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Introduction

Assume Ω ⊂ R N (N ≥ 2) is an open bounded domain with smooth boundary ∂Ω. In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators[END_REF], the authors investigated the asymptotic behavior of the spectrum and the existence of multiple solutions of the following nonlinear eigenvalue problem -∆ p u -∆u = λu on Ω,

u = 0 on ∂Ω, (1.1) 
where -∆ p denotes the p-Laplace operator. In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators[END_REF] it was shown that for p > 2 there exist eigenvalue branches emanating from (λ k , 0), and for 1 < p < 2 there exist eigenvalue branches emanating from (λ k , ∞), where λ k stands as the k-th Dirichlet eigenvalue of the Laplacian. In this paper, we consider the following q-homogenous eigenvalue problem with a perturbation by a p-Laplace term:

-∆ p u -∆ q u = λ|u| q-2 u in Ω u = 0 on ∂Ω.

(1.

2)

The operator ∆ s , formally defined as ∆ s u := div(|∇u| s-2 ∇u) for s = p, q ∈ (1, ∞) is the s-Laplacian, λ ∈ R is a parameter. The (p, q)-Laplace operator given by -∆ p -∆ q appears in a wide range of applications that include biophysics [START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF], plasma physics [START_REF] Wilhelmsson | Explosive instabilities of reaction-diffusion equations[END_REF] and reaction-diffusion equations [START_REF] Aris | Mathematical modelling techniques[END_REF][START_REF] Cherfils | On the stationary solutions of generalized reaction diffusion equations with (p, q)-Laplacian[END_REF]. The (p, q)-Laplace operator has been widely studied; for some results related to our studies, see e.g., [4-6, 12, 14]. We say that λ is a "first eigenvalue", if the corresponding eigenfunction u is positive or negative.

Note that by taking q = 2 in equation (1.2), we recover the case of equation (1.1). We remark however that for q = 2 equation (1.2) describes bifurcation (caused by a p-Laplace operator) from the linear equation -∆u -λu, while for q ̸ = 2 we prove for equation (1.2) the existence of bifurcation branches (again forced by a p-Laplace operator) from the eigenvalues of a nonlinear, but q-homogenous equation. Indeed, it was shown in [START_REF] Garcia Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF] that there exists a nondecreasing sequence of variational positive eigenvalues {λ D k (q)} k tending to +∞ as k → ∞ for the following nonlinear and qhomogenous eigenvalue problem -∆ q u = λ|u| q-2 u in Ω, u = 0 on ∂Ω.

(1.3) Moreover, it is known that the first eigenvalue of problem (1.3) is characterized in the variational point of view by, λ D 1 (q) := inf u∈W 1,q 0 (Ω)\{0}

Ω |∇u| q dx Ω |u| q dx . We consider the sets D 1 (q) = {u ∈ W 1,q 0 (Ω)\{0} :

Ω |u| q dx = 1},
and Σ, the class of closed symmetric (with respect to the origin) subsets of W 1,q 0 (Ω)\{0}, i.e, Σ = {A ⊂ W 1,q 0 (Ω)\{0} : A closed, A = -A}. For A ∈ Σ, we define

γ(A) = inf{k ∈ N : ∃φ ∈ C(A, R k \{0}), φ(-x) = -φ(x)}.
If such γ(A) does not exist, we then define γ(A) = +∞. The number γ(A) ∈ N∪{+∞} is called the Krasnoselski genus of A. Let us consider the family of sets

Σ k = {A ⊂ Σ ∩ D 1 (q) : γ(A) ≥ k}.
Following the proof in [START_REF] Garcia Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF], one shows that one has the following variational characterization of λ D k (q), for k ∈ N,

λ D k (q) = inf A∈Σ k sup u∈A Ω |∇u| q dx.
In this paper, we discuss the nonlinear variational eigenvalues of equation (1.2). Our main results are:

1) For every fixed ρ > 0 there exists a sequence of eigenvalues λ D k (p, q; ρ) k with corresponding eigenfunctions ±u k (p, q; ρ) satisfying Ω |u k (p, q; ρ)| q dx = ρ, with λ D k (p, q; ρ) → +∞ as k → ∞.

2) The variational eigenvalues λ D k (q) of equation (1.3) are bifurcation points from 0 if p > q, and bifurcation points from infinity for 1 < p < q, for the nonlinear eigenvalues λ k (p, q; ρ).

3) For fixed λ ∈ (λ D k (q), λ D k+1 (q)) there exist k eigenvalues of (1.2) with λ = λ D 1 (p, q; ρ 1 ) = • • • = λ D k (p, q; ρ k ), with corresponding eigenfunctions ±u k (p, q; ρ)

such that Ω |u k | q = ρ k
The paper is organized as follows. In section 2, we discuss the variational spectrum of the nonlinear problem (1.2) for u ∈ D ρ with fixed ρ > 0. In section 3 we give some auxiliary results, and in section 4 we discuss the first eigenvalues of equation (1.2). Then, in section 5 we discuss the bifurcation phenomena, and finally in section 6 we prove the multiplicity result.

The standard norm of the Lebesgue space L s (Ω) and the Sobolev space W 1,s 0 (Ω) will be denoted respectively by

∥ • ∥ s = ( Ω | • | s dx) 1/s and ∥ • ∥ 1,s = ( Ω |∇(•)| s dx) 1/s .
We also denote by ⟨ , ⟩, the duality product between W 1,s 0 (Ω) and its dual.

The spectrum of problem (1.2)

In this section we show that equation (1.2) has for every given ρ > 0 a sequence of eigenvalues λ D k (p, q, ρ), with associated eigenfunctions u k (p, q, ρ) and Ω |u k (p, q, ρ)| q dx = ρ.

Definition 2.1. We say that u ∈ W 1,p 0 (Ω) (if p > q ) or u ∈ W 1,q 0 (Ω) (if p < q ) is a weak solution of problem (1.2) if the following integral equality holds:

Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx = λ Ω |u| q-2 u v dx, (2.1 
)

for all v ∈ W 1,p 0 (Ω) ∩ W 1,q 0 (Ω).
We say that λ ∈ R is an eigenvalue of problem (1.2) if there exists an eigenfunction u λ ∈ (W 1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} associated to λ such that relation (2.1) holds.

We say that λ D 1 (p, q, ρ) is a first eigenvalue of equation (1.2) if the corresponding eigenfunction u 1 (p, q; ρ) is a minimizer of the following expression, for some ρ > 0,

c 1 (p, q; ρ) := inf {u∈W 1,p 0 (Ω)∩W 1,q 0 (Ω), Ω |u| q =ρ} 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx . (2.2) Note that λ D 1 (p, q; ρ) satisfies Ω |∇u 1 | p dx + Ω |∇u 1 | q dx = λ D 1 (p, q; ρ) Ω |u 1 | q dx = λ D 1 (p, q; ρ)ρ. Proposition 2.2. If it holds λ ≤ λ D 1 (q) then problem (2.1) has no nontrivial solutions.
Proof. Suppose by contradiction that there exists

λ < λ D 1 (q) which is an eigenvalue of problem (1.2) with u λ ∈ (W 1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} the corresponding eigenfunction. Let v = u λ in relation (2.1), we then have Ω |∇u λ | p dx + Ω |∇u λ | q dx = λ Ω |u λ | q dx.
On the other hand, we have

λ D 1 (q) Ω |u λ | q dx ≤ Ω |∇u λ | q dx, (2.3) 
and subtracting by λ

Ω |u λ | q dx from both sides of (2.3), it follows that (λ D 1 (q) -λ) Ω |u λ | q dx ≤ Ω |∇u λ | q dx -λ Ω |u λ | q dx.
This implies that

0 < (λ D 1 (q) -λ) Ω |u λ | q dx ≤ Ω |∇u λ | q dx + Ω |∇u λ | p dx -λ Ω |u λ | q dx = 0. Hence λ < λ D 1 (q) is not an eigenvalue of problem (1.2) with u λ ̸ = 0. Now, assume that λ = λ D 1 (q) is an eigenvalue of equation (1.2), thus there exists an eigenfunction u λ D 1 (q) ∈ (W 1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} associated to λ D 1 (q) such that relation (2.1) holds. Letting v = u λ D 1 (q) in (2.1), we obtain Ω |∇u λ D 1 (q) | p dx + Ω |∇u λ D 1 (q) | q dx = λ D 1 (q) Ω |u λ D 1 (q) | q dx. Since λ D 1 (q) Ω |u λ D 1 (q) | q dx ≤ Ω |∇u λ D 1 (q) | q dx, it follows that Ω |∇u λ D 1 (q) | p dx + Ω |∇u λ D 1 (q) | q dx ≤ Ω |∇u λ D 1 (q)
| q dx and then u λ D 1 (q) = 0 by the Poincaré inequality. This concludes the proof. □ Proposition 2.3. The first eigenfunctions u λ 1 associated to some λ ∈ (λ D 1 (q), ∞) are positive or negative in Ω.

Proof. Let u λ 1 ∈ (W 1,p 0 (Ω) ∩ W 1,1 0 (Ω)) \ {0} be a first eigenfunction associated to λ ∈ (λ D 1 (q), ∞), then Ω |∇u λ 1 | p dx + Ω |∇u λ 1 | q dx = λ Ω |u λ 1 | q dx,
which means that u λ 1 achieves the infimum in the definition of µ 1 (p, q; ρ), with ρ = 1 q Ω |u| q . On the other hand, we have

∇|u λ 1 | 1,s = ∥∇u λ 1 ∥ 1,s for s = p, q and |u λ 1 | q = ∥u λ 1 ∥ q since ∇|u λ 1 | = |∇u λ 1 | and |u λ 1 | = |u λ 1 | almost everywhere.
Then, it follows that |u λ 1 | achieves also the infimum in the definition of µ 1 (p, q; ρ). Therefore by the Harnack inequality, we have |u λ 1 | > 0 for all x ∈ Ω and consequently u λ 1 is either positive or negative in Ω. □

The Palais-Smale condition plays an important role in the minimax argument, and we recall here its definition. Definition 2.4. A C 1 functional I defined on a smooth submanifold M of a Banach space X is said to satisfy the Palais-Smale condition on M if any sequence {u n } ⊂ M satisfying that {I(u n )} n is bounded and I M ′ (u n ) → 0 as n → +∞ has a convergent subsequence.

Next, we start the discussion about the existence of eigenvalues for problem (1.2). We note that these eigenvalues depend on ρ(u) = Ω |u| q dx. The proofs of the following two theorems rely on [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8].

Theorem 2.5. Let p > q. Then, for a given ρ > 0, there exists a nondecreasing sequence of critical values c k (p, q; ρ) with associated nonlinear eigenvalues λ D k (p, q; ρ) → +∞, as k → +∞ and with corresponding eigenfunctions u k (p, q; ρ) ∈ W 1,p 0 (Ω) for problem (1.2).

Proof. Let D ρ (p, q) = {u ∈ W 1,p 0 (Ω) : Ω |u| q dx = ρ}, and Σ k (p, q) = {A ⊂ D ρ (p, q), A ∈ Σ and γ(A) ≥ k}, where Σ = {A ⊂ W 1,p 0 (Ω) :

A closed, A = -A}. Set c k (p, q; ρ) = inf A∈Σ k (p,q) sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx > 0 (2.4)
Let us show that I(u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx satisfies the Palais-Smale (PS) condition on D ρ (p, q). Let {u n } ⊂ D ρ (p, q) a (PS) sequence, i.e, for all n, K > 0

|I(u n )| ≤ K and (I Dρ ) ′ (u n ) → 0 in W -1,p ′ (Ω) as n → ∞.
We first show that {u n } ⊂ D ρ (p, q) is bounded in W 1,p 0 (Ω). Since u n ∈ W 1,q 0 (Ω), with the Poincaré inequality, we have Ω |u n | q dx ≤ K Ω |∇u n | q dx and it follows that

K ≥ |I(u n )| ≥ q p Ω |∇u n | p dx + 1 C Ω |u n | q dx = q p ∥u n ∥ p 1,p + ρ C .
Then {u n } ⊂ D ρ (p, q) is bounded in W 1,p 0 (Ω). We can assume that up to a subsequence, still denoted {u n }, there exists u ∈ W 1,p 0 (Ω) such that u n ⇀ u in W 1,p 0 (Ω) and u n → u in L q . Now, we show that u n converges strongly to u in W 1,p 0 (Ω). Since (

I Dρ ) ′ (u n ) → 0 in W -1,p ′ (Ω) as n → ∞, there exists µ n ∈ R and ε n → 0 in W -1,p ′ 0 (Ω) such that I ′ (u n )v -µ n Ω |u n | q-2 u n v = ⟨ε n , v⟩. We have I ′ (u n )u n -µ n Ω |u n | q → 0, and since I ′ (u n )u n ≤ cI(u n ) ≤ c it follows that |µ n | ≤ c. From this we obtain that I ′ (u n )(u n - u) → 0 and I ′ (u)(u n -u) → 0 as n → ∞. Therefore, o(1) = ⟨I ′ (u n ) -I ′ (u), u n -u⟩ = Ω (|∇u n | p-2 ∇u n -|∇u| p-2 ∇u) • ∇(u n -u)dx + Ω (|∇u n | q-2 ∇u n -|∇u| q-2 ∇u) • ∇(u n -u)dx :=Q .
Using Lemma 3.3 below and the fact that the underbraced quantity Q is positive (see Remark 3.1), it follows that

⟨I ′ (u n ) -I ′ (u), u n -u⟩ ≥ c 2 ∥u n -u∥ p 1,p . This shows that u n converges strongly to u in W 1,p 0 (Ω) as n → ∞ since ⟨I ′ (u n ) - I ′ (u), u n -u⟩ → 0 as n → ∞.
In order to end the proof, let us show that if c = c k (p, q) = • • • = c k+m-1 (p, q), then the set K c of critical points of I at the critical level c has a genus γ(K c ) ≥ m. We consider the level set at c,

K c := {u ∈ D ρ (p, q) : I(u) = c , I ′ (u) = 0}.
We have that K c is compact since the functional I satisfies the Palais-Smale condition and 0 / ∈ K c since c > 0 = I(0). In addition, we have I(u) = I(-u). Hence K c ∈ Σ. Assume by contradiction that γ(K c ) ≤ m -1. Take A ε ∈ Σ k+m-1 such that sup Aε I(u) ≤ c + ε. By the properties of the genus, there exists a δ-neighborhood N δ of K c such that γ(N δ ) = γ(K c ), and

γ(A ε \N δ ) ≥ γ(A ε )-γ(N δ ) ≥ k+m-1-(m-1) = k.
By the deformation theorem there exists a homeomorphism η(1, •) such that I(u) ≤ c -ε, for u ∈ η(1, A ε \ N δ ). Then we arrive at the contradiction

c = inf A∈Σ k sup u∈A I(u) ≤ sup η(1,Aε\N δ ) I(u) ≤ c -ε Hence, γ(K c ) ≥ m.
With a compactness argument one shows that c k (p, q; ρ) → ∞ as k → ∞.

For the corresponding eigenvalues λ D k (p, q, ρ) we then have

Ω |∇u k | p dx + Ω |∇u k | q dx = λ D k (p, q; ρ) Ω |u k | q dx = λ D k (p, q; ρ) ρ
Thus λ D k (p, q; ρ) ρ > c k (p, q; ρ), for all k (and fixed ρ), and hence also λ D k (p, q; ρ) → ∞ as k → ∞. □

For p < q one has the analogous result:

Theorem 2.6. Let p < q be given.Then, for a given ρ > 0, there exists a nondecreasing sequence of critical values c k (p, q; ρ) with associated nonlinear eigenvalues λ D k (p, q; ρ) → +∞, as k → +∞ and with corresponding eigenfunctions

u k (p, q; ρ) ∈ W 1,q 0 (Ω) for problem (1.2). Proof. Let D ρ (p, q) = {u ∈ W 1,q 0 (Ω) : Ω |u| q dx = ρ}, and Σ k (p, q) = {A ⊂ Σ : γ(A ∩ D ρ (p, q)) ≥ k}, where Σ = {A ⊂ W 1,q 0 (Ω) : A closed, A = -A}. Set b k (p, q) = inf A∈Σ k (p,q) sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx > 0.
Similar to the proof of Theorem 2.5, one shows that:

(i) the functional I(u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx satisfies the (PS) condition on D ρ (p, q), and (ii) if b = b k (p, q) = • • • = b k+m-1 (p, q), then the set K b of critical points of I at the critical level b has a genus γ(K b ) ≥ m.

□

We note that the results of Theorem 2.5-2.6 are illustrated in figure 1 in section 6.

Auxiliary results

Remark 3.1. Let p > q. We recall that the nonlinear operator Θ :

W 1,p 0 (Ω) → W -1,q ′ (Ω) ⊂ W -1,p ′ (Ω) defined by ⟨Θu, v⟩ = Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx
is continuous and so it is demi-continuous. The operator Θ is said to be demi-continuous if Θ satisfies that whenever u n ∈ W 1,p 0 (Ω) converges to some u ∈ W 1,p 0 (Ω) then Θu n ⇀ Θu as n → ∞. In addition, we claim that the operator Θ satisfies the following condition: for any

u n ∈ W 1,p 0 (Ω) satisfying u n ⇀ u in W 1,p 0 (Ω) and lim sup n→∞ ⟨Θu n , u n -u⟩ ≤ 0, then u n → u in W 1,p 0 (Ω) as n → ∞.
The same result hold in the case where p < q.

Indeed, assume that u n ⇀ u in W 1,p 0 (Ω) and lim sup n→∞ ⟨Θu n , u n -u⟩ ≤ 0. Hence u n converges strongly to u in L p (Ω) and one has

0 ≥ lim sup n→∞ ⟨Θu n -Θu, u n -u⟩ = lim sup n→∞ Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u + |∇u n | q-2 ∇u n -|∇u| q-2 ∇u) • ∇(u n -u)dx.
On the other hand, for any ∇u n , ∇u ∈ (L p (Ω)) N , one has,

Ω (|∇u n | p-2 ∇u n -|∇u| p-2 ∇u) • ∇(u n -u)dx = Ω (|∇u n | p + |∇u| p -|∇u n | p-2 ∇u n • ∇u -|∇u| p-2 ∇u • ∇u n )dx ≥ Ω (|∇u n | p + |∇u| p )dx - Ω |∇u n | p dx 1/p ′ × Ω |∇u| p dx 1/p - - Ω |∇u n | p dx 1/p × Ω |∇u| p dx 1/p ′ = Ω |∇u n | p dx p-1 p - Ω |∇u| p dx p-1 p × Ω |∇u n | p dx 1 p - Ω |∇u| p dx 1 p = ∥u n ∥ p-1 1,p -∥u∥ p-1 1,p ∥u n ∥ p 1,p -∥u∥ p 1,p ≥ 0.
We then deduce from this inequality that

Ω |∇u n | p dx → Ω |∇u| p dx as n → ∞ and similarly Ω |∇u n | q dx → Ω |∇u| q dx as n → ∞. Consequently u n converges strongly to u in W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω). Proposition 3.2. Assume that p > q. If (λ, 0) is a bifurcation point of solutions of problem (1.2) then λ is an eigenvalue of problem (1.3).
Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (1.2), there is a sequence of nontrivial solutions of problem (1.2) such that λ n → λ and ∥u n ∥ 1,p → 0 in W 1,p 0 (Ω). We then have

Ω |∇u n | p-2 ∇u n • ∇v dx + Ω |∇u n | q-2 ∇u n • ∇v dx = λ n Ω |u n | q-2 u n v dx, (3.1) 
Let w n = u n /∥u n ∥ 1,p . Plugging this change of variable into equation (3.1), we get

∥u n ∥ p-q 1,p Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx = λ n Ω |w n | q-2 w n v dx (3.2) With Remark 3.1, it follows that ∥u n ∥ p-q 1,p Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx → Ω |∇w| q-2 ∇w • ∇v dx
as n → ∞ since ∥u n ∥ 1,p → 0 by assumption and λ n Ω |u n | q-2 u n v dx converges to λ Ω |u| q-2 uv dx as n → ∞. Thus, we obtain that

Ω |∇w| q-2 ∇w • ∇v dx = λ Ω |u| q-2 uv dx for all v ∈ W 1,p 0 (Ω). □
The following lemma will be used in some occasions.

Lemma 3.3 ( [13]

). There exist constants c 1 , c 2 such that for all x 1 , x 2 ∈ R N , we have the following vector inequalities for 1 < s < 2

(|x 2 | s-2 x 2 -|x 1 | s-2 x 1 ) • (x 2 -x 1 ) ≥ c 1 (|x 2 | + |x 1 |) s-2 |x 2 -x 1 | 2 ,
and for s > 2 (|x 2 | s-2 x 2 -|x 1 | s-2 x 1 ) • (x 2 -x 1 ) ≥ c 2 |x 2 -x 1 | s .

First eigenvalues

In this section we prove that every λ > λ D 1 (q) is a first eigenvalue of problem (1.2).

We define the energy functional

E λ : W 1,p 0 (Ω) ∩ W 1,q 0 (Ω) → R associated to relation (2.1) by E λ (u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx - λ q Ω |u| q dx. (4.1)
Lemma 4.1. Suppose that p > q. Then for each λ > 0, the functional E λ defined in (4.1) is coercive.

Proof. If p > q, We have that W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω) and the following inequalities hold true

(i) 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≥ 1 p Ω |∇u| p dx, (ii) 
Ω |∇u| q dx ≤ C∥u∥ q 1,p (using the Hölder inequality).

With items (i) and (ii) we obtain E λ (u) ≥ 1 p ∥u∥ p 1,p -C∥u∥ q 1,p and consequently E λ (u) → +∞ as ∥u∥ 1,p → +∞. □ Remark 4.2. We notice that E λ is not bounded below if p < q and λ > λ D 1 (q) since for every u = u 1 , the first eigenfunction of (1.3) with Ω |u 1 | q dx = 1, we have

E λ (tu) = t p p ∥u 1 ∥ p 1,p + t q q (λ D 1 (q) -λ) → -∞ as t → ∞. Theorem 4.3. Let p > q. Then every λ ∈ (λ D 1 (q), ∞) is a first eigenvalue of problem (1.2).
Proof. Standard arguments show that E λ ∈ C 1 (W 1,p 0 (Ω), R) with its derivative given by

⟨E ′ λ (u), v⟩ = Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx -λ Ω |u| q-2 u v dx,
for all v ∈ W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω). On the other hand E λ is weakly lower semi-continuous on W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω) since E λ is a continuous convex functional. This fact and Lemma 4.1 allow one to apply a direct calculus of variations result in order to obtain the existence of global minimum point of E λ . We denote by u 0 such a global minimum point, i.e, E λ (u 0 ) = min

u∈W 1,p 0 (Ω)
E λ (u). We observe that for u 0 = sw 1 (where w 1 stands for the corresponding eigenfunction of λ D 1 (q)), we have

E λ (u 0 ) = s p p Ω |∇w 1 | p dx + s q q (λ D 1 (q) -λ) < 0 for s small enough. So there exists u λ ∈ W 1,p 0 (Ω) such that E λ (u λ ) < 0. But E λ (u 0 ) ≤ E λ (u λ ) < 0, which implies that u 0 ∈ W 1,p 0 (Ω)\{0}. We also have that ⟨E ′ λ (u 0 ), v⟩ = 0, ∀ v ∈ E,

and this concludes the proof. □

To treat the case where p < q, we constrain E λ on the Nehari set

N λ = {u ∈ W 1,q 0 (Ω)/ u ̸ = 0, ⟨E ′ λ (u), u⟩ = 0} = {u ∈ W 1,q 0 (Ω)/ u ̸ = 0, Ω |∇u| p dx + Ω |∇u| q dx = λ Ω |u| q dx}.
On N λ , the functional E λ reads as

E λ (u) = ( 1 p -1 q ) Ω |∇u| p dx > 0.
This shows at once that

E λ is coercive in the sense that if u ∈ N λ satisfies ∥u∥ 1,p → ∞, then E λ (u) → ∞.
We define m = inf u∈N λ E λ (u), and we show through a series of propositions that m is attained by some u ∈ N λ which is a critical point of E λ considered on the whole space W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and therefore a solution to equation (1.2).

Proposition 4.4. The set N λ is not empty for λ > λ D 1 (q).

Proof. Since λ > λ D 1 (q) there exists u ∈ W 1,q 0 (Ω) not identically zero such that Ω |∇u| q dx < λ Ω |u| q dx. We then see that tu ∈ N λ for some t > 0. Indeed, tu ∈ N λ is equivalent to

t p Ω |∇u| p dx + t q Ω |∇u| q dx = t q λ Ω |u| q dx, which is solved by t = Ω |∇u| p dx λ Ω |u| q dx-Ω |∇u| q dx 1 q-p > 0.
□ Proposition 4.5. Every minimizing sequence for E λ on N λ is bounded in W 1,q 0 (Ω).

Proof. Let {u n } n≥0 ⊂ N λ be a minimizing sequence of E λ | N λ , i.e. E λ (u n ) → m = inf v∈N λ E λ (v). Then λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 1 p - 1 q -1 m, as n → ∞. (4.2)
Suppose on the contrary that {u n } n≥0 is not bounded i.e.

Ω |∇u n | q dx → ∞ as n → ∞. Then we have Ω |u n | q dx → ∞ as n → ∞, using relation (4.
2). We set

w n = un ∥un∥q . Since Ω |∇u n | q dx < λ Ω |u n | q dx, we deduce that Ω |∇w n | q dx < λ, for
each n and ∥w n ∥ 1,q < λ 1/q . Hence {w n } ⊂ W 1,q 0 (Ω) is bounded in W 1,q 0 (Ω). Therefore there exists w 0 ∈ W 1,q 0 (Ω) such that w n ⇀ w 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and w n → w 0 in L q (Ω). Dividing relation (4.2) by ∥u n ∥ p q , we get

Ω |∇w n | p dx = λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ p q → 0 as n → ∞, since λ Ω |u n | q dx -Ω |∇u n | q dx → 1 p -1 q -1
m < ∞ as n → ∞ and ∥u n ∥ p q → ∞ as n → ∞. On the other hand, since w n ⇀ w 0 in W 1,p 0 (Ω), we infer that

Ω |∇w 0 | p dx ≤ lim n→∞ inf Ω
|∇w n | p dx = 0 and consequently w 0 = 0. Therefore w n → 0 in L q (Ω), which is a contradiction since ∥w n ∥ q = 1. Hence, {u n } n≥0 is bounded in W 1,q 0 (Ω). □ Proposition 4.6. We have m = inf

u∈N λ E λ (u) > 0.
Proof. Assume by contradiction that m = 0. Then, for {u n } n≥0 as in Proposition 4.5, we have

0 < λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 0, as n → ∞. (4.3) 
By Proposition 4.5, we deduce that {u n } n≥0 is bounded in W 1,q 0 (Ω). Therefore there exists u 0 ∈ W 1,q 0 (Ω) such that u n ⇀ u 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and u n → u 0 in L q (Ω). Thus

Ω |∇u 0 | p ≤ lim n→∞ inf Ω |∇u n | p dx = 0. Consequently u 0 = 0, u n ⇀ 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and u n → 0 in L q (Ω). Writing again w n = un ∥un∥q we have 0 < λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ q q = ∥u n ∥ p-q q Ω |∇w n | p dx,
and

Ω |∇w n | p dx = ∥u n ∥ q-p q λ - Ω |∇w n | 2 dx → 0 as n → ∞,
since ∥u n ∥ q → 0 and p < q, {w n } n≥0 is bounded in W 1,q 0 (Ω). Next since w n ⇀ w 0 , we deduce that

Ω |∇w 0 | p dx ≤ lim n→∞ inf Ω
|∇w n | p dx = 0 and we have w 0 = 0. This is a contradiction since ∥w n ∥ q = 1 for each n. Thus m > 0. □ Proposition 4.7. There exists u ∈ N λ such that E λ (u) = m.

Proof. Let {u n } n≥0 ⊂ N λ be a minimizing sequence, i.e., E λ (u n ) → m as n → ∞. Thanks to Proposition 4.5, we have that {u n } is bounded in W 1,q 0 (Ω). It follows that there exists u 0 ∈ W 1,q 0 (Ω) such that u n ⇀ u 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and strongly in L q (Ω). The results in the two propositions above guarantee that

E λ (u 0 ) ≤ lim n→∞ inf E λ (u n ) = m. Since for each n we have u n ∈ N λ , then Ω |∇u n | q dx + Ω |∇u n | p dx = λ Ω |u n | q dx for all n. (4.4) 
Assuming u 0 ≡ 0 on Ω implies that Ω |u n | q dx → 0 as n → ∞, and by relation (4.4) we obtain that

Ω |∇u n | q dx → 0 as n → ∞.
Combining this with the fact that u n converges weakly to 0 in W 1,q 0 (Ω), we deduce that u n converges strongly to 0 in W 1,q 0 (Ω) and consequently in W 1,p 0 (Ω). Hence we infer that

λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 0, as n → ∞.
Next, using similar argument as the one used in the proof of Proposition 4.6, we will reach to a contradiction, which shows that u 0 ̸ ≡ 0. Letting n → ∞ in relation (4.4), we deduce that

Ω |∇u 0 | q dx + Ω |∇u 0 | p dx ≤ λ Ω |u 0 | q dx.
If there is equality in the above relation then u 0 ∈ N λ and m ≤ E λ (u 0 ). Assume by contradiction that

Ω |∇u| q dx + Ω |∇u| p dx < λ Ω |u| q dx. (4.5)
Let t > 0 be such that tu 0 ∈ N λ , i.e.,

t = λ Ω |u 0 | q dx - Ω |∇u 0 | q dx Ω |∇u 0 | p dx 1 p-q .
We note that t ∈ (0, 1) since 1 < t p-q (using (4.5)). Finally, since tu 0 ∈ N λ with t ∈ (0, 1) we have

0 < m ≤ E λ (tu 0 ) = 1 p - 1 q Ω |∇(tu 0 )| p dx = t p 1 p - 1 q Ω |∇u 0 | p dx = t p E λ (u 0 ) ≤ t p lim k→∞ inf E λ (u k ) = t p m < m for t ∈ (0, 1),
and this is a contradiction which assures that relation (4.5) cannot hold and consequently we have u 0 ∈ N λ . Hence m ≤ E λ (u 0 ) and m = E λ (u 0 ). □ Theorem 4.8. Let p < q. Then every λ ∈ (λ D 1 (q), ∞) is a first eigenvalue of problem (1.2).

Proof. Let u ∈ N λ be such that E λ (u) = m (thanks to Proposition 4.7). We show that ⟨E ′ λ (u), v⟩ = 0 for all v ∈ W 1,q 0 (Ω). We recall that for u ∈ N λ , we have

Ω |∇u| q dx + Ω |∇u| p dx = λ Ω |u| q dx.
Let v ∈ W 1,q 0 (Ω). For every δ in some small interval (-ε, ε) certainly the function u+δv does not vanish identically. Let t(δ) > 0 be a function such that t(δ)(u + δv) ∈ N λ , namely

t(δ) = λ Ω |u + δv| q dx - Ω |∇(u + δv)| q dx Ω |∇(u + δv)| p dx 1 p-q .
The function t(δ) is a composition of differentiable functions, so it is differentiable. The precise expression of t ′ does not matter here. Observe that t(0) = 1. The map δ → t(δ)(u + δv) defines a curve on N λ along which we evaluate E λ . Hence we define γ : (-ε, ε) → R as γ(δ) = E λ (t(δ)(u + δv)). By construction, δ = 0 is a minimum point for γ. Consequently

0 = γ ′ (0) = ⟨E ′ λ (t(0)u), t ′ (0)u + t(0)v⟩ = t ′ (0)⟨E ′ λ (u), u⟩ + ⟨E ′ λ (u), v⟩ = ⟨E ′ λ (u), v⟩ using the fact that ⟨E ′ λ (u), u⟩ = 0 because u ∈ N λ .
We then obtained that ⟨E ′ λ (u), v⟩ = 0 for all v ∈ W 1,q 0 (Ω). □

Bifurcation

In this section we discuss bifurcation phenomena for problem (1.2). We begin with the following. Definition 5.1. A real number µ is called a bifurcation point of (1.2) if and only if there is a sequence (u n , µ n ) of solutions of (1.2) such that u n ̸ ≡ 0 and

µ n → µ, ∥u n ∥ 1,s → 0, as n → ∞, s = p (if p > q), or s = q (if p < q).
Observations: Define F : W 1,p 0 (Ω) ∩ W 1,q 0 (Ω) → R by

F (u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx 1 q Ω |u| q dx
, for all u ∈ W 1,p 0 (Ω) ∩ W 1,q 0 (Ω).

By setting u = re 1 , where e 1 stands as the normalized eigenfunction associated to the eigenvalue λ D 1 (q) of the q-homogenous equation (1.3), we then have

F (re 1 ) = r p-q p Ω |∇e 1 | p dx + 1 q Ω |∇e 1 | q dx 1 q Ω |e 1 | q dx .
We distinguish two cases:

(i) Assume that p > q. Thus we find that F (re 1 ) → λ D 1 (q) as r → 0, which indicates bifurcation in 0 from λ D 1 (q). (ii) Assume that p < q. We find that F (re 1 ) → ∞ as r → 0, which indicates there is no bifurcation in 0 from λ D 1 (q). One is lead to look for bifurcation at infinity.

Our aim is to show that the variational q-homogenous eigenvalues λ D k (q) of equation (1.3) are bifurcation points for the nonlinear eigenvalues λ D k (p, q; ρ) of equation (1.2). More precisely, we will show that λ D k (p, q; ρ) → λ D k (q) as ρ → 0.

As in section 2, let D ρ (p, q) = {u ∈ W 1,p 0 (Ω) \ {0} ⊂ W 1,q 0 (Ω) \ {0} : Ω |u| q dx = ρ} and Γ k,ρ = {A ⊂ D ρ (p, q) : A symmetric, A compact, γ(A) ≥ k}.

By the definition of λ D k (q) we know that for ε > 0 small there is

A ε ∈ Γ k,1 such that sup {u∈Aε, Ω |u| q dx=1} Ω |∇u| q dx ≤ λ D k (q) + ε .
We want to approximate A ε by a finite-dimensional set. Since A ε is compact, for every δ > 0 there exist a finite number of points x 1 , . . . , x n(δ) such that

A ε ⊂ n(δ) i=1 B δ (x i ). ( 5.1) 
Let E n = span{x 1 , . . . , x n(δ) }, and set

P n A ε := {P n x, x ∈ A ε }, (5.2) 
where

P n x ∈ E n is such that ∥x -P n x∥ 1,q = inf{∥x -z∥ 1,q , z ∈ E n }.
We claim that γ(P n A ε ) ≥ k. Clearly, P n A ε is symmetric and compact. Furthermore, 0 ̸ ∈ P n A ε ; indeed since A ε is compact, and 0 ̸ ∈ A ε , there is small ball B τ (0) such that A ε ∩ B τ (0) = ∅. Now, choose δ > 0 in (5.1) such that δ < τ /2. Then, for x ∈ A ε there is x i ∈ E n , for some i ∈ {1, . . . , n(δ)}, such that ∥x -x i ∥ 1,q < δ, and hence

∥x -P n x∥ 1,q = inf{∥x -z∥ 1,q , z ∈ E n } ≤ ∥x -x i ∥ 1,q < τ /2
and thus

P n A ε ∩ B τ /2 (0) = ∅.
Finally, we have to show that γ(P n A ε ) ≥ k. This is again by approximation: since γ(A ε ) ≥ k, there exist a continuous and odd map g :

A ε → R k \ {0}.
Then by Tietze extension theorem there exist a continuous and odd map g : W 1,q 0 (Ω) → R such that g|Aε = g. By continuity and compactness of A ε we can conclude that g|PnAε : W 1,q 0 (Ω) → R k \ {0}. Now, again by approximation, we conclude that there is

a n = n(ε) such that sup {u∈PnAε} Ω |∇u| q dx ≤ λ D k (q) + 2ε .
Finally, note that by homogeneity inf

A∈Γ k,ρ sup u∈A Ω |∇u| q dx = λ D k (q) ρ
and hence also sup

{u∈ρ PnAε} Ω |∇u| q dx ≤ λ D k (q) + 2ε ρ. (5.3) 
Recall that by (2.4) we have, for each integer k > 0,

c k (p, q; ρ) = inf A∈Γ k,ρ sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx
We first prove the following lemma which is useful for the bifurcation result from zero.

Lemma 5.2. Let p > q. For any integer k > 0 and ρ > 0, ε > 0, there exists a positive constant C(ε) such that the following estimate holds:

|c k (p, q; ρ) - 1 q λ D k (q) ρ| ≤ C(ε)ρ p/q + 2ε ρ.
Proof. For any k > 0, we clearly have c k (p, q; ρ) ≥ 1 q λ D k (q) ρ. By (5.3) we can estimate

c k (p, q, ρ) = inf A∈Γ k,ρ sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≤ sup u∈ρ PnAε 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≤ sup u∈ρ PnAε 1 p Ω |∇u| p dx + sup u∈ρ PnAε 1 q Ω |∇u| q dx ≤ 1 p Ω |∇v| p dx + 1 q (λ D k (q) + 2ε)ρ
for some v ∈ ρ P n A ε with Ω |v| q dx = ρ. Since P n A ε is finite-dimensional, there exists a positive constant C(ε) such that

Ω |∇v| p dx 1/p ≤ C(ε) Ω |v| q dx 1/q and hence Ω |∇v| p dx ≤ C(ε) Ω |v| q dx p/q = C(ε) ρ p/q .
Finally, we get

0 ≤ c k (p, q; ρ) - 1 q λ D k (q) ρ ≤ C(ε)ρ p/q + 2ερ. □ 5.1. Bifurcation from zero.
Here, we show that for equation (1.2), for p > q, there is a branch of first eigenvalues bifurcating from (λ D k (q), 0) ∈ R + × W 1,p 0 (Ω).

Theorem 5.3. Let 1 < q < p < ∞. Then for each integer k > 0 the pair (λ D k (q), 0) is a bifurcation point of problem (1.2).

An illustration of the bifurcation results obtained in Theorem 5.3 is given by the figure 1 below.

Proof. We aim to show that λ D k (p, q; ρ) → λ D k (q) and ∥u k ∥ 1,p → 0, as ρ → 0 + . Thanks to Lemma 5.2 we have 1

p Ω |∇u k | p dx ≤ C n (ε)ρ p/q + 2ε ρ Furthermore 0 ≤ λ D k (p, q; ρ) ρ -λ D k (q)ρ = Ω |∇u k | p dx + Ω |∇u k | q dx -λ D k (q)ρ = q p Ω |∇u k | p dx + Ω |∇u k | q dx -λ D k (q)ρ + (1 - q p ) Ω |∇u k | p dx = q c k (p, q; ρ) -λ D k (q)ρ + (1 - q p ) Ω |∇u k | p dx ≤ C C n (ε)ρ p/q + 2ε ρ
Since ε > 0 is arbitrary we get the first claim.

Let us prove that ∥u k ∥ 1,p → 0 as ρ → 0 + . Letting v = u k in relation (2.1), we have

Ω |∇u k | p dx + Ω |∇u k | q dx = λ D k (p, q; ρ) Ω |u k | q dx.
Therefore

Ω |∇u k | p dx ≤ λ D k (p, q; ρ) Ω |u k | q dx ≤ C k ρ
Hence Ω |∇u k | p dx → 0 as ρ → 0. This complete the proof. □

Bifurcation from infinity.

The goal is to prove that if p < q, there is a branch of first eigenvalues bifurcating from (λ D k (q), ∞). For u ∈ W 1,q 0 (Ω), u ̸ = 0, we set w = u/∥u∥ 2 1,q . We have ∥w∥ 1,q = 1 ∥u∥ 1,q and

|∇w| p-2 ∇w = 1 ∥u∥ 2(p-1) 1,q |∇u| p-2 ∇u, |∇w| q-2 ∇w = 1 ∥u∥ 2(q-1) 1,q |∇u| q-2 ∇u, |w| q-2 w = 1 ∥u∥ 2(p-1) 1,q |u| q-2 u
Introducing this change of variable in (2.1), we find that, ∥u∥

2(p-q) 1,q Ω |∇w| p-2 ∇w • ∇v dx + Ω |∇w| q-2 ∇w • ∇v dx = λ Ω |w| q-2 w v dx
for every v ∈ W 1,q 0 (Ω). This leads to the following nonlinear eigenvalue problem (for

1 < p < q < ∞) -∥w∥ 2(q-p) 1,q ∆ p w -∆ q w = λ|w| q-2 w
in Ω w = 0 on ∂Ω.

(5.4) Proposition 5.4. Assume that p < q. If (λ, 0) is a bifurcation point of solutions of problem (5.4) then λ is an eigenvalue of problem (1.3).

Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (5.4), there is a sequence of nontrivial solutions of problem (5.4) such that λ n → λ and ∥w n ∥ 1,q → 0 in W 1,q 0 (Ω). We then have

∥w n ∥ 2(q-p) 1,q Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx = λ n Ω |w n | q-2 w n v dx.
(5.5) By using the argument in Remark 3.1 and then passing to limit, we complete the proof. □

Let us consider a small ball B r (0) := { w ∈ W 1,q 0 (Ω) \ {0}/ ∥w∥ 1,q < r }, and the operator

T := -∥ • ∥ 2(q-p) 1,q ∆ p -∆ q : W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) → W -1,p ′ (Ω) ⊂ W -1,q ′ (Ω).
Proposition 5.5. Let 1 < p < q. There exists r > 0 such that the mapping T : B r (0) ⊂ W 1,q 0 (Ω) → W -1,q ′ (Ω) is strongly monotone, i.e., there exists C > 0 such that ⟨T (u) -T (v), u -v⟩ ≥ C∥u -v∥ q 1,q , for u, v ∈ B r (0) ⊂ W 1,q 0 (Ω) with r > 0 sufficiently small. Proof. Using that -∆ p is strongly monotone on W 1,p 0 (Ω) on the one hand and the Hölder inequality on the other hand, we have

⟨T (u) -T (v), u -v⟩ = ∥∇u -∇v∥ q + ∥u∥ 2(q-p) 1,q (-∆ p u) -∥v∥ 2(q-p) 1,q (-∆ p v), u -v = ∥u∥ 2(q-p) 1,q ((-∆ p u) -(-∆ p v), u -v) + ∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q (-∆ p v, u -v) ≥ ∥∇u -∇v∥ q -∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q ∥∇v∥ p-1 p ∥∇(u -v)∥ p ≥ ∥∇u -∇v∥ q -∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q 
C∥v∥ p-1 1,q ∥u -v∥ 1,q .

(

By the Mean Value Theorem, we obtain that there exists θ ∈ [0, 1] such that ∥u∥

= d dt ∥u + t(v -u)∥ 2 1,q q-p | t=θ (v -u) = (q -p) ∥u + θ(v -u)∥ 2 1,q q-p 2 (u + θ(v -u), v -u) 1,q ≤ 2(q -p)∥u + θ(v -u)∥ q-p 1,q ∥u + θ(v -u)∥ 1,q ∥u -v∥ 1,q = 2(q -p)∥u + θ(v -u)∥ 2q-p 1,q ∥u -v∥ 1,q ≤ 2(q -p) ((1 -θ)∥u∥ 1,q + θ∥v∥ 1,q ) 2q-p ∥u -v∥ 1,q ≤ 2(q -p)r 2q-p ∥u -v∥ 1,q . 2(q-p) 1,q -∥v∥ 2(q-p) 1,q 
Thus, continuing with the estimate of equation (5.6), we get

⟨T (u) -T (v), u -v⟩ ≥ ∥u -v∥ q
1,q -2(q -p)r 2q-1 C∥u -v∥ 2 1,q , and hence, for r → 0 we end the proof. □

We first show the existence of variational eigenvalues of the nonlinear equation (5.4).

Theorem 5.6. Let 1 < p < q be given. Then, for a fixed ρ > 0, there exists a non-decreasing sequence of eigenvalues λD k (p, q; ρ), with corresponding eigenfunctions w k (p, q; ρ) ∈ W 1,q 0 (Ω) for the nonlinear eigenvalue problem (5.4). We again rely on [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8] for the proof of Theorem 5.6.

Proof. Let O ρ (p, q) = {w ∈ W 1,q 0 (Ω) : Ω |w| q dx = ρ}, and Σ k,ρ (p, q) = {A ⊂ Σ : γ(A ∩ O ρ (p, q)) ≥ k}, where Σ = {A ⊂ W 1,q 0 (Ω) : A closed, A = -A}. Set d k (p, q; ρ) = inf A∈Σ k,ρ (p,q) sup u∈A q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx > 0. (5.7) 
We show that:

(i) the functional F (w) = q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx satisfies the (PS) condition on O ρ (p, q), and

(ii) if d = d k (p, q) = • • • = d k+m-1 (p, q), then the set K d of critical points of I at the critical level d has a genus γ(K d ) ≥ m.
We prove (i). Let {w j } ⊂ O ρ (p, q) a (PS) sequence, i.e, for all j, M > 0 |F (w j )| ≤ M and F ′ (w j ) → 0 in W -1,q ′ (Ω) as j → ∞. We first show that {w j } is bounded in O ρ (p, q) ⊂ W 1,p 0 (Ω). Since w j ∈ W 1,q 0 (Ω), with the Poincaré inequality, we have Ω |w j | q dx ≤ C Ω |∇w j | q dx and it follows that

M ≥ |F (w j )| ≥ q p ∥w j ∥ 2(q-p) 1,q Ω |∇w j | p dx + 1 C Ω |w j | q dx ≥ ∥w j ∥ 2q-p 1,p + ρ C , since W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω).
Then {w j } is bounded in O ρ (p, q) ⊂ W 1,q 0 (Ω). We can assume that up to a subsequence still denoted {w j }, there exists w ∈ O ρ (p, q) ⊂ W 1,q 0 (Ω) such that w j ⇀ w in O ρ (p, q) ⊂ W 1,q 0 (Ω). Now, we show that w j converges strongly to w in O ρ (p, q) ⊂ W 1,q 0 (Ω). Since F ′ (w j ) → 0 in W -1,q ′ (Ω) as j → ∞, we have F ′ (w j )(w j -w) → 0 and F ′ (w)(w j -w) → 0 as j → ∞. We have ⟨F ′ (w j )-F ′ (w), w j -w⟩ = q Ω ∥w j ∥ 2(q-p) 1,q |∇w j | p-2 ∇w j -∥w∥ 2(q-p) 1,q |∇w| p-2 ∇w • ∇(w j -w)dx + q Ω |∇w j | q-2 ∇w j -|∇w| q-2 ∇w • ∇(w j -w) dx.

Thanks to Proposition 5.5, it follows that ⟨F ′ (w j ) -F ′ (w), w j -w⟩ ≥ C∥w j -w∥ q 1,q .

Therefore ∥w j -w∥ 1,q → 0 as j → +∞ and w j converges strongly to w in W 1,q 0 (Ω). The proof of (ii) is similar to the last part of the proof of Theorem 2.5. □ Theorem 5.7. Let p < q. Then for each integer k > 0 the pair (λ D k (q, ρ), ∞) is a bifurcation point of problem (1.2).

The proof of Theorem 5.7 will follow immediately from the following remark, and the proof that (λ D k (q, ρ), 0) is a bifurcation point of (5.4), which will be shown in Theorem 5.11 below.

Remark 5.8. With the change of variable, we have that the pair (λ D k (q, ρ), ∞) is a bifurcation point for the problem (1.2) if and only if the pair (λ D k (q, ρ), 0) is a bifurcation point for the problem (5.4).

Before we proceed to the proof of Theorem 5.11 below, we show the following lemma. Lemma 5.9. Let 1 < p < q < ∞. For any integer k > 0 and ρ > 0, ε > 0, there exists a positive constant D(ε) such that the following estimate holds:

|d k (p, q; ρ) -λ D k (q, ρ)| ≤ (D(ε) + ε)ρ 2q-p p
where d k (p, q; ρ) is given by (5.7), and

λ D k (q, ρ) = inf A∈Γ k,ρ sup u∈A Ω |∇u| q dx = λ D k (q)ρ .
Proof. For any k > 0, we clearly have d k (p, q; ρ) ≥ λ D k (p, ρ). As in (5.2), we choose

P n A ε such that sup {w∈PnAε, Ω |w| q dx=1} Ω |∇w| q dx ≤ λ D k (q, ρ) + ε and so sup {w∈PnAε,ρ, Ω |w| q dx=ρ} Ω |∇w| q dx ≤ (λ D k (q, ρ) + ε)ρ,
where

P n A ε,ρ = {w ∈ P n A ε : Ω |w| q dx = ρ}. Then d k (p, q; ρ) = inf A∈Γ k,ρ sup u∈A q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx ≤ sup u∈PnAε,ρ q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx ≤ sup u∈PnAε,ρ q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + sup w∈PnAε,ρ Ω |∇w| q dx ≤ q p ∥v∥ 2(q-p) 1,q Ω |∇v| q dx + (λ D k (q) + ε)ρ since p < q, ≤ q p ∥v∥ 2q-p 1,q + (λ D k (q) + ε)ρ
for some v ∈ P n A ε,ρ with Ω |v| q dx = ρ. Since P n A ε is finite-dimensional, there exists a positive constant D n (ε) such that Ω |∇v| q dx ≤ D n (ε)( Ω |v| q dx) p/q = D n (ε)ρ q/p and So, proceding as in Theorem 5.3 one obtains that λD k (p, q; ρ) → λ D k (q) as ρ → 0 + .

∥v∥ 2q-p 1,q ≤ D n (ε)ρ 2q-p p Finally, we get 0 ≤ d k (p, q; ρ) -λ D k (q, ρ) ≤ D n (ε)ρ 2q-p p + ερ ≤ (D n (ε) + ε)ρ
Theorem 5.11. The pair (λ D k (q), 0) is a bifurcation point of problem (5.4) for any k > 0 and p < q < ∞.

Proof. In order to prove Theorem 5.11, it suffices to prove that λD k (p, q; ρ) → λ D k (q, ρ) and ∥w k ∥ 1,q → 0 as ρ → 0 + . The fact that λD k (p, q; ρ) → λ D k (q) as ρ → 0 + follows from Lemma 5.9 and Remark 5.10.

It remains to prove that ∥w k ∥ 1,q → 0 as ρ → 0 + . For any k > 0, we have

∥w k ∥ 2(q-p) 1,q Ω |∇w k | p dx + Ω |∇w k | q dx = λD k (p, q; ρ) Ω |w k | q dx ≤ C k Ω |w k | q dx = C k ρ → 0 , as ρ → 0
Therefore ∥w k ∥ 1,q → 0, and since p < q, by the Hölder inequality there exists a positive constant

C 1 such that Ω |∇w k | p dx ≤ C 1 ∥w k ∥ p 1 
,q , and so also ∥w k ∥ 1,p → 0. This completes the proof. □

Multiplicity results

In this section we prove a multiplicity result: we show that for fixed λ ∈ (λ D k (q), λ D k+1 (q)) there exist at least k pairs of eigenfunctions ±u λ i (p, q), i = 1, . . . , k, such that (λ, ±u λ i (p, q)) solve equation (2.1), i.e.

λ = λ D 1 (p, q, ρ 1 ) = • • • = λ D k (p, q; ρ k ) , with ρ i = Ω |u λ i (p, q)| q dx.
We distinguish again the two cases p < q and p > q. The proofs rely on variational methods. Theorem 6.1. Let 1 < q < p < ∞ or 1 < p < q < ∞, and suppose that λ ∈ (λ D k (q), λ D k+1 (q)). Then equation (1.2) has at least k pairs of nontrivial solutions. Proof. We split the proof into two parts. Part 1: p < q. In this case we will make use of [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8]. We consider the functional J λ : W 1,q 0 (Ω)\{0} → R associated to the problem (1.2) defined by

J λ (u) = q p Ω |∇u| p dx + Ω |∇u| q dx -λ Ω |u| q dx.
The functional J λ is not bounded from below on W 1,q 0 (Ω), so we consider again the constraint set N λ , on which we minimize the functional J λ . We recall that the constraint set is given by N

λ := {u ∈ W 1,q 0 (Ω)\{0} : ⟨J ′ λ (u), u⟩ = 0}.
On N λ , we have J λ (u) = ( 1 p -1 q )

Ω |∇u| p dx > 0. We clearly have that J λ is even and bounded from below on N λ . Next we show that every Palais-Smale (PS) sequence for J λ has a converging subsequence on N λ . Let (u n ) n≥0 be a (PS) sequence, i.e, |J λ (u n )| ≤ C, for all n, for some C > 0 and J ′ λ (u n ) → 0 in W -1,q ′ (Ω) as n → +∞, with 1 q + 1 q ′ = 1. We first show that the sequence (u n ) n≥0 is bounded on N λ . Suppose that (u n ) n≥0 is not bounded, so

Ω |∇u n | q dx → +∞ as n → +∞. Since J λ (u n ) = ( 1 p -1 q ) Ω |∇u n | p dx, we have Ω |∇u n | p dx ≤ c. On N λ , we have 0 < Ω |∇u n | p dx = λ Ω |u n | q dx - Ω |∇u n | q dx, (6.1) 
and hence

Ω |u n | q dx → +∞. Let v n = un ∥un∥q then Ω
|∇v n | q dx < λ (using (6.1)) and hence v n is bounded in W 1,q 0 (Ω). Therefore there exists v 0 ∈ W 1,q 0 (Ω) such that v n ⇀ v 0 in W 1,q 0 (Ω) and v n → v 0 in L q (Ω). Dividing (6.1) by ∥u n ∥ p q , we have

λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ p q = Ω |∇v n | p dx → 0, since λ Ω |u n | q dx - Ω |∇u n | q dx = ( 1 p - 1 q ) -1 J λ (u n ), |J λ (u n )| ≤ C and ∥u n ∥ p q → +∞. Now, since v n ⇀ v 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω), we infer that Ω |∇v 0 | p dx ≤ lim inf n→+∞ Ω |∇v n | p dx = 0,
and consequently v 0 = 0. So v n → 0 in L q (Ω) ⊂ L p (Ω) and this is a contradiction since ∥v n ∥ q = 1. Thus (u n ) n≥0 is bounded on N λ . Now, we show that u n converges strongly to u in W 1,q 0 (Ω). We have

Ω |u n | q-2 u n dx → Ω |u| q-2 u dx as n → ∞ and since J ′ λ (u n ) → 0 in W -1,q ′ (Ω), u n ⇀ u in W 1,q 0 ( 
Ω), we also have J ′ λ (u n )(u n -u) → 0 and J ′ λ (u)(u n -u) → 0 as n → +∞. We recall that with the computations made in Remark 3.1, we have for

1 < p < ∞ Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u •∇(u n -u) dx ≥ (∥u n ∥ p-1 1,p -∥u∥ p-1 1,p )(∥u n ∥ p 1,p -∥u∥ p 1,p ) ≥ 0 Then, ⟨J ′ λ (u n ) -J ′ λ (u), u n -u⟩ = q Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u • ∇(u n -u) dx + q Ω |∇u n | q-2 ∇u n -|∇u| q-2 ∇u • ∇(u n -u) dx -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx ≥ q Ω |∇u n | q-2 ∇u n -|∇u| q-2 ∇u • ∇(u n -u) dx -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx .
Using Lemma 3.3, it follows that

⟨J ′ λ (u n ) -J ′ λ (u), u n -u⟩ ≥ C∥u n -u∥ q 1,q -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx .
Therefore ∥u n -u∥ 1,q → 0 as n → +∞ and u n converges strongly to u in W 1,q 0 (Ω).

Let Σ = {A ⊂ N λ : A closed and -A = A} and Γ j = {A ∈ Σ : γ(A) ≥ j}, where γ(A) denotes the Krasnoselski's genus. We show that Γ j ̸ = ∅, for j ∈ {1, . . . , k}.

Let λ ∈ (λ D j (q), λ D j+1 (q)) and choose S ε j ∈ Σ ∩ { Ω |u| q dx = 1} such that sup v∈S ε j Ω |∇v| q dx ≤ λ D j (q) + ε, ε := λ -λ D j (q) 2 .

Then, for v ∈ S ε j we set

ρ(v) = Ω |∇v| p dx λ Ω |v| q dx -Ω |∇v| q dx 1 q-p , with λ Ω |v| q dx - Ω |∇v| q dx ≥ λ Ω |v| q dx -(λ D j (q) + ε) Ω |v| q dx = (λ -λ D j (q) -ε) Ω |v| q dx = [λ -λ D j (q) -( λ -λ D j (q) 2 )]
Ω |v| q dx = λ -λ D j (q) 2 Ω |v| q dx > 0, for all v ∈ S ε j .

Hence, ρ(v)v ∈ N λ , and then ρ(S ε j ) ∈ Σ, and γ(ρ(S ε j )) = γ(S ε j ) = j for 1 ≤ j ≤ k.

It is then standard [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8] to conclude that σ λ,j = inf Part 2: p > q.

In this case, we will rely on the following theorem.

Theorem (Clark, [START_REF] Clark | A variant of the Lusternik-Schnirelman theory[END_REF]) .

Let X be a Banach space and G ∈ C We consider the C 1 functional J λ : W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω) → R

J λ (u) = q p Ω |∇u| p dx + Ω |∇u| q dx -λ Ω |u| q dx.
Let Γ k = {A ⊂ W 1,q 0 (Ω)\{0}, A compact, A = -A, γ(A) ≥ k}, and for ε > 0 small let A ε ∈ Γ k such that sup {u∈Aε, Ω |u| q dx=1} Ω |∇u| q dx ≤ λ D k (q) + ε.

We would like to show that

-∞ < α λ,k = inf A∈Γ k sup u∈A J λ (u) (6.2)
are critical values for J λ . We clearly have that J λ (u) is an even functional for all u ∈ W 1,p 0 (Ω), and also J λ is bounded from below on W 1,p 0 (Ω) since J λ is coercive on W 1,p 0 (Ω).

We show that J λ (u) satisfies the (PS) condition. Let {u n } be a Palais-Smale sequence, i.e., |J λ (u n )| ≤ M for all n, M > 0 and J ′ λ (u n ) → 0 in W -1,p ′ (Ω) as n → ∞. We first show that {u n } is bounded in W 1,p 0 (Ω). We have M ≥ |C∥u n ∥ p 1,p -C ′ ∥u n ∥ q 1,p | ≥ |C∥u n ∥ p-q 1,p -C ′ |∥u n ∥ q 1,p , and so {u n } is bounded in W 1,p 0 (Ω). Therefore, u ∈ W 1,p 0 (Ω) exists such that, up to subsequences that we will denote by (u n ) n we have u n ⇀ u in W 1,p 0 (Ω) and u n → u in L q (Ω). Arguing as in Part 1, we obtain that ∥u n -u∥ 1,p → 0 as n → +∞, and so u n converges to u in W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω).

As in section 5, we approximate A ε by a finite-dimensional set. Next, we show that there exists sets D ε of genus greater of equal to k such that sup u∈D ε J λ (u) < 0. For any s ∈ (0, 1), we define the set D ε (s) := s • (P n A ε ) and so γ(D ε (s)) = γ(P n A ε ) ≥ k. We have, for any s ∈ (0, 1) sup u∈D ε J λ (u) = sup u∈PnAε J λ (su) ≤ sup u∈PnAε qs p p Ω |∇u| p dx + s q Ω |∇u| q dx -λs q Ω |u| q dx ≤ sup u∈PnAε qs p p c(n) p ∥u∥ p 1,q + s q (λ D k (q) + ε -λ) < 0 for s > 0 sufficiently small. Finally, we conclude that α λ,k are critical values for J λ thanks to Clark's Theorem. □

The contents of Theorems 2.5-2.6, Theorem 5. 

Remark 5 . 10 .

 510 We recall that the k-th eigenvalue of equation (5.4) satisfiesλD k (p, q; ρ)ρ = ∥w∥ 2(q-p) 1,p Ω |∇w| p dx + Ω |∇w| q dx, with ρ = Ω |w| q dx.

  u), 1 ≤ j ≤ k, for any k ∈ N * yields k pairs of nontrivial critical points for J λ , which gives rise to k nontrivial solutions of problem (1.2).

  1 (X, R) satisfying the Palais-Smale condition with G(0) = 0. Let Γ k = { A ∈ Σ : γ(A) ≥ k } with Σ = { A ⊂ X ; A = -A and A closed }. If c k = inf A∈Γ k sup u∈A G(u) ∈ (-∞, 0), then c k is a critical value.

  3 and Theorem 6.1 are illustrated in the following figure.

Figure 1 .

 1 Figure 1. Illustration of the results of Theorem 2.5-2.6, Theorem 5.3 and Theorem 6.1.