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EMMANUEL WEND-BENEDO ZONGO AND BERNHARD RUF

Abstract. In this paper, we analyze an eigenvalue problem for nonlinear elliptic

operators involving homogeneous Dirichlet boundary conditions in a open smooth

bounded domain. We prove bifurcation results from trivial solutions and from infin-

ity for the considered nonlinear eigenvalue problem. We also show the existence of

multiple solutions of the nonlinear problem using variational methods.
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tion, bifurcation from infinity, multiple solutions.
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1. Introduction

Assume Ω ⊂ RN (N ≥ 2) is an open bounded domain with smooth boundary

∂Ω. In [8], the authors investigated the asymptotic behavior of the spectrum and the

existence of multiple solutions of the following nonlinear eigenvalue problem{
−∆pu−∆u = λu on Ω,

u = 0 on ∂Ω,
(1.1)

where−∆p denotes the p-Laplace operator. In [8] it was shown that for p > 2 there exist

eigenvalue branches emanating from (λk, 0), and for 1 < p < 2 there exist eigenvalue

branches emanating from (λk,∞), where λk stands as the k-th Dirichlet eigenvalue
1
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of the Laplacian. In this paper, we consider the following q-homogenous eigenvalue

problem with a perturbation by a p-Laplace term:{
−∆pu−∆qu = λ|u|q−2u in Ω

u = 0 on ∂Ω.
(1.2)

The operator ∆s, formally defined as ∆su := div(|∇u|s−2∇u) for s = p, q ∈ (1,∞) is

the s-Laplacian, λ ∈ R is a parameter. The (p, q)-Laplace operator given by −∆p−∆q

appears in a wide range of applications that include biophysics [10], plasma physics [15]

and reaction-diffusion equations [2, 9]. The (p, q)-Laplace operator has been widely

studied; for some results related to our studies, see e.g., [4–6, 12, 14]. We say that λ is

a “first eigenvalue”, if the corresponding eigenfunction u is positive or negative.

Note that by taking q = 2 in equation (1.2), we recover the case of equation (1.1).

We remark however that for q = 2 equation (1.2) describes bifurcation (caused by a

p-Laplace operator) from the linear equation −∆u − λu, while for q ̸= 2 we prove

for equation (1.2) the existence of bifurcation branches (again forced by a p-Laplace

operator) from the eigenvalues of a nonlinear, but q-homogenous equation. Indeed, it

was shown in [11] that there exists a nondecreasing sequence of variational positive

eigenvalues {λD
k (q)}k tending to +∞ as k → ∞ for the following nonlinear and q-

homogenous eigenvalue problem{
−∆qu = λ|u|q−2u in Ω,

u = 0 on ∂Ω.
(1.3)

Moreover, it is known that the first eigenvalue of problem (1.3) is characterized in the

variational point of view by,

λD
1 (q) := inf

u∈W 1,q
0 (Ω)\{0}

{∫
Ω
|∇u|q dx∫
Ω
|u|q dx

}
.

We consider the sets

D1(q) = {u ∈ W 1,q
0 (Ω)\{0} :

∫
Ω

|u|qdx = 1},

and Σ, the class of closed symmetric (with respect to the origin) subsets ofW 1,q
0 (Ω)\{0},

i.e,

Σ = {A ⊂ W 1,q
0 (Ω)\{0} : A closed, A = −A}.

For A ∈ Σ, we define

γ(A) = inf{k ∈ N : ∃φ ∈ C(A,Rk\{0}), φ(−x) = −φ(x)}.

If such γ(A) does not exist, we then define γ(A) = +∞. The number γ(A) ∈ N∪{+∞}
is called the Krasnoselski genus of A. Let us consider the family of sets

Σk = {A ⊂ Σ ∩D1(q) : γ(A) ≥ k}.
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Following the proof in [11], one shows that one has the following variational character-

ization of λD
k (q), for k ∈ N,

λD
k (q) = inf

A∈Σk

sup
u∈A

∫
Ω

|∇u|qdx.

In this paper, we discuss the nonlinear variational eigenvalues of equation (1.2). Our

main results are:

1) For every fixed ρ > 0 there exists a sequence of eigenvalues
(
λD
k (p, q; ρ)

)
k

with corresponding eigenfunctions ±uk(p, q; ρ) satisfying
∫
Ω
|uk(p, q; ρ)|qdx =

ρ, with λD
k (p, q; ρ) → +∞ as k → ∞.

2) The variational eigenvalues λD
k (q) of equation (1.3) are bifurcation points from

0 if p > q, and bifurcation points from infinity for 1 < p < q, for the nonlinear

eigenvalues λk(p, q; ρ).

3) For fixed λ ∈ (λD
k (q), λ

D
k+1(q)) there exist k eigenvalues of (1.2) with

λ = λD
1 (p, q; ρ1) = · · · = λD

k (p, q; ρk), with corresponding eigenfunctions±uk(p, q; ρ)

such that
∫
Ω
|uk|q = ρk

The paper is organized as follows. In section 2, we discuss the variational spectrum

of the nonlinear problem (1.2) for u ∈ Dρ with fixed ρ > 0. In section 3 we give some

auxiliary results, and in section 4 we discuss the first eigenvalues of equation (1.2).

Then, in section 5 we discuss the bifurcation phenomena, and finally in section 6 we

prove the multiplicity result.

The standard norm of the Lebesgue space Ls(Ω) and the Sobolev space W 1,s
0 (Ω) will

be denoted respectively by ∥ · ∥s = (
∫
Ω
| · |sdx)1/s and ∥ · ∥1,s = (

∫
Ω
|∇(·)|sdx)1/s. We

also denote by ⟨ , ⟩, the duality product between W 1,s
0 (Ω) and its dual.

2. The spectrum of problem (1.2)

In this section we show that equation (1.2) has for every given ρ > 0 a sequence of

eigenvalues λD
k (p, q, ρ), with associated eigenfunctions uk(p, q, ρ) and

∫
Ω
|uk(p, q, ρ)|qdx =

ρ.

Definition 2.1. We say that u ∈ W 1,p
0 (Ω) (if p > q ) or u ∈ W 1,q

0 (Ω) (if p < q ) is a

weak solution of problem (1.2) if the following integral equality holds:∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

|∇u|q−2∇u · ∇v dx = λ

∫
Ω

|u|q−2u v dx, (2.1)

for all v ∈ W 1,p
0 (Ω) ∩W 1,q

0 (Ω).
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We say that λ ∈ R is an eigenvalue of problem (1.2) if there exists an eigenfunction

uλ ∈ (W 1,p
0 (Ω) ∩W 1,q

0 (Ω))\{0} associated to λ such that relation (2.1) holds.

We say that λD
1 (p, q, ρ) is a first eigenvalue of equation (1.2) if the corresponding

eigenfunction u1(p, q; ρ) is a minimizer of the following expression, for some ρ > 0,

c1(p, q; ρ) := inf
{u∈W 1,p

0 (Ω)∩W 1,q
0 (Ω),

∫
Ω |u|q=ρ}

(1
p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx
)
. (2.2)

Note that λD
1 (p, q; ρ) satisfies∫
Ω

|∇u1|pdx+

∫
Ω

|∇u1|qdx = λD
1 (p, q; ρ)

∫
Ω

|u1|qdx = λD
1 (p, q; ρ)ρ.

Proposition 2.2. If it holds λ ≤ λD
1 (q) then problem (2.1) has no nontrivial solutions.

Proof. Suppose by contradiction that there exists λ < λD
1 (q) which is an eigenvalue

of problem (1.2) with uλ ∈ (W 1,p
0 (Ω) ∩W 1,q

0 (Ω))\{0} the corresponding eigenfunction.

Let v = uλ in relation (2.1), we then have∫
Ω

|∇uλ|pdx+

∫
Ω

|∇uλ|qdx = λ

∫
Ω

|uλ|qdx.

On the other hand, we have

λD
1 (q)

∫
Ω

|uλ|qdx ≤
∫
Ω

|∇uλ|qdx, (2.3)

and subtracting by λ

∫
Ω

|uλ|qdx from both sides of (2.3), it follows that

(λD
1 (q)− λ)

∫
Ω

|uλ|qdx ≤
∫
Ω

|∇uλ|qdx− λ

∫
Ω

|uλ|qdx.

This implies that

0 < (λD
1 (q)− λ)

∫
Ω

|uλ|qdx ≤
∫
Ω

|∇uλ|qdx+

∫
Ω

|∇uλ|pdx− λ

∫
Ω

|uλ|qdx = 0.

Hence λ < λD
1 (q) is not an eigenvalue of problem (1.2) with uλ ̸= 0.

Now, assume that λ = λD
1 (q) is an eigenvalue of equation (1.2), thus there exists an

eigenfunction uλD
1 (q) ∈ (W 1,p

0 (Ω)∩W 1,q
0 (Ω))\{0} associated to λD

1 (q) such that relation

(2.1) holds. Letting v = uλD
1 (q) in (2.1), we obtain∫

Ω

|∇uλD
1 (q)|pdx+

∫
Ω

|∇uλD
1 (q)|qdx = λD

1 (q)

∫
Ω

|uλD
1 (q)|qdx.

Since

λD
1 (q)

∫
Ω

|uλD
1 (q)|qdx ≤

∫
Ω

|∇uλD
1 (q)|qdx,
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it follows that ∫
Ω

|∇uλD
1 (q)|pdx+

∫
Ω

|∇uλD
1 (q)|qdx ≤

∫
Ω

|∇uλD
1 (q)|qdx

and then uλD
1 (q) = 0 by the Poincaré inequality. This concludes the proof. □

Proposition 2.3. The first eigenfunctions uλ
1 associated to some λ ∈ (λD

1 (q),∞) are

positive or negative in Ω.

Proof. Let uλ
1 ∈ (W 1,p

0 (Ω) ∩W 1,1
0 (Ω)) \ {0} be a first eigenfunction associated to λ ∈

(λD
1 (q),∞), then ∫

Ω

|∇uλ
1 |pdx+

∫
Ω

|∇uλ
1 |qdx = λ

∫
Ω

|uλ
1 |qdx,

which means that uλ
1 achieves the infimum in the definition of µ1(p, q; ρ), with ρ =

1
q

∫
Ω
|u|q. On the other hand, we have

∥∥∇|uλ
1 |
∥∥
1,s

= ∥∇uλ
1∥1,s for s = p, q and

∥∥|uλ
1 |
∥∥
q
=

∥uλ
1∥q since

∣∣∇|uλ
1 |
∣∣ = |∇uλ

1 | and
∣∣|uλ

1 |
∣∣ = |uλ

1 | almost everywhere. Then, it follows that

|uλ
1 | achieves also the infimum in the definition of µ1(p, q; ρ). Therefore by the Harnack

inequality, we have |uλ
1 | > 0 for all x ∈ Ω and consequently uλ

1 is either positive or

negative in Ω. □

The Palais-Smale condition plays an important role in the minimax argument, and

we recall here its definition.

Definition 2.4. A C1 functional I defined on a smooth submanifold M of a Banach

space X is said to satisfy the Palais-Smale condition on M if any sequence {un} ⊂ M

satisfying that {I(un)}n is bounded and
(
I
∣∣
M

)′
(un) → 0 as n → +∞ has a convergent

subsequence.

Next, we start the discussion about the existence of eigenvalues for problem (1.2).

We note that these eigenvalues depend on ρ(u) =
∫
Ω
|u|qdx. The proofs of the following

two theorems rely on [1, Proposition 10.8].

Theorem 2.5. Let p > q. Then, for a given ρ > 0, there exists a nondecreasing

sequence of critical values ck(p, q; ρ) with associated nonlinear eigenvalues λD
k (p, q; ρ) →

+∞, as k → +∞ and with corresponding eigenfunctions uk(p, q; ρ) ∈ W 1,p
0 (Ω) for

problem (1.2).

Proof. LetDρ(p, q) = {u ∈ W 1,p
0 (Ω) :

∫
Ω
|u|qdx = ρ}, and Σk(p, q) = {A ⊂ Dρ(p, q), A ∈

Σ and γ(A) ≥ k}, where Σ = {A ⊂ W 1,p
0 (Ω) : A closed, A = −A}. Set

ck(p, q; ρ) = inf
A∈Σk(p,q)

sup
u∈A

(
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx
)

> 0 (2.4)

Let us show that I(u) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx satisfies the Palais-Smale (PS)

condition on Dρ(p, q). Let {un} ⊂ Dρ(p, q) a (PS) sequence, i.e, for all n, K > 0

|I(un)| ≤ K and (I
∣∣
Dρ
)′(un) → 0 in W−1,p′(Ω) as n → ∞. We first show that {un} ⊂
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Dρ(p, q) is bounded in W 1,p
0 (Ω). Since un ∈ W 1,q

0 (Ω), with the Poincaré inequality, we

have
∫
Ω
|un|qdx ≤ K

∫
Ω
|∇un|qdx and it follows that

K ≥ |I(un)| ≥
q

p

∫
Ω

|∇un|pdx+
1

C

∫
Ω

|un|qdx =
q

p
∥un∥p1,p +

ρ

C
.

Then {un} ⊂ Dρ(p, q) is bounded in W 1,p
0 (Ω). We can assume that up to a subsequence,

still denoted {un}, there exists u ∈ W 1,p
0 (Ω) such that un ⇀ u in W 1,p

0 (Ω) and un → u

in Lq. Now, we show that un converges strongly to u in W 1,p
0 (Ω). Since (I

∣∣
Dρ
)′(un) → 0

in W−1,p′(Ω) as n → ∞, there exists µn ∈ R and εn → 0 in W−1,p′

0 (Ω) such that

I ′(un)v − µn

∫
Ω
|un|q−2unv = ⟨εn, v⟩. We have I ′(un)un − µn

∫
Ω
|un|q → 0, and since

I ′(un)un ≤ cI(un) ≤ c it follows that |µn| ≤ c. From this we obtain that I ′(un)(un −
u) → 0 and I ′(u)(un − u) → 0 as n → ∞. Therefore,

o(1) = ⟨I ′(un)− I ′(u), un − u⟩ =
∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u) · ∇(un − u)dx

+

∫
Ω

(|∇un|q−2∇un − |∇u|q−2∇u) · ∇(un − u)dx︸ ︷︷ ︸
:=Q

.

Using Lemma 3.3 below and the fact that the underbraced quantity Q is positive (see

Remark 3.1), it follows that

⟨I ′(un)− I ′(u), un − u⟩ ≥ c2∥un − u∥p1,p.

This shows that un converges strongly to u in W 1,p
0 (Ω) as n → ∞ since ⟨I ′(un) −

I ′(u), un − u⟩ → 0 as n → ∞.

In order to end the proof, let us show that if c = ck(p, q) = · · · = ck+m−1(p, q),

then the set Kc of critical points of I at the critical level c has a genus γ(Kc) ≥ m. We

consider the level set at c,

Kc := {u ∈ Dρ(p, q) : I(u) = c , I ′(u) = 0}.

We have that Kc is compact since the functional I satisfies the Palais-Smale condition

and 0 /∈ Kc since c > 0 = I(0). In addition, we have I(u) = I(−u). Hence Kc ∈
Σ. Assume by contradiction that γ(Kc) ≤ m − 1. Take Aε ∈ Σk+m−1 such that

supAε
I(u) ≤ c+ ε. By the properties of the genus, there exists a δ-neighborhood Nδ of

Kc such that γ(Nδ) = γ(Kc), and γ(Aε\Nδ) ≥ γ(Aε)−γ(Nδ) ≥ k+m−1−(m−1) = k.

By the deformation theorem there exists a homeomorphism η(1, ·) such that I(u) ≤
c− ε, for u ∈ η(1, Aε \Nδ). Then we arrive at the contradiction

c = inf
A∈Σk

sup
u∈A

I(u) ≤ sup
η(1,Aε\Nδ)

I(u) ≤ c− ε

Hence, γ(Kc) ≥ m.

With a compactness argument one shows that ck(p, q; ρ) → ∞ as k → ∞.
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For the corresponding eigenvalues λD
k (p, q, ρ) we then have∫

Ω

|∇uk|pdx+

∫
Ω

|∇uk|qdx = λD
k (p, q; ρ)

∫
Ω

|uk|qdx = λD
k (p, q; ρ) ρ

Thus λD
k (p, q; ρ) ρ > ck(p, q; ρ), for all k (and fixed ρ), and hence also λD

k (p, q; ρ) → ∞
as k → ∞. □

For p < q one has the analogous result:

Theorem 2.6. Let p < q be given.Then, for a given ρ > 0, there exists a nondecreasing

sequence of critical values ck(p, q; ρ) with associated nonlinear eigenvalues λD
k (p, q; ρ) →

+∞, as k → +∞ and with corresponding eigenfunctions uk(p, q; ρ) ∈ W 1,q
0 (Ω) for

problem (1.2).

Proof. Let Dρ(p, q) = {u ∈ W 1,q
0 (Ω) :

∫
Ω
|u|qdx = ρ}, and Σk(p, q) = {A ⊂ Σ : γ(A∩

Dρ(p, q)) ≥ k}, where Σ = {A ⊂ W 1,q
0 (Ω) : A closed, A = −A}. Set

bk(p, q) = inf
A∈Σk(p,q)

sup
u∈A

(
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx
)

> 0.

Similar to the proof of Theorem 2.5, one shows that:

(i) the functional I(u) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx satisfies the (PS) condition

on Dρ(p, q), and

(ii) if b = bk(p, q) = · · · = bk+m−1(p, q), then the set Kb of critical points of I at

the critical level b has a genus γ(Kb) ≥ m.

□

We note that the results of Theorem 2.5-2.6 are illustrated in figure 1 in section 6.

3. Auxiliary results

Remark 3.1. Let p > q. We recall that the nonlinear operator Θ : W 1,p
0 (Ω) →

W−1,q′(Ω) ⊂ W−1,p′(Ω) defined by

⟨Θu, v⟩ =
∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

|∇u|q−2∇u · ∇v dx

is continuous and so it is demi-continuous. The operator Θ is said to be demi-continuous

if Θ satisfies that whenever un ∈ W 1,p
0 (Ω) converges to some u ∈ W 1,p

0 (Ω) then Θun ⇀

Θu as n → ∞.

In addition, we claim that the operator Θ satisfies the following condition: for any

un ∈ W 1,p
0 (Ω) satisfying un ⇀ u in W 1,p

0 (Ω) and lim sup
n→∞

⟨Θun, un−u⟩ ≤ 0, then un → u

in W 1,p
0 (Ω) as n → ∞. The same result hold in the case where p < q.
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Indeed, assume that un ⇀ u in W 1,p
0 (Ω) and lim sup

n→∞
⟨Θun, un − u⟩ ≤ 0. Hence un

converges strongly to u in Lp(Ω) and one has

0 ≥ lim sup
n→∞

⟨Θun −Θu, un − u⟩

= lim sup
n→∞

∫
Ω

[
|∇un|p−2∇un − |∇u|p−2∇u+ |∇un|q−2∇un − |∇u|q−2∇u)

]
· ∇(un − u)dx.

On the other hand, for any ∇un,∇u ∈ (Lp(Ω))N , one has,∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u) · ∇(un − u)dx =

∫
Ω

(|∇un|p + |∇u|p − |∇un|p−2∇un · ∇u

−|∇u|p−2∇u · ∇un)dx

≥
∫
Ω

(|∇un|p + |∇u|p)dx−
(∫

Ω

|∇un|pdx
)1/p′

×
(∫

Ω

|∇u|pdx
)1/p

−

−
(∫

Ω

|∇un|pdx
)1/p

×
(∫

Ω

|∇u|pdx
)1/p′

=
[( ∫

Ω

|∇un|pdx
) p−1

p −
(∫

Ω

|∇u|pdx
) p−1

p
]
×
[( ∫

Ω

|∇un|pdx
) 1

p −
(∫

Ω

|∇u|pdx
) 1

p
]

=
(
∥un∥p−1

1,p − ∥u∥p−1
1,p

)(
∥un∥p1,p − ∥u∥p1,p

)
≥ 0.

We then deduce from this inequality that
∫
Ω
|∇un|pdx →

∫
Ω
|∇u|pdx as n → ∞ and

similarly
∫
Ω
|∇un|qdx →

∫
Ω
|∇u|qdx as n → ∞. Consequently un converges strongly to

u in W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω).

Proposition 3.2. Assume that p > q. If (λ, 0) is a bifurcation point of solutions of

problem (1.2) then λ is an eigenvalue of problem (1.3).

Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (1.2), there

is a sequence of nontrivial solutions of problem (1.2) such that λn → λ and ∥un∥1,p → 0

in W 1,p
0 (Ω). We then have∫
Ω

|∇un|p−2∇un · ∇v dx+

∫
Ω

|∇un|q−2∇un · ∇v dx = λn

∫
Ω

|un|q−2unv dx, (3.1)

Let wn = un/∥un∥1,p. Plugging this change of variable into equation (3.1), we get

∥un∥p−q
1,p

∫
Ω

|∇wn|p−2∇wn · ∇v dx+

∫
Ω

|∇wn|q−2∇wn · ∇v dx = λn

∫
Ω

|wn|q−2wnv dx

(3.2)

With Remark 3.1, it follows that

∥un∥p−q
1,p

∫
Ω

|∇wn|p−2∇wn · ∇v dx+

∫
Ω

|∇wn|q−2∇wn · ∇v dx →
∫
Ω

|∇w|q−2∇w · ∇v dx
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as n → ∞ since ∥un∥1,p → 0 by assumption and λn

∫
Ω
|un|q−2unv dx converges to

λ
∫
Ω
|u|q−2uv dx as n → ∞. Thus, we obtain that∫

Ω

|∇w|q−2∇w · ∇v dx = λ

∫
Ω

|u|q−2uv dx

for all v ∈ W 1,p
0 (Ω). □

The following lemma will be used in some occasions.

Lemma 3.3 ( [13]). There exist constants c1, c2 such that for all x1, x2 ∈ RN , we have

the following vector inequalities for 1 < s < 2

(|x2|s−2x2 − |x1|s−2x1) · (x2 − x1) ≥ c1(|x2|+ |x1|)s−2|x2 − x1|2,

and for s > 2

(|x2|s−2x2 − |x1|s−2x1) · (x2 − x1) ≥ c2|x2 − x1|s.

4. First eigenvalues

In this section we prove that every λ > λD
1 (q) is a first eigenvalue of problem (1.2).

We define the energy functional Eλ : W 1,p
0 (Ω) ∩W 1,q

0 (Ω) → R associated to relation

(2.1) by

Eλ(u) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx− λ

q

∫
Ω

|u|qdx. (4.1)

Lemma 4.1. Suppose that p > q. Then for each λ > 0, the functional Eλ defined in

(4.1) is coercive.

Proof. If p > q, We have that W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω) and the following inequalities hold

true

(i) 1
p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx ≥ 1

p

∫
Ω

|∇u|pdx,

(ii)

∫
Ω

|∇u|qdx ≤ C∥u∥q1,p (using the Hölder inequality).

With items (i) and (ii) we obtain Eλ(u) ≥ 1
p
∥u∥p1,p−C̃∥u∥q1,p and consequently Eλ(u) →

+∞ as ∥u∥1,p → +∞. □

Remark 4.2. We notice that Eλ is not bounded below if p < q and λ > λD
1 (q) since

for every u = u1, the first eigenfunction of (1.3) with
∫
Ω
|u1|qdx = 1, we have

Eλ(tu) =
tp

p
∥u1∥p1,p +

tq

q
(λD

1 (q)− λ) → −∞

as t → ∞.

Theorem 4.3. Let p > q. Then every λ ∈ (λD
1 (q),∞) is a first eigenvalue of problem

(1.2).
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Proof. Standard arguments show that Eλ ∈ C1(W 1,p
0 (Ω),R) with its derivative given

by

⟨E ′
λ(u), v⟩ =

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

|∇u|q−2∇u · ∇v dx− λ

∫
Ω

|u|q−2u v dx,

for all v ∈ W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω). On the other hand Eλ is weakly lower semi-continuous

on W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω) since Eλ is a continuous convex functional. This fact and

Lemma 4.1 allow one to apply a direct calculus of variations result in order to obtain

the existence of global minimum point of Eλ. We denote by u0 such a global minimum

point, i.e, Eλ(u0) = min
u∈W 1,p

0 (Ω)
Eλ(u). We observe that for u0 = sw1 (where w1 stands

for the corresponding eigenfunction of λD
1 (q)), we have

Eλ(u0) =
sp

p

∫
Ω

|∇w1|p dx+
sq

q
(λD

1 (q)− λ) < 0

for s small enough. So there exists uλ ∈ W 1,p
0 (Ω) such that Eλ(uλ) < 0. But Eλ(u0) ≤

Eλ(uλ) < 0, which implies that u0 ∈ W 1,p
0 (Ω)\{0}. We also have that ⟨E ′

λ(u0), v⟩ =

0,∀ v ∈ E, and this concludes the proof. □

To treat the case where p < q, we constrain Eλ on the Nehari set

Nλ = {u ∈ W 1,q
0 (Ω)/ u ̸= 0, ⟨E ′

λ(u), u⟩ = 0}

= {u ∈ W 1,q
0 (Ω)/ u ̸= 0,

∫
Ω

|∇u|pdx+

∫
Ω

|∇u|qdx = λ

∫
Ω

|u|qdx}.

On Nλ, the functional Eλ reads as Eλ(u) = (1
p
− 1

q
)

∫
Ω

|∇u|pdx > 0.

This shows at once that Eλ is coercive in the sense that if u ∈ Nλ satisfies ∥u∥1,p → ∞,

then Eλ(u) → ∞.

We define m = inf
u∈Nλ

Eλ(u), and we show through a series of propositions that m is

attained by some u ∈ Nλ which is a critical point of Eλ considered on the whole space

W 1,q
0 (Ω) ⊂ W 1,p

0 (Ω) and therefore a solution to equation (1.2).

Proposition 4.4. The set Nλ is not empty for λ > λD
1 (q).

Proof. Since λ > λD
1 (q) there exists u ∈ W 1,q

0 (Ω) not identically zero such that∫
Ω
|∇u|qdx < λ

∫
Ω
|u|qdx. We then see that tu ∈ Nλ for some t > 0. Indeed, tu ∈ Nλ is

equivalent to

tp
∫
Ω

|∇u|pdx+ tq
∫
Ω

|∇u|qdx = tqλ

∫
Ω

|u|qdx,

which is solved by t =
( ∫

Ω |∇u|pdx
λ
∫
Ω |u|qdx−

∫
Ω |∇u|qdx

) 1
q−p

> 0. □
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Proposition 4.5. Every minimizing sequence for Eλ on Nλ is bounded in W 1,q
0 (Ω).

Proof. Let {un}n≥0 ⊂ Nλ be a minimizing sequence of Eλ|Nλ
, i.e. Eλ(un) → m =

inf
v∈Nλ

Eλ(v). Then

λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx =

∫
Ω

|∇un|p dx →
(
1

p
− 1

q

)−1

m, as n → ∞. (4.2)

Suppose on the contrary that {un}n≥0 is not bounded i.e.

∫
Ω

|∇un|q dx → ∞ as

n → ∞. Then we have

∫
Ω

|un|q dx → ∞ as n → ∞, using relation (4.2). We set

wn = un

∥un∥q . Since

∫
Ω

|∇un|q dx < λ

∫
Ω

|un|q dx, we deduce that

∫
Ω

|∇wn|q dx < λ, for

each n and ∥wn∥1,q < λ1/q. Hence {wn} ⊂ W 1,q
0 (Ω) is bounded in W 1,q

0 (Ω). Therefore

there exists w0 ∈ W 1,q
0 (Ω) such that wn ⇀ w0 in W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω) and wn → w0 in

Lq(Ω). Dividing relation (4.2) by ∥un∥pq , we get

∫
Ω

|∇wn|p dx =

λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx

∥un∥pq
→ 0 as n → ∞,

since λ
∫
Ω
|un|q dx−

∫
Ω
|∇un|q dx →

(
1
p
− 1

q

)−1

m < ∞ as n → ∞ and ∥un∥pq → ∞ as

n → ∞. On the other hand, since wn ⇀ w0 in W 1,p
0 (Ω), we infer that

∫
Ω

|∇w0|p dx ≤

lim
n→∞

inf

∫
Ω

|∇wn|p dx = 0 and consequently w0 = 0. Therefore wn → 0 in Lq(Ω), which

is a contradiction since ∥wn∥q = 1. Hence, {un}n≥0 is bounded in W 1,q
0 (Ω). □

Proposition 4.6. We have m = inf
u∈Nλ

Eλ(u) > 0.

Proof. Assume by contradiction that m = 0. Then, for {un}n≥0 as in Proposition 4.5,

we have

0 < λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx =

∫
Ω

|∇un|p dx → 0, as n → ∞. (4.3)

By Proposition 4.5, we deduce that {un}n≥0 is bounded in W 1,q
0 (Ω). Therefore there

exists u0 ∈ W 1,q
0 (Ω) such that un ⇀ u0 in W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω) and un → u0 in Lq(Ω).

Thus

∫
Ω

|∇u0|p ≤ lim
n→∞

inf

∫
Ω

|∇un|p dx = 0. Consequently u0 = 0, un ⇀ 0 in

W 1,q
0 (Ω) ⊂ W 1,p

0 (Ω) and un → 0 in Lq(Ω). Writing again wn = un

∥un∥q we have

0 <

λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx

∥un∥qq
= ∥un∥p−q

q

∫
Ω

|∇wn|p dx,
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and ∫
Ω

|∇wn|p dx = ∥un∥q−p
q

(
λ−

∫
Ω

|∇wn|2 dx
)
→ 0 as n → ∞,

since ∥un∥q → 0 and p < q, {wn}n≥0 is bounded in W 1,q
0 (Ω). Next since wn ⇀ w0, we

deduce that

∫
Ω

|∇w0|p dx ≤ lim
n→∞

inf

∫
Ω

|∇wn|p dx = 0 and we have w0 = 0. This is a

contradiction since ∥wn∥q = 1 for each n. Thus m > 0. □

Proposition 4.7. There exists u ∈ Nλ such that Eλ(u) = m.

Proof. Let {un}n≥0 ⊂ Nλ be a minimizing sequence, i.e., Eλ(un) → m as n →
∞. Thanks to Proposition 4.5, we have that {un} is bounded in W 1,q

0 (Ω). It fol-

lows that there exists u0 ∈ W 1,q
0 (Ω) such that un ⇀ u0 in W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω)

and strongly in Lq(Ω). The results in the two propositions above guarantee that

Eλ(u0) ≤ lim
n→∞

inf Eλ(un) = m. Since for each n we have un ∈ Nλ, then∫
Ω

|∇un|q dx+

∫
Ω

|∇un|p dx = λ

∫
Ω

|un|q dx for all n. (4.4)

Assuming u0 ≡ 0 on Ω implies that

∫
Ω

|un|q dx → 0 as n → ∞, and by relation

(4.4) we obtain that

∫
Ω

|∇un|q dx → 0 as n → ∞. Combining this with the fact that

un converges weakly to 0 in W 1,q
0 (Ω), we deduce that un converges strongly to 0 in

W 1,q
0 (Ω) and consequently in W 1,p

0 (Ω). Hence we infer that

λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx =

∫
Ω

|∇un|p dx → 0, as n → ∞.

Next, using similar argument as the one used in the proof of Proposition 4.6, we will

reach to a contradiction, which shows that u0 ̸≡ 0. Letting n → ∞ in relation (4.4),

we deduce that ∫
Ω

|∇u0|q dx+

∫
Ω

|∇u0|p dx ≤ λ

∫
Ω

|u0|q dx.

If there is equality in the above relation then u0 ∈ Nλ and m ≤ Eλ(u0). Assume by

contradiction that ∫
Ω

|∇u|q dx+

∫
Ω

|∇u|p dx < λ

∫
Ω

|u|q dx. (4.5)

Let t > 0 be such that tu0 ∈ Nλ, i.e.,

t =

(λ

∫
Ω

|u0|q dx−
∫
Ω

|∇u0|q dx∫
Ω

|∇u0|p dx

) 1
p−q

.
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We note that t ∈ (0, 1) since 1 < tp−q (using (4.5)). Finally, since tu0 ∈ Nλ with

t ∈ (0, 1) we have

0 < m ≤ Eλ(tu0) =

(
1

p
− 1

q

)∫
Ω

|∇(tu0)|p dx = tp
(
1

p
− 1

q

)∫
Ω

|∇u0|p dx

= tpEλ(u0)

≤ tp lim
k→∞

inf Eλ(uk) = tpm < m for t ∈ (0, 1),

and this is a contradiction which assures that relation (4.5) cannot hold and conse-

quently we have u0 ∈ Nλ. Hence m ≤ Eλ(u0) and m = Eλ(u0). □

Theorem 4.8. Let p < q. Then every λ ∈ (λD
1 (q),∞) is a first eigenvalue of problem

(1.2).

Proof. Let u ∈ Nλ be such that Eλ(u) = m (thanks to Proposition 4.7). We show that

⟨E ′
λ(u), v⟩ = 0 for all v ∈ W 1,q

0 (Ω). We recall that for u ∈ Nλ, we have∫
Ω

|∇u|q dx+

∫
Ω

|∇u|p dx = λ

∫
Ω

|u|q dx.

Let v ∈ W 1,q
0 (Ω). For every δ in some small interval (−ε, ε) certainly the function u+δv

does not vanish identically. Let t(δ) > 0 be a function such that t(δ)(u + δv) ∈ Nλ,

namely

t(δ) =

(λ

∫
Ω

|u+ δv|q dx−
∫
Ω

|∇(u+ δv)|q dx∫
Ω

|∇(u+ δv)|p dx

) 1
p−q

.

The function t(δ) is a composition of differentiable functions, so it is differentiable.

The precise expression of t′ does not matter here. Observe that t(0) = 1. The map

δ 7→ t(δ)(u + δv) defines a curve on Nλ along which we evaluate Eλ. Hence we define

γ : (−ε, ε) → R as γ(δ) = Eλ(t(δ)(u+ δv)). By construction, δ = 0 is a minimum point

for γ. Consequently

0 = γ′(0) = ⟨E ′
λ(t(0)u), t

′(0)u+ t(0)v⟩ = t′(0)⟨E ′
λ(u), u⟩+ ⟨E ′

λ(u), v⟩ = ⟨E ′
λ(u), v⟩

using the fact that ⟨E ′
λ(u), u⟩ = 0 because u ∈ Nλ. We then obtained that ⟨E ′

λ(u), v⟩ =
0 for all v ∈ W 1,q

0 (Ω). □

5. Bifurcation

In this section we discuss bifurcation phenomena for problem (1.2). We begin with

the following.

Definition 5.1. A real number µ is called a bifurcation point of (1.2) if and only if

there is a sequence (un, µn) of solutions of (1.2) such that un ̸≡ 0 and

µn → µ, ∥un∥1,s → 0, as n → ∞, s = p (if p > q), or s = q (if p < q).
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Observations: Define F : W 1,p
0 (Ω) ∩W 1,q

0 (Ω) → R by

F (u) =

1
p

∫
Ω
|∇u|pdx+ 1

q

∫
Ω
|∇u|qdx

1
q

∫
Ω
|u|qdx

, for all u ∈ W 1,p
0 (Ω) ∩W 1,q

0 (Ω).

By setting u = re1, where e1 stands as the normalized eigenfunction associated to the

eigenvalue λD
1 (q) of the q-homogenous equation (1.3), we then have

F (re1) =

rp−q

p

∫
Ω
|∇e1|pdx+ 1

q

∫
Ω
|∇e1|qdx

1
q

∫
Ω
|e1|qdx

.

We distinguish two cases:

(i) Assume that p > q. Thus we find that F (re1) → λD
1 (q) as r → 0, which

indicates bifurcation in 0 from λD
1 (q).

(ii) Assume that p < q. We find that F (re1) → ∞ as r → 0, which indicates there

is no bifurcation in 0 from λD
1 (q). One is lead to look for bifurcation at infinity.

Our aim is to show that the variational q-homogenous eigenvalues λD
k (q) of equation

(1.3) are bifurcation points for the nonlinear eigenvalues λD
k (p, q; ρ) of equation (1.2).

More precisely, we will show that

λD
k (p, q; ρ) → λD

k (q) as ρ → 0.

As in section 2, let Dρ(p, q) = {u ∈ W 1,p
0 (Ω) \ {0} ⊂ W 1,q

0 (Ω) \ {0} :
∫
Ω
|u|qdx = ρ}

and

Γk,ρ = {A ⊂ Dρ(p, q) : A symmetric, A compact, γ(A) ≥ k}.
By the definition of λD

k (q) we know that for ε > 0 small there is Aε ∈ Γk,1 such that

sup
{u∈Aε,

∫
Ω |u|qdx=1}

∫
Ω

|∇u|qdx ≤ λD
k (q) + ε .

We want to approximate Aε by a finite-dimensional set. Since Aε is compact, for every

δ > 0 there exist a finite number of points x1, . . . , xn(δ) such that

Aε ⊂
n(δ)⋃
i=1

Bδ(xi). (5.1)

Let En = span{x1, . . . , xn(δ)}, and set

PnAε := {Pnx, x ∈ Aε}, (5.2)

where Pnx ∈ En is such that

∥x− Pnx∥1,q = inf{∥x− z∥1,q, z ∈ En}.

We claim that γ(PnAε) ≥ k. Clearly, PnAε is symmetric and compact. Furthermore,

0 ̸∈ PnAε; indeed since Aε is compact, and 0 ̸∈ Aε, there is small ball Bτ (0) such that
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Aε ∩ Bτ (0) = ∅. Now, choose δ > 0 in (5.1) such that δ < τ/2. Then, for x ∈ Aε there

is xi ∈ En, for some i ∈ {1, . . . , n(δ)}, such that ∥x− xi∥1,q < δ, and hence

∥x− Pnx∥1,q = inf{∥x− z∥1,q, z ∈ En} ≤ ∥x− xi∥1,q < τ/2

and thus PnAε ∩Bτ/2(0) = ∅.
Finally, we have to show that γ(PnAε) ≥ k. This is again by approximation: since

γ(Aε) ≥ k, there exist a continuous and odd map g : Aε → Rk \ {0}. Then by Tietze

extension theorem there exist a continuous and odd map g̃ : W 1,q
0 (Ω) → R such that

g̃|Aε = g. By continuity and compactness of Aε we can conclude that

g̃|PnAε : W
1,q
0 (Ω) → Rk \ {0}. Now, again by approximation, we conclude that there is

a n = n(ε) such that

sup
{u∈PnAε}

∫
Ω

|∇u|qdx ≤ λD
k (q) + 2ε .

Finally, note that by homogeneity

inf
A∈Γk,ρ

sup
u∈A

∫
Ω

|∇u|q dx = λD
k (q) ρ

and hence also

sup
{u∈ρPnAε}

∫
Ω

|∇u|qdx ≤
(
λD
k (q) + 2ε

)
ρ. (5.3)

Recall that by (2.4) we have, for each integer k > 0,

ck(p, q; ρ) = inf
A∈Γk,ρ

sup
u∈A

{1
p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx
}

We first prove the following lemma which is useful for the bifurcation result from zero.

Lemma 5.2. Let p > q. For any integer k > 0 and ρ > 0, ε > 0, there exists a positive

constant C(ε) such that the following estimate holds:

|ck(p, q; ρ)−
1

q
λD
k (q) ρ| ≤ C(ε)ρp/q + 2ε ρ.

Proof. For any k > 0, we clearly have ck(p, q; ρ) ≥ 1
q
λD
k (q) ρ.

By (5.3) we can estimate

ck(p, q, ρ) = inf
A∈Γk,ρ

sup
u∈A

{1
p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx
}

≤ sup
u∈ρPnAε

{1
p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx
}

≤ sup
u∈ρPnAε

1

p

∫
Ω

|∇u|p dx+ sup
u∈ρPnAε

1

q

∫
Ω

|∇u|q dx

≤ 1

p

∫
Ω

|∇v|p dx+
1

q
(λD

k (q) + 2ε)ρ
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for some v ∈ ρPnAε with
∫
Ω
|v|qdx = ρ. Since PnAε is finite-dimensional, there exists

a positive constant C(ε) such that( ∫
Ω

|∇v|pdx
)1/p ≤ C(ε)

( ∫
Ω

|v|qdx
)1/q

and hence ∫
Ω

|∇v|pdx ≤ C(ε)
( ∫

Ω

|v|qdx
)p/q

= C(ε) ρp/q.

Finally, we get

0 ≤ ck(p, q; ρ)−
1

q
λD
k (q) ρ ≤ C(ε)ρp/q + 2ερ.

□

5.1. Bifurcation from zero.

Here, we show that for equation (1.2), for p > q, there is a branch of first eigenvalues

bifurcating from (λD
k (q), 0) ∈ R+ ×W 1,p

0 (Ω).

Theorem 5.3. Let 1 < q < p < ∞. Then for each integer k > 0 the pair (λD
k (q), 0) is

a bifurcation point of problem (1.2).

An illustration of the bifurcation results obtained in Theorem 5.3 is given by the figure

1 below.

Proof. We aim to show that λD
k (p, q; ρ) → λD

k (q) and ∥uk∥1,p → 0, as ρ → 0+. Thanks

to Lemma 5.2 we have

1

p

∫
Ω

|∇uk|pdx ≤ Cn(ε)ρ
p/q + 2ε ρ

Furthermore

0 ≤ λD
k (p, q; ρ) ρ− λD

k (q)ρ

=

∫
Ω

|∇uk|pdx+

∫
Ω

|∇uk|qdx− λD
k (q)ρ

=
q

p

∫
Ω

|∇uk|pdx+

∫
Ω

|∇uk|qdx− λD
k (q)ρ+ (1− q

p
)

∫
Ω

|∇uk|pdx

= q ck(p, q; ρ)− λD
k (q)ρ+ (1− q

p
)

∫
Ω

|∇uk|pdx

≤ C
(
Cn(ε)ρ

p/q + 2ε ρ
)

Since ε > 0 is arbitrary we get the first claim.

Let us prove that ∥uk∥1,p → 0 as ρ → 0+. Letting v = uk in relation (2.1), we have∫
Ω

|∇uk|p dx+

∫
Ω

|∇uk|q dx = λD
k (p, q; ρ)

∫
Ω

|uk|q dx.
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Therefore ∫
Ω

|∇uk|p dx ≤ λD
k (p, q; ρ)

∫
Ω

|uk|q dx ≤ Ck ρ

Hence

∫
Ω

|∇uk|p dx → 0 as ρ → 0. This complete the proof. □

5.2. Bifurcation from infinity.

The goal is to prove that if p < q, there is a branch of first eigenvalues bifurcating from

(λD
k (q),∞).

For u ∈ W 1,q
0 (Ω), u ̸= 0, we set w = u/∥u∥21,q. We have ∥w∥1,q = 1

∥u∥1,q and

|∇w|p−2∇w = 1

∥u∥2(p−1)
1,q

|∇u|p−2∇u, |∇w|q−2∇w

= 1

∥u∥2(q−1)
1,q

|∇u|q−2∇u, |w|q−2w = 1

∥u∥2(p−1)
1,q

|u|q−2u

Introducing this change of variable in (2.1), we find that,

∥u∥2(p−q)
1,q

∫
Ω

|∇w|p−2∇w · ∇v dx+

∫
Ω

|∇w|q−2∇w · ∇v dx = λ

∫
Ω

|w|q−2w v dx

for every v ∈ W 1,q
0 (Ω). This leads to the following nonlinear eigenvalue problem (for

1 < p < q < ∞){
−∥w∥2(q−p)

1,q ∆pw −∆qw = λ|w|q−2w in Ω

w = 0 on ∂Ω.
(5.4)

Proposition 5.4. Assume that p < q. If (λ, 0) is a bifurcation point of solutions of

problem (5.4) then λ is an eigenvalue of problem (1.3).

Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (5.4), there

is a sequence of nontrivial solutions of problem (5.4) such that λn → λ and ∥wn∥1,q → 0

in W 1,q
0 (Ω). We then have

∥wn∥2(q−p)
1,q

∫
Ω

|∇wn|p−2∇wn · ∇v dx+

∫
Ω

|∇wn|q−2∇wn · ∇v dx = λn

∫
Ω

|wn|q−2wnv dx.

(5.5)

By using the argument in Remark 3.1 and then passing to limit, we complete the

proof. □

Let us consider a small ball Br(0) := { w ∈ W 1,q
0 (Ω) \ {0}/ ∥w∥1,q < r }, and the

operator

T := −∥ · ∥2(q−p)
1,q ∆p −∆q : W

1,q
0 (Ω) ⊂ W 1,p

0 (Ω) → W−1,p′(Ω) ⊂ W−1,q′(Ω).
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Proposition 5.5. Let 1 < p < q. There exists r > 0 such that the mapping

T : Br(0) ⊂ W 1,q
0 (Ω) → W−1,q′(Ω) is strongly monotone, i.e., there exists C > 0 such

that

⟨T (u)− T (v), u− v⟩ ≥ C∥u− v∥q1,q, for u, v ∈ Br(0) ⊂ W 1,q
0 (Ω)

with r > 0 sufficiently small.

Proof. Using that −∆p is strongly monotone on W 1,p
0 (Ω) on the one hand and the

Hölder inequality on the other hand, we have

⟨T (u)− T (v), u− v⟩ = ∥∇u−∇v∥q +
(
∥u∥2(q−p)

1,q (−∆pu)− ∥v∥2(q−p)
1,q (−∆pv), u− v

)
= ∥u∥2(q−p)

1,q ((−∆pu)− (−∆pv), u− v)

+
(
∥u∥2(q−p)

1,q − ∥v∥2(q−p)
1,q

)
(−∆pv, u− v)

≥ ∥∇u−∇v∥q −
∣∣∣∥u∥2(q−p)

1,q − ∥v∥2(q−p)
1,q

∣∣∣ ∥∇v∥p−1
p ∥∇(u− v)∥p

≥ ∥∇u−∇v∥q −
∣∣∣∥u∥2(q−p)

1,q − ∥v∥2(q−p)
1,q

∣∣∣C∥v∥p−1
1,q ∥u− v∥1,q.(5.6)

By the Mean Value Theorem, we obtain that there exists θ ∈ [0, 1] such that∣∣∣∥u∥2(q−p)
1,q − ∥v∥2(q−p)

1,q

∣∣∣ =

∣∣∣∣ ddt (∥u+ t(v − u)∥21,q
)q−p |t=θ(v − u)

∣∣∣∣
=

∣∣∣(q − p)
(
∥u+ θ(v − u)∥21,q

)q−p
2 (u+ θ(v − u), v − u)1,q

∣∣∣
≤ 2(q − p)∥u+ θ(v − u)∥q−p

1,q ∥u+ θ(v − u)∥1,q∥u− v∥1,q
= 2(q − p)∥u+ θ(v − u)∥2q−p

1,q ∥u− v∥1,q
≤ 2(q − p) ((1− θ)∥u∥1,q + θ∥v∥1,q)2q−p ∥u− v∥1,q
≤ 2(q − p)r2q−p∥u− v∥1,q.

Thus, continuing with the estimate of equation (5.6), we get

⟨T (u)− T (v), u− v⟩ ≥ ∥u− v∥q1,q − 2(q − p)r2q−1C∥u− v∥21,q,

and hence, for r → 0 we end the proof. □

We first show the existence of variational eigenvalues of the nonlinear equation (5.4).

Theorem 5.6. Let 1 < p < q be given. Then, for a fixed ρ > 0, there exists a

non-decreasing sequence of eigenvalues λ̃D
k (p, q; ρ), with corresponding eigenfunctions

wk(p, q; ρ) ∈ W 1,q
0 (Ω) for the nonlinear eigenvalue problem (5.4).

We again rely on [1, Proposition 10.8] for the proof of Theorem 5.6.

Proof. Let Oρ(p, q) = {w ∈ W 1,q
0 (Ω) :

∫
Ω
|w|qdx = ρ}, and Σk,ρ(p, q) = {A ⊂

Σ : γ(A ∩Oρ(p, q)) ≥ k}, where Σ = {A ⊂ W 1,q
0 (Ω) : A closed, A = −A}. Set

dk(p, q; ρ) = inf
A∈Σk,ρ(p,q)

sup
u∈A

(
q

p
∥w∥2(q−p)

1,q

∫
Ω

|∇w|p dx+

∫
Ω

|∇w|q dx
)

> 0. (5.7)
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We show that:

(i) the functional F (w) =
q

p
∥w∥2(q−p)

1,q

∫
Ω

|∇w|p dx+

∫
Ω

|∇w|q dx satisfies the (PS)

condition on Oρ(p, q), and

(ii) if d = dk(p, q) = · · · = dk+m−1(p, q), then the set Kd of critical points of I at

the critical level d has a genus γ(Kd) ≥ m.

We prove (i). Let {wj} ⊂ Oρ(p, q) a (PS) sequence, i.e, for all j, M > 0 |F (wj)| ≤
M and F ′(wj) → 0 in W−1,q′(Ω) as j → ∞. We first show that {wj} is bounded

in Oρ(p, q) ⊂ W 1,p
0 (Ω). Since wj ∈ W 1,q

0 (Ω), with the Poincaré inequality, we have∫
Ω
|wj|qdx ≤ C

∫
Ω
|∇wj|qdx and it follows that

M ≥ |F (wj)| ≥
q

p
∥wj∥2(q−p)

1,q

∫
Ω

|∇wj|pdx+
1

C

∫
Ω

|wj|qdx

≥ ∥wj∥2q−p
1,p +

ρ

C
, since W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω).

Then {wj} is bounded in Oρ(p, q) ⊂ W 1,q
0 (Ω). We can assume that up to a subsequence

still denoted {wj}, there exists w ∈ Oρ(p, q) ⊂ W 1,q
0 (Ω) such that wj ⇀ w in Oρ(p, q) ⊂

W 1,q
0 (Ω). Now, we show that wj converges strongly to w in Oρ(p, q) ⊂ W 1,q

0 (Ω). Since

F ′(wj) → 0 in W−1,q′(Ω) as j → ∞, we have F ′(wj)(wj−w) → 0 and F ′(w)(wj−w) →
0 as j → ∞. We have

⟨F ′(wj)−F ′(w), wj − w⟩

= q

∫
Ω

(
∥wj∥2(q−p)

1,q |∇wj|p−2∇wj − ∥w∥2(q−p)
1,q |∇w|p−2∇w

)
· ∇(wj − w)dx

+ q

∫
Ω

(
|∇wj|q−2∇wj − |∇w|q−2∇w

)
· ∇(wj − w) dx.

Thanks to Proposition 5.5, it follows that

⟨F ′(wj)− F ′(w), wj − w⟩ ≥ C∥wj − w∥q1,q.

Therefore ∥wj − w∥1,q → 0 as j → +∞ and wj converges strongly to w in W 1,q
0 (Ω).

The proof of (ii) is similar to the last part of the proof of Theorem 2.5. □

Theorem 5.7. Let p < q. Then for each integer k > 0 the pair (λD
k (q, ρ),∞) is a

bifurcation point of problem (1.2).

The proof of Theorem 5.7 will follow immediately from the following remark, and the

proof that (λD
k (q, ρ), 0) is a bifurcation point of (5.4), which will be shown in Theorem

5.11 below.

Remark 5.8. With the change of variable, we have that the pair (λD
k (q, ρ),∞) is a

bifurcation point for the problem (1.2) if and only if the pair (λD
k (q, ρ), 0) is a bifurcation

point for the problem (5.4).
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Before we proceed to the proof of Theorem 5.11 below, we show the following lemma.

Lemma 5.9. Let 1 < p < q < ∞. For any integer k > 0 and ρ > 0, ε > 0, there exists

a positive constant D(ε) such that the following estimate holds:

|dk(p, q; ρ)− λD
k (q, ρ)| ≤ (D(ε) + ε)ρ

2q−p
p

where dk(p, q; ρ) is given by (5.7), and λD
k (q, ρ) = inf

A∈Γk,ρ

sup
u∈A

∫
Ω

|∇u|q dx = λD
k (q)ρ .

Proof. For any k > 0, we clearly have dk(p, q; ρ) ≥ λD
k (p, ρ). As in (5.2), we choose

PnAε such that

sup
{w∈PnAε,

∫
Ω |w|qdx=1}

∫
Ω

|∇w|qdx ≤ λD
k (q, ρ) + ε

and so

sup
{w∈PnAε,ρ,

∫
Ω |w|qdx=ρ}

∫
Ω

|∇w|qdx ≤ (λD
k (q, ρ) + ε)ρ,

where PnAε,ρ = {w ∈ PnAε :
∫
Ω
|w|qdx = ρ}. Then

dk(p, q; ρ) = inf
A∈Γk,ρ

sup
u∈A

{q
p
∥w∥2(q−p)

1,q

∫
Ω

|∇w|p dx+

∫
Ω

|∇w|q dx
}

≤ sup
u∈PnAε,ρ

{q
p
∥w∥2(q−p)

1,q

∫
Ω

|∇w|p dx+

∫
Ω

|∇w|q dx
}

≤ sup
u∈PnAε,ρ

q

p
∥w∥2(q−p)

1,q

∫
Ω

|∇w|p dx+ sup
w∈PnAε,ρ

∫
Ω

|∇w|q dx

≤ q

p
∥v∥2(q−p)

1,q

∫
Ω

|∇v|q dx+ (λD
k (q) + ε)ρ since p < q,

≤ q

p
∥v∥2q−p

1,q + (λD
k (q) + ε)ρ

for some v ∈ PnAε,ρ with
∫
Ω
|v|qdx = ρ. Since PnAε is finite-dimensional, there exists

a positive constant Dn(ε) such that
∫
Ω
|∇v|qdx ≤ Dn(ε)(

∫
Ω
|v|qdx)p/q = Dn(ε)ρ

q/p and

∥v∥2q−p
1,q ≤ Dn(ε)ρ

2q−p
p

Finally, we get

0 ≤ dk(p, q; ρ)− λD
k (q, ρ) ≤ Dn(ε)ρ

2q−p
p + ερ ≤ (Dn(ε) + ε)ρ

2q−p
p

since 2q−p
p

> 1. □

Remark 5.10. We recall that the k-th eigenvalue of equation (5.4) satisfies

λ̃D
k (p, q; ρ)ρ = ∥w∥2(q−p)

1,p

∫
Ω

|∇w|pdx+

∫
Ω

|∇w|qdx, with ρ =

∫
Ω

|w|qdx.

So, proceding as in Theorem 5.3 one obtains that λ̃D
k (p, q; ρ) → λD

k (q) as ρ → 0+.
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Theorem 5.11. The pair (λD
k (q), 0) is a bifurcation point of problem (5.4) for any

k > 0 and p < q < ∞.

Proof. In order to prove Theorem 5.11, it suffices to prove that λ̃D
k (p, q; ρ) → λD

k (q, ρ)

and ∥wk∥1,q → 0 as ρ → 0+. The fact that λ̃D
k (p, q; ρ) → λD

k (q) as ρ → 0+ follows from

Lemma 5.9 and Remark 5.10.

It remains to prove that ∥wk∥1,q → 0 as ρ → 0+. For any k > 0, we have

∥wk∥2(q−p)
1,q

∫
Ω

|∇wk|p dx+

∫
Ω

|∇wk|qdx = λ̃D
k (p, q; ρ)

∫
Ω

|wk|q dx

≤ Ck

∫
Ω

|wk|q dx

= Ck ρ → 0 , as ρ → 0

Therefore ∥wk∥1,q → 0, and since p < q, by the Hölder inequality there exists a positive

constant C1 such that
∫
Ω
|∇wk|p dx ≤ C1∥wk∥p1,q, and so also ∥wk∥1,p → 0. This

completes the proof. □

6. Multiplicity results

In this section we prove a multiplicity result: we show that for fixed λ ∈ (λD
k (q), λ

D
k+1(q))

there exist at least k pairs of eigenfunctions ±uλ
i (p, q), i = 1, . . . , k, such that (λ,±uλ

i (p, q))

solve equation (2.1), i.e.

λ = λD
1 (p, q, ρ1) = · · · = λD

k (p, q; ρk) , with ρi =

∫
Ω

|uλ
i (p, q)|qdx.

We distinguish again the two cases p < q and p > q. The proofs rely on variational

methods.

Theorem 6.1. Let 1 < q < p < ∞ or 1 < p < q < ∞, and suppose that λ ∈
(λD

k (q), λ
D
k+1(q)). Then equation (1.2) has at least k pairs of nontrivial solutions.

Proof. We split the proof into two parts.

Part 1: p < q.

In this case we will make use of [1, Proposition 10.8]. We consider the functional

Jλ : W 1,q
0 (Ω)\{0} → R associated to the problem (1.2) defined by

Jλ(u) =
q

p

∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx− λ

∫
Ω

|u|q dx.

The functional Jλ is not bounded from below on W 1,q
0 (Ω), so we consider again the

constraint setNλ, on which we minimize the functional Jλ.We recall that the constraint

set is given by

Nλ := {u ∈ W 1,q
0 (Ω)\{0} : ⟨J ′

λ(u), u⟩ = 0}.
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On Nλ, we have Jλ(u) = (1
p
− 1

q
)

∫
Ω

|∇u|p dx > 0. We clearly have that Jλ is even and

bounded from below onNλ. Next we show that every Palais-Smale (PS) sequence for Jλ
has a converging subsequence on Nλ. Let (un)n≥0 be a (PS) sequence, i.e, |Jλ(un)| ≤ C,

for all n, for some C > 0 and J ′
λ(un) → 0 in W−1,q′(Ω) as n → +∞, with 1

q
+ 1

q′
= 1.

We first show that the sequence (un)n≥0 is bounded on Nλ. Suppose that (un)n≥0 is not

bounded, so

∫
Ω

|∇un|q dx → +∞ as n → +∞. Since Jλ(un) = (1
p
− 1

q
)

∫
Ω

|∇un|p dx,

we have

∫
Ω

|∇un|p dx ≤ c. On Nλ, we have

0 <

∫
Ω

|∇un|p dx = λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx, (6.1)

and hence

∫
Ω

|un|q dx → +∞. Let vn = un

∥un∥q then

∫
Ω

|∇vn|q dx < λ (using (6.1)) and

hence vn is bounded in W 1,q
0 (Ω). Therefore there exists v0 ∈ W 1,q

0 (Ω) such that vn ⇀ v0
in W 1,q

0 (Ω) and vn → v0 in Lq(Ω). Dividing (6.1) by ∥un∥pq , we have

λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx

∥un∥pq
=

∫
Ω

|∇vn|p dx → 0,

since λ

∫
Ω

|un|q dx−
∫
Ω

|∇un|q dx = (
1

p
− 1

q
)−1Jλ(un), |Jλ(un)| ≤ C and ∥un∥pq → +∞.

Now, since vn ⇀ v0 in W 1,q
0 (Ω) ⊂ W 1,p

0 (Ω), we infer that∫
Ω

|∇v0|p dx ≤ lim inf
n→+∞

∫
Ω

|∇vn|p dx = 0,

and consequently v0 = 0. So vn → 0 in Lq(Ω) ⊂ Lp(Ω) and this is a contradiction since

∥vn∥q = 1. Thus (un)n≥0 is bounded on Nλ. Now, we show that un converges strongly

to u in W 1,q
0 (Ω).

We have

∫
Ω

|un|q−2un dx →
∫
Ω

|u|q−2u dx as n → ∞ and since J ′
λ(un) → 0 in W−1,q′(Ω),

un ⇀ u inW 1,q
0 (Ω), we also have J ′

λ(un)(un−u) → 0 and J ′
λ(u)(un−u) → 0 as n → +∞.

We recall that with the computations made in Remark 3.1, we have for 1 < p < ∞∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
·∇(un−u) dx ≥ (∥un∥p−1

1,p −∥u∥p−1
1,p )(∥un∥p1,p−∥u∥p1,p) ≥ 0

Then,
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⟨J ′
λ(un)− J ′

λ(u), un − u⟩ = q

[∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

]
+ q

[∫
Ω

(
|∇un|q−2∇un − |∇u|q−2∇u

)
· ∇(un − u) dx

]
− λq

[∫
Ω

(
|un|q−2un − |u|q−2u

)
· (un − u) dx

]
≥ q

[∫
Ω

(
|∇un|q−2∇un − |∇u|q−2∇u

)
· ∇(un − u) dx

]
− λq

[∫
Ω

(
|un|q−2un − |u|q−2u

)
· (un − u) dx

]
.

Using Lemma 3.3, it follows that

⟨J ′
λ(un)− J ′

λ(u), un − u⟩ ≥ C∥un − u∥q1,q − λq

[∫
Ω

(
|un|q−2un − |u|q−2u

)
· (un − u) dx

]
.

Therefore ∥un − u∥1,q → 0 as n → +∞ and un converges strongly to u in W 1,q
0 (Ω).

Let Σ = {A ⊂ Nλ : A closed and − A = A} and Γj = {A ∈ Σ : γ(A) ≥ j},
where γ(A) denotes the Krasnoselski’s genus. We show that Γj ̸= ∅, for j ∈ {1, . . . , k}.

Let λ ∈ (λD
j (q), λ

D
j+1(q)) and choose Sε

j ∈ Σ ∩ {
∫
Ω
|u|q dx = 1} such that

sup
v∈Sε

j

∫
Ω

|∇v|qdx ≤ λD
j (q) + ε, ε :=

λ− λD
j (q)

2
.

Then, for v ∈ Sε
j we set

ρ(v) =

[ ∫
Ω
|∇v|p dx

λ
∫
Ω
|v|q dx−

∫
Ω
|∇v|q dx

] 1
q−p

,

with

λ

∫
Ω

|v|q dx−
∫
Ω

|∇v|q dx ≥ λ

∫
Ω

|v|q dx− (λD
j (q) + ε)

∫
Ω

|v|q dx

= (λ− λD
j (q)− ε)

∫
Ω

|v|q dx

= [λ− λD
j (q)− (

λ− λD
j (q)

2
)]

∫
Ω

|v|q dx

=
λ− λD

j (q)

2

∫
Ω

|v|q dx > 0, for all v ∈ Sε
j .

Hence, ρ(v)v ∈ Nλ, and then ρ(Sε
j ) ∈ Σ, and γ(ρ(Sε

j )) = γ(Sε
j ) = j for 1 ≤ j ≤ k.
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It is then standard [1, Proposition 10.8] to conclude that

σλ,j = inf
A∈Γj

sup
u∈A

Jλ(u), 1 ≤ j ≤ k, for any k ∈ N∗

yields k pairs of nontrivial critical points for Jλ, which gives rise to k nontrivial solu-

tions of problem (1.2).

Part 2: p > q.

In this case, we will rely on the following theorem.

Theorem (Clark, [7]) .

Let X be a Banach space and G ∈ C1(X,R) satisfying the Palais-Smale condition

with G(0) = 0. Let Γk = { A ∈ Σ : γ(A) ≥ k } with Σ = { A ⊂ X ; A =

−A and A closed }. If ck = inf
A∈Γk

sup
u∈A

G(u) ∈ (−∞, 0), then ck is a critical value.

We consider the C1 functional Jλ : W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω) → R

Jλ(u) =
q

p

∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx− λ

∫
Ω

|u|q dx.

Let Γk = {A ⊂ W 1,q
0 (Ω)\{0}, A compact, A = −A, γ(A) ≥ k}, and for ε > 0 small

let Aε ∈ Γk such that

sup
{u∈Aε,

∫
Ω |u|qdx=1}

∫
Ω

|∇u|qdx ≤ λD
k (q) + ε.

We would like to show that

−∞ < αλ,k = inf
A∈Γk

sup
u∈A

Jλ(u) (6.2)

are critical values for Jλ. We clearly have that Jλ(u) is an even functional for all

u ∈ W 1,p
0 (Ω), and also Jλ is bounded from below on W 1,p

0 (Ω) since Jλ is coercive on

W 1,p
0 (Ω).

We show that Jλ(u) satisfies the (PS) condition. Let {un} be a Palais-Smale sequence,

i.e., |Jλ(un)| ≤ M for all n, M > 0 and J ′
λ(un) → 0 in W−1,p′(Ω) as n → ∞. We first

show that {un} is bounded in W 1,p
0 (Ω). We have

M ≥ |C∥un∥p1,p − C ′∥un∥q1,p| ≥ |C∥un∥p−q
1,p − C ′|∥un∥q1,p,

and so {un} is bounded in W 1,p
0 (Ω). Therefore, u ∈ W 1,p

0 (Ω) exists such that, up to

subsequences that we will denote by (un)n we have un ⇀ u in W 1,p
0 (Ω) and un → u in

Lq(Ω). Arguing as in Part 1, we obtain that ∥un − u∥1,p → 0 as n → +∞, and so un

converges to u in W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω).

As in section 5, we approximate Aε by a finite-dimensional set. Next, we show that

there exists sets Dε of genus greater of equal to k such that sup
u∈Dε

Jλ(u) < 0. For any
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s ∈ (0, 1), we define the set Dε(s) := s · (PnAε) and so γ(Dε(s)) = γ(PnAε) ≥ k. We

have, for any s ∈ (0, 1)

sup
u∈Dε

Jλ(u) = sup
u∈PnAε

Jλ(su)

≤ sup
u∈PnAε

{
qsp

p

∫
Ω

|∇u|pdx+ sq
∫
Ω

|∇u|qdx− λsq
∫
Ω

|u|qdx
}

≤ sup
u∈PnAε

{
qsp

p
c(n)p∥u∥p1,q + sq(λD

k (q) + ε− λ)

}
< 0

for s > 0 sufficiently small.

Finally, we conclude that αλ,k are critical values for Jλ thanks to Clark’s Theorem. □

The contents of Theorems 2.5-2.6, Theorem 5.3 and Theorem 6.1 are illustrated in

the following figure.

Figure 1. Illustration of the results of Theorem 2.5-2.6, Theorem 5.3

and Theorem 6.1.
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