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We study an interconnection between a slow switched affine system and a fast LTI system. The lower dimensional slow and fast subsystems are computed via the singular perturbation approach. We consider the classical stabilization method based on the existence of a stable convex combination (while ignoring the fast dynamics) and we provide an LMI condition for checking ultimate boundedness when the fast dynamics is taken into account. Numerical example illustrates the main result.

INTRODUCTION

The interest in study of switched affine systems comes from their wide use in various fields in physics and engineering. For example, in DC-DC power converters, the switched circuit topology indicates different modes of operation that have no common equilibrium, can be considered as such systems [START_REF] Beccuti | Optimal control of the boost dc-dc converter[END_REF]; [START_REF] Buisson | On the stabilisation of switching electrical power converters[END_REF]; [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF]]. Different approaches have been considered for the stability and the stabilization of such systems: Hurwitz convex combinations [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF]; [START_REF] Beccuti | Optimal control of the boost dc-dc converter[END_REF]], Lyapunov techniques [START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF]; [START_REF] Kader | Control and observation of switched affine systems[END_REF]], Adaptive based method [START_REF] Beneux | Robust stabilization of switched affine systems with unknown parameters and its application to DC/DC Flyback converters[END_REF]], Hybrid approach [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]], etc. Besides dealing with switching among various equilibria in such electronic devices one also has to handle the slow and fast variables (for example, in such systems we usually have fast variables such as currents interconnected with slow variables such as voltages).

Motivated by such control problems we study in this paper the interconnection between a slow switched affine system and a fast linear time invariant (LTI) system. The powerful singular perturbation techniques [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]; [START_REF] Khalil | Nonlinear systems[END_REF]] existing in the literature are not applicable to the case under study. We deal with systems with state-dependent switching, which results in complex phenomena such as sliding modes and non unique Filippov solutions. The main contribution of this work is to provide a method of stability analysis for slow switched affine systems interconnected to fast LTI dynamics. We consider the classical stabilization method based on the existence of a stable convex combination (while ignoring the fast dynamics) and we provide an LMI condition for checking ultimate boundedness when the fast dynamics is taken into account. To the best of our knowledge, this setting is new in the literature. However, some results exist in a different context with time-dependent switching [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF]; [START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF]; [START_REF] Malloci | Stability and stabilization of two time scale switched systems in discrete time[END_REF]; [START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF]].

The paper is organized as follows. Section 2 is dedicated to preliminary results concerning the Filippov solution of switched affine systems. Section 3 presents the system under consideration and the decomposition of both fast and slow subsystems via the singular perturbation method. Section 4 states the stability properties of such system under a state-dependent switching law. In Section 5, the main result is illustrated by numerical examples. Finally, concluding remarks end the paper.

Notation. Given a matrix M , M -1 and M represent the inverse and the transpose matrix of M respectively. M 0 (M 0) means that the matrix M is positive (negative) semi-definite. M 0 (M ≺ 0) means that the matrix M is positive (negative) definite. For a symmetric matrix, denotes the symmetric part.

denotes the usual Euclidean norm in R n . For a positive integer N , I N denotes the set {1, . . . , N }. The n dimensional open ball in R n centred on a with radius r is denoted by B(a, r) := {b ∈ R n : |a -b| < r}. µ denotes the Lebesgue measure. The convex closure of the set S is denoted by Conv{S}, and ∆ N stands for

∆ N = v = [v 1 , . . . , v N ] ∈ R N : N i=1 v i = 1, v i 0, ∀i ∈ I N .

PRELIMINARIES

We present some preliminary results about the solution of switched affine systems which will be used in the sequel. Let us consider the following switched affine systems

ẋ = A σ(x) x + b σ(x) =: g(x),
(1) where x ∈ R n is the state variable, σ(x) is the switching law and σ ∈ I N = {1, 2, . . . , N }. A i for i ∈ {1, 2, . . . , N } are the evolution matrices of the subsystems, b i ∈ R n presents the affine term.

The system (1) does not admit classical solutions since the right-hand side is discontinuous. While we can consider Filippov solution [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]] of (1) if the map g : R n → R n is locally bounded and discontinuous. In this sense, the differential equation ( 1) is associated to a setvalued map taking into account all the possible values of the derivative. Then we may consider the convex hull of the possible trajectories over the discontinuities, and differential inclusions are used to construct the solutions.

The differential inclusion associated to (1) is given by ẋ(t) ∈ F[g](x),

(2) with the set-valued map

F[g](x) = ∩ δ>0 ∩ µ(S)=0 Conv{g(B(x, δ) \ S)}, ∀x ∈ R n .
(3)

The solutions of (1) in the sense of Filippov are defined as follows.

Definition 1. Consider the system (1) and its associated differential inclusion (2). A Filippov solution [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]] of the system on the interval

I = [t 1 , t 2 ] ∈ [0, +∞) is an absolutely continuous map Ξ : [t 1 , t 2 ] → R n such that Ξ(t) ∈ F[g](Ξ(t)) is satisfied for almost every t ∈ [t 1 , t 2 ],
with F[g](x) given by (3). 2

The existence of at least one solution of the differential inclusion (2) for some initial conditions is guaranteed if F is locally bounded and takes nonempty compact and convex values.

PROBLEM STATEMENT

Consider the following interconnection

ẋs = A 11 σ(xs) x s + A 12 σ(xs) x f + b σ(xs) , ε ẋf = A 21 x s + A 22 x f , (4a) (4b)
where the state variables are x s ∈ R n , x f ∈ R m and the switching law is σ ∈ I N = {1, 2, . . . , N }. The small perturbation parameter ε satisfies 0 < ε 1. The affine term is b i ∈ R n for i ∈ {1, 2, . . . , N }, and the matrices A 11 i , A 12 i , A 21 , A 22 are of appropriate dimensions. Due to the small parameter ε, the dynamics of the system (4) evolve according to two time scales. We follow the standard singular perturbation approach [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]] to decompose (4) into the slow and fast subsystems. Assuming A 22 invertible and setting ε = 0 in (4b), we have

x f = -A 22 -1 A 21 x s .
(5) Replacing x f in (4a) by the right-hand side of (5), we obtain the slow subsystem which is a switched affine system ẋs = A s σ(xs)

x s + b σ(xs) , (6) where A s σ(xs) = A 11 σ(xs) -A 12 σ(xs) A 22 -1 A 21 . ( 7 
)
To compute the fast subsystem, we first perform the following change of variable

y = x f + A 22 -1 A 21 x s , we then write ε ẏ = A 22 y + ε(G 1 σ(xs) x s + G 2 σ(xs) y + A 22 -1 A 21 b σ(xs) ), where G 1 σ(xs) = A 22 -1 A 21 A s σ(xs) , G 2 σ(xs) = A 22 -1 A 21 A 12 σ(xs) .
Using a new time scale τ = t ε and ε → 0, the fast LTI subsystem is computed as

dy dτ = A 22 y. (8) 
The standing assumptions using in this work are given as follows.

Assumption 1. Assume that there exists α ∈ ∆ N such that the convex combinations b(α) = N i=1 α i b i = 0, and

A s (α) = N i=1 α i A s i is Hurwitz, that is A s (α) P + P A s (α) -c s P, (9) 
with a matrix P = P 0, and a scalar c s > 0. 2 Remark 1. In Assumption 1, let us remark that the con- [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]] for the existence of the switching law σ(x s ) such that 0 is an equilibrium of the differential inclusion associated with system (6). Moreover, it is worth to emphasize that condition (9) does not require the stability of each mode of the slow subsystem (6).

dition b(α) = N i=1 α i b i = 0 is a necessary condition
2 Assumption 2. A 22 is Hurwitz, that is

A 22 Q + QA 22 -c f Q, (10) 
with a matrix Q = Q 0, and a scalar c f > 0. 2 Remark 2. Condition ( 10) is a standard stability condition of LTI systems. Thus the stability of the fast subsystem is ensured. 2

In the following, we rewrite the whole system (4) in the coordinate (x s , y) as

ẋs ẏ = H(x s , y) = h 1 (x s , y, σ(x s )) h 2ε (x s , y, σ(x s )) :=    A s σ(xs) x s + A 12 σ(xs) y + b σ(xs) , 1 ε A 22 y + G 1 σ(xs) x s + G 2 σ(xs) y + A 22 -1 A 21 b σ(xs) . (11) 
Considering system (11), we propose a state-dependent switching law

σ(x s ) ∈ arg min i∈I N {x s (A s i P + P A s i )x s + 2x s P b i }. ( 12 
)
In order to define the Filippov solution of the closedloop system ( 11) and ( 12), we introduce the following differential inclusion associated to the closed-loop system

ẋs (t) ẏ(t) ∈ F[H](x s , y), (13) 
with the set-valued map

F[H](x s , y) = ∩ δ>0 ∩ µ(S)=0
Conv{H(B((x s , y), δ) \ S)}.

(
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Definition 2. Consider system (11) with the switching law ( 12) and its associated differential inclusion (13). A Filippov solution [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]] of the system on the interval

I = [t 1 , t 2 ] ∈ [0, +∞) is an absolutely continuous map Ξ : [t 1 , t 2 ] → R n+m such that Ξ(t) ∈ F[H](Ξ(t)) is satisfied for almost every t ∈ [t 1 , t 2 ], with F[H](x s , y)
given by ( 14). 2

The objective of this work is to study the stability properties of the system (11) under the state-dependent switching law (12). The stability notion adopted in the work is given as follows.

Definition 3. Let S be a neighborhood of the origin. The closed-loop system (11) and ( 12) is said to be Uniformly Ultimately Bounded in S if for all a > 0 there exists T (a) > 0 such that, for any x s (0) y(0) ≤ a, the solutions

x s (t) y(t) ∈ S, for all t ≥ T (a). 2

STABILITY ANALYSIS

In this section, we aim at showing the stability properties of the system (11) under the switching law (12).

The main result is stated as follows.

Theorem 1. If symmetric matrices P, Q satisfy Assumptions 1-2 for some positive scalars c s , c f and if there exist

constants c > 0, θ > 0, 0 < ε * 1 such that for i ∈ I N    -c s P + θP 0 √ ε * (P A 12 i + G 1 i Q) -θcI √ ε * (QA 22 -1 A 21 b i ) -c f Q + ε * (G 2 i Q + QG 2 i ) + θQ    ≺ 0, (15) 
then, for ε ∈ (0, ε * ], system (11) with the state-dependent switching law ( 12) is uniformly ultimately bounded with an estimation of the ultimate bounded set

D(c * ) = x s y ∈ R n+m : x s y P 0 0 Q x s y ≤ c * ,
where c * = max{c} satisfies (15).

Proof. The proof is based on the Lyapunov analysis. First, for x s ∈ R n we define the set of minimizers in which the switching law choose values as

I * (x s ) = {i ∈ I N : x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (A s j P + P A s j )x s + 2x s P b j , ∀j ∈ I N }. ( 16 
)
For the system (11) with the switching law (12), we define the set-valued map

F * [H](x s , y) for x s ∈ R n , y ∈ R m and i ∈ I * (x s ) F * [H](xs, y) = Conv i∈I * (xs) A s i xs + A 12 i y + b i A 22 ε y + (G 1 i xs + G 2 i y + A 22 -1 A 21 b i ) . ( 17 
)
We can remark that the set-valued map F[H](x s , y) given in ( 14) satisfies

F[H](x s , y) ⊆ F * [H](x s , y). (18) 
More precisely, if there is only one mode satisfies (16) (i.e. 9) and (10) respectively. For all i ∈ I * (x s ), we have

I * (x s ) = {i}) then F[H](x s , y) = F * [H](x s , y
∂V ∂x s h 1 (x s , y, σ(x s ) = i) = x s (A s i P + P A s i )x s + 2x s P b i + 2x s P A 12 i y. (20)
From ( 16), the switching law gives that

x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (A s j P + P A s j )x s + 2x s P b j , ∀j ∈ I N . (21) Let α ∈ ∆ N .
We deduce from equation ( 21)

N j=1 α j (x s (A s i P + P A s i )x s + 2x s P b i ) ≤ N j=1
α j (x s (A s j P + P A s j )x s + 2x s P b j ).

Then using N j=1 α j = 1, we have

x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (A s (α) P + P A(α))x s + 2x s P b(α).
From Assumption 1 and recalling h 1 (x s , y, σ(x s )) defined in (11), we deduce, for i ∈ I * (x s )

∂V ∂x s h 1 (x s , y, σ(x s ) = i) = x s (A s i P + P A s i )x s + 2x s P b i + 2x s P A 12 i y ≤ x s (-c s P )x s + 2x s P A 12 i y. ( 22 
)
Moreover, by recalling h 2ε (x s , y, σ(x s )) defined in (11), we have

∂V ∂y h 2ε (x s , y, σ(x s ) = i) = 1 ε y A 22 Q + QA 22 + ε(G 2 i Q + QG 2 i ) y +2x s G 1 i Qy + 2y QA 22 -1 A 21 b i . ( 23 
)
Under Assumption 2, inequality (23) becomes

∂V ∂y h 2ε (x s , y, σ(x s ) = i) ≤ 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y +2x s G 1 i Qy + 2y QA 22 -1 A 21 b i . ( 24 
)
In view of ( 22) and ( 24), we have

∂V ∂x s h 1 (x s , y) + ∂V ∂y h 2ε (x s , y) ≤ x s (-c s P )x s + 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y +2x s P A 12 i + G 1 i Q y + 2y QA 22 -1 A 21 b i = x s 1 y     -c s P 0 P A 12 i + G 1 i Q 0 (QA 22 -1 A 21 b i ) -c f Q ε + G 2 i Q + QG 2 i     x s 1 y =: f i (x s , y), i ∈ I * (x s ). ( 25 
)
In the case where the switching law allows to choose several modes i ∈ I * (x s ), we can define the set ∆ * N (xs) such that

∆ * N (xs) = {β ∈ ∆ N : β i = 0, i / ∈ I * (x s )}. (26) 
In this case (17) becomes

F * [H](x s , y) = N i=1 β i   A s i x s + A 12 i y + b i A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i )   : 
β i ∈ ∆ * N (xs) . (27) 
The relation ( 18) also holds for F * [H](x s , y) given in ( 27).

Consequently, due to the compactness of the set ∆ *

N (xs)
and in view of ( 27) and ( 18), we have sup

(h1,h2ε)∈F [ H](xs,y) ∂V ∂x s h 1 (x s , y) + ∂V ∂y h 2ε (x s , y) ≤ sup (h1,h2ε)∈F * [H](xs,y) ∂V ∂x s h 1 (x s , y) + ∂V ∂y h 2ε (x s , y) = sup β∈∆ * N (xs ) N i=1 β i x s (A s i P + P A s i )x s + 2x s P b i + 1 ε y A 22 Q + QA 22 + ε(G 2 i Q + QG 2 i ) y +2x s P A 12 i + G 1 i Q y + 2y QA 22 -1 A 21 b i = max β∈∆ * N (xs ) N i=1 β i x s (A s i P + P A s i )x s + 2x s P b i + 1 ε y A 22 Q + QA 22 + ε(G 2 i Q + QG 2 i ) y +2x s P A 12 i + G 1 i Q y + 2y QA 22 -1 A 21 b i . (28) 
Since β i = 0 for all i ∈ I N \ I * (x s ) and

N i=1 β i = 1, for i ∈ I * (x s )
, in view of ( 22), the following holds

N i=1 β i x s (A s i P + P A s i )x s + 2x s P b i = i∈I * (xs) β i x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (-c s P )x s .
(29) Substituting ( 10) and ( 29) into (28) and reorganizing it, the following holds sup

(h1,h2ε)∈F [ H](xs,y) ∂V ∂x s h 1 (x s , y) + ∂V ∂y h 2ε (x s , y) ≤ max β∈∆ * N (xs ) N i=1 β i f i (x s , y) , (30) 
with f i (x s , y) defined in (25).

In the following we prove that f i (x s , y) < 0, for i ∈ I * (x s ). By using the Schur complement, condition ( 15) is equivalent to

-c s P + θP 0 -θcI ≺ 0 (31)
and

-c f Q + ε * (G 2 i Q + QG 2 i ) + θQ -ε * P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) ≺ 0. ( 32 
)
The above inequality (32) can be rewritten as follows

ε * - c f Q ε * + G 2 i Q + QG 2 i - P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) + θQ ≺ 0.
(33) Since 0 < ε * 1, θ > 0, and Q 0, inequality (33) implies

- c f Q ε * + G 2 i Q + QG 2 i - P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) + θQ ≺ 0. ( 34 
)
In view of ( 31) and ( 34), using again the Schur complement, we have

    -c s P + θP 0 P A 12 i + G 1 i Q -θcI (QA 22 -1 A 21 b i ) -c f Q ε * + G 2 i Q + QG 2 i + θQ     ≺ 0. (35) 
From ( 35), we get, for ε ∈ (0, ε * ]

f i (x s , y) + x s 1 y θP 0 0 0 -θcI 0 0 0 θQ x s 1 y < 0 (36)
with f i (x s , y) defined in (25). Whenever V (x s , y) c, it holds

x s 1 y P 0 0 0 -cI 0 0 0 Q x s 1 y ≥ 0. ( 37 
)
Since θ > 0 and in view of ( 36) and (37), it holds f i (x s , y) < 0 when i ∈ I * (x s ). Thus,

∂V ∂x s h 1 (x s , y) + ∂V ∂y h 2ε (x s , y) < 0, (38) 
when V (x s , y) c. Then, system (11) with the statedependent switching law ( 12) is uniformly ultimately bounded. Remark 3. Theorem 1 provides a simple condition for checking ultimate boundedness of system (11) with the state-dependent switching law (12). In the following, let us summarize the tuning parameters in detail. The matrices P and Q are the corresponding Lyapunov matrices, which can be found by solving the LMIs ( 9) and ( 10) respectively. The constant c relates to an estimation of the ultimate bound. It can be obtained by solving (15). For a given perturbation parameter ε * sufficiently small, a line search can be used to find θ. 2

NUMERICAL EXAMPLE

In this section we use an academic numerical example to illustrate the main result. We consider the system (4) with N = 3 modes, and matrices defined as

A 11 1 = 2 2 -3 1 , A 11 2 = -2 3 -2 1 , A 11 3 = -3 -3 2 -1 , A 12 1 = 2 -3 -1 -2 , A 12 2 = 3 -2 -2 2 , A 12 3 = 3 3 2 3 , b 1 = 0.5 0.5 , b 2 = -0.5 0.5 , b 3 = 0 -1 , A 21 = 1 2 -1 3 , A 22 = -3 2 -2 1 .
The small perturbation parameter ε = 1.5 × 10 -3 . Con-

sidering α = 1 3 1 3 1 3 , we have b(α) = N i=1 α i b i = 0.
From the definition of the matrices

A s i (i ∈ I N ) in (7), we get that A s (α) = N i=1 α i A s i = -5.67 8 -5 4 is Hurwitz,
which means that Assumption 1 is satisfied. Furthermore, we can see that A 22 is also Hurwitz, which means that Assumption 2 is also satisfied.

It is important to note that in this example, none of the A s i matrices (i ∈ I N ) in ( 11) is Hurwitz, which means that even if the fast subsystem (with state y) converges, the slow subsystem (with state x s ) will converge only by using of a switching law (i.e. staying only in one mode will lead to the slow subsystem's unstability). Using the state-dependent switching law proposed in (12), with P = 2.8660 -2.7788 4.7849 obtained after solving the LMI (9) with c s = 1, we manage to stabilize the system and guarantee its stability thanks to Theorem 1, with 

Q = 1.

CONCLUSION

In this work, we studied the interconnection between a slow switched affine system and a fast LTI system. We considered the classical stabilization method based on the existence of a stable convex combination (while ignoring the fast dynamics) and we provide an LMI condition for checking ultimate boundedness when the fast dynamics has been taken into account.

Further extensions will include a generalization of the switched fast and slow dynamics as well as result to physical systems (for example, DC-DC power converters).
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  ). Otherwise, we have F[H](x s , y) ⊂ F * [H](x s , y) if there are several modes verify (16). The set-valued map F * [H](x s , y) is locally bounded, has a nonempty, compact and con-
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	F * [H](x s , y) admits at least one solution for some initial
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	V (x s , y) = x s P x s + y Qy,		(19)
	with P and Q satisfying (