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Abstract

We propose an algorithm for quickly evaluating polynomials. It pre-conditions
a complex polynomial P of degree d in time O(d log d), with a low multiplica-
tive constant independent of the precision. Subsequent evaluations of P computed
with a fixed precision of p bits are performed in average arithmetic complexity
O
(√

d(p+ log d)
)

and memory O(dp). The average complexity is computed with

respect to points z ∈ C, weighted by the spherical area of C. The worst case does
not exceed the complexity of Hörner’s scheme.

In particular, our algorithm performs asymptotically as O(
√
d log d) per evalua-

tion. For many classes of polynomials, in particular those with random coefficients
in a bounded region of C, or for sparse polynomials, our algorithm performs much
better than this upper bound, without any modification or parameterization.

The article contains a detailed analysis of the complexity and a full error analysis,
which guarantees that the algorithm performs as well as Hörner’s scheme, only faster.
Our algorithm is implemented in a companion library, written in standard C and
released as an open-source project [MV22]. Our claims regarding complexity and
accuracy are confirmed in practice by a set of comprehensive benchmarks.
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1 Introduction

The study of polynomials has sparked the interest of many generations of mathe-
maticians and inspired major theoretical developments. In modern algebra, the notion
of group stemmed from the impossibility of solving polynomials with radicals; abstract
rings generalize the properties of Z and Z[X]. Modern number theory is indissociable
from polynomials and algebraic curves.

Modern analysis too evolved from the prototype of a function space given by polyno-
mials. A few obvious testimonies to this heritage are Descartes’s notation of x, y,. . . for
the variables of functions, the fact that successive approximations of a real number in
base b are polynomials in b−1, or the fact that polynomials in eix1 , . . . , eixn (i.e. trigono-
metric polynomials) are the archetype of periodic functions over Rn. Smooth functions
can be approximated locally by Taylor’s polynomial expansions or globally thanks to
the Weierstrass approximation theorem.

Polynomials are also ubiquitous due to their practical interest. Greeks and Baby-
lonians used quadratic equations circa 2000 BC to compute the boundaries of their
agricultural fields in order to define fair taxes and trade rules. About 4000 years later,
we still handle polynomials and solve polynomial equations, not just on school benches,
but also in real life to find the natural modes of oscillations of engineering structures
or the rate of spread of a virus. Polynomials are at the heart of numerical analysis and
appear in particular as approximations and interpolations of other functions in finite-
element methods or through quadrature formulas [BM92], or as a unifying frame for
Fast-Fourier transforms [Nus82]. Polynomials are found at the crossroads of science:
computer-aided design relies heavily on geometric splines, polynomials arise naturally in
finance [Ack17], in biology [MY20], etc. It is actually easy to find more than 50 differ-
ent families of polynomials named after mathematicians and that play a central role in
various applications.

In most of the applications, having the fastest evaluation algorithm for a given level
of accuracy is of the utmost importance.

In this article, we propose a novel approach to evaluating complex polynomials in
the case of fixed precision floating-point arithmetic. Our algorithm is designed for better
speed without compromising precision, not directly for improving the precision of the
results (though, for a given cost of computations, it may be used to achieve a higher
precision than can be reached with the current, more costly, algorithms). The algorithm
is designed for repeated single-point evaluations. A typical application is Newton’s
method to find one single root, where the sequence of evaluation points is not initially
known. However, the algorithm can also be used as an embarrassingly parallel multi-
point evaluator, which makes it highly versatile.

1.1 Existing evaluation schemes

Let us review briefly the state of the art regarding polynomial evaluation.
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Definition 1 (Complexity).

• Let us denote by Vd the arithmetic complexity (number of arithmetic operations,
with the convention that 1 operation is a multiplication followed by an addition∗)
of evaluating a polynomial of degree d. We will denote by Vd(k) the arithmetic
complexity of simultaneously computing k values of a polynomial of degree d.

• When all the computations are performed with a fixed precision of p bits∗∗, we
denote by Vd(k, p) the corresponding bit complexity∗∗∗ (number of bit operations).

One has Vd(k, p) = M(p) Vd(k) where M(p) is the bit complexity of the multiply-
accumulate of two floating-point numbers with precision p. Typically, one has:

M(p) =


O(p1.585) Karatsuba,

O(p1.465) Toom-Cook,

O(p log p log log p) Schönhage-Strassen.

(1)

For example, M(128) ' 103 bit instructions for a Toom-Cook multiplication. The choice
between these methods is usually driven by the competition between the value of p and
the size of the hidden prefactor. The acceptable level of technicality in the code can also
be taken into consideration.

1.1.1 Single point evaluation

Hörner’s method ensures that, in general, Vd = d and Vd(1, p) = M(p)d when the
polynomial is defined by its coefficients. Since Ostrowski [Ost54] and Pan [Pan66], it
has been well known that for evaluating a complex polynomial P ∈ C[X] of degree d at
a given point z ∈ C, d multiplications and d additions are both necessary and sufficient.
That is, Hörner’s scheme is optimal for one point-wise evaluation of a general polynomial.

Some classical evaluation schemes offer a similar order of complexity with more
balanced and better parallelizable intermediary computations to improve numerical
stability and take advantage of modern hardware, like Estrin’s divide and conquer
method [Est60], [Mor13], which is e.g. implemented in the Flint library [HJP13]. As
a side note, Hörner’s method is at the heart of a beautiful graphical construction for
finding the real roots of a polynomial, known as Lill’s method [Kal08].

For iteratively defined polynomials, i.e. a family Pn+1(z) = Q(Pn(z)), evaluation is
obviously more efficient: in this case, one gets Vd = O(r logr d) where r = degQ. Simi-
larly, any intermediary power (zk)0≤k≤d of z can be computed recursively in O(log2 k). In
particular, sparse polynomials that contain only σ non-zero coefficients can be evaluated
in this fashion in O(σ log2 d) operations.

∗ In most hardware multiply-accumulate operations are implemented in one cycle, as per IEEE 754 [754].
∗∗ Note that, in this case, the number of exact digits in the result may be significantly smaller than p.
Performing computations to ensure p exact digits could require intermediary computations with arbi-
trarily high precision if the evaluation point is near a zero of the polynomial or a zero of some arbitrary
subexpression that will cancel itself out (see Figure 2 and Remark 8 below).
∗∗∗ Equivalent to the computation time, up to compiler and hardware optimizations or limitations.
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1.1.2 Multi-point evaluation

If the same polynomial has to be evaluated repeatedly, one obviously seeks to obtain
Vd(k) � kVd and there are better strategies to reduce the average computing time.
Knuth [Knu62] proposed a preprocesing based on finding all the zeros of the odd part of
the polynomial (with Eve’s variant [Eve64] in the general case) that gains a factor of 2
for the number of multiplications. It then brings down the cost of subsequent evaluations
to Vd = [1

2(d+ 4)].

A common case where simultaneous evaluation brings a substantial benefit is the eval-
uation of trigonometric polynomials along a regular mesh on the unit circle. Computing
the values P

Ä
e2iπk/(d+1)

ä
for 0 ≤ k ≤ d where P (z) =

∑
ajz

j can be performed by

Fast-Fourier Transform (FFT) algorithms [DL42], [CT65], [Roc00] in Vd(d) = O(d log d)
operations by taking advantage of (i.e. factoring) the matrix structureá

â0

â1
...
âd

ë
=

á
1 1 · · · 1
1 w · · · wd

...
...

...

1 wd · · · wd
2

ëá
a0

a1
...
ad

ë
=

á
P (1)
P (w)

...
P (wd)

ë
with w = e2iπ/(d+1). As an evaluation algorithm, this method brings down the average
cost per computed value to O(log d), the price to pay being that one single evaluation
cannot be (efficiently) performed alone. The fact that the FFT is numerically well
behaved [PST02] and essentially involutive brings evaluation and interpolation to an
equal footing and is the key that unlocks most of its applications.

Note that there are variants of the FFT method for computing approximations of
the values of P along a non-uniform mesh [PST01]. The evaluation points are however
constrained to remain on a circle. Anticipating on our algorithm (see Section 4), let us
point out that there is indeed a benefit in sorting the evaluation points according to the
size of |z| and that we are able to discard the geometric restriction of cocyclicity.

Fast multipoint evaluation on a general set of points is possible and relies on a
few standard tricks in polynomial arithmetic, which we first recall briefly. Polynomial
multiplication can be computed in O(d1.585) with Karatsuba’s algorithm. It is based on
the identity

(Pzk +R)(Qzk +M) = RM + ((P +R)(Q+M)−RM − PQ) zk + PQz2k ,

which boils down to 3 multiplications of smaller polynomials (recursively optimized with
k ' d/2) and coefficient shifts. Over C[X] or more generally if the field admits a discrete
Fourier transform, one can use the FFT to conjugate the multiplication of polynomials
to a pointwise multiplication of enough interpolation points on the unit circle, with an
overall cost of O(d log d). Next, fast division is based on the reversal of the order of the

coefficients of the polynomial P , i.e. ‹P (z) = zdegP P (1/z) and the identity

P (z) = Q(z)M(z) +R(z) ⇐⇒ ‹P (z) = ‹Q(z)M̃(z) + zdegP−degR R̃ (z) .
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The quotient M̃(z) can then be computed as ‹P (z)·‹Q(z)−1 mod zdegP−degQ+1. The series
expansion of the inverse is computed recursively with Newton’s method in C[[X]]:

J0 = ‹Q(0)−1 and Jn+1(z) = Jn(z) ·
Ä
2− Jn(z)‹Q(z)

ä
,

which ensures that Jn(z) = ‹Q(z)−1 mod z2n . Ultimately, this algorithm brings the overall
cost of computing the division of a polynomial P to O(d log d) where d = degP .

The fast multipoint evaluation algorithm allows us to compute simultaneously k
values with a cost of Vd(k) = O((d + k) log d log kd). The central idea is a divide and
conquer recursion. One splits the evaluation points in two families Z1, Z2 of size k/2.
With the previous fast division scheme, one computes remainders modulo polynomials
that vanish either on Z1 or on Z2. The problem is thus reduced to the evaluation of the
two remainders on sets of points that are half-sized:

P (z) = Q(z) ·
∏
ζ∈Zj

(z − ζ) +Rj(z) =⇒ ∀ζ ∈ Zj , P (ζ) = Rj(ζ) (j = 1, 2) .

Conversely, one can reuse the structure of the intermediary computations to interpolate
with a similar total cost, i.e. compute the coefficients of P from the values P (zj) at
k = d + 1 distinct points (zj)j=0,...,d. The method can be refined [Pan95], [Rei99] to
improve the poly-logarithmic factor in the arithmetic complexity.

For finite precision arithmetic, i.e. approximations of order 2−p, advanced algorithms
reach a theoretical bit complexity of Vd(d, p) = O(d(d + p + ω) logF ) to compute the
values of P (z) at d complex points. In this formula, one takes ω ≥ 0 such that |z| +
max |aj | < 2ω and logF denotes logarithmic factors; see [Sch82], [KS16] for more details.

Of course, the comparison with the standard multi-point evaluation is not clear-cut
because bit complexity depends on the size of the data while arithmetic complexity does
not. Theoretically, these variants thrive when d+ p+ ω �M(p) i.e., roughly speaking,
when for example d� p1.585. Even though the multiplicative constants and logarithmic
factor are either large or hard to track, one can expect these algorithms to be competitive
for moderately large degrees (d . 104) and a substantial fixed precision (128 ≤ p ≤ 300).

1.1.3 Practical considerations beyond arithmetic complexity

While the fast multipoint methods optimize the overall cost of multiple evaluations
to Vd(d) = O(d(log d)2), the number of operations that are involved in the computa-
tion of one single value (or one single coefficient in the case of interpolation) exceed
the number of naive operations that would be required to compute that value alone.
Mechanically, one can thus expect a loss of precision.

A very detailed analysis of the numerical instabilities [KZ08] points out the Wilkinson-
type [Wil84] expansion of

∏`
j=1(z− j) as the main culprit, which leads to ill-conditioned

input to the subsequent polynomial divisions. On the other hand [KS16] exploit the fact
that these same divisors are monic to ensure stable divisions when the required precision
(in number of bits) dominates the degree.
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In many situations, in order to guarantee the numerical stability of the the multipoint
method, the precision of the numbers has to be much larger than d. For example,
S. Köhler and M. Ziegler [KZ08] conclude that, for a specified level of accuracy, it is
usually necessary to increase the precision of intermediary computations to the point
where the benefit over Hörner’s Vd(d) = O(d2) naive scheme is not significant. The
conclusion of A. Kobel and M. Sagraloff [KS16] is more nuanced, as they insist on the
fact that the extra precision is only required for intermediary computations. However,
as one may need more than O(d log d) bits of memory per coefficient, it quickly becomes
impractical as d increases (see [KS16, Corollary 8]).

On modern computing machines, even on super-computers, the workload is often
dominated by data movements (disk, memory and cache access) and not by the comput-
ing power (usually measured in floating-point operations per second, or FLOPS). When
implementing the multipoint evaluation algorithms, the memory size limitations impose
rather tight bounds on the degree (say d . 106). This raises the question of how to
compute efficiently the values of a giga-polynomial. Our algorithm (see Section 4) does
not present this limitation.

1.1.4 Alternatives

Let us close this tour of the literature by mentioning briefly some less common
methods of evaluation, which have their own niche of applications.

If working with extended precision is not an option, various methods based on a
compensation of Hörner’s Algorithm [SW05], [LGL06], [Sut07] can improve the precision
of the standard evaluation scheme for a moderate increase in complexity.

Choosing another basis instead of the canonical monomial basis of C[X] may provide
better numerical stability. Evaluation algorithms on Newton’s (interpolation) basis have
similar complexity to the ones exposed above [BS05], sometimes even with better con-
stants. We refer to [Far12], [Far08] for an in depth review of the benefits of the Bernstein
basis and its industrial applications. The complexity of evaluating the Bernstein basis
functions has recently been improved in [CW21] and is now O(d), which is still huge
compared to evaluating zd but makes it a viable option for e.g. d . 103. In this article,
we will not investigate further the question of generalizing our algorithm to other bases.

For the sake of completeness, let us also mention that better performances as low
as O(

√
d) can be achieved for non-scalar evaluations [MP73], [Fas19], i.e. if one computes

polynomials of matrices where the complexity of scalar operations is simply discarded.
However, these algorithms do not bring any improvement upon Hörner’s method, when
they are applied to the evaluation of scalar polynomials.

1.2 New evaluation scheme

In this article we propose a simple algorithm and its practical implementation as
a C library [MV22] that brings down the average cost for the repeated evaluation of all
polynomials and never exceeds Hörner’s complexity in general.
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Figure 1: The average speed gain of our FPE (Fast Polynomial Evaluator) algorithm
over Hörner’s method for computations with p = 53 bits (using MPFR numbers; [MPFR]).
The solid curve corresponds to bound (57) that follows from Theorem 4. The dashed one
corresponds to the example at the end of Section 4.3 where one evaluation point has the
same complexity as Hörner, but the average complexity is favorable. Note that lacunary
polynomials may lead to even higher gain factors. The data points are actual benchmarks
(see Section 8.3). The case of the red squares (half-circle) is studied in detail in Section 5.3.

More precisely, our algorithm, called FPE or Fast Polynomial Evaluator (see Sec-
tion 4.3) pre-conditions P ∈ C[X] in time O(d log d) with a low multiplicative constant
that does not depend on the precision. Subsequent evaluations of P (z) with a fixed
precision of p bits are performed in average arithmetic complexity

avgC Vd = O
(»

d(p+ log d)
)
. (2)

The constant is small and explicit and is given by (40) below. The memory requirement
is O(dp). The average of the complexity used in (2) is taken with respect to points z ∈ C
weighted by the spherical area of C. A similar estimate holds for real polynomials and
a uniformly distributed evaluation point along the circle R ∪ {∞}.

As illustrated in Sections 5.3 and 8.3, for many particular classes of polynomials, in
particular for sparse polynomials or those with random coefficients confined in a bounded
region of C, our algorithm performs much better than the upper bound (2).
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The FPE algorithm has many interesting features. One can guarantee that the result
is as precise as Hörner’s method. Pointwise, the complexity of FPE does not exceed
that of Hörner (i.e. Vd ≤ Cd). In case of equality for some z0 ∈ C (see Remark 15), one
has

avgC Vd = O

Å
(p+ log d)

Å
1 +

∣∣∣∣log
d

p

∣∣∣∣ãã ,
which is even more advantageous than (2). This radical difference between the pointwise
and the average complexity is a strong incentive in favor of studying averages. The FPE
algorithm is embarrassingly parallel and can be implemented on any set of evaluation
points, without constraints of size or of geometric structure. New evaluation points can
be added on the fly. These properties make the FPE algorithm particularly well suited
for a root finding scheme with Newton’s method.

For low-precision computations the theoretical speed factor of FPE over Hörner’s
method is illustrated in Figure 1. Benchmarks of our implementation will be presented
in Section 8 and, in particular, the analysis of the influence of the preprocessing phase
over the global cost (it remains minimal).

The cornerstone idea at the foundation of the FPE algorithm is lazy polynomial
evaluation (see Section 4.1): adding two finite precision numbers is only necessary if
their orders of magnitude are close enough that their bits will interact. Monomials
tend to have extremely diverse orders of magnitude, which means that the value of
a polynomial at a given point is dictated by only a small subset of its monomials.
The second ingredient is a geometric selection principle, i.e. the ability to identify this
parsimonious representation with geometric tools, which, in practice, boil down to the
computation of the concave cover of a dataset (see Figure 7).

This article features a detailed analysis of the complexity (see Theorem 4) and a
precise error analysis (see Theorem 3 and Figure 22) of the FPE algorithm. Both are
put to the test in systematic benchmarks presented in Section 8.3. The preview offered
in Figure 1 illustrates the extent to which we have explored the theoretical and practical
envelope of this new algorithm.

1.3 Structure of the article

The structure of the text is the following.

In Section 2 we detail the fundamentals of finite precision arithmetic for a general
audience and discuss the specificities of complex numbers. Subsection 2.4 is dedicated to
the various notions of closeness in finite precision (equivalence, adjacency and similarity
modulo phase-shift), which play a central role in the proof of the correctness of our
algorithm.

In Section 3 we briefly introduce some geometric tools that will be needed to state
the FPE algorithm and prove its complexity. This section contains only definitions and
statements; the proofs of the corresponding theorems can be found in Appendix A.
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In Section 4 we describe and analyze the FPE algorithm and state our two main
results. The correctness of the algorithm and the associated error analysis is Theorem 3.
The result regarding complexity is Theorem 4. The proofs are done in the next two
sections: Theorem 4 is proved in Section 5 and Theorem 3 in Section 6.

Section 7 explores a few examples of possible applications of the FPE algorithm and
should be of general interest. Section 8 is dedicated to presenting our implementation
in the C language, which we are publishing [MV22] as an open source project. Our
implementation uses both machine floating-point numbers and MPFR arbitrary preci-
sion numbers (see [MPFR]). Appendix C contains a listing and description of the tasks
that can be performed with it. Extensive numerical benchmarks are presented in sub-
section 8.3 and confirm the theoretical predictions regarding the complexity and error
analysis of the FPE algorithm.

In order to keep this article accessible to the widest possible audience, we provide
comprehensive definitions of all notions and fully detailed proofs. We also tried to
keep the sections as independent as possible. Overall, the key ideas are of a geometric
nature. There are strong similarities between the geometrical reasonings of Section 3 and
Appendix A and the presentation of the algorithm in Section 4 (for example, compare
Figures 6 and 7, or 8 and 24). It is our belief that one may enlighten the other.

However, a reader interested in understanding the algorithm, but not the proof of
its correctness and complexity, may safely read only the beginning of Section 2 and skip
Subsection 2.4, then read Section 3 before proceeding to Sections 4, 7 and 8. The more
theoretical Sections 5, 6 and Appendix A may be skipped.

Finally, as a convenience for all readers, Appendix B recapitulates the notations used
throughout the article.

2 A bit of finite precision arithmetic

In this section we introduce notations and tools that will be useful in the statement
of the algorithm and in all subsequent analysis. We refer to, e.g., [Ma18], [Gol91] or [754]
for further details on finite precision arithmetic.

2.1 General considerations

Let us start with a word of caution: the exact evaluation of complex polynomials at
arbitrary points is not possible in practice. Attempting to evaluate an explicit polynomial
(that is, given by its coefficients) near one of its roots will produce a large cancelation
of the digits. For example, P (z) = z − z0 evaluated at z such that |z − z0| < 2−n|z0|
produces a result of order at most 2−n|z0|, effectively losing n leading bits from the
precision that was used to express z0 and z. More generally, when P (z) has many terms,
cancelations can occur not only at the roots but among all polynomial subexpressions
of P (see Figure 2). To guarantee that the result has any number of significant exact
digits, unbounded precision would have to be used for intermediary computations.
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As this is not practical, we will focus only on computations done with some fixed
precision p. Our algorithm does not attempt to produce results that are more accurate
than those of Hörner’s method: we want to produce results of similar accuracy, only
faster. The error analysis of Hörner’s scheme is classical and we refer the reader to
[Oli79], [M83]. For a more general analysis with recursive basis functions, see [BJS13].

When using fixed precision numbers, additions and subtractions are the main sources
of errors because they can produce a cancelation of the most significant digits. After
such an occurence, the relative uncertainty is multiplied by 2s, where s is the number
of canceled bits. Fortunately, having s bits canceled is conditioned by the fact that the
numbers have the same scale and then cancelation only occurs with a probability 2−s.

Our algorithm exploits the limitations of finite precision arithmetic to discard un-
necessary computations and thus obtain significant gains on the computation time.

Figure 2: The roots of a polynomial (red) and some polynomial subexpressions (gray).
The real and imaginary parts of the coefficients are independent normal distributions. The
graphics are zoomed in on the most significant part of C. Left: The roots of all 211 − 1
non-trivial polynomial subexpressions of a polynomial of degree 10. Note that cancelations
may occur in a non-uniform way. Right: The roots of polynomial subexpressions formed
by consecutive 1

4 degP monomials, when degP = 200. In both cases, the coalescence of the
roots and cancelation points around the unit circle is expected for high degrees because of
Hammersley’s theorem [Ham56], [SZ03].

2.2 Lazy addition in finite precision arithmetic

A floating-point number ξ represented with a precision∗ p in base 2 is written

ξ = ±2n × 0.1ξ1ξ2 . . . ξp (3)

∗ In the MPFR library, (3) is said to have precision p+ 1.
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where the bits ξi ∈ {0, 1} for i ∈ J1, pK = [1, p] ∩ Z. The number n ∈ Z ∪ {−∞} is called
the exponent of ξ. By convention, n = −∞ when ξ = 0. The smallest representable
increment of |ξ| is

ulp(ξ) = 2n × 0.00 . . . 01 = 2n−p−1 . (4)

The name stands for unit in the last place. To ensure a unique representation of all real
numbers we always assume a rounding to the nearest representable number and choose
a rounding away from zero at the tie.

A key observation for additions in finite precision p is that

ξ + η =

®
ξ if n > m+ p+ 2,

η if m > n+ p+ 2,
(5)

where n and m are the respective exponents of ξ and η. This means that by simply
reading the values of n and m and comparing them to p, we can avoid costly operations,
especially if computing one of the terms ξ or η requires additional steps as is the case
when they are monomials akz

k.

2.3 Scale of a complex number

Let us define the scale of a number z ∈ C∗ by

s(z) = 1 + blog2 |z|c ∈ Z , (6)

where bαc is the floor of α. By convention, s(0) = −∞. The scale is a logarithmic
representation of the order of magnitude of z. For example, with the notations of (3),
one has s(ξ) = n, i.e. for floating-point numbers, the scale coincides with the exponent;
moreover

ulp(ξ) = 2s(ξ)−p−1 . (7)

In general, s(z) = σ if and only if σ ∈ Z and

2σ−1 ≤ |z| < 2σ . (8)

In particular, for z = x+ iy ∈ C∗, one has 1
2 ≤ |z|2

−max(s(x),s(y)) <
√

2 < 2, thus

s(z) ∈ max{s(Re z), s(Im z)}+ {0, 1} . (9)

For example s(3 + 2i) = 2 = s(3) and s(3 + 3i) = 3 = s(3) + 1.

As bα + βc ∈ bαc + bβc + {0, 1} and 1 + bαc − α ∈ (0, 1], we claim the following
bounds.

Lemma 2. For any z, z′ ∈ C and n ∈ Z, one has :

s(2nz) = n+ s(z) (10)

s(zz′)− s(z)− s(z′) ∈ {−1, 0}, (11)

s(zn)− n log2 |z| ∈ (0, 1], (12)

s(z ± z′) ≤ max{s(z), s(z′)}+ 1 (13)
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and, for a family z1, . . . , zN ∈ C :

s

Ñ
N∑
j=1

zj

é
≤ max

1≤j≤N
s(zj) + s(N) . (14)

Due to the cancelation of significant bits, the scale of a sum may be much smaller
(even −∞) than the largest scale of the terms involved.

Proof. The identity (10) is immediate. For s(z) = σ, s(z′) = σ′, one has 2σ+σ′−2 ≤
|zz′| < 2σ+σ′ and (11) follows from (8). The estimate (12) follows from |zn| = 2n log2 |z|

i.e. s(zn) = 1+bn log2 |z|c. For sums, we write |z±z′| ≤ 2 max{|z|, |z′|} < 21+max{s(z),s(z′)}

hence (13). For N terms, (14) follows from:∣∣∣∑ zj

∣∣∣ ≤ N max |zj | < 2max s(zj)+log2N < 2max s(zj)+blog2Nc+1 .

For the last inequality, note that we could use the ceiling function dlog2Ne instead
of s(N) for a slightly tighter estimate when N is a power of 2.

2.4 Equivalence and adjacency modulo finite precision

The topology induced by finite precision arithmetic is surprisingly subtle. In this
subsection, we introduce three distinct binary relations that express the proximity be-
tween a floating-point number and a real or complex number. The complex case is even
more subtle and is dealt with last.

Definition 3. For x, y ∈ R we use the notation x =p y to say that x and y have the
same representation as floating-point numbers with precision p ∈ N∗.

a b c
=p

=p−1

Figure 3: On the first line, three examples of equivalence classes for =p are grayed out.
On the second line, examples of classes for =p−1 illustrate how the grid gets thinned
out when one bit of precision is dropped. Note in particular how the equivalence class
of odd numbers (left) gets split.

It is an equivalence relation; the equivalence class of a floating-point number ξ > 0 is

{y ∈ R ; y =p ξ} =

ï
ξ − 1

2
ulp(ξ − ulp(ξ)); ξ +

1

2
ulp(ξ)

ã
. (15)

In general, the equivalence class (15) of a floating-point ξ > 0 is the interval[
ξ − 1

2 ulp(ξ), ξ + 1
2 ulp(ξ)

)
.
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An exception occurs at scale turnover where the class is asymmetric. For example, the
consecutive numbers a = 2n(1− 2−p−1) = 2n × 0.111 . . . 11, b = 2n = 2n+1 × 0.100 . . . 00
and c = 2n(1 + 2−p) = 2n+1 × 0.100 . . . 01 satisfy ulp(b) = c − b and ulp(a) = b −
a = 1

2 ulp(b) thus the equivalence class of b is [b − 1
4 ulp(b), b + 1

2 ulp(b)). Note that
b − ulp(b) = 2n(1 − 2−p) and ulp(b − ulp(b)) = ulp(a). See Figure 3. When ξ < 0,
the usual convention rounding away from zero at the tie implies that the interval (15) is
flipped over and the ± signs must be reversed.

We say that equivalence classes for =p are adjacent if their respective closures in R
have a non-empty intersection. The corresponding floating-point numbers are called
adjacent too.

Definition 4. For x, y ∈ R, we denote by x 'p y if the floating-point representations
of x and y with p bits are identical or adjacent.

Though not transitive because of the obvious overlap between the sets of real numbers
that are adjacent to consecutive floating-point numbers, this relation is symmetric and
simplifies the handling of scale turnover. For example, one can always find real points
that are arbitrarily close to one another but whose floating-point representations are
distinct; these points are however adjacent. See Figure 4.

a b c
=p

'p

Figure 4: On the first line, examples of triplets of adjacent =p classes. On the second
line, examples of numbers x such that x 'p ξ with respect to the marked (blue) floating-
point ξ. The relation 'p is not transitive: a 'p b 'p c but a 6'p c.

When x is a real number and ξ is its floating p-bit representation, it satisfies |x−ξ| ≤
1
2 ulp(ξ) and s(x) ≤ s(ξ) ≤ s(x)+1. Moreover, s(x) 6= s(ξ) occurs only at scale turn-over,
when 2n(1 − 2−p−2) ≤ x < ξ = 2n for some n ∈ Z. Conversely, if ξ is a floating-point
number such that |x− ξ| ≤ 1

4 ulp(ξ) then ξ is the p-bit representation of x.

Along the real line, the characterization of adjacency in terms of scale is the following.

Lemma 5. Let x, y ∈ R and p ∈ N∗. One has

s(x− y) ≤ max{s(x), s(y)} − p− 2 =⇒ x 'p y (16)

and, conversely,

x 'p y =⇒ s(x− y) ≤ max{s(x), s(y)} − p . (17)

If x and y are p-bit floating-point numbers, then

s(x− y) ≤ max{s(x), s(y)} − p− 1 =⇒ x 'p y . (18)
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Proof. If x and y are not adjacent real numbers, then x and y are separated by a whole
p-bit equivalence class of some floating-point number ξ (see Figure 4), i.e.

|x− y| >
®

3
4 ulp(ξ) if ξ = 2n, n ∈ Z
ulp(ξ) otherwise.

(19)

In general, choosing the largest ξ possible ensures s(ξ) = max{s(x), s(y)} and

2s(x−y) > |x− y| > 1

2
ulp(ξ) = 2s(ξ)−p−2 = 2max{s(x),s(y)}−p−2 .

The only exception is s(ξ) = max{s(x), s(y)} − 1 when ξ = 2n(1− 2−p−1); in that case

2s(x−y) > |x− y| > ulp(ξ) = 2s(ξ)−p−1 = 2max{s(x),s(y)}−p−2 .

In both cases, we have (16). If x and y are non-adjacent p-bit floating-point numbers,
then (19) can be improved by a factor 2, hence (18).

Conversely, if x 'p y and x̃, ỹ are respectively the p-bit representations of x and y,
then |x − y| < ulp(x̃) + ulp(ỹ) ≤ 2 max{ulp(x̃),ulp(ỹ)} = 2max{s(x̃),s(ỹ)}−p by (7), thus,
according to (8) :

s(x− y) ≤ max{s(x̃), s(ỹ)} − p .

If max{s(x̃), s(ỹ)} = max{s(x), s(y)}, which is the case in general, then (17) holds. At
scale turnover, one may also have max{s(x̃), s(ỹ)} = max{s(x), s(y)} + 1; then x, y <
max{x̃, ỹ} = 2n for some n ∈ Z. In this case, the previous estimate improves to |x−y| <
max{ulp(x̃),ulp(ỹ)}, which ensures (17).

For complex numbers, the situation is more complicated because of phase shifts.
In the real case, the only phase shift possible is a sign change, which does not affect
precision; in particular, there are only 2p+1 finite precision numbers for a given scale.
The direct extension of the adjacency relation z 'p z as the conjunction of Re z 'p Re z′

and Im z 'p Im z′ can lead to an extreme scale imbalance between the real and imaginary
parts, which is not compatible with phase shifts (i.e. complex rotations). Complex
numbers whose argument is close to kπ/2 (with k ∈ Z, i.e. near the axes) have one
component artificially over-resolved compared to the other one; consequently, there are
infinitely many∗ finite precision numbers with a given scale (see Figure 5).

A similar instance of the same issue occurs if one choses two complex numbers close
to the diagonal whose real and imaginary parts are p-bit adjacent, e.g. :

(1 + i)(1 + i2−p−r) = 1− 2−p−r + i(1 + 2−p−r) 'p 1 + i

for any r ≥ 1 (recall that ulp(1) = 2−p so 1±2−p−r 'p 1). Once we rotate them to bring
them along the real axis (or, equivalently, if we multiply by (1 + i)−1 = 1

2(1− i), which

∗ In practice, the number of finite precision complex numbers at a given scale is limited by the extreme
negative exponent value authorized in the implementation.
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is an exact 0-bit number), their imaginary parts will not be adjacent anymore and will
instead be separated by infinitely many scales: 1 + i2−p−r 6'p 1.

To address this issue, we introduce a looser version of 'p, which is based on the scale
and inspired by the property (16) above.

Definition 6. For a pair of complex numbers z, z′, we note z ≈p z′ if and only if

s(z − z′) ≤ max{s(z), s(z′)} − p− 2 . (20)

We say that z and z′ have similar p-bit floating-point representations, modulo approxi-
mate phase-shift invariance.

Let us point out that, because s is an increasing function, the following criterion
holds :

|z − z′| ≤ 2−p−2|z| =⇒ z ≈p z′ . (21)

Conversely, according to (8), z ≈p z′ implies |z − z′| < 2−p−1 max{|z|, |z′|}.

Figure 5: The left grid represents the coordinates of floating-point complex numbers in the
first quadrant. On this grid, direct neighbors correspond to a simultaneous adjacency 'p of
both the real and the imaginary parts. The right grid illustrates the courser mesh associated
with the ≈p relation (similarity moduluo phase-shift), where the maximum of the scales of
the real and imaginary parts dictates the overall precision.

Thanks to Lemma 5, the relation z ≈p z′ implies adjacency when z, z′ ∈ R. If ζ is a
finite precision number close to the x-axis, then

{z floating-point such that z ≈p ζ} ⊂ {x+ iy ; x 'p Re ζ and y 'p−δ Im ζ}

with δ = s(Re ζ) − s(Im ζ) ∈ N. Indeed, denoting ζ = ξ + iη and z = x + iy, (9)
ensures in this case s(ζ) ≤ s(ξ) + 1 and s(x− ξ) ≤ s(z − ζ) ≤ max{s(z), s(ζ)} − p− 2 ≤
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max{s(x), s(ξ)} − p − 1 allows us to invoke (18). Similarly, s(y − η) ≤ s(z − ζ) ≤
max{s(x), s(ξ)} − p− 1 ≤ max{s(y), s(η)}+ δ − p− 1. This configuration is illustrated
in Figure 5.

Remark 7. To build a finite arithmetic theory that is truly rotation invariant, one
should use ball arithmetic. Its superiority is demonstrated in [MV], to provide estimates
that remain significant after many iterations of a conformal map.

Remark 8 (on cancelations). If x, y are two p-bit floating-point numbers such that
y =q −x for some 1 ≤ q < p, then |s(x)− s(y)| ≤ 1 and |x+ y| < 2max{s(x),s(y)}−q−1, i.e.

max{s(x), s(y)} − s(x+ y) ≥ q + 1 . (22)

Conversely, if (22) holds, then

|x+ y| < 2−q × 2max{s(x),s(y)}−1 ≤ 2−q max{|x|, |y|} .

In particular, if y =p −x, all bits cancel out and s(x + y) = −∞. The inequality (22)
expresses that at least q + 1 leading bits, including the implicit leading ξ0 = 1 in (3),
cancel each other in the addition of x and y. It is therefore possible to estimate the loss
of precision by comparing the scales of the operands with that of the result: when

0 ≤ max{s(x), s(y)} − s(x+ y) <∞ ,

this value is the exact number of leading bits lost in the operation.

3 A bit of geometry

In this brief section we introduce some geometric tools that will be useful in the proof
of Theorem 4. For any real valued map g defined on [0, 1], let us define the horizontal
strip of height δ > 0 under the graph of g as follows:

S(g, δ) = {(x, y) ∈ [0, 1]× R : g(x)− δ ≤ y ≤ g(x)} . (23)

The set S(g, δ) is the intersection of the subgraph of g with the epigraph of g − δ.

f

S(f, δ)A

B

L(f, δ, θ)

A′ B′
L(f, δ, θ) cos θ

Figure 6: A concave function f , the strip S(f, δ), the segment [AB] of slope
tan θ and maximal length L(f, δ, θ) and its horizontal projection [A′B′], which is
of length L(f, δ, θ) cos θ.
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Let us denote by C the set of concave functions on [0, 1] i.e. functions whose subgraph
is a convex set. For all f ∈ C and x, y, λ ∈ [0, 1], one has

f ((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y) .

For f ∈ C, δ > 0 and θ ∈ (−π/2, π/2), we denote by L(f, δ, θ) the maximal length of a
segment of slope tan θ contained in the strip S(f, δ), i.e.

L(f, δ, θ) = sup {|AB| ; [AB] ⊂ S(f, δ) and slope(AB) = tan θ} , (24)

where the segment [AB] = {(1−λ)A+λB ; λ ∈ [0, 1]}. These definitions are illustrated
in Figure 6. One has L(f, δ, θ) ≤ 1

cos θ because |A′B′| = L(f, δ, θ) cos θ ≤ 1.

The two following statements are key for estimating the complexity of the algorithm
that is presented in Section 4.

Theorem 1. For all f ∈ C and all δ ∈ (0, 1), one has

1

π

∫ π
2

−π
2

L(f, δ, θ) cos θ dθ < 1.8644
√
δ . (25)

Moreover, there exists a function f0 ∈ C that satisfies a lower bound > 1.1128
√
δ for δ

small enough. In the same conditions, one has

0.91531
√
δ < sup

f∈C

Ç
1

π

∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ

å
< 1.3505

√
δ . (26)

We use the following variant for computing averages on the Riemann sphere.

Theorem 2. For any positive even weight ω ∈ L∞
(
−π

2 ,
π
2

)
decreasing on [0, π/2) and

such that ω
(
π
2 − t

)
≤ C |ln t|−β with β > 1 as t→ 0+, one has∫ π

2

−π
2

L(f, δ, θ)ω(θ) dθ ≤ Cω
√
δ (27)

with

Cω =
√

2‖ω‖L∞(−π4 ,
π
4 ) + 4

∫ ∞
√
2

4

ω
Ä
arctan(1

2 −
√

2x)
ä…

1 + 2
Ä
x−

√
2

4

ä2
dx <∞ . (28)

Note that, in this second statement, any normalization factor is included within ω.

Subsequently, we will apply these results to a function f that is a renormalized con-
cave cover of the scales of the coefficients and a gap δ that depends on the precision of the
computations (see equation (34) and Figure 10). We postpone the proof of Theorems 1
and 2 to Appendix A.
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4 The FPE algorithm

We now focus on a new Fast Polynomial Evaluator algorithm, or FPE for short.

4.1 Key idea: lazy polynomial evaluation

Consider a polynomial P ∈ C[X], which we identify to the entire function

P (z) = a0 + a1z + . . .+ adz
d ,

where ai ∈ C, i ∈ J0, dK and ad 6= 0. The degree of P is deg(P ) = d.

The general idea of the FPE algorithm is to perform as many lazy additions (5)
as possible. We cut down the cost by not computing the monomials that will have no
influence on the final result. More precisely, with minimal overhead (preprocessing), we
identify the favorable cases where it will be safe to perform lazy additions (this is the
non-trivial and novel point, as the value P (z) is not yet known), and in the remaining
cases, we apply a variant of Hörner’s method. All unnecessary monomials are thus left
out.

Example 9. The simplest case study of the FPE algorithm is the following. Let P (z) =
1 + z and assume we perform computations with precision p. If s(z) < −p − 1 then
P (z) 'p 1 and if s(z) > p + 1 then P (z) 'p z. So in these two cases, we get the
result for free. An actual computation is only required in the remaining case, i.e. when
|s(z)| ≤ p + 1. If z is uniformly distributed on the Riemann sphere C, then on average
(see Section 5.2), the result is computed in∫ 2p+1

2−p−1

2rdr

(1 + r2)2
= tanh ((p+ 1) ln 2) = 1− 2−1−2p +O(2−3−4p)

operations instead of 1. In this simplest case, the gain is negligible.

It turns out that the lazy evaluation method performs steadily better in terms of
arithmetic complexity (and speed) as the degree of P gets higher. Compared to Hörner’s
scheme, the gain is substantial (e.g. O(

√
d log d) instead of O(d) for computations in

machine precision) and holds for every polynomial once we average out over all the
possible scales of the evaluation point. Before presenting the general case, we illustrate
our algorithm and this phenomenon below, on a polynomial of degree 10 (see Figure 7).

Let us point out that the FPE algorithm thrives in the case of multiple evaluations,
because the initial analysis needs not be repeated. We illustrate this fact on the example
below too, by showing how the analysis at the points z = ±1 can easily be transposed
to an arbitrary value of z (see Section 4.2.2). By construction, subsequent evaluations
cannot exceed the complexity of Hörner’s scheme and will, on average, be much better.

Contrary to the FFT or the Fast Multipoint Algorithm, the FPE algorithm is local in
the sense that the evaluation at a given point is independent of the precise computations
that are needed to evaluate P at another point. One can thus expect the algorithm to
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have the same numerical stability as Hörner’s method. The memory requirements for
each evaluation are also minimal because the overhead storage is negligible in comparison
to that of the coefficients. For example, our algorithm will thrive in implementations of
Newton’s method to find a single root of a polynomial of large degree because the list
of evaluation points is, obviously, not known in advance.

Finally, without increasing the arithmetic complexity, it is possible to complement
the result P (z) with a confidence estimator that indicates how many of the p bits may
have suffered from cancelations (for details, see Remarks 8 and 12). This feature is part
of our implementation [MV22] (see Section 8, in particular Figure 23). It may help
if finding the proper value of p is part of the problem, e.g. in the implementation of
Newton’s method with a dynamically adjusted precision. Note that changing the value
of p will require a new preprocessing of the polynomial (see Remark 17).

In preparation for the general case, let us introduce the following notation.

Definition 10. The scales of the coefficients are modeled by the function EP : J0, dK→
Z ∪ {−∞} defined by

∀i ∈ J0, dK, EP (i) = s(ai) . (29)

We will denote by ÙEP the concave cover of EP , that is the minimal real concave function
on [0, d] such that EP ≤ ÙEP . Obviously, ÙEP is piecewise linear.

4.2 A simple example detailed

We analyze an example depicted in Figure 7, which represents EP and ÙEP for a
particular polynomial P of degree 10 with non-zero coefficients. The scales of the coeffi-
cients are readable on the graphic; the actual values of the phase of each coefficient are
irrelevant to the discussion.

Coefficient a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

|ak| 2−3 25 2−4 215 213 2−5 226 215 229 229 217

s(ak) −2 6 −3 16 14 −4 27 16 30 30 18

To keep this example simple, we compute P (x) with a fixed precision p = 6. The

strip S(ÙEP , p) defined by (23) is a polygonal band of vertical thickness p. For λ = tan θ,

let us also denote by L−λ the longest segment of slope λ contained in S(ÙEP , p), that is

L−λ = L(ÙEP , p, θ) (30)

with L defined by (24); see Section 3 if necessary. The reason for the sign convention
will appear in Section 4.2.2.
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6

p

EP

ÙEP
(k0, s0)

S
(ÙEP , p)

L0

L−
3

k

s(ak)

Figure 7: Example illustrating EP , ÙEP , S
(ÙEP , p) for p = 6, L0 and L−3. The horizontal

segment L0 isolates the (three) coefficients of Q0(z), which is the suitable reduction of P (z)
when the evaluation occurs on the unit circle.

ÙEP + λId

A
λ L

0

Aλ L−3

(kλ, sλ + λkλ)

k

s(ak) + kλ

Figure 8: Transformation of Figure 7 by the affine map Aλ (defined below) for λ = −3. The

image of the concave cover ÙEP is ÙEP + λId. The horizontal segment AλLλ isolates the (five)
coefficients of Qλ(z), which is the reduction of P (z) when |z| = 2λ.
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4.2.1 Evaluation on the unit circle

For the previous example, let us first consider the case where the evaluation point z
satisfies |z| = 1. For k ∈ J0, 10K, we have s(akz

k) = s(ak). To select the largest
monomials in P (z), let us consider the segment L0 on Figure 7, which is the horizontal
segment situated at a scale p below the scale of the monomial with maximal scale. The
monomials we keep are the ones above L0. In this example, we get

Q0(z) = a6z
6 + a8z

8 + a9z
9 .

Let us now check that the floating-point value of P (z) coincides indeed with Q0(z). If
k /∈ {6, 8, 9}, then s(akz

k) ≤ 18 and the inequality (14) with N = 8 implies

s(P (z)−Q0(z)) ≤ 18 + 4 = 22 i.e. |P (z)−Q0(z)| < 222 .

On the other hand, unless there is an exceptional cancelation of the leading term while
computing Q0(z), one has s(Q0(z)) ≥ 30. In particular, one has s(P (z)−Q0(z)) ≤ 22 ≤
max{s(P (z)), s(Q0(z))} − p− 2 and (20) ensures that

P (z) ≈p Q0(z) ,

as long as the leading terms of Q0(z) do not cancel each other.

Let us now investigate the possible cancelations within Q0. As computations are
restricted to p = 6 bits, the last bit of both a8z

8 and a9z
9 represents a rounding interval

of the real line of radius 1
2 × 230−6−1 = 222. This is the best error bound for a8z

8

and a9z
9 that we can hope for. Thus, even if a cancelation of the most significant

bits occurs, the error when computing a8z
8 + a9z

9 cannot be bounded to less than 223.
Consequently, as the bound for the error can only increase with more terms in the sum,
the uncertainty on the value of Q0(z) will exceed 223. On the other hand, we have
checked that |P (z) − Q0(z)| < 222, so this difference is always smaller than the error
bound in the computation of both Q0(z) and P (z). Therefore, one can claim that, when
|z| = 1, the value Q0(z) is always a good floating-point substitute for P (z), i.e. within
the error bounds for 6 bits of precision throughout the computation, even if significant
bits are canceled out.

To get a geometric feeling in this instance of our algorithm, observe that in the
computation of Q0(z) we have only used terms that are above the line L0, which is is

the longest horizontal segment contained in S(ÙEP , p). This line lies at the scale level
maxk s(akz

k) − p. Note also that we did not use a precision larger than p for any
intermediary result.

4.2.2 Towards the general case

Let us continue the analysis of the previous example for a general evaluation point,
i.e. when z ∈ C. As P (0) = a0 is immediately available, let us assume z 6= 0 and consider

λ = log2 |z| . (31)
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The product formulas (11) and (12) imply that, for all k ∈ J0, dK, we have

|s(ak) + kλ− s(akzk)| ≤ 1 . (32)

As before, we seek a simpler polynomial Qλ such that it is sufficient to evaluate Qλ at z
instead of P when the computations are done with p = 6 bits.

In order to visualize the polynomial Qλ, let us consider the image of Figure 7 by the
following affine map of R2

Aλ :

Å
x
y

ã
7→
Å

1 0
λ 1

ãÅ
x
y

ã
.

By definition, Aλ maps lines of slope −λ to the horizontal. For λ = −3, we consider the
reduced polynomial

Q−3(z) = a1z + a3z
3 + a6z

6 + a8z
8 + a9z

9 .

In other words, we select the powers k ∈ J0, dK such that s(ak)+kλ is above the horizontal
line Aλ Lλ.

Coefficient a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

|ak| 2−3 25 2−4 215 213 2−5 226 215 229 229 217

s(akz
k) −2 3 −9 7 2 −19 9 −5 6 3 −12

Figure 8 and the table above indicate that s(Q−3(z)) = 9 so ulp(Q−3(z)) = 22.
Consequently, (14) ensures that s(P (z)−Q−3(z)) ≤ 2 + 3 = 5 i.e. |P (z)−Q−3(z)| < 25.
In particular, one has

P (z) ≈p−4 Q−3(z) .

The precision loss (4 bits out of 6) may seem significant in this example. However, in
general, the loss is capped by s(d) + 3, which means that an offset on the thickness of

the S(ÙEP , ·) strip will be enough to deal with the general case.

Remark 11. In the general statement of the FPE algorithm (see (44) in Section 4.3),
we will use the scale threshold maxk s(akz

k) − p − s(d) − 3 instead of maxk s(akz
k) − p

(used in Figures 7 and 8) to prevent interaction between Qλ and P −Qλ and to secure
upper bounds of s(akz

k).

We may now link the statement of Theorems 1 and 2 to our algorithm. As the sum
of two concave maps is concave, the map κ 7→ ÙEP (κ) + λκ is concave. Therefore, there
are at most |Aλ Lλ|+ 1 terms in the reduced polynomial Qλ, where |L| is the length of
a segment L. Observe that

|Aλ Lλ| = |Lλ| cos θ , (33)

where θ ∈
(
− π/2, π/2

)
satisfies λ = tan θ. To estimate the average reduction in

complexity of our algorithm over Hörner’s scheme, we are interested in averaging the
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number of monomials of P (z) that are ultimately evaluated. We will therefore compute

the average value of L(f, δ, θ) cos θ where f ∈ C is a renormalized version of ÙEP , defined
for x ∈ [0, 1] by

f(x) =
ÙEP (d x)

d
and δ =

p+ s(d) + 3

d
· (34)

Depending on how the values z are chosen in C, various weights for θ ∈ (−π/2, π/2) are
used (see Section 5.2).

4.3 Statement of the algorithm

We are given a precision p ≥ 1 and a polynomial expression

P (z) =
d∑
j=0

ajz
j

in C[X] with d = degP ≥ 1. We will also assume that a0 6= 0, otherwise we reduce the
problem to a lower degree polynomial z−kP (z) for some k ≥ 1.

We can formalize our evaluation algorithm FPEp as follows. Each non-trivial oper-
ation has its time (bit) complexity marked as a comment on the right. The Figures 7
and 8 illustrate the algorithm.

Algorithm FPEp: Fast evaluation of complex polynomials with precision p

Data: The list of coefficients a0, . . . , ad and the precision p ≥ 1
1 begin preconditioning
2 compute and sort s(ak), k ∈ J0, dK /* d log2 d */

3 compute the concave map ÙEP /* d log2 d */

4 list Gp =
¶
k ∈ J0, dK ; s(ak) ≥ ÙEP (k)− p− s(d)− 3

©
/* d */

Data: Pre-conditioned P at precision p
Data: Finite subset Z of C∗ (evaluation points)

5 begin evaluation
6 for each z ∈ Z do
7 let λ = log2 |z| /* 1 */

8 compute kλ = argmax
(ÙEP + λId

)
/* log2 d */

9 let N = ÙEP (kλ) + λkλ /* 1 */

10 compute {`, r} = (ÙEP + λId
)−1

(N − p− s(d)− 3) /* 2 log2 d */

11 compute and output Qλ(z) =
∑

k∈Gp∩J`,rK
akz

k /* avg . 2.7M(p)
√
dp */

See Section 2.3 for the definition of the scale functions s and the end of Section 4.1 for
that of the concave cover ÙEP of s(aj).
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4.4 Statement of the main results

In the following subsections, we describe in detail each step of the algorithm. Subse-
quently, we prove its correctness, i.e. the statement of Theorem 3, and we compute the
time complexity of FPEp as stated in Theorem 4 and equation (49).

Theorem 3. Given P as above and a precision p ≥ 1, for each z ∈ C∗ and λ = log2 |z|,
there exists a polynomial subexpression Qλ of P such that (see Section 2.4):

P (z) ≈p−c Qλ(z) , (35)

where the number of canceled bits c ≥ 0 is defined by

c =

®
0 if |P (z)| ≥ M,

s(M)− s(P (z)) otherwise,
(36)

and M = max
j∈J0,dK

|ajzj |. The reduced polynomial Qλ is given by

Qλ(z) =
∑

k∈Gp∩J`,rK

‹akzk , (37)

where ‹ak is the p-bit floating-point representation of ak and where `, r and Gp are
computed by the algorithm FPEp described above. The number of monomials of Qλ
satisfies

avgC (#J`, rK) < 1 + 1.9046
»
d(p+ s(d) + 3) , (38)

where the average is taken with respect to the uniform distribution of z ∈ C on the
Riemann sphere. Moreover, for any d and p, there exists a polynomial P for which Gp =
J0, dK and such that avgC (#J`, rK) > 1.3217

√
d(p+ s(d) + 3) as d→∞.

Remark 12. The proof of Theorem 3 ensures that

P (z) ≈p−c
d∑

k=0

‹akzk . (39)

The precision claimed by (35) is thus equivalent to that of Hörner’s scheme, if all co-
efficients (limited to p bits) had been kept. Note also that, even though the number of
cancelled bits c is defined by (36) and thus depends on the exact value of P (z), it is pos-
sible to give a precise upper-bound of c by using Remark 8 for each addition that occurs
in the computation of (37).

Regarding complexity, the main result is as follows (see Figure 1).

Theorem 4. Given a polynomial P ∈ C[X] of degree d ≥ 1 and a bit precision p ∈ N∗,
the preconditioning phase of algorithm FPEp is performed on P in time d+2d log2 d and
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requires O(dp) in memory. Subsequently, for z uniformly distributed on the Riemann
sphere C, the average evaluation time of P (z) by the algorithm FPEp is less than

2 + 3 log2 d+
(

2 log2 d+ 1.9046
»
d(p+ log2 d+ 4)

)
M(p) , (40)

where M(p), recalled in (1), denotes the time of one multiplication followed by an ad-
dition of two floating-point numbers with precision p. If P ∈ Rd[X] and x is uniformly
distributed on the circle R = R ∪ {∞}, the average evaluation time of P (x) by the
algorithm FPEp is less than

2 + 3 log2 d+
(

2 log2 d+ 1.7673
»
d(p+ log2 d+ 4)

)
M(p) . (41)

In both cases, the bit complexity of the evaluator never exceeds 2 + 3 log2 d+M(p)d.

Remark 13. In practice, p ≥ 52 because double precision FP64 is implemented in most
modern hardware, i.e. M(52) = 1. One has d� 248 (see e.g. [MV] for a record-breaking
handling of a tera-polynomial). In this case, p+ log2 d+ 4 ≤ 2p and (40) is bounded by

2 + 3 log2 d+ (96 + 2.7
√
dp)M(p) ,

when d & 100 and (41) by 2 + 3 log2 d+ (96 + 2.5
√
dp)M(p) in the real case.

Remark 14. Let us point out that the uniform average over C (or R) is unfavorable
to our algorithm. Near the poles z = 0 and z = ∞, our algorithm will drop most
terms and will thus be very quick. However, a uniform average does not favor those
regions: the area of the region |z| > 10 (or |z| < 1/10) represents about 1% of the
area of the sphere, which is of the same order of magnitude as that of the annulus
||z|−1| < 10−2. Using the techniques exposed in Section 5, one can compute the average
complexity for any particular distribution of evaluation points; for example, the case of a
uniform distribution on D(0, 1) is treated in Remark 19 below, estimate (52). It is also
possible to refine the estimate if the distribution of the coefficients of P is known (see
e.g. Figure 12 for Chebyshev polynomials).

A point is worth underlining: if the algorithm FPEp encounters one “bad” case where
one evaluation has the same complexity as Hörner, then, on average, it will perform
much better than (40). More precisely, let us assume that one particular choice of z0

with log2 |z0| = λ0 leads our algorithm to evaluate all the monomials of P (z0), which
is the worst case possible. Of course, for such a polynomial, our algorithm would not
outperform Hörner if we were to evaluate only on z in an annulus |z| ' λ0. However, from
this shortcoming, we learn that the graph of the concave cover of s(ak) + kλ0 rescaled
to [0, 1] (see (34) and Figure 8) is comprised between two horizontal lines c and c + δ,
i.e. the modulus of the coefficients of P are, roughly speaking, varying exponentially. If
we briefly anticipate the computations of Section 5.2, the average number of terms when z
is uniformly distributed on C can be estimated with a simple weight (see Figure 10) :

avgC (#J`, rK) < 0.46d

∫ π
2

−π
2

L(f, δ, θ) cos θ dθ .
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The computation (75) from Example 1 then provides an explicit bound:

avgC (#J`, rK) <
dδ| log δ|
1 + λ2

0

=
p+ s(d) + 3

1 + λ2
0

∣∣∣∣log
d

p+ s(d) + 3

∣∣∣∣ · (42)

This means that, if our evaluator performs once as poorly as Hörner, then it will, on
average, perform as O(pM(p) log d) if the evaluation points are chosen uniformly over
the Riemann sphere C and log2 d ≤ p � d or instead as O(M(p) log2 d) if p ≤ log2 d.
This is a much better behavior than the one claimed by Theorem 4 in general and it is
the best that we have observed in practice (see Figure 1 and, for details, Section 8.3).

Remark 15. More generally, if the coefficients of P are a union of a few long geometric
progressions (even possibly intertwined), the graph of ÙEP will be composed of only a few
piecewise straight lines, say N � d. Each straight line will only be visible on a finite
range of values of |z| and will contribute a logarithmic complexity bounded by (42). The
overall average complexity of the FPEp evaluator will then be bounded by

O(NM(p)(p+ log d) log d) (43)

if the evaluation points are chosen uniformly over the Riemann sphere C (or R in the
real case).

For further details and the construction of an example that saturates the upper
bound (40), see Section 5.3.

5 Complexity analysis and proof of Theorem 4

In this section, we describe the details of the algorithm FPEp and prove Theorem 4
regarding complexity.

5.1 Analysis of the preconditioning phase

We describe briefly the computation of the concave hull ÙEP . The first step is standard
and consists in obtaining an enumeration (kn) of J0, dK to sort the values sn = s(akn) in
decreasing order, i.e. such that for all n ∈ J0, d− 1K,

sn ≥ sn+1 .

In case of equality, kn is chosen in increasing order (i.e. kn ≤ kn+1 if s(akn) = s(akn+1)).

This step can be performed in d log2 d operations. Observe that k0 = argmax
(ÙEP ).

Lemma 16. For n ∈ J0, dK, we construct a sequence of concave maps En : [`n, rn]→ R
such that, for all n, [`n, rn] is the convex hull of {k0, . . . , kn} and

∀k ∈ J`n, rnK, s(ak) ≤ En(k) ≤ ÙEP (k) .

Constructing En+1 knowing En is performed in log2 n operations.
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Observe in particular that Ed = ÙEP and that it is obtained in less than d log2 d steps
once (kn) is known. An example of this construction is given on Figure 9.

E1
E2

E3

E4 = E5 = E6

E7

‹E4

‹E7

k

s(ak)
i○ = (ki, si)

0○ 1○

2○

3○

4○ 5○
6○

7○

8○

9○
10○

y6
0

y6
1

y6
2

q

q

q

Figure 9: The recursive construction of ÙEP : here, the construction of E7 from E6.

Proof. It is immediate that `0 = r0 = k0, E0(k0) = s0 and that the graph of E1 is the
segment [(k0, s0), (k1, s1)]. Assume now that En is constructed. Then sn+1 ≤ minEn
and kn+1 /∈ {`n, rn}. If kn+1 ∈ (`n, rn) we let En+1 = En (on Figure 9, this is the case
for E5 = E4 and E6 = E5). Otherwise, by symmetry, we may assume that kn+1 < `n
and we build En+1 as a left extension of En (alternatively, if kn+1 > rn, then we would

build En+1 as a right extension of En in a similar way). Let ‹En+1 be the extension of

En to [kn+1, rn] with the property that ‹En+1 is affine on the interval
[
kn+1, `n + 1/2

]
.

If sn+1 ≤ ‹En+1(kn+1) (on Figure 9, this is the case for n+ 1 = 4), we define En+1 to
coincide with En on [`n, rn], En+1(kn+1) = sn+1 and be affine on [kn+1, `n].

If sn+1 > ‹En+1(kn+1) (on Figure 9, this is the case for n + 1 = 7), the previous
construction would not be concave. Therefore, we search to restrict En to some interval
[`′n, rn], `′n > `n and to add a new segment that includes sn+1, such that En+1 is concave.
We remove the segments whose slopes are smaller than the slope of the new segment (on
Figure 9, we drop the segment of E6 that is below the dashed line in E7).

Precisely, let Σn
0 , . . . ,Σ

n
s be the lines containing a segment in the graph of En, enu-

merated from left to right. As En is concave, the y-coordinate of Σn
j ∩ {x = kn+1},
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denoted by ynj , is increasing in j. A binary search finds j such that sn+1 ∈ (ynj−1, y
n
j ] in

time log2 n. The value `′n is the leftmost abscissa x such that (x,En(x)) ∈ Σn
j . Then

En+1 is defined as affine on [kn+1, `
′
n] with En+1(kn+1) = sn+1 and En coincides with

En on [`′n, rn].
As (sn)n∈J0,dK is decreasing, zero coefficients are sorted last and are only treated when

the graph is already complete. Indeed, as we have assumed that a0 6= 0 and that ad 6= 0,
if sn+1 = −∞ then kn+1 ∈ (`n, rn) and in that case we set Ed = En.

A final parsing of the list of s(ak) is performed to mark the indices k such thats

s(ak) ≥ ÙEP (k)− p− s(d)− 3 . (44)

We denote by Gp ⊆ J0, dK the set of these good indices and by Bp = J0, dK \Gp the set of
bad indices. This step has a linear time complexity. In subsequent evaluations, only the
monomials (akz

k)k∈Gp are kept. In what follows, we show that those associated with Bp
cannot influence the first p bits of the result. The set Gp will be thinned even more
during the evaluation phase, depending on |z|.

Let us emphazise that the complexity of the preconditioning does not depend on
the precision p. If the coefficients ak are provided in machine floating-point numbers,
obtaining s(ak) is performed in constant time using hardware-accelerated functions. In
the case of an arbitrary precision p, the value s(ak) is already computed and stored in
the number format and there is nothing to do. All computations for the preconditioning
phase can thus be performed with machine floating-point numbers.

Remark 17. Let us mention a slight variant of our algorithm, which is based on the
fact that the lines 2 and 3 of the algorithm FPEp are independent of the value of p. For
certain applications, one could split the preconditioning in two parts. The computation of
the concave map ÙEP could be done during the compilation (if P is known in advance) or
at early runtime without any knowledge of p (if a low-precision version of P is availlable).
Once the precision p is known, one will finish the preconditioning (i.e. determine the set
Gp, line 4 of FPEp) in time O(d). Subsequent evaluations of P will be performed as
before, using only lines 5-11 of FPEp.

5.2 Analysis of the evaluation phase

To compute kλ = argmax
(ÙEP + λId

)
, observe that ÙEP + λId is concave. That is, its

derivative (in our case the slope of the segments from some point (k, s(ak) + λk) to the
next one (k′, s(ak′) + λk′)) is decreasing. Therefore, a binary search finds kλ in log2 d
operations. The maximum value is

Nλ = ÙEP (kλ) + λkλ . (45)

Next, as ÙEP + λId has at most two monotone branches (separated by kλ) we can
perform a binary search on each of them to find respectively the two indices ` < kλ
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and r > kλ such that J`, rK is the largest integer interval that satisfies

J`, rK ⊂
¶
k ∈ J0, dK : ÙEP (k) + λk ≥ max

(ÙEP + λId
)
− p− s(d)− 3

©
. (46)

Each of these searches costs at most log2 d operations. Therefore lines 5-10 of FPEp cost
2 + 3 log2 d operations, which is the first part of (40) in Theorem 4.

Let us now focus on the complexity analysis of the last step (line 11) of the algo-
rithm FPEp. Formula (33) reads L(f−(tan θ) Id, δ, 0) = L(f, δ, θ) cos θ; joined with (46),
it implies

r − `
d
≤ L(f, δ, θ) cos θ

where f and δ are defined by (34) and λ = − tan θ (the minus sign reflects that positive
slopes correspond to evaluation points z such that |z| < 1). The metric on the Riemann
sphere C that is associated with a uniform probability measure is given by

gC =
dx2 + dy2

π(1 + x2 + y2)2
·

The corresponding volume element is»
|gC| dx ∧ dy =

dx ∧ dy
π(1 + x2 + y2)2

·

For a radial function and r2 = x2 + y2, the volume element becomes

2rdr

(1 + r2)2
on [0,∞)

and with the subsequent change of variable log2 r = − tan θ, it turns into

− 2 ln 2

cos2 θ

4tan θ

(1 + 4tan θ)2
dθ on

(
−π

2
,
π

2

)
.

Therefore, the average number of monomials that are required to evaluate a polynomial
of degree d with our algorithm, when the point z = x + iy is chosen uniformly on the
Riemann sphere C, is bounded from above by

avgC (#Gp ∩ J`, rK) ≤ avgC (r − `+ 1) ≤ 1 + d

∫ π
2

−π
2

L(f, δ, θ)ω(θ) dθ , (47)

with (note that ω is even):

ω(θ) =
2 ln 2

cos θ

4tan θ

(1 + 4tan θ)
2 ·

Therefore, Theorem 2 implies

avgC (#Gp ∩ J`, rK) ≤ 1 + Cωd
√
δ = 1 + Cω

»
d(p+ s(d) + 3) , (48)
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with Cω < 1.9046 and whose exact numerical value is given by (28).

Figure 10: Graph of the weight ω(θ) from (47) and its comparison with 0.46 cos θ (gray)
and 0.34 cos2 θ (dashed). This comparison justifies our interest for those particular weights in
Theorem 1. The intermediary range |θ| < 1.34 corresponds roughly to 1/20 < |z| < 20. The
weight ω̃(θ) from (50) is for the real valued case.

Remark 18. Note that using the looser estimate ω(θ) < 0.46 cos θ (see Figure 10) and
the numerical constant of Theorem 1 overshoots the value of Cω by 42%.

To conclude the evaluation of P (z), we compute z` in 2 log2 ` steps and then use
Hörner’s method to compute Qλ(z). The average arithmetic complexity of line 11 of the
algorithm FPEp is thus bounded by

2 log2 d+ Cω
»
d(p+ log2 d+ 4) , (49)

while the bit/time complexity is M(p) times larger. Putting (48) and (49) together gives
the last part of (40) in Theorem 4.

In the case of a real polynomial evaluated along the real line, the uniform measure
on the circle R = R ∪ {∞} obtained by stereographic projection is

dx

π(1 + x2)
·

With the change of variable log2 |x| = tan θ, one gets

avgR (r − `) ≤ d
∫ π

2

−π
2

L(f, δ, θ) ω̃(θ) dθ with ω̃(θ) =
2 ln 2

π cos θ

2tan θ

1 + 4tan θ
· (50)

Using (28) again provides

avgR (#Gp ∩ J`, rK) ≤ 1 + Cω̃

»
d(p+ s(d) + 3) with Cω̃ < 1.7673 . (51)

The average complexity in the real-valued case is given by (49) with Cω̃ instead of Cω.
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Remark 19. One can easily adapt the computation to the case of a complex polynomial
evaluated at z uniformly distributed over the unit disk D(0, 1). The weight becomes

ωD(θ) =
2 ln 2

cos θ

1

4tan θ
on

[
0,
π

2

)
.

The asymmetry of ωD implies that one must restrict the integral of Lemma 23 to y ≥ 0,
i.e. x2 ≥ x1. Theorem 2 remains valid with

CωD =
√

2‖ωD‖L∞(0,π
4 ) + 2

∫ −√2
4

−∞

ωD
Ä
arctan(1

2 −
√

2x)
ä…

1 + 2
Ä
x−

√
2

4

ä2
dx =

1 + 8 ln 2

2
√

2
·

The numerical value satisfies CωD < 2.3141 and one can claim

avgD(0,1) (#Gp ∩ J`, rK) ≤ 1 + CωD

»
d(p+ s(d) + 3) . (52)

5.3 Example that (almost) saturates the upper bound on complexity.

Because of the fast decay of ω(θ) as θ → ±π/2, it is not possible to reuse directly
the lower bound obtained in Theorem 1 for the weight cos2 θ. However, the examples of
Section A.4 can be adapted easily to saturate the complexity of the algorithm FPE.

Inspired by the second example, let us consider a polynomial P whose coefficients
have a scale profile that follows a half-circle, for example:

P (z) =

d∑
n=0

2
√

(n+1)(d+1−n)zn. (53)

Reasoning as in Section 5.2 and using the maximality of J`, rK in (46), we get

r − `+ 2

d
≥ L(f, δ, θ) cos θ

for any z ∈ C∗ such that log2 |z| = tan θ and f , δ defined by (34). The average arithmetic
complexity of the evaluation of P when z ∈ C (resp. z ∈ R) is bounded from below by

avgC(r − `+ 1) ≥ −1 + d

∫ π/2

−π/2
L(f, δ, θ)ω(θ)dθ

or, respectively, the same integral with ω̃ in place of ω. One can check easily that EP
defined by (29) satisfies

∀n ∈ J0, dK, ÙEP (n) ≥ EP (n) = 1 +
⌊»

(n+ 1)(d+ 1− n)
⌋
≥
»
n(d− n)

and ÙEP (n) ≤
√
n(d− n) + C

√
d, thus»

x(1− x) ≤ f(x) ≤
»
x(1− x) +

C√
d
·

32



As d→∞, the graph of f converges uniformly to that of
√
x(1− x), which is concave.

With the notations of Example 2 of Section A.4, the average complexity is thus
asymptotically bounded from below by

4d
√
δ

∫ θ0

0

»
(1− δ cos θ) cos θ ω(θ)dθ = C3(δ)

»
d(p+ s(d) + 3) .

The leading coefficient C3(δ) is maximal at δ → 0 i.e. d → ∞. The asymptotic value
is C3(0) ' 1.32178. In the real case, the average complexity is asymptotically bounded
from below by C4(δ)

√
d(p+ s(d) + 3) with C4(0) ' 1.04074.

The theoretical predictions of this section have been confirmed, in practice: polyno-
mials (53) are the slowest to evaluate (see Section 8.3 and, in particular, Figure 21).

Figure 11: Comparison between a polynomial (53) whose coefficients obey the half-circle
law (above) and a polynomial of the same degree whose coefficients obey a normal law
(below). The complex plots (left) illustrate phase (in color), level lines (gray) and roots
(white). The rate of cancelation of monomials is computed along the real axis (right) and
illustrates that half-circle polynomials have extreme cancelations along the negative real
axis, which extend far beyond the immediate vicinity of their roots.
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Evaluation benchmarks with polynomials (53) whose coefficients obey the half-circle
law lead to an interesting observation. As the degree increases, these polynomials appear
to be extremely difficult to evaluate precisely along the real line. At degree 1000, only
half of the computations with 600 bits along the real line are fully trustworthy; about
20% of the computations lead to at least 200 bits being identified as uncertain by our
FPE algorithm. At degree 33 113, half of the 600-bit computations report that no bit
is trustworthy. This exceptional situation piqued our interest because the roots of these
polynomials appear to concentrate mostly along a sub-arc of the unit circle, which means
that evaluations along the real line are usually not in the direct vicinity of a root.

A deeper analysis (see Figure 11) suggests that polynomials in this family have an
extremely high cancelation rate of the monomials, which at a given z ∈ C is defined as the
proportion of the monomials (anz

n)n∈J0,dK such that |anzn| > |P (z)|. Of course, along
the positive half of the real axis, no cancelations can occur because all the coefficients are
positive. In comparison, the cancelation rates for other families of polynomials seem to
spike in much narrower regions of the complex plane. This observation is consistent with
our statements on the complexity of the FPE algorithm and draws a parallel between
slow FPE evaluations and precision loss.

6 Error analysis and proof of Theorem 3

In this section, we prove the correctness of the algorithm FPEp, i.e. Theorem 3. We
adopt the notations from Section 4.3 and show that

P (z) ≈p−c Qλ(z) ,

where c ≥ 0 is defined by (36). In the light of the property (21), it is enough to show
instead that ∣∣∣P (z)−

∑
k∈Gp∩J`,rK

akz
k
∣∣∣ ≤ 2−(p−c)−2 |P (z)| . (54)

Let us assume first that |P (z)| ≥ |akλzkλ | where kλ = argmax
(ÙEP+λId

)
, i.e. (roughly

speaking) that there is no cancelation of leading bits. Using (31) and (6), one gets:

|P (z)| ≥ |akλz
kλ | = |akλ |2

λkλ ≥ 2s(akλ )+λkλ−1 = 2Nλ−1 ,

with Nλ defined by (45). Thanks respectively to the definitions (46) and (44), one has

s(ak) + λk ≤
®ÙEP (k) + λk ≤ Nλ − p− s(d)− 4 if k /∈ J`, rK ,ÙEP (k) + λk − p− s(d)− 4 if k ∈ J`, rK\Gp .

In both cases, we get s(ak)+λk ≤ Nλ−p−s(d)−4 for k ∈ Dp(λ) = J0, dK\ (J`, rK∩Gp),
i.e. for each dropout monomial. Using (31) a second time, we get any k ∈ Dp(λ):

|akzk| = |ak|2λk < 2s(ak)+λk ≤ 2Nλ−p−s(d)−4 ≤ 2−p−s(d)−3|P (z)| .
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We may now estimate R(z) = P (z)−Qλ(z) using #Dp(λ) ≤ d < 2s(d) or, equivalently,
using (14):

|R(z)| ≤
∑

k∈Dp(λ)

∣∣akzk∣∣ < d 2−p−s(d)−3|P (z)| < 2−p−3|P (z)| . (55)

In this case, (54) holds with c = 0 (with a margin of 1 bit) and P (z) ≈p Qλ(z). The
lazy algorithm is therefore essentially exact when no leading bits get canceled.

In the case where |P (z)| < |akλzkλ |, some of the most significant bits cancel each
other. More precisely, let us define c ∈ N by

c = s(akλz
kλ)− s(P (z)) =

ö
log2 |akλz

kλ |
ù
−
⌊

log2 |P (z)|
⌋
. (56)

According to Remark 8, exactly c leading bits have been canceled while computing P (z).
In this case, as we carry all computations with a fixed precision of p bits, only the first p−c
bits of the result are meaningful (plus one implicit leader). One still has

|P (z)−Qλ(z)| = |R(z)| < d 2Nλ−p−s(d)−4 < 2Nλ−p−4 .

On the other hand, using (32), one has now |P (z)| ≥ 2s(akλz
kλ )−c−1 ≥ 2Nλ−c−2 thus

|R(z)| < 2−(p−c)−2|P (z)|

and (54) holds in this case too.

7 Applications

In this section, we expose a few possible applications of the FPE algorithm, at both
the theoretical and practical levels.

7.1 Parsimonious representation of polynomials

At a theoretical level, Theorem 3 states the existence of a parsimonious representa-
tion of any polynomial. This reduction can be computed algorithmically, is valid on any
given annulus of C and guarantees a fixed arbitrary bound on the relative error.

For example, let us consider the Chebyshev polynomials Tn(cosx) = cos(nx). They
are the archetype of evaluations with extreme cancelations because each Tn maps the
interval [−1, 1] onto itself while the coefficients (an,j)0≤j≤n of Tn grow exponentially
(namely maxj |an,j | . 21.26n, as indicated by the maximum point of Figure 12, left).
The scale profile of the coefficients of Tn renormalized with (34), i.e. s(an,j)/n appears
to converge towards a fixed profile (red curve on Figure 12). Taking this fact for granted,
Theorem 3 predicts the degree q(n, α) such that the reduced polynomial

Qn,α(x) = Tn(x) mod xq(n,α)
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provides an accurate approximation of Tn(x) over the interval [−α, α]. For example, for
α = 0.3 ' 2−1.74, Figure 12 shows that the maximum of |an,k0.3k| is achieved for kn '
0.285n and that s(an,kn) ' 0.9n. For n = 200, max |an,k0.3k| ' 2200(0.9−1.73×0.285) ' 281,
which means that c ' 81 leading bits will be lost in the computation of T200(x) when
x ' 0.3. Theorem 3 with p = 85 ensures that T200(0.3) can be computed with at least 3
significant bits if we keep the coefficients above the dashed line on Figure 12 (offset
δ ' 96 bits), i.e. if we drop the last 25% of the coefficients. In general, this proportion
is independent of n and we can claim that q(n, α)/n too is asymptotically independent
of n. A direct proof of this result (without Theorem 3) does not seem obvious.

Figure 12: Scale of the coefficients of Chebyshev polynomial Tn(cosx) = cos(nx), normalized
with (34). The slope of the purple lines correspond to |z| = 0.3. As the renormalized profile of
the coefficients is asymptotically independent of n (red curve), the reduction of Tn to the first
75% of the coefficients (above dashed line) is accurate on [-0.3,0.3] for any large n (right).

Figure 13: Scale of the coefficients of Legendre polynomials Pn (left) and of a generic example of

Jacobi polynomials P
(α,β)
n (right), normalized according to (34). Numerically, the renormalized

profiles appear, as in Figure 12, asymptotically independent of n.
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The Jacobi polynomials P
(α,β)
n and, in particular, the Legendre polynomials Pn enjoy

a similar property (Figure 13), which may be of interest for mathematical physics.

The engineering pressure towards better onboard electronics, using microcontrolers
and field-programmable gate arrays, requires that some non-linear functions be com-
puted quickly, often in reduced precision (e.g. 32, 16 and even 8 bits), with hardware-
specific optimizations. This problem has revived interest∗ in the Remez algorithm on
the polynomial approximation of an arbitrary function that minimizes the L∞-error,
i.e. minimax approximation [Rem34], [Hoc20]. For example, when dealing with periodic
functions, engineers are interested in bypassing a costly reduction mod π/2 if a suitable
interpolator provides accurate values on the natural range of angles for their problem.

For a given range of evaluation points, the algorithm FPE will either provide a further
reduction of the number of coefficients needed at a given precision, or conversely, it will
show that no further reduction is possible (see e.g. Figure 12). In both cases, such a
result provides theoretical backing for the implementation choices. The -analyse task
in our implementation [MV22] (see Section 8) provides a rudimentary tool to perform
this analysis.

In practice, the level of parsimony achieved by the FPE algorithm can be remarkably
high. For example, Figure 14 illustrates the proportion of monomials that are kept in
Qλ(z) and therefore lead the value of P (z).

Figure 14: Proportion of monomials kept by the FPE algorithm in the evaluation of a
half-circle polynomial (53) of degree 1000 for various precisions. Observe how most values
are determined by very few leading monomials.

∗ The authors thank Joel Falcou (LRI, Université Paris Saclay) for pointing out this application.
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7.2 Application to root finding with Newton’s method

On the practical side, Theorem 4 ensures the following two benefits.

Firstly, for a given allotment of computation time, one can perform kH evaluations of
a certain polynomial with Hörner’s method, or kFPE evaluations with the FPE algorithm.
For a given precision p and large d, the asymptotic ratio can be extracted from (40),
provided that the set of evaluation points is statistically diverse. One gets:

kFPE

kH
'

√
d

1.9046
√
p+ log2 d+ 4

� 1 . (57)

The corresponding asymptotic gain factor is illustrated on Figure 1.

Secondly, using Remark 8, it is also very easy to detect cancelations of leading bits,
which means that the FPE algorithm allows not only faster computations, but also pro-
vides a hint at runtime on the precision that should be used to achieve a certain level
of accuracy (typically, the desired accuracy plus the number of canceled bits). Running
error bounds (i.e. estimates of the absolute error committed during the evaluation pro-
cess) are also available for Hörner [Hig02]; however they do not directly indicate the
number of leading bits that where canceled, contrary to FPE, which can compare the
scale of the largest monomial to the final result at no extra cost (see Figure 23).
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Figure 15: Examples of root-finding with Newton’s method for polynomials of degree 65
with random Gaussian coefficients (left) or uniformly distributed roots on the disk (right).
The starting points are uniformly distributed on the circle of radius 2 and each step is com-
puted with FastPolyEval -evalN and a precision set to p = 100 bits. Only the trajectories
that avoid critical points (no far jumps) and that have ultimately converged are shown.
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A typical application that takes advantage of these two properties is finding roots
with Newton’s method. Given a starting point z0 ∈ C, one computes the sequence

zn+1 = NP (zn) with NP (z) = z − P (z)

P ′(z)
· (58)

Almost surely, the sequence will converge towards a root of P ; divergence occurs when
z0 is in the Julia set of NP (which is of Hausdorff dimension < 2, see [Mil90], [CG93]).
Costly excursions near ∞ occur also if the sequence visits a small neighborhood of a
critical point. Using enough starting points (see the algorithm described in [HSS01]),
one can compute all the roots of P . We refer the reader to our work [MV] for a refinement
of [HSS01] that allowed us to split a tera-polynomial, i.e. degP = 240 ' 1012 using a set
of carefully chosen starting points for Newton’s method. Here, we focus on the simpler
task of showing the benefits of applying FPE to compute (58) instead of Hörner’s scheme.

The first benefit is that the preconditioning of P and P ′ can be done simultaneously.
Indeed, if aj are the coefficients of P , then those of the derivatives satisfy:

s(jaj) = s(j) + s(aj) + {−1, 0} = blog2 jc+ s(aj) + {0, 1} .

In a first approximation, the maps ÙEP and ÙEP ′ are thus simply offset from one another
by the concave map j 7→ log2 j. In practice however, ÙEP ′ may have more segments thanÙEP . If speed is of the essence, one can choose to keep a low-resolution profile ÙEP ′ and
increase the safety margin δ (our implementation choice for the Newton demonstrator).
Alternatively, one could perform a separate preprocessing for P and P ′.

The second and main key point is that the computation of P (z)/P ′(z) can be largely
improved if one takes into account the cancelation of valuation∗ induced by FPE. Pre-
cisely, if one assumes that

Q1(z) =
∑

k∈J`,rK∩Gp

ajz
j and Q2(z) =

∑
k∈J`′,r′K∩G′p

jajz
j−1

are the respective p-bit reductions of P (z) and P ′(z), then

P (z)

P ′(z)
≈ Q1(z)

Q2(z)
=

∑
k∈J`,rK∩Gp ajz

j−m∑
k∈J`′,r′K∩G′p jajz

j−1−m ,

where m = min{`, `′}. Taking the simplification of zm into account improves both
the speed and the accuracy. It is especially important in the early phase of Newton’s
sequence, where P (z) and P ′(z) may still be huge, which would cause a substantial loss
of precision in the computation of the increment, or even an overflow. In [MV], we
encounter examples where neither P (z) nor P ′(z) can be represented accurately with
the precision chosen, but where P (z)/P ′(z) can be computed flawlessly.

∗ The valuation of a polynomial is the lowest degree of its non-zero monomials, i.e. the multiplicity of
zero as a root.
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For example, with P (z) = z64 + 1 and p = 24 bits, the evaluation of P (10) and
P ′(10) with our FP32 implementation produces inf because of the obvious overflow.
However, we can compute the correct Newton increment 10 − NP (10) ' 0.15625 with
FP32 hardware arithmetic, which is actually an accurate value up to 2× 10−65.

The third point in favor of the FPE algorithm occurs when the sequence zn eventually
approaches a root of P , as it should; the computation of P (zn) then leads to an increasing
number of cancelations. Using Remark 8, we can easily issue a warning when it is time
to switch the computations to a higher precision.

The last point is that FPE is embarrassingly parallel, which means that multiple
roots can be searched for simultaneously on different cores using the method of [HSS01].
Also, contrary to more global algorithms that can be influenced negatively if some of the
evaluation points lead to overflow values (e.g. if zn is a near miss of a root of P ′), each
computation with FPE is carried out independently of the others, even on a single core.

An example of root-finding using our implementation is illustrated in Figure 15.

7.3 Perspectives

Quadrature methods are at the heart of numerical analysis [BM92], [SSD04]. Using
Gaussian quadrature, one may use n evaluations to compute exactly the integral of
a polynomial of degree 2n − 1 over a given interval. The evaluation points (and the
weights of the linear combination) are determined by orthogonal polynomials. The FPE
algorithm can be used to speed up the evaluations without compromising precision in
the case of high-degree polynomials (typically n� 100).

Clenshaw’s algorithm [Cle55] generalizes Hörner’s method in order to evaluate recur-
sively linear combinations of a polynomial basis, which is itself defined by a three-term
recurrence relation. The principal of lazy addition at the heart of the FPE algorithm
could be used in this general context to reduce finite precision computations to a parsi-
monious summation. The practical condition is the ability to compute easily the scale
of the basis functions at a given point (like log2 z

k = k log2 z).

Extending the FPE algorithm to the multivariate case would be a welcome general-
ization because the number of terms increases drastically. There are (d+n−1)!

d!(n−1)! monomials

of total degree d in n variables, i.e. O(dn−1) if d � n. For example, a polynomial of
degree 68 in 4 variables contains more than a million monomials, which is an instance
of the well known curse of the dimension. For a recent study of the error estimates in
the multivariate Hörner algorithm, we refer the reader to [PS00].

The key idea of the FPE algorithm (namely the lazy addition) is independent of
the dimension. The transfer of the analysis of the dominant coefficients to an arbitrary
evaluation point (x1, . . . , xn) ∈ Cn remains similar to the 1D case (32):

log(|ak1,...,knx
k1
1 . . . xknn |) = log |ak1,...,kn |+

n∑
j=1

kj log |xj | .
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The main question will be to estimate the average complexity of the FPE algorithm,
which is essentially equivalent to the question of computing the average area of the
horizontal projection of the largest hyperplane wafer that can be sandwiched between two
copies, vertically offset by δ, of the graph of a concave function. A preliminary numerical
exploration with a half-sphere function, i.e. f(x1, . . . , xn) =

√
1− |x|2, confirms that the

area does scale as δn/2 for n = 1, 2, 3 when δ → 0, which is encouraging.

Finally, let us mention that the FPE algorithm is of interest when evaluating poly-
nomials or analytic functions on a disk. Remark 19 gives the appropriate weight to
compute the average complexity when z is chosen at random uniformly on a disk. In
Section 8.3, this case is benchmarked, along with the Riemann sphere and the real line.

8 Implementation and benchmarks

We have implemented our algorithm in the C language and we release the imple-
mentation as an open-source project [MV22]. Our implementation aims for the highest
versatility and user-friendliness, without compromising performance. As a general rule,
special cases that can lead to a substantial optimization are automatically recognized
and dealt with.

8.1 General considerations

The main function, FastPolyEval, is called at the command line. Polynomials are
specified as CSV files (passed as arguments) in which each coefficient, starting with a0,
is written as a pair of its real and imaginary part in decimal form. For example, the
polynomial P (z) = 2 + (3− 5i)z is represented by the listing

2, 0

3, -5

Similarly, the set of evaluation points is specified as a CSV file that obeys the same
format.

The first argument is systematically the precision at which the result of the operation
is desired. If the requested precision is at most 24, 53 or 64 (depending on compile time
options), FastPolyEval uses machine floating numbers, respectively FP32, FP64 or FP80.
Otherwise, arbitrary-precision MPFR floating numbers [MPFR] are used. It is therefore
possible to store the values of a polynomial with a high precision in a file and only use
machine precision in a first set of low-precision evaluations, without worrying about a
performance loss. On the contrary, if the precision requested exceeds that of the input,
the input is considered exact (in decimal form) and padded with zero trailing bits if
necessary.

FastPolyEval automatically identifies the case of real polynomials (all imaginary
parts of coefficients are identically zero) because one can preprocess this case faster.
Similarly, evaluations along the real line are also silently optimized by the evaluator.
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Computing the scale of a real number is indeed about twice as fast as computing the
scale of a complex number. In all cases, when using high-precision numbers, the scale,
which is integer valued, is computed efficiently using only machine precision.

Our implementation of the FPE algorithm is complemented by a set of tasks that
can generate polynomials (interpolation from a given set of roots, four common orthog-
onal families, the family of polynomials associated with the hyperbolic centers of the
Mandelbrot set) and to manipulate them (sum, products, derivatives). Rescaling can be
done by evaluating λz on the coefficients. We also provide a comprehensive set of tools
to build and operate on sets of complex numbers. See Appendix C.

The tasks -eval, -evalD and -evalN can be used directly in production cases to
evaluate a polynomial, its derivative or one Newton step with the FPE algorithm. An
optional argument can be passed to generate a report on the number of bits that can
reasonably be trusted in each evaluation, in accordance with Remark 8. Additional ar-
guments enable the benchmark mode (timing, comparison with Hörner). One important
optional argument is the errorsFile specification, that generate a complementary re-
port on the estimated quality of the evaluation at the given precision (see Remarks 8
and 12). For each evaluation point, it contains an upper bound for the evaluation errors
(in bits), a conservative estimate on the number of correct bits of the result, and the
number of terms that where kept by the FPE algorithm.

The -iterN task is for the convenience of the user and provides a reasonably opti-
mized stopping criterion for Newton’s method. For best results, we recommend multiple
runs, each with a limited number of iterations, and where the precision is gradually
increased. The choice of the starting point and the pruning of duplicates is left to
the end-user; see [HSS01] for guidance. For a complete implementation of a splitting
algorithm, we refer the reader to [MV].

The -analyse task computes the concave cover ÙEP , the strip Gp, and the intervals of
|z| for which the evaluation strategy (i.e. the reduced polynomial Qλ(z)) changes. It is
intended mostly for an illustrative purpose on low degrees, when the internals of the FPE
algorithm can still be checked by hand. However, the intervals where a parsimonious
representation is valid may also be of practical use; see Section 7.1.

The question of parallelization is a legitimate one if one wishes to get the most out of
modern hardware. If the number of evaluation points is high compared to the core count,
the algorithm FPE is embarrassingly parallel. Further optimization could be achieved by
performing evaluations at points of similar size on the same core. To avoid an excessive
complexity of the code that may only be of use in some specialized application, we chose
to only implement a single-core version of FPE.

8.2 Implementation notes

The fact that EP , defined by (29), is discrete valued helps build a concave cover ÙEP
with few segments (see Section 5.1), which in turn speeds up the binary searches for
kλ, ` and r in the evaluation phase. Note that even if log2(|ak|) is concave, the scale

42



function is integer valued, which, in practice, may prevent EP from being concave. See
Figure 16.

In the course of sorting the values s(ak), we could check whether the profile is concave
and, if it is indeed concave, we could identify the maximum in an overall of 2d operations
and reduce the complexity of the preconditioning to only O(d) operations. However, in

general, it induces a loss in the evaluator (more segments in ÙEP ) and it is not worth the
trouble. Similarly, using a non-integer scale would be ill advised.

Figure 16: Even if log2 |ak| is concave, the scale function EP is “pixelated” and not necessarily

concave. It is a good thing because ÙEP contains fewer segments, which optimizes the evaluator.

At the end of each evaluation, one needs to compute the valuation monomial, i.e. z`.
The canonical method consists in writing ` = 2α + β with β < 2α. As z2α can be
computed with α successive squaring that can be kept in memory to compute zβ, the
evaluation costs at most 2 log2 ` multiplications.

In the preconditioning phase, we mark a set of indices Bp ⊆ J0, dK that never need
to be computed for the given precision p (see below (44)). If their density is close to one
in J`, rK, which is the case for sparse polynomials, then, to evaluate z`, we pre-compute
other powers of z than the canonical z2j with j ≤ log2 `. For example, the gaps can
be filled more efficiently and be dynamically optimized for the interval J`, rK, with a
negligible overhead. This remark is implemented in FastPolyEval, which ensures an
equal treatment of all possible types of lacunarity, be it regular or not.

8.3 Benchmarks

We have tested the correctness and efficiency of our implementation on a few classes
of polynomials that are either of large interest, hard to handle in general, or both.

The Chebychev, Legendre, Laguerre and Hermite polynomials are classic. The hyper-
bolic polynomials play a central role in the study of the Mandelbrot set and are defined
recursively by p1(z) = z and pn+1(z) = pn(z)2 + z. Normal polynomials are of the form
Pω(z) =

∑
an(ω)zn where an(ω) ∼ N (0, 1) are either real- or complex-valued random
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variables following normal law. The so-called half-circle family is defined by (53); the
coefficients are real valued and form a half-circle when drawn in logarithmic coordinates.
The complex version of the half-circle family is obtained by multiplying the coefficients
of the previous family by a random phase uniformly distributed on the unit circle. As
explained in Section 5.3, these polynomials are remarkably hard to evaluate accurately.

Systematic benchmarks were performed on Romeo, in the HPC center of the Uni-
versity of Reims. The overall benchmark time depends on the family of polynomials
and, obviously, on the degrees and precisions used; in our case, it took a total CPU
time of 70-90h per family. Multiple identical runs (typically two consecutive runs of the
Hörner algorithm, and ten runs of the FPE algorithm) ensured that the average time is
not biased by the loading time of a library or by fluctuations in the ambient load of the
server. We performed complementary benchmarks on our personal computers to confirm
the data points for the smaller degrees.

As explained in Section 5.2, we compute the average complexity when the evaluation
points are chosen uniformly on either C, R or the unit disk. Before going further in our
analysis, let us comment on the number of evaluation points used for the benchmarks.

We used 10 084 points uniformly distributed on the Riemann sphere (modulus ranging
from 8× 10−3 to 2× 102), 5 000 points uniformly distributed on the unit disk (modulus
ranging from 4×10−3 to 1) and 5 000 on the real line (ranging from±6×10−5 to±2×103).
Using more points does not change the average time significantly (see Figure 17), however
it can dramatically and unnecessarily extend the CPU time.

Figure 17: Influence of the number of evaluation points on the Riemann sphere on the average
evaluation time with the FPE algorithm for a polynomial of degree 1047 in the half-circle family,
using 100 bits of precision. The red line is the mean value, the dashed lines are the ±5%
deviations.
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An order of magnitude of the computation time is given in Figure 18. On a modern
laptop∗, the evaluation of a polynomial of degree 1024 with a precision of 100 bits with
Hörner’s method takes in the ballpark of 143µs ±23%∗∗. With the FPE algorithm, the
computation time depends significantly on the shape of EP . It can affect the preprocess-
ing time negatively if ÙEP has many segments. Conversely, it can affect the evaluation
time positively if ÙEP has few segments (ideally, with radically different slopes) or if Gp
contains a small number of terms (see Section 4.3 for the definition of Gp). The order of
magnitude of the preprocessing step is 84µs ±32% and subsequent evaluations with FPE
boil down to 46µs ±62%.

For a one time evaluation, the balance tilts slightly in favor of FPE, which is an
interesting practical update on the optimality of the Hörner scheme. Note that our ex-
periment does not contradict the theoretical result of Ostrowski [Ost54] and Pan [Pan66]
because our advantage holds on average and only for computations with a fixed precision.

For a one time evaluation, FPE outperforms Hörner when M(p)� log d. In the pre-
processing phase, we only need to read the exponents of the coefficients, which remains
a small amount of data to handle (O(d log d) with a small fixed constant). The evalua-
tor then performs a minimal number of costly high-precision operations. Hörner on the
other hand, has O(dM(p)) bit-operations to perform and may end up being slower. The
advantage is especially pronounced in the complex case, where each numerical product
costs 4 real multiplications.

Evaluation on C on D(0, 1) on R

Family
Average time (in ms) Gain Gain Gain

Hörner Preproc. FPE sing. asym. sing. asym. sing. asym.
Half-circle C 0.176 0.137 0.090 ×0.8 ×2.0 ×0.9 ×1.7 ×0.8 ×2.8
Half-circle R 0.149 0.076 0.072 ×1.0 ×2.1 ×0.9 ×1.6 ×0.7 ×3.4
Hyperbolic 0.152 0.084 0.069 ×1.0 ×2.2 ×0.9 ×1.7 ×0.6 ×3.2
Normal C 0.174 0.100 0.055 ×1.1 ×3.2 ×1.0 ×2.2 ×0.9 ×5.0
Normal R 0.160 0.049 0.076 ×1.3 ×3.3 ×1.2 ×2.4 ×0.8 ×5.8
Chebychev 0.152 0.057 0.036 ×1.7 ×4.3 ×1.6 ×3.4 ×0.9 ×4.6
Legendre 0.163 0.061 0.036 ×1.7 ×4.5 ×1.5 ×3.5 ×0.9 ×4.7
Laguerre 0.140 0.082 0.017 ×1.4 ×8.3 ×1.5 ×10.0 ×0.8 ×10.9
Hermite 0.141 0.059 0.015 ×1.9 ×9.3 ×2.3 ×13.6 ×1.0 ×8.1

Figure 18: Average computation time on the Riemann sphere for polynomials of degree 1024
for various polynomial families, using 100 bits of precision on a modern laptop. The gain refers
to the average benefit in computation time that can be expected from switching from Hörner to
the FPE algorithm, either in a single evaluation or asymptotically, if the number of evaluation
points is large. The last four columns give the average gain if the evaluation points are chosen
instead on the unit disk or along the real line.

∗ MacBook Pro 2018, Intel Core i7, 2.6GHz, 16G RAM.
∗∗ Value obtained as average of four benchmarks on C, one on the unit disk and one on R, amounting
to 60 FPE preprocessings, 503 360 FPE evaluations, and 100 672 Hörner evaluations for each of the 9
polynomial families mentioned in Figure 18.
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Figure 19: The FPE preprocessing time, which is independent of the precision, represents,
on average, only 66% of one typical Hörner evaluation with 100 bits on C. Benchmark data
generated on Romeo (HPC center of the University of Reims).

Figure 20: Asymptotic speed gain of FPE over Hörner for evaluations of complex normal
polynomials on the unit disk {z ∈ C ; |z| < 1}, with various high precisions. Benchmark
data generated on Romeo (HPC center of the University of Reims).
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Figure 21: Asymptotic speed gain of FPE over Hörner for various polynomial families
on the Riemann sphere C (top) and on R (bottom) for computations with 53-bit MPFR
numbers. Benchmark data generated on Romeo (HPC center of the University of Reims).
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If the polynomial is evaluated repeatedly (which is what FPE is designed for), the
preprocessing overhead becomes negligible (see Figure 19) and the asymptotic gain ob-
tained by FPE becomes substantial. Speedup in excess of ×10 occurs for some families
like Hermite or Laguerre for degrees as low as 1000 (see Figure 18). In accordance
with Theorem 4, if the degree is high enough, the speed gain is bounded from below
by O(

√
d/ log2 d), which is observed in practice (see Figures 20 and 21).

In the best cases (Laguerre and Hermite; see Figure 21), the complexity of the FPE
evaluation scales, in practice, as O(d0.26) along the real line and O(d0.28) on the Riemann
sphere. In our data range, this complexity is consistent with O(log2 d)±10%, which is the
theoretical bound suggested by the last example of Section 4.4. Note that Figure 20 also
hints that, in general, the exponent of the scaling law of the complexity does not depend
on the precision used for the computations. Finally, let us point out that Chebychev,
Legendre and Hermite polynomials are mildly lacunary (alternately odd or even); the
others are not.

Sorting the polynomial families by increasing asymptotic gain as in Figure 18 and 21
is effectively a way of measuring the complexity in the variability of the scales of the
coefficients. As explained in Section 5.3, the slowest case is that of the half-circle family.
Similarly, the hyperbolic polynomials are slow to evaluate from their coefficients because
of systematic compensations among monomials on the Mandelbrot set, which represents
a substantial part of the Riemann sphere (about 29%). On the contrary, if ÙEP is com-
posed of only a few segments, there will be very few values of |z| for which massive
compensations among monomials can occur; in this case, the FPE algorithm produces
a very parsimonious representation of the polynomial (see Section 7.1), which in turn is
responsible for extreme speed gains.

Most polynomial families behave qualitatively the same on C, R and on the unit
disk. The only substantial anomaly in this classification occurs with the normal family
(both real and complex), which is asymptotically evaluated significantly faster on R
than on C: for a polynomial of degree 30 000 and a precision of 53 bits MPFR, FPE
evaluations are asymptotically 100 times faster than Hörner’s on the real line but only
30 times faster on the Riemann sphere (see Figure 21). A reasonable explanation beyond
the fact that real powers are easier to compute than complex ones, is the fact that the
roots of normal polynomials accumulate uniformly along the unit circle (Hammersley’s
theorem [Ham56], [SZ03]); therefore, one may expect fewer cancelations along the real
line than for other families. However, the anisotropic example at the end of Section 5.3
suggests caution and further studies would be required to confirm this explanation. In
particular, the reason why the evaluation time of the normal family on the Riemann
sphere fails to obey a power law contrary to all other families is not clear.

Our implementation [MV22] handles both hardware number formats FP32, FP64 or
FP80 and arbitrary-precision MPFR floating point numbers [MPFR]. The main limi-
tation of hardware formats is the short range of exponents: roughly speaking, one can
only represent numbers whose absolute value lies between 10±38 with FP32 numbers and
between 10±308 with FP64 numbers. Concretely, this means it is simply impossible to
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compute a monomial zn in FP64 when |z| ≥ 2 and n > 1024. The FP80 format provides
a slightly more comfortable range between 10−4 951 and 104 932, but it is still not enough
to handle polynomials of degree 50 000 as in our benchmark.

In the range of exponents where a comparison was possible, hardware numbers behave
about 4 times faster than 53-bit MPFR numbers; however, the gain factor of FPE over
Hörner obeys the same scaling law as for MPFR. In practice, the sweet spot for using
the FPE algorithm with FP80 numbers is for polynomials of degree 1 000 to 5 000 and
|z| < 10. When using MPFR numbers, this range is extended to essentially any degree
above 100 with almost no practical limitation on |z|.

The last crucial part in our benchmarks is the question of the accuracy of the FPE
algorithm, which is guaranteed by Theorem 3. To put it to the test, we systematically
computed a 600-bit evaluation of our polynomials with a Hörner scheme, which served as
a reference value. For each benchmarked precision (up to 304 bits), the outputs of both
Hörner and FPE algorithms with the current precision were compared to the reference
value to identify the absolute computation error.

The most significant data that can be extracted from this computation is the accuracy
bias, defined as the difference of the number of exact bits between the two algorithms,
which is presented in Figure 22. The practical conclusion is that the values computed
either by FPE or by Hörner are essentially identical, up to 1 exact bit. Of course, when
cancelations occur, the displayed result may differ by many bits, but the divergence only
affects the non significant bits at the end.

Figure 22: No significant accuracy bias can be detected between Hörner and FPE. This
histogram is based on 14 724 data points collected among the different families of polyno-
mials that we have benchmarked and various precisions, from 53 to 304 bits. Overall, this
represents 102 910 668 polynomial evaluations generated on Romeo (HPC center of the Uni-
versity of Reims).
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Based on this extensive benchmark, we can now confirm, in practice, that the FPE
algorithm holds the promise of Theorems 3 and 4 and performs as accurately as Hörner,
only faster.

Let us conclude this section by pointing out that our implementation of FPE pro-
vides additional tools for analyzing polynomial evaluations like the proportion of leading
monomials at a given evaluation point (see Figure 14). Similarly, the localization of
cancelations in the evaluation process can easily be deduced from the output files (see
Figure 23), which may guide practical decisions to ensure the precision of subsequent
computations.

Figure 23: Confidence regions of the FPE algorithm in the evaluation of a half-circle
polynomial (53) of degree 100 along the Riemann sphere. A drop in the number of bits
reported correct indicates exceptional cancelations. As expected, cancelations are a feature
mostly independent of the precision used (left 104 bits, right 600 bits).

We hope that the ideas presented in this article will inspire future developments,
either theoretical or applied. We also thank the reader for reaching this point.
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A Proof of the geometric statements

In this appendix, we prove the geometric results stated in Section 3.

The proof of Theorem 1 is based on two complementary geometric constructions and
is split into several lemmas. In Lemma 20 we show the existence of a segment [A(τ)B(τ)]
in S(f, δ) of maximal length and of slope τ = tan θ. This segment touches the graph
of f − δ in a “tangent” way (in the convex sense, i.e. as a subderivative). In Lemma 21

we express the main integral from Theorem 1 in terms of xR − xL where xL and xR
are the respective abscissae of A(τ) and B(τ). Next, we make an alternative geometric
construction of xR and xL based on area computations. This second construction is the
key to Lemma 22 where we estimate the diagonal of a square built upon the graph of f ′.
A change of variable in the plane (Lemma 23) allows us to collect all the prior estimates
and leads to the proof of the upper bound in Theorems 1 and 2. Finally, we obtain the
lower bounds by constructing explicit examples.

A.1 First geometric construction based on the graph of f

Let us start by presenting the construction in a simple case.

A typical example. For now, we suppose f ∈ C2([0, 1]) with f ′′(x) < 0 for all
x ∈ (0, 1) and we single out x0 ∈ (0, 1). The line of slope f ′(x0) and passing through the
point (x0, f(x0)− δ) is tangent to the graph of f − δ. This line intersects the graph of f
in at most two points A and B, one on each side of x0. Indeed, the points of intersection
with the graph of f correspond to the solutions of the equation

f(x0)− δ + f ′(x0)(x− x0) = f(x) (59)

i.e. F (x) = −δ, where F (x) = f(x) − f(x0) − f ′(x0)(x − x0). The function F is of
class C2([0, 1]) and F ′′(x) = f ′′(x) < 0 for all x ∈ (0, 1), thus F is concave. Therefore
F ′(x) > 0 if x < x0, F (x0) = F ′(x0) = 0 and F ′(x) < 0 if x > x0. Consequently,
there exist at most two points, one on each side of x0, such that F (x) = −δ. When they
exist, we denote them by 0 ≤ xL < x0 < xR ≤ 1. When they do not, we simply take
respectively xL = 0 or xR = 1. In Figure 6, the common abscissa of the points A, A′ is
xL while that of B, B′ is xR.

General case. Let us now come back to the general setting where f is concave, but
not necessarily of class C2([0, 1]). The next statement extends the simpler case presented
in the previous paragraph. It is essentially an elementary version of F. Riesz’s rising sun
lemma [Rie32] in a concave setting.

Lemma 20. For any real number τ ∈ R, there exists a unique segment [A(τ)B(τ)] of
maximal length, of slope τ = tan θ, contained in the strip S(f, δ) and that touches the
graph of f − δ in a tangent way in the convex sense.
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We denote by g(x0 ± 0) or g(x±0 ) the sided limits of a function g:

g(x0 ± 0) = lim
x→x0

±(x−x0)>0

g(x) .

A segment [AB] of slope tan θ is said to be tangent in the convex sense to the graph of
g ∈ C if, at any contact point (x0, g(x0)) ∈ [AB], one has g′(x0 + 0) ≤ tan θ ≤ g′(x0− 0).
If g is smooth, then g′(x0) = tan θ. If an endpoint x0 ∈ {0, 1} is a contact point, then
the requirement is lightened respectively to tan θ ≥ g′(0+) or tan θ ≤ g′(1−).

The abscissa of the endpoints of the maximal segment [A(τ)B(τ)] will be respectively
denoted by xL(τ) for the left side and xR(τ) for the right side.

f(x)− τx

L(f, δ, θ) cos θ

xL(τ) Jτ xR(τ)

mτ

mτ − δ

β1≥mτ−δ

β2<mτ−δ

Figure 24: The affine map (x, y) 7→ (x, y − τx) rearranges Figure 6 in a so-called “rising
sun” configuration [Rie32]. Recall that τ = tan θ. Two non-optimal segments illustrate the
last part of the proof: the longest segment is the one “tangent” to the graph of f(x)−τx−δ.

Proof. As f is a concave function, it is continuous, it is differentiable almost everywhere,
and its derivative is decreasing. Even when the derivative is not continuous at a point,
it necessarily has left and right limits. Therefore it has at most a countable number of
jump points.

Let us first construct the segment [A(τ)B(τ)]. For any τ ∈ R, the concave func-
tion f(x) − τx presents a maximum mτ in [0, 1], which is reached on some non-empty
compact sub-interval Jτ ⊂ [0, 1] (usually a singleton). The function f(x)− τx is mono-
tone on each of the connected components of [0, 1]\Jτ . As a consequence, the set

I(τ, δ) = {x ∈ [0, 1] ; f(x)− τx ≥ mτ − δ}

is an interval increasing in δ that contains Jτ = I(τ, 0). Let us define

xL(τ) = inf I(τ, δ) , xR(τ) = sup I(τ, δ) . (60)

For any x0 ∈ Jτ , one has mτ = f(x0)− τx0 and the line of equation y = yτ (x) with

yτ (x) = f(x0)− δ + τ(x− x0) = τx+ (mτ − δ)
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does not depend on the actual choice of x0 within Jτ . Let us define

A(τ) = (xL(τ), yτ (xL(τ))) , B(τ) = (xR(τ), yτ (xR(τ))) . (61)

By definition (60), for all x ∈ [xL(τ), xR(τ)] = I(τ, δ), one has f(x)+δ ≥ mτ+τx ≥ f(x),
thus the segment [A(τ)B(τ)] is of slope τ and is included in S(f, δ).

Conversely, any segment [AB] of slope τ included in S(f, δ) is supported by a line of
equation y = τx+ β and must satisfy (denoting by xA, xB the abscissa of A and B)

∀x ∈ [xA, xB], f(x) ≥ τx+ β ≥ f(x)− δ i.e. β + δ ≥ f(x)− τx ≥ β . (62)

Let us show that xB − xA ≤ xR(τ)− xL(τ).

If β ≥ mτ − δ (i.e. [AB] is above [A(τ)B(τ)]) then f(xA) − τxA ≥ β ≥ mτ − δ;
the monotony of f(x) − τx outside Jτ and the definition of xL(τ) imply xL(τ) ≤ xA.
Similarly, one has xB ≤ xR(τ). In other words, one has

[xA, xB] ⊂ [xL(τ), xR(τ)] .

If β < mτ − δ, the constraint (62) cannot be satisfied for x ∈ Jτ because

∀x ∈ Jτ , f(x)− τx = mτ > β + δ ,

thus [xA, xB] is a subset of [0, 1]\Jτ . The concavity of f(x) − τx implies that one can
increase xB − xA by shifting the interval towards Jτ . More precisely, let us assume for
example that [xA, xB] is on the right side of Jτ and that xR(τ) < 1 (otherwise nothing
needs to be proved). The inclusion [AB] ⊂ S(f, δ) implies

f(xA)− τxA − δ ≤ β ≤ f(xB)− τxB . (63)

The function τ − f ′ is defined almost everywhere and is positive and increasing on the
right-hand side of Jτ . The inequality (63) can thus be rephrased∫ xB

xA

τ − f ′(x)dx ≤ δ .

Similarly, for any x0 ∈ Jτ , one has f(x0)− τx0 = mτ and xR(τ) < 1 implies :∫ xR(τ)

x0

τ − f ′(x)dx = mτ − (f(xR)− τxR(τ)) = δ .

If xA ≥ xR(τ) then the smaller integrand on [x0, xR(τ)] implies xR(τ)− x0 ≥ xB − xA.
If xA < xR(τ), the integrals on [xA, xR(τ)] cancel out, therefore∫ xB

xR(τ)
τ − f ′(x)dx ≤

∫ xA

x0

τ − f ′(x)dx

and thus xA − x0 ≥ xB − xR(τ). In both cases, xR(τ)− xL(τ) ≥ xR(τ)− x0 ≥ xB − xA.
This proves that the maximal length is obtained for β = mτ − δ. As the values of

the projection of A,B on the x-axis are unique, the equations (60)-(61) ensure that the
segment [A(τ)B(τ)] is unique.
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The quantity that interests us for Theorem 1 is obviously related to this first geo-
metric construction.

Lemma 21. With the notations of Theorem 1, we have∫ π
2

−π
2

L(f, δ, θ) cos θ dθ =

∫ +∞

−∞

xR(y)− xL(y)

1 + y2
dy . (64)

We also have ∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ =

∫ +∞

−∞

xR(y)− xL(y)

(1 + y2)3/2
dy (65)

and for any positive measurable weight ω on
[
−π

2 ,
π
2

]
:∫ π

2

−π
2

L(f, δ, θ)ω(θ) dθ =

∫ +∞

−∞

xR(y)− xL(y)√
1 + y2

ω(arctan y) dy . (66)

Proof. The definition (61) ensures that the length of the projection on the x-axis of the
segment [A(τ)B(τ)] is L(f, δ, θ) cos θ = xR(tan θ) − xL(tan θ). The identities are then
obtained by the change of variable y = tan θ.

A.2 A second geometric construction based on the graph of f ′

We are now going to provide a second geometric construction of xL(τ), xR(τ). We
consider the graph of f ′ and we complete it to a continuous curve in the following way.
At a jump point we add the vertical segment that joins the left and the right limits.
If f ′(0+) < ∞ then we add the half-line {0} × [f ′(0+),∞). Similarly, if f ′(1−) > −∞,
we add the half-line {1} × (−∞, f ′(1−)]. We thus obtain a continuous curve, which we
denote by γf ′ , that contains the graph of f ′, whose projection on the x-axis contains
]0, 1[ and is included in [0, 1] and whose projection on the y-axis is R.

Let us introduce

Γ±f ′ =
{

(x, y) ∈ [0, 1]× R ; ∃y′ such that ± (y − y′) ≥ 0 and (x, y′) ∈ γf ′
}
.

The sets Γ±f ′ are the closed subsets of the strip [0, 1]×R that are respectively above and
below γf ′ . For every y0 ∈ R we consider

x−0 = min
{
x ∈ [0, 1] ; (x, y0) ∈ γf ′

}
and x+

0 = max
{
x ∈ [0, 1] ; (x, y0) ∈ γf ′

}
.

The segment {(x, y0) ; x−0 ≤ x ≤ x+
0 } is the intersection between γf ′ and the horizontal

line y = y0 ; it reduces to a point when x+
0 = x−0 . We now build a family of “triangles”

whose hypotenuse rests on γf ′ and that collapse on the segment [x−0 , x
+
0 ] × {y0} (see

Figure 25). For x ∈ [0, 1], let

Tf ′(y0;x) =


Γ−f ′ ∩

{
(x′, y) ; x ≤ x′ ≤ x−0 and y ≥ y0

}
if x < x−0 ,

{x, y0} if x ∈ [x−0 , x
+
0 ],

Γ+
f ′ ∩

{
(x′, y) ; x+

0 ≤ x′ ≤ x and y ≤ y0

}
if x > x+

0 .
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The continuity of γf ′ implies that the area |Tf ′(y0;x)| of this triangle is a continuous
function of x and the monotonicity of f ′ implies that the area vanishes along [x−0 , x

+
0 ]

and is respectively strictly decreasing on [0, x−0 ] and strictly increasing on [x+
0 , 1].

We are interested in the two points where either the area of the triangle equals δ or
the triangle hits the edge of the strip:

x̃L(y0) = inf
{
x ∈ [0, x−0 ] ; |Tf ′(y0;x)| ≤ δ

}
,

x̃R(y0) = sup
{
x ∈ [x+

0 , 1] ; |Tf ′(y0;x)| ≤ δ
}
.

Let us prove that x̃L(y0) = xL(y0) and x̃R(y0) = xR(y0), i.e. they are the same values
as the ones defined by (60). Using elementary calculus, we know that the area of the
triangle is

|Tf ′(y0;x)| =


∫ x−0

x

(
f ′(x)− y0

)
dx = −(x−0 − x)y0 + f(x−0 )− f(x) if x < x−0 ,∫ x

x+0

(
y0 − f ′(x)

)
dx = (x− x+

0 )y0 + f(x+
0 )− f(x) if x > x+

0 .

The conditions defining x̃L(y0) and x̃R(y0) thus boil down to

x ∈ [x̃L(y0), x̃R(y0)] ⇐⇒ f(x)− y0x ≥ f(x±0 )− y0x
±
0 − δ .

Note that, by definition, f(x) − y0x is constant on [x−0 , x
+
0 ] and one recovers (60) with

τ = y0, mτ = f(x±0 )− y0x
±
0 and [x−0 , x

+
0 ] = Jτ from the proof of Lemma 20.

γL

γf ′

γR

y0

δ

δ

x±0xL(y0) xR(y0)

xL(y0)

A(y0)

xR(y0)

B(y0)

S(f, δ) and x 7→ y0x+my0 − δ

Figure 25: Images of the curves γf ′ in black, γR in red and γL in blue. The triangles
Tf ′(y0;xL) and Tf ′(y0;xR) are grayed out; their area is δ. Inset: the profiles of f and f − δ
used to generate the figure; the dashed segment [A(y0)B(y0)] has a slope τ = y0. Note that,
contrary to the profile presented in Figure 6, this one has an unbounded slope near zero.
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We now have two equivalent constructions of xL(y) = x̃L(y) and xR(y) = x̃R(y)
for every y ∈ R. The second construction ensures that the maps y 7→ xR(y) and
y 7→ xL(y) are continuous and decreasing on R. They are strictly decreasing respectively
when xL(y) > 0 and xR(y) < 1. We denote by γL(δ) = {(xL(y), y) ; y ∈ R} and
γR(δ) = {(xR(y), y) ; y ∈ R} the two curves that are “offset” from γf ′ by a triangular
area of δ (see Figure 25).

Lemma 22. For every y ∈ R let us construct the unique square with an upper-right
corner at (xR(y), y) ∈ γR(δ) and a lower-left corner on γL(δ). The area of this square
is smaller than 2δ and therefore its diagonal is smaller than 2

√
δ.

Proof. The construction of the square is obvious. The curve γL is below the curve
γf ′ , which is itself below γR. As y 7→ xL(y) is decreasing, the curve γL intersects a
line of slope π/4 passing through (xR(y), y) in a unique point whose coordinates are,
by definition, of the form (xL(y′), y′) for some y′ < y. The two points (xR(y), y) and
(xL(y′), y′) are the opposite corners of a square, which we will denote by Q(y′, y) in the
rest of this proof; see Figure 26 (left). Notice that this square is always included in the
strip between the curves γL and γR.

γL γf ′ γR γL + 2
√
δ #»e

Q(y′, y) (xR(y), y)

(xL(y′), y′)

Q(y′, y)

Figure 26: Left: An example of squares Q(y′, y) with opposite corners (xL(y′), y′) ∈ γL and
(xR(y), y) ∈ γR. According to Lemma 22, their diagonal is bounded by 2

√
δ: the curve γR is

below the offset γL + 2
√
δ #»e (dashed blue) where #»e = (1, 1)/

√
2 is the unit vector along the

diagonal. In this example, note how tight the estimate is near the point where f ′′(x) ' −1.

Right: The four possible configurations corresponding to how γf ′ can enter or exit Q(y′, y). The
area of Q(y′, y) complemented by the two highlighted triangles is, by construction, exactly 2δ.
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The curve γf ′ can only enter the square on its left or upper side and can only leave
the square on its right or bottom side, as seen in Figure 26 (right). In all 4 cases, one
has

Q(y′, y) ∩ Γ−f ′ ⊂ Tf ′(y
′;xL(y′)) ,

Q(y′, y) ∩ Γ+
f ′ ⊂ Tf ′(y;xR(y)) ,

thus Q(y′, y) ⊂ Tf ′(y
′;xL(y′)) ∪ Tf ′(y;xR(y)). As this is a measurably disjoint union of

2 triangles of area at most δ (the area of γf ′ is zero), the area of the square Q(y′, y)
is smaller than or equal to 2δ and consequently its diagonal is smaller than or equal
to 2
√
δ.

From this point on, the idea is to use Fubini’s theorem to slice the strip between the
curves γL and γR along the first diagonal. In this direction, according to Lemma 22, the
girth does not exceed 2

√
δ and the decay of the integrands will ensure the integrability.

We prepare this computation by a suitable change of variable.

Lemma 23. Let us denote by Ω the strip between the curves γL and γR. One has∫ π
2

−π
2

L(f, δ, θ) cos θ dθ =

∫∫
Ω

dxdy

1 + y2
=

∫∫
Ω′

dx1dx2

1 + 1
2(x1 − x2)2

, (67)

∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ =

∫∫
Ω

dxdy

(1 + y2)3/2
=

∫∫
Ω′

dx1dx2(
1 + 1

2(x1 − x2)2
)3/2 , (68)

where Ω′ = Rπ/4 (Ω) is the image of Ω by the rotation of angle π/4 that maps (1/2, 0)
to the origin. More generally, for any positive weight ω ∈ L1

loc

(
−π

2 ,
π
2

)
such that

ω
(
±(π2 − t)

)
≤ C |ln t|−β with β > 1 as t→ 0+, one has∫ π

2

−π
2

L(f, δ, θ)ω(θ) dθ =

∫∫
Ω

ω(arctan y)√
1 + y2

dxdy =

∫∫
Ω′

ω
Ä
arctan x2−x1√

2

ä»
1 + 1

2(x1 − x2)2
dx1dx2 . (69)

Proof. In view of Lemma 21 and the geometric construction above (and because xR
and xL are continuous), we can re-write the integral with Fubini’s theorem, which gives
the first identities. The change of variable is the composition of a translation by (−1/2, 0)
that moves the domain Ω into the strip [−1/2, 1/2] × R followed by a rotation around
the origin of angle π

4 . We denote by Ω′ the image of Ω by this isometry (see Figure 27).
The new coordinates (x1, x2) ∈ Ω′ are thus related to the old ones by

x =
1

2
+

1√
2

(x1 + x2) and y =
1√
2

(x2 − x1) .

The Jacobian determinant is obviously equal to 1. For (69), the assumption on the
weight ω ensures that ω(arctan y) ≤ C ln−β |y| at infinity, which in turn ensures the
integrability thanks to Bertrand’s criterion.

Remark 24. In Section 4, we apply (69) with a bounded regular even weight that de-
creases away from zero and vanishes at the endpoints ±π/2. In particular, the assump-
tion will be satisfied because ω

(
π
2 − t

)
≤ C|t| � |ln t|−2 as t→ 0.

57



A.3 Proof of the upper bounds in Theorems 1 and 2

Using the previous lemmas we can now prove the upper bounds stated in Theorems 1

and 2. As Ω is a subset of [0, 1] × R, Ω′ lies between the lines (±
√

2
2 , 0) + R · (1,−1).

Therefore,

∀(x1, x2) ∈ Ω′, −
√

2

2
− x1 ≤ x2 ≤

√
2

2
− x1 .

Consequently,

− 2

Ç√
2

4
+ x1

å
≤ x2 − x1 ≤ 2

Ç√
2

4
− x1

å
. (70)

Moreover, Lemma 22 ensures that for every x1 ∈ R, the length of any vertical section of
Ω′ is bounded in the following way:

∀x1 ∈ R,
∣∣{x2 ; (x1, x2) ∈ Ω′}

∣∣ ≤ 2
√
δ . (71)

Ω′

6

?

2
√
δ

x1

x2

√
2

4

−
√
2

4

Figure 27: The length of the vertical sections of Ω′ = Rπ
4

(Ω) do not exceed 2
√
δ.

We now split Ω′ into three parts Ω′ = Ω′I ∪ Ω′II ∪ Ω′III with

Ω′I = Ω′∩
®
x1 ≤ −

√
2

4

´
, Ω′II = Ω′∩

®
x1 ≥

√
2

4

´
and Ω′III = Ω′∩

®
−
√

2

4
< x1 <

√
2

4

´
.

On Ω′I we have
√

2
4 + x1 ≤ 0 and all the terms that appear in the estimate (70) are

positive. Taking the square of the left-hand side gives 1+2
Ä
x1 +

√
2

4

ä2
≤ 1+ 1

2(x2−x1)2

and therefore ∫∫
Ω′I

dx1dx2

1 + 1
2(x1 − x2)2

≤
∫∫

Ω′I

dx1dx2

1 + 2
Ä
x1 +

√
2

4

ä2 ·
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Notice that the function to integrate on the right-hand side does not depend on x2.
Using Fubini’s theorem and the estimate (71) we have∫∫

Ω′I

dx1dx2

1 + 1
2(x1 − x2)2

≤ 2
√
δ

∫ −√2
4

−∞

dx1

1 + 2
Ä
x1 +

√
2

4

ä2 ·

With a change of variable t = 1
2 +
√

2x1 we obtain∫∫
Ω′I

dx1dx2

1 + 1
2(x1 − x2)2

≤ π√
2

√
δ . (72)

On Ω′II we have that
√

2
4 − x1 ≤ 0 and a similar computation to the one on Ω′I leads to∫∫

Ω′II

dx1dx2

1 + 1
2(x1 − x2)2

≤ 2
√
δ

∫ ∞
√
2
4

dx1

1 + 2
Ä
x1 −

√
2

4

ä2 =
π√
2

√
δ . (73)

On Ω′III, the decay of the integrand is negligible so we use 1
1+ 1

2
(x1−x2)2

≤ 1. The geometric

estimate (71) of the length of the vertical slices provides∫∫
Ω′III

dx1dx2

1 + 1
2(x1 − x2)2

≤ 2
√
δ × 2

√
2

4
=
√

2δ . (74)

We put together the estimates (72), (73), (74) into the expressions given by Lemma 23
and conclude that ∫ π

2

−π
2

L(f, δ, θ) cos θ dθ ≤ (1 + π)
√

2δ .

Normalizing by 1/π gives (25) with the numerical constant 1+π
π

√
2 ≈ 1.86437. A similar

computation can be performed for the second integral:∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ =

∫∫
Ω′I∪Ω′II∪Ω′III

dx1dx2(
1 + 1

2(x1 − x2)2
)3/2

≤ 2
√
δ

Ö
2×

∫ ∞
√

2
4

dx1(
1 + 2

Ä
x1 −

√
2

4

ä2)3/2
+ 2×

√
2

4

è
.

The right-hand side is equal to 3
√

2δ ≈ π × 1.35047
√
δ, as claimed by (26).

Similarly, for a general even and positive weight function ω on
(
−π

2 ,
π
2

)
that is de-

creasing on [0, π/2), thanks to (70), one has on Ω′I ∪ Ω′II:

ω

Å
arctan

x2 − x1√
2

ã
≤ ω
Å

arctan

Å
1

2
−
√

2 |x1|
ãã

.

The estimate (27) follows immediately, provided that the constant (28) is finite (e.g. un-
der the assumptions stated in Lemma 23, which are recalled in Theorem 2). One can
easily check that this estimate boils down to the previous (25) when ω(θ) = cos θ and
to (26) when ω(θ) = cos2 θ.
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A.4 Proof of the lower bounds in Theorem 1

We end this section with computations on particular cases that assert the quasi-
optimality of the constants from Theorem 1. The best (i.e. highest) lower bound is
given by the second example, however the others are instructive for getting a feel for
which cases are the least favorable to our algorithm (see Section 4).

Example 1 : If f(x) = ax+ b for some a, b ∈ R, then S(f, δ) is a parallelogram. Let
us introduce α = arctan(a) and θ0, θ1 ∈ (0, π2 ) the geometric angles that the diagonals
make with the long sides of the parallelogram. Let us reason with a ≥ 0 as in Figure 28.

θ1

θ0

α
0 x 1

b

b− δ

θ

Figure 28: Case of f(x) = ax+b. The red segment is of length L(f, δ, θ).
The graphic corresponds to θ ∈ (−π2 , α− θ1) and illustrates the identity
δ + x tan(θ) = x tan(α) satisfied by x = L(f, δ, θ) cos θ.

One has tan(α+θ0) = a+δ and tan(α−θ1) = a−δ and for θ ∈ (α−θ1, α+θ0) we have
L(f, δ, θ) cos θ = xR(θ) − xL(θ) = 1. For θ ∈

(
−π

2 , α− θ1

)
the length of the projection

` = L(f, δ, θ) cos θ satisfies δ + ` tan(θ) = ` tan(α), i.e. ` = δ
tanα−tan θ · Similarly, for

θ ∈ (α+ θ0,
π
2 ) we have L(f, δ, θ) cos θ = δ

tan θ−tanα · Splitting the integral thus gives∫ π
2

−π
2

L(f, δ, θ) cos θ dθ =

∫ α−θ1

−π
2

δ dθ

tanα− tan θ
+ θ0 + θ1 +

∫ π
2

α+θ0

δ dθ

tan θ − tanα
·

This integral is easiest to compute when a = α = 0 i.e. when f is a constant; in this
case one has θ0 = θ1 ' δ and∫ π

2

−π
2

L(f, δ, θ) cos θ dθ = 2

Ç∫ θ0

0
1 dθ +

∫ π
2

θ0

δ

tan θ
dθ

å
= 2(θ0 − δ log(sin θ0)) ,

which is of leading order −2δ ln(δ)�
√
δ. In the general case, one has

θ0 + θ1 = arctan(a+ δ)− arctan(a− δ) =
2δ

1 + a2
+O(δ3) ,
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and a primitive ∫
dθ

tan θ − tanα
=
−aθ + log |(a− tan θ) cos θ|

1 + a2
·

One thus obtains∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ ≤
∫ π

2

−π
2

L(f, δ, θ) cos θ dθ = −2δ log δ

1 + a2
+O(δ)�

√
δ . (75)

Example 2 : Let us consider f(x) =
√
x(1− x) for x ∈ [0, 1]. The graph of f is a

half circle of radius 1/2; the tangent at the origin is vertical. Assuming δ < 1/2, we
denote by θ0 ∈ (0, π2 ) the angle of the tangent to the graph of f − δ that passes through
the origin and by x0 the first coordinate of the tangence point. One has tan θ0 = f ′(x0)

and f(x0)− δ + (0− x0) tan θ0 = f(0). A simple computation provides x0 = 4δ2

1+4δ2
and

θ0 = arctan(1−4δ2

4δ ) = π
2 − 4δ +O(δ2).

xθx0 1− x0

A

B C1(δ)
C2(δ)

δ

Figure 29: Case of f(x) =
√
x(1− x) from Example 2 (left). The red segment [AB] is of

length L(f, δ, θ) and the dashed lines mark the thresholds of the “generic” zone θ ∈ [−θ0, θ0].
The constants C1(δ), C2(δ) of the corresponding lower bounds (right) tend to a non-zero
value as δ → 0 (see (76) below).

For θ ∈ [−θ0, θ0] the longest segment [AB] ⊂ S(f, δ) of angle θ has both of its ends
on the graph of f and is tangent to the graph of f−δ. Using the symmetry of the graph,
one can assume that θ ≥ 0. Let (xθ, f(xθ)− δ) denote the point where [AB] is tangent
to the graph of f − δ. As tan θ = f ′(xθ) = 1−2xθ

2
√
xθ(1−xθ)

, the equation of [AB] gives

4x2
θ − 4xθ + cos2 θ = 0.

As θ ≥ 0 and xθ <
1
2 by symmetry, then xθ = 1

2(1− sin θ). The abscissae xA, xB of the
endpoints satisfy f(xθ)− δ + (x− xθ) tan θ = f(x), which is equivalent to

x2 − x(1− sin θ + δ sin 2θ) +
1

4
(1− sin θ − 2δ cos θ)2 = 0 .
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Their difference xB − xA = L(f, δ, θ) cos θ is therefore given by xB − xA =
√

∆ where ∆
denotes the discriminant, namely ∆ = (1 − sin θ + δ sin 2θ)2 − (1 − sin θ − 2δ cos θ)2 =
4δ cos3 θ(1− δ cos θ). Using a similar estimate on [−θ0, 0] one gets the lower bounds

1

π

∫ π
2

−π
2

L(f, δ, θ) cos θ dθ ≥ 4
√
δ

π

∫ θ0

0

√
1− δ cos θ cos3/2 θ dθ = C1(δ)

√
δ

and

1

π

∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ ≥ 4
√
δ

π

∫ θ0

0

√
1− δ cos θ cos5/2 θ dθ = C2(δ)

√
δ .

When δ � 1, the contributions to the integrals outside [−θ0, θ0] are of a lower order.
The dependence on δ of the lower bounds is illustrated in Figure 29.

The functions C1 and C2 are continuous and strictly decreasing, with

C1(0) =
4
√

2K(1/2)

3π
> 1.11283 , C2(0) =

12
√

2Γ(3/4)2

5π3/2
> 0.915311 , (76)

where K and Γ are classical special functions (respectively the complete elliptic integral
of the first kind and the Gamma function).

See Section 5.3 for an adaptation of this example to polynomials that saturate the
upper-bound on the complexity of the FPE algorithm, both theoretically and in practice.

Example 3 : We study f(x) = −a(x− 1
2)2 for x ∈ [0, 1] with a > 0 and with δ < a/4.

Notice the symmetry with respect to the line x = 1/2 and that the maximum of f − δ
is −δ and is superior to f(0) = −a/4. We denote by θ0 ∈ (0, π2 ) the angle between the
x-axis and the line tangent to the graph of f − δ that passes through (0,−a/4) and
by x0 the first coordinate of the point where this tangent intersects the graph of f .
Substituting tan θ0 = f ′(x0) in the equation f(x0) − δ + (0 − x0) tan θ0 = f(0) ensures
that x0 =

√
δ/a and tan θ0 = a− 2

√
aδ.

xθx0 1− x0

A

B

Figure 30: Case of f(x) = −a(x− 1
2 )2 from Example 3. The markings

are similar to those of Figure 29.
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For θ ∈ (0, θ0) both ends of the longest segment [AB] ⊂ S(f, δ) of slope θ belong to
the graph of f and [AB] is tangent to the graph of f − δ. As before, let (xθ, f(xθ)− δ)
denote the point where [AB] is tangent to the graph of f − δ and xA, xB the first
coordinate of the endpoints. Then f ′(xθ) = tan θ gives xθ = 1

2 −
tan θ
2a and the equation

of [AB] implies that xA, xB satisfy

a

Å
x− 1

2

ã2

+

Å
x− 1

2

ã
tan θ +

tan2 θ

4a
− δ = 0 .

The difference xB−xA = L(f, δ, θ) cos θ is thus given by xR−xL =
√

∆/a with ∆ = 4aδ.
Using a similar estimate on [−θ0, 0] one gets the lower bounds

1

π

∫ π
2

−π
2

L(f, δ, θ) cos θ dθ ≥ 2

π

∫ θ0

0
2

…
δ

a
dθ =

4
√
δ

π
√
a

arctan(a− 2
√
aδ) ,

1

π

∫ π
2

−π
2

L(f, δ, θ) cos2 θ dθ ≥ 4
√
δ

π
√
a

∫ θ0

0
cos θ dθ =

4
√
δ

π
√
a

a− 2
√
aδ»

1 + (a− 2
√
aδ)2

·

Notice that for δ = a/4 the right-hand side vanishes. For δ � a/4, both bounds are of

order
√
δ. The first constant is approximately 4 arctan(a)

π
√
a

, whose maximum is 1.02288 for

a ' 1.39175. The second constant becomes 4
√
a

π(1+a2)
, whose maximum is 0.72559 and is

obtained for a ' 0.57735.

Remark 25. The case a = 1/2 in Example 3 corresponds to f ′′(x) ≡ –1 for which the
estimate from Lemma 22 is optimal (see Figure 26). However, this example does not
saturate the inequalities (25)-(26).

B Index of notations

We provide here a short index of our notations. By default, we use the American
standard names, notations and spellings.

Numbers

z = a+ ib ∈ C : complex numbers (with a, b ∈ R).

b·c and d·e : resp. floor and ceiling functions (round down/up to the next integer).

lnx : natural logarithm.

logb x = ln x
ln b : base-b logarithm (for complexity, the default base is b = 2).

x ' y : the numbers x and y have a similar order of magnitude (used colloquially).

y . y : the order of magnitude of x is smaller than or equal to that of ys (used colloquially).

Asymptotic estimates The asymptotic parameter σ → σ∗ can be continuous or discrete
and is given from context; the signs (or complex phase) of A,B are irrelevant.

A = O(B) : there exists a bounded function C(σ) such that A(σ) = C(σ)B(σ).

A� B : there exists a function ε(σ) that tends to zero, such that A(σ) = ε(σ)B(σ).
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Sets

Jm,nK = {m,m+ 1, . . . , n− 1, n} : integer interval [m,n] ∩ Z.

[a, b) : real-line interval, semi-open on the right side.

C = C ∪ {∞} : Riemann Sphere.

R = R ∪ {∞} : compaction of R into a circle.

#E : cardinal of a finite set.

|E| : Lebesgue measure of a measurable set E ⊂ Rn.

Polynomials

K[X] : set of polynomials with coefficients in the field K (typically R or C).

K[[X]] : set of formal series with coefficients in the field K.

Complexity (see page 4)

Vd : arithmetic complexity of evaluating a polynomial of degree d.

Vd(k) : arithmetic complexity of k polynomial evaluations of degree d.

Vd(k, p) : bit complexity of evaluating a polynomial of degree d on k evaluation points with a
fixed precision of p bits for all intermediary computations.

M(p) : bit complexity of one multiply-add of two floating-point numbers with precision p.

Floating-point numbers (see page 11)

ξ = ±2n × 0.1ξ1ξ2 . . . ξp : bit presentation of a floating point number.

ulp(ξ) : unit in the last place (smallest increment possible of the p-bit number |ξ|).

Floating-point representations of real and complex numbers (see Section 2.4)

s(z) : scale of a complex number (page 12).

x =p y : x, y ∈ R have the same floating-point representation with precision p ∈ N∗.
x 'p y : the p-bit floating-point representations of x, y ∈ R are identical or adjacent.

z ≈p z′ : z, z′ ∈ C have similar p-bits representations, reduced by phase-shift invariance; see (20).

Concave geometry (see Section 3)

subgraph : for a concave function f , region of the (x, y)-plane such that y ≤ f(x).

S(f, δ) : edge of the subgraph of f of (vertical) thickness δ.

L(f, δ, θ) : maximal length of a segment of slope tan θ contained in the strip S(f, δ).

Equation (34) : definition of f and δ in the FPE Algorithm application case.

FPE Algorithm (see Section 4)

EP : J0, dK→ Z ∪ {−∞} : scales of the coefficients of the polynomial P .ÙEP : [0, d]→ R ∪ {−∞} : concave cover of EP .

λ = log2 |z| = − tan θ : dyadic scale of the evaluation point z.

Gp, Bp : list of a-priori good (resp. ignored) coefficients for a given precision p.

`, r : left/right edges to further reduce Gp for a given λ.

Qλ(z) : reduced polynomial produced by the FPE algorithm.
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FPEp : new algorithm proposed in this article, for computations with a fixed precision p.

avgC : average operator for z uniformly distributed over C.

avgR : average operator for z uniformly distributed over R.

avgD(0,1) : average operator for z uniformly distributed over the unit complex disk.

C Listing of tasks implemented in [MV22]

In our implementation [MV22], the tasks listed in this section are called in the
command line with FastPolyEval -task [arguments]. The first argument is system-
atically the precision of the computation, in bits. Use -task -help for more detailed
informations.

Tools for generating and handling polynomials
-sum computes the sum of two polynomials and writes the result to a CSV file
-diff computes the difference of two polynomials
-prod computes the product of two polynomials
-der computes the derivative of a polynomial
-roots computes the polynomial with a given list of roots
-Chebyshev writes the coefficients of the Chebyshev polynomial
-Legendre writes the coefficients of the Legendre polynomial
-Hermite writes the coefficients of the Hermite polynomial
-Laguerre writes the coefficients of the Laguerre polynomial
-hyperbolic writes the coefficients of the hyperbolic polynomial

Tools for generating and handling sets of complex numbers
-cat concatenates two CSV files containing complex numbers
-re writes the real part of the list of complex numbers
-im writes the imaginary part of the list of complex numbers
-conj writes the conjugates of the list of complex numbers
-join joins the real part of two sequences into one sequence of complex numbers
-tensor computes the tensorial product of the two lists of numbers (ci = ai × bi)
-grid computes the set product of the real parts of two sequences
-exp computes the complex exponential of a list of points
-rot maps complex numbers (a, b) to a ∗ exp(ib)
-unif writes real numbers in arithmetic progression
-rand writes real random numbers uniformly distributed in an interval
-normal writes real random numbers with Gaussian distribution
-sphere writes polar coordinates approximating a uniform distribution on the sphere
-polar computes the points given by polar coordinates on the sphere
-comp compares two lists of points

Fast Polynomial Evaluator algorithm for production use and benchmarking
-eval quickly evaluates a polynomial on a set of points
-evalD quickly evaluates the derivative of a polynomial on a set of points
-evalN quickly evaluates one Newton step of a polynomial on a set of points
-iterN quickly iterates the Newton method (partial search of roots of the polynomial)
-analyse computes the concave cover and the intervals of |z| for which the evaluation

strategy changes
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CNRS, Moulin de la Housse, BP 1039, F-51687 Reims – francois.vigneron@univ-reims.fr

68


	Introduction
	Existing evaluation schemes
	Single point evaluation
	Multi-point evaluation
	Practical considerations beyond arithmetic complexity
	Alternatives

	New evaluation scheme
	Structure of the article

	A bit of finite precision arithmetic
	General considerations
	Lazy addition in finite precision arithmetic
	Scale of a complex number
	Equivalence and adjacency modulo finite precision

	A bit of geometry
	The FPE algorithm
	Key idea: lazy polynomial evaluation
	A simple example detailed
	Evaluation on the unit circle
	Towards the general case

	Statement of the algorithm
	Statement of the main results

	Complexity analysis and proof of Theorem 4
	Analysis of the preconditioning phase
	Analysis of the evaluation phase
	Example that (almost) saturates the upper bound on complexity.

	Error analysis and proof of Theorem 3
	Applications
	Parsimonious representation of polynomials
	Application to root finding with Newton's method
	Perspectives

	Implementation and benchmarks
	General considerations
	Implementation notes
	Benchmarks

	Proof of the geometric statements
	First geometric construction based on the graph of f
	A second geometric construction based on the graph of f'
	Proof of the upper bounds in Theorems 1 and 2
	Proof of the lower bounds in Theorem 1

	Index of notations
	Listing of tasks implemented in FPELib

