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Abstract—In-network traffic classification is a class of in-
network computing that brings significant benefits to the net-
work, i.e., the first line of defence, classification at line rate and
fast reaction time. However, it is still challenging to accurately
and efficiently classify Internet traffic at an early stage due to a
clear trade-off between flow identification time and classification
accuracy - both are competing objectives. To this end, we
introduce a framework that focuses on deploying an accurate
network traffic classifier inside a programmable data plane that
can classify the traffic at maximal speed while considering the
underlying constraints of the device. Notably, we move from
statistical feature-based traffic analysis and argue that traffic
flow can be classified using a single feature called sequential
packet size information as input. We evaluate our approach by
identifying different types of IoT traffic inside a programmable
data plane. Our findings demonstrate that accurate and early-
stage network traffic classification is achievable with minor use
of networking device resources.

Index Terms—machine learning, programmable data plane,
P4, in-network computing, in-network classification

I. INTRODUCTION

Generally, in-network classification is a class of In-Network
Computing (INC) [1] and inspired by the reconfigurability
of the match-action paradigm [2]. With the rise of INC [3],
[4], the interest is rapidly growing to run Machine Learning
(ML) algorithms inside Programmable Data Plane (PDP)
[5]–[7]. Running ML models inside the networking device
significantly impacts the network. First, switches offer very
high performance. The latency through a switch is in the
order of hundreds of nanoseconds per packet [5]. Second, the
performance of distributed ML is bounded by the time required
to get data to and from nodes. So, if a switch can classify the
traffic at the same rate that it carries packets to nodes in a
distributed system, then it will equal or outperform any single
node.

Last but not least, the networking device can serve as
the first line of defence by terminating unnecessary data
close to the edge. As a result, it can help save energy,
reduce traffic load on networking infrastructure, and improve
user experience by lowering communication latency. Latency-
sensitive applications will significantly benefit. Packet and
flow are the two core objects to extract from headers and
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payloads in the network traffic classification process. The
work in [6] investigated the trade-off between a per-packet
or a per-flow based classification model. Per-packet model
proved to be more efficient but less accurate, while the per-
flow one is contrariwise. Since accuracy and efficiency are two
competing objectives, the value of both cannot be overstated.
The information needs to be aggregated from several packets
in the per-flow case. Having these richer features lead to better
training of the model. However, keeping up-to-date flow states
in the memory is a resources intensive solution that needs
extra memory and demand for complex operations to derive
useful information from the aggregated data. A per-packet
model is potentially more efficient that can classify the traffic
at a line rate without updating any features in the memory.
However, it does not offer aggregated measurements and the
possibility of learning from temporal correlation to the model.
As a result, due to a clear trade-off between detection time
and classification accuracy, it is still challenging to perform
accurate and early-stage network traffic classification.

In addition, there are certain limitations at PDP, such as the
lack of support for complex operations and a limited amount
of memory (tens of megabytes) to store many features for
the incoming flows. Hence, setting up an upper bound on the
performance of the traffic classifier inside PDP. Therefore, the
design of a classification model that fits the constraints of
PDP (e.g., no floating points, no loops, and limited memory) is
challenging. Consequently, it is necessary to use the minimum
number of features to reduce lookup and update overhead and
identify the flow earliest stage while respecting the underlying
constraints at the data plane.

This work aims to propose an accurate and efficient in-
network traffic classification approach subject to the data
plane constraints. Instead of using several statistical features
of the flow, which are memory intensive and need complex
operations, we only take a single feature as an input. Our
evaluation results show that the proposed solution can identify
the traffic type for several source applications at an early stage
of the flow creation.

The remaining of this work is organized as follows. Section
II presents the background information and our work position
with the literature. Section III represents the proposed solution.
The system validation is shown in Section IV. Finally, Section
V represents the concluding remarks and future directions.978-1-6654-3540-6/22/31.00 ©2022 IEEE



II. RELATED WORK

This section aligns our proposed solution with state of
the art. In recent years, there has been a rising interest in
research combining ML and networking. For instance, recent
works such as [8] investigated the problem of ML-based traffic
classification. However, few considered the data plane pro-
grammability facet. For instance, papers [5], [6] use statistical
properties analysis of the flow for traffic classification but do
not consider the limitations at PDP. Therefore, we discuss the
commonly used flow classification techniques and highlight
their deficiencies. Finally, we highlight the importance of an
accurate and efficient network traffic classification approach
in next-generation programmable networks.

A. Flow classification techniques
Statistical-based flow analysis is a widely used technique

for distinguishing network traffic by identifying differences in
statistical properties of the flows [8]. Several packets must
be tracked to obtain more detailed information about the
flow. Sampling approaches were used to select a few packets
for each flow and send them to the control plane, which
hosts the classifier [9]. The choice of sampling rate, on the
other hand, is crucial because it is highly dependent on the
application requirements. A low sampling rate may result in a
high rate of miss-classification, whereas a high sampling rate
may overwhelm the controller with additional traffic overhead.
In addition, the main flaw of this approach, which does not
incorporate the learning process, is the static construction of
such model [8]. In a dynamic networking environment, this
flaw has a significant impact on the model’s performance.
Moreover, feature such as inter-arrival time is under time-
domain measurement. Instability is the main problem with a
time-domain measurement that it is always prone to perfor-
mance degradation in dynamic network conditions. As a result,
statistical-based traffic classification approaches are limited in
their ability to handle the dynamics in next-generation high-
precision networks due to these robustness flaws.

B. P4-switch as a classification machine
Naturally, the switch acts as a classification machine. Upon

receiving an object (a packet), the switch first extracts the
relevant features from its headers, such as IP, port, protocol
type, packet size, etc. The parser extracts these fields where
each field is itself a feature. The switch keeps these extracted
features inside a Packet Header Vector (PHV) and then applies
the pipeline process to the vector. Based on such motivation,
the work in [5] demonstrates the mapping of trained ML
algorithms to reconfigure able match-action tables (RMTs)
[10]. Generally, the training module generates the resulting
outputs in a decision tree where the control plane API called
P4Runtime embeds the outputs into the switch’s RMTs. The
authors validate their work by classifying IoT traffic based on
some statistical properties of the flows; however, they did not
examine accuracy or efficiency. Another work investigates a
clear trade-off between traffic identification time and classifi-
cation accuracy inside PDP [6]. Since packet and flow are the
two core objects of classification decisions, it is hard to decide

when picking one another. The per-flow based classification
process is costly in terms of classification latency and resource
consumption. Also, the demand for complex operations limits
its applicability to PDP. On the other hand, there is no need
to keep track of the packets in the per-packet case. Therefore,
the resources overhead are not present anymore. However, it
is hard to accurately identify the traffic class based on very
little independent feature information provided by individual
packets. Consequently, bringing accuracy efficiency to the
network traffic classification process is still challenging and
highly desirable in next-generation high-precision networks.

III. SYSTEM DESIGN

This section presents the necessary steps to deploy an ML
model into a programmable networking device by using P4
language. Fig. 1 shows the high-level in-network classification
architecture. The control plane characterises the source traffic
and maps the resulted output into the data plane for online
inference1.
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Fig. 1: In-network traffic classification architecture

Fig. 2: Mapping of decision tree to P4 code

A. Offline data training
In this phase, the control counterpart trains ML models on

a given dataset and translates them into target switches for
traffic identification at runtime. This section focuses on ML
model training while considering the requirements such as
flow identification time, classification accuracy and limitations
of P4.

Flow and metrics: A flow fi is a sequence of packets
pj having the same five tuples (IP addresses, ports, protocol

1Our source code is publicly available at https://github.com/em-saqib/inc
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type). The first j packets of the flow fi are denoted fi(1 :
j). The source dataset contains various traffic flows having
different Quality of Service (QoS) requirements. Flows with
similar QoS requirements belong to the same class, and the
flow identification process for different QoS groups is known
as multi-class classification. Two metrics are used to assess
the flow classification accuracy: true positive rate (TPR) and
true negative rate (TNR) [11].

Traffic features: TABLE II lists the features used to train
ML models. The packet size is used for a single feature and
the rest for multi-features model.

1) Feature extraction

The two core objects in network traffic classification are
flowi and pj , which are used to extract information from
traffic headers and payloads. The flows are mainly identified
based on the statistical properties of traffic. However, keeping
up-to-date flows’ states in the switch is a resources intensive
solution that needs extra memory and demand for complex
operations to derive useful information from the aggregated
data. In addition, the features derived from time-related metrics
such as inter-arrival time may not be consistent and stable
enough to serve the classifier in dynamic network conditions
[12]. Also, network conditions such as bursty heavy loads and
traffic congestion may affect the time-related metrics. To solve
this problem, we used the most stable feature, namely packet
size information, as input for the classifier [13].

2) ML model training

The original dataset Si consists of packets of subflows
(fi(1 : j)) and is further split into training ST

i and testing
SP
i samples. After preparing the dataset, the next step is to

characterize the traffic by applying the ML algorithm. There
are many supervised learning approaches in the literature, but
not all are appropriate for our work. In other words, since we
aim to embed the ML model’s output into the data plane, the
necessary operations in the targeted model must be readily
available in P4. Therefore, we decided to use a decision
tree algorithm to cope with the P4 limitations. Given the P4
language’s current primitives, a decision tree classifier is more
suitable for such a task. Only comparison operation is required
to classify an element x, and it can be easily expressed in P4
using if-else statements (see Fig. 2). Ti is defined as a decision

tree that predicts the flow class after receiving the jth packet
for a flow fi.

3) ML to P4 converter

A decision tree algorithm makes decisions based on the
values of input parameters (i.e., features) and can be repre-
sented with a tree structure. When using a decision tree to
classify an element x, one must traverse the tree from root
to leaf, respecting the conditions in each node until a leaf
node is reached. This procedure can be easily implemented
in general-purpose computer languages using recursion or
repeating loops. In the P4 language, however, neither of these
alternatives is available. As a result, hard-coding the tests and
labels within the tree-nodes into if and else statements is an
option. To that end, the ML to P4 component translates the
model’s if-else conditions into a P4 code that describes the
generic behaviour for a given application.

B. Online inference
A general process of online inference is shown in

Fig. 3. The switch maintains a few registers to record
flow id, packet sizes, packet counter and other statistics
such min/max/avg packet size and total number of bytes for
the first few packets of each flow. The diagram depicts how
each packet traversing the device is handled. For the incoming
packets, the parser module extracts the relevant features (i.e.,
five tuples and packet size) from the header and keeps these
features’ values in the pipeline’s metadata. The next step is
to calculate the hash value for each flow based on the five
tuples field from the packet’s header. The flow id register
keeps track of all classified flows to treat the belonging packets
accordingly. For the incoming packets belonging to identified
classes, the switch applies corresponding actions. In other
words, the classified flows’ packets will not necessarily go
through the decision tree process and will be processed at
a line rate. In the event where the flow is not classified,
the switch verifies packet counter for the corresponding flow.
Until the packet counter reaches the threshold, the parser
extracts packet size and stores it into a size vector. Once the
packet counter meets the threshold, a classification occurs
on the size vector in following the if-else chain, encoded
in P4 code. The flow’s class will eventually be saved in
the meta.class variable. The detailed steps are revealed by



Algorithm 1: Online inference
Input: TCP and UDP packets, thr: max # of packets
Output: classes vector
classes vector = []; actions vector = []; flow id=[];

size vector=[];
min size= ∞ ; max size=0; avg size=0; total bytes=0;
Function InferClass(packets):

while packets do
flow id = hash(five tuple);
if isClassified(flow id) then

ApplyAction(flow_id);
else

if pkt counter <thr then
single_feature(flow_id, pkt_size, pkt_
counter, size_vector) ; // Algorithm 2
multi_features(flow_id, pkt_size,min_size,
max_size, avg_size, total_bytes) ;
// Algorithm 3

pktcounter ++

if pkt counter == thr then
classes_vector[flow_id] =
Apply_SF_Model(flow_id, size_vector);
classes_vector[flow_id] =

Apply_MF_Model(flow_id, features_vector);

End Function
Function isClassified(flow id):

if classes vector[flow id]! = 0 then
return True;

End Function
Function ApplyAction(flow id):

egress port = actions vector[flow id];
End Function

algorithms (1-3).

Algorithm 2: Single feature
Input: flow id, pkt size, packet counter, size vector
Output: size vector[flow id]
size vector[flow id ∗ 4 + packet counter] = pkt size;
Return size vector[];

Algorithm 3: Multi features
Input: flow id, pkt size, min size, max size, avg size,

total bytes
Output: min size, max size, avg size, total bytes
if pkt size<min size then

min size = pkt size;
if pkt size > max size then

max size = pkt size;
total bytes = total bytes+ pkt size;
if packet counter == thr then

avg size = Extern_Division(total_bytes, thr);
Return min size, max size, avg size, total bytes;
Function Extern_Division(total bytes, thr):

division result = total bytes/thr;
Return division result;
End Function

IV. PERFORMANCE EVALUATION

This section evaluates our proposed in-network traffic clas-
sification solution by considering a use case of IoT devices
generating data traffic belonging to various QoS groups. We

demonstrate the efficiency of our solution explicitly in accu-
rately identifying the class of source devices at an earliest
stage inside PDP with minimal usage of device resources.

We use packet capture (PCAP) traces of IoT devices re-
leased by [14] as our dataset. From the available dataset
instances, we selected the PCAP files for nine days (from 22
to 30 Sep 2016), containing flows related to five applications
comprising different IoT devices. Since we aim to identify the
source devices based on a single feature (i.e., packet size), we
only select the packet size feature for our ML model training
which can be directly extracted from the header.

TABLE I: Dataset summary

Device Class # of flow # of packets
Amazon Echo (AE) Smart assistants 16788 270840

Security Camera (SC) Cameras 1601 144187
Motion Detector (MS) Smart home devices 6411 233329

Photo-Frame (PF) Appliances 5439 23561
Weather Station (WS) Sensors 979 11623

TABLE II: Selected features

Feature Type Short Description
SrcPort Stateless Source port
DstPort Stateless Destination port
Pkt size Stateful Size of the packet

Min pkt size Stateful Size of the smallest packet
Max pkt size Stateful Size of the largest packet
Avg pkt size Stateful Average packet size of flow
Total bytes Stateful Cumulative sum of IPv4 packet size

1) Dataset
We divide the monitored devices to five classes: static smart-

home devices (e.g., motion detector), sensors (e.g., weather
station), audio (e.g., smart assistants), video (e.g., security
camera), and appliance (e.g., photo frame). We select classes
that can be assigned to various QoS groups: from high band-
width (video) and low latency (sensor) to best effort (others
classes). The devices belonging to the same class sharing
the same traffic characteristics. Therefore, we select only one
device from each class for validation in the data plane. TABLE
I shows a summary of the dataset for these selected devices.
2) Experimental setup

The experimental procedure starts from training the ML
model on the given IoT dataset to embedding the trained
model’ outputs to the data plane for online inference. We also
observe the CPU and memory overhead added by the ML
model to the P4 switch during online inference.

In order to compare the performance of our single feature-
based traffic classification approach with a statistical method,
we train two different ML models based on the features
described in TABLE II. The statistical properties allow the
capture of flow dynamics (e.g., duration and cumulative packet
size at a given moment). However, the downside is extra
resources overhead and limited support of crucial operations
(e.g., division and square root) in P4. Therefore, it is impos-
sible to compute better descriptive measures directly (e.g.,
average, variance, and standard deviation) for time-varying
features when working with flows. In a single feature case, we



can directly extract the packet size from the header and the
only operation required to infer class is a value comparison.

The first step is to train ML models on selected samples
from the dataset. We are using Python’s scikit-learn 2 imple-
mentation of the decision tree classifier to build the models.
The training set for both single and multi-feature models is the
same. However, the feature extraction process differs in both
cases. In addition, the input length (i.e., number of packets)
and decision tree depth must be kept to a minimum to identify
the flow class at the earliest possible stage. Therefore, we are
observing the input length and depth of the tree to understand
the impact on classification accuracy. The obtained results
show that with a tree depth of four and an input length of
four, the single-feature model provides good accuracy (99%)
as shown in TABLE III. As a result, both parameters are set
to four.

The next step of the experiment is to test the models in
the data plane for online inference. We are applying both
single and multi-feature models to all the packets in the
test set. The data plane is implemented in P4, compiled
with a target of behavioural model version 2 (BMv2) [15].
Moreover, another experiment step is to assess the CPU and
memory overhead added by both models to the regular packet
processing to accomplish the actions required for classification
(feature extraction, updating feature values, and identifying the
flow class).

TABLE III: Varying input length and tree depth
Input Length

Tree Depth 1 2 3 4 5

1 55% 55% 72% 72% 75%
2 60% 60% 76% 84% 84%
3 71% 71% 83% 91% 91%
4 73% 73% 73% 99% 99%
5 73% 75% 90% 99% 99%

TABLE IV: Classification results
Single-feature model Multi-features model

Class Precision Recall F1-Score Precision Recall F1-Score

AE 0.99 1.00 0.99 1.00 1.00 1.00
MS 1.00 1.00 1.00 1.00 1.00 1.00
PF 0.99 0.99 0.99 1.00 0.96 0.98
SC 1.00 0.92 0.96 0.94 0.91 0.99
WS 0.98 1.00 0.99 0.98 1.00 0.99

3) Results
This subsection presents the obtained results, including the

classification accuracy, the class identification time and the
resources overhead added by ML models to the data plane.

Classification accuracy: TABLE IV summarizes the classi-
fication results of both single and multi-feature models using
the following performance metrics: precision, recall and f1-
score. It is clearly shown that both models performed simi-
larly for class identification. The confusion matrix for online
inference of both models is shown Fig. 4, with the accuracy
of both models being similar.

2https://scikit-learn.org/

Class identification time: This performance criterion con-
cerns packet residence time inside the switch’s pipeline. It
can be obtained by calculating the packet forwarding latency
throughout the pipeline processing. Equation 1 is used to
calculate the identification time Tfi of a particular flow fi. It
is the sum of jth packet processing time and the time spent in
feature extraction and values updating process by unclassified
packets (1 : j − 1) ∈ fi.

Tfi = T j∈fi
t + T

(1:j−1)∈fi
t (1)

The average flow identification time for each class is shown
in Fig. 5. In the multi-features case, the class identification
time increases with the number of features. This can be
explained by the necessary operations for calculating statistical
properties and updating corresponding flow entries in the
memory.

Classification cost: the last set of results concerns the cost
of network traffic classification inside PDP in terms of CPU
and memory consumption of the switch. Again, it is slightly
higher in the multi-features case, indicating that an increase in
the number of features directly impacts the device’s memory
and computational resources. (See TABLE V).

TABLE V: Classification cost
Model Type CPU Memory

Single feature 6.1% 0.39%
Multi-features 7.4% 0.49%

4) Discussion

The obtained results reveal that instead of classifying the
flow based on statistical properties that are prone to network
dynamics, affect the class identification time and adds-up
extra resources overhead at the device; we can accurately
and efficiently identify the network traffic only based on the
sequential packet size information of the first few packets
by each flow. Since we are using packet size information as
an input, the applications having large-sized messages such
as high-quality video streaming will cause fragmentation at
the network layer, affecting the overall class identification
time. However, as shown in TABLE VI, the payload size in
emerging and latency-critical IoT applications is less than the
maximum transmission unit (MTU). As a result, our proposed
approach is potentially applicable to high precision networks
where the latency-critical applications will benefit greatly.
Meanwhile, taking a single feature as the input increases the
system utilization in terms of CPU and memory consumption.
In addition, despite having good accuracy, the one fit model
becomes outdated due to the changing traffic pattern. At the
same time, the network device memory needs to be carefully
maintained. Therefore, it is vital to continuously monitor the
network device, remove inactive match-action rules from the
device memory, and use the telemetry data to train the model
better to keep an updated model in the data plane. All these
limitations and considerations are subject to our future work.



Fig. 4: Confusion matrices for single feature (left) and multi-feature (right) model

Fig. 5: Class identification time

TABLE VI: Payload size and latency requirements of IoT
applications in next-generation networks [16], [17]

Use Case E2E Latency (ms) Data Size (bytes)
Factory Automation 0.5 to 50 10 to 30
Process Automation 50 to 100 40 to 100
Smart Grids / 2.0 3 to 20 / 1 to 10 80 to 1000

Intelligent Transportation 10 to 100 <500
Internet of Everything ms to s -

V. CONCLUSIONS

In this paper, we presented an accurate and efficient ap-
proach for network traffic classification inside PDP that can
identify various types of IoT traffic at an early stage by
considering only a single feature as an input. Our proposed
solution mainly consists of two phases, (i) offline model
training at the control plane and (ii) online inference in the
data plane. The first phase uses a data training algorithm to
identify the traffic source based on a single feature, while
the second phase uses the resulted outputs as match-action
rules inside PDP to identify the flow class at runtime. The
simulation results show that accurate and early-stage network
traffic classification is achievable inside PDP by considering
only the first few packets’ sizes information of each flow
as an input. Our proposed solution achieves high precision
early-stage network traffic classification, allowing efficient

differentiated QoS provisioning.
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