ment, we have

) and (34), using again the Schur comple-

—c,P+0P 0 PAR +GTQ
* —fcl QA2 A2p,)T <o
* X cfQ+G2TQ+QG2+9Q

(35)
From (35), we get, for € € (0,&*]

z\ | /0P 0 0\ /s
fi(a:s,y)+<1> (o —fel o> <1><0 (36)
Yy 0 0 60Q/ \y

with f;(xs,y) defined in (25).
Whenever V(zs,y) > ¢, it holds

T T /P 0 0 T
<1> <0 —c10><1>20. (37)
y 0 0 @/ \y
Since # > 0 and in view of (36) and (37), it holds
fi(zs,y) < 0 when i € Z*(x,). Thus,
ov ov
7h S 7h I3 Sy )
9. 1(zs,y) + ay 2 (zs,y) <0 (38)

when V(zs,y) > c. Then, system (11) with the state-
dependent switching law (12) is uniformly ultimately
bounded. |

Remark 3. Theorem 1 provides a simple condition for
checking ultimate boundedness of system (11) with the
state-dependent switching law (12). In the following, let us
summarize the tuning parameters in detail. The matrices
P and @ are the corresponding Lyapunov matrices, which
can be found by solving the LMIs (9) and (10) respectively.
The constant ¢ relates to an estimation of the ultimate
bound. It can be obtained by solving (15). For a given

perturbation parameter ¢* sufficiently small, a line search
can be used to find 6. |

5. NUMERICAL EXAMPLE

In this section we use an academic numerical example to
illustrate the main result. We consider the system (4) with
N = 3 modes, and matrices defined as

11 2 2 11 _23 11 —3 —3
=51 -1 a-( )

21 _ 1 2 22 -3 2
o= (i) = (37)

The small perturbation parameter ¢ = 1.5 X 10_3 Con-
T
L1 1) , we have b(«a) = Z a;b; = 0.

sidering a = ( -
333
From the definition of the matrices A (i 6 IN) in (7),
ia_As _ (-5.6738
i=1 e =5 4
which means that Assumption 1 is satisfied. Furthermore,
we can see that A2?? is also Hurwitz, which means that
Assumption 2 is also satisfied.

we get that A°(a) = is Hurwitz,

It is important to note that in this example, none of the
A? matrices (i € Zy) in (11) is Hurwitz, which means
that even if the fast subsystem (with state y) converges,
the slow subsystem (with state z;) will converge only
by using of a switching law (i.e. staying only in one
mode will lead to the slow subsystem’s unstability). Using
the state-dependent switching law proposed in (12), with

P = (2'8360 42721898) obtained after solving the LMI

(9) with ¢, = 1, we manage to stabilize the system
and guarantee its stability thanks to Theorem 1, with
Q = (1'1370 —()09%8;;2) obtained after solving the LMI

(10) with ¢y = 1, and the scalar § = 0.1. The estimation
of the ultimate bound ¢ = 4.2243. Some simulationTs
obtained with initial conditions z,(0) = (2.9020 0.0986)

and z¢(0) = (0.4127 1.0804)T are shown in Figures 1-5.

Fig. 1: System’s evolution (state zs)



Fig. 2: System’s evolution (state x )

Fig. 3: System’s evolution (state y)

Fig. 4: Zoom of system’s evolution (state y)

switching mode

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

Fig. 5: System’s evolution (switching mode o(x5))

6. CONCLUSION

In this work, we studied the interconnection between a
slow switched affine system and a fast LTI system. We
considered the classical stabilization method based on the
existence of a stable convex combination (while ignoring
the fast dynamics) and we provide an LMI condition for

checking ultimate boundedness when the fast dynamics
has been taken into account.

Further extensions will include a generalization of the
switched fast and slow dynamics as well as applying such
result to physical systems (for example, DC-DC power
converters).
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