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I. INTRODUCTION

Generally, in-network classification is a class of In-Network Computing (INC) [START_REF] Tokusashi | The case for in-network computing on demand[END_REF] and inspired by the reconfigurability of the match-action paradigm [START_REF] Bosshart | Forwarding metamorphosis: Fast programmable match-action processing in hardware for sdn[END_REF]. With the rise of INC [START_REF] Kunze | Use cases for in-network computing[END_REF], [START_REF] Tokusashi | Lake: the power of in-network computing[END_REF], the interest is rapidly growing to run Machine Learning (ML) algorithms inside Programmable Data Plane (PDP) [START_REF] Xiong | Do switches dream of machine learning? toward in-network classification[END_REF]- [START_REF] Zhang | pheavy: Predicting heavy flows in the programmable data plane[END_REF]. Running ML models inside the networking device significantly impacts the network. First, switches offer very high performance. The latency through a switch is in the order of hundreds of nanoseconds per packet [START_REF] Xiong | Do switches dream of machine learning? toward in-network classification[END_REF]. Second, the performance of distributed ML is bounded by the time required to get data to and from nodes. So, if a switch can classify the traffic at the same rate that it carries packets to nodes in a distributed system, then it will equal or outperform any single node.

Last but not least, the networking device can serve as the first line of defence by terminating unnecessary data close to the edge. As a result, it can help save energy, reduce traffic load on networking infrastructure, and improve user experience by lowering communication latency. Latencysensitive applications will significantly benefit. Packet and flow are the two core objects to extract from headers and This work was fully supported by CHIST-ERA program under the "Smart Distribution of Computing in Dynamic Networks (SDCDN)" 2018 call. payloads in the network traffic classification process. The work in [START_REF] Xavier | Programmable switches for in-networking classification[END_REF] investigated the trade-off between a per-packet or a per-flow based classification model. Per-packet model proved to be more efficient but less accurate, while the perflow one is contrariwise. Since accuracy and efficiency are two competing objectives, the value of both cannot be overstated. The information needs to be aggregated from several packets in the per-flow case. Having these richer features lead to better training of the model. However, keeping up-to-date flow states in the memory is a resources intensive solution that needs extra memory and demand for complex operations to derive useful information from the aggregated data. A per-packet model is potentially more efficient that can classify the traffic at a line rate without updating any features in the memory. However, it does not offer aggregated measurements and the possibility of learning from temporal correlation to the model. As a result, due to a clear trade-off between detection time and classification accuracy, it is still challenging to perform accurate and early-stage network traffic classification.

In addition, there are certain limitations at PDP, such as the lack of support for complex operations and a limited amount of memory (tens of megabytes) to store many features for the incoming flows. Hence, setting up an upper bound on the performance of the traffic classifier inside PDP. Therefore, the design of a classification model that fits the constraints of PDP (e.g., no floating points, no loops, and limited memory) is challenging. Consequently, it is necessary to use the minimum number of features to reduce lookup and update overhead and identify the flow earliest stage while respecting the underlying constraints at the data plane.

This work aims to propose an accurate and efficient innetwork traffic classification approach subject to the data plane constraints. Instead of using several statistical features of the flow, which are memory intensive and need complex operations, we only take a single feature as an input. Our evaluation results show that the proposed solution can identify the traffic type for several source applications at an early stage of the flow creation.

The remaining of this work is organized as follows. Section II presents the background information and our work position with the literature. Section III represents the proposed solution. The system validation is shown in Section IV. Finally, Section V represents the concluding remarks and future directions. 

II. RELATED WORK

This section aligns our proposed solution with state of the art. In recent years, there has been a rising interest in research combining ML and networking. For instance, recent works such as [START_REF] Pacheco | Towards the deployment of machine learning solutions in network traffic classification: A systematic survey[END_REF] investigated the problem of ML-based traffic classification. However, few considered the data plane programmability facet. For instance, papers [START_REF] Xiong | Do switches dream of machine learning? toward in-network classification[END_REF], [START_REF] Xavier | Programmable switches for in-networking classification[END_REF] use statistical properties analysis of the flow for traffic classification but do not consider the limitations at PDP. Therefore, we discuss the commonly used flow classification techniques and highlight their deficiencies. Finally, we highlight the importance of an accurate and efficient network traffic classification approach in next-generation programmable networks.

A. Flow classification techniques

Statistical-based flow analysis is a widely used technique for distinguishing network traffic by identifying differences in statistical properties of the flows [START_REF] Pacheco | Towards the deployment of machine learning solutions in network traffic classification: A systematic survey[END_REF]. Several packets must be tracked to obtain more detailed information about the flow. Sampling approaches were used to select a few packets for each flow and send them to the control plane, which hosts the classifier [START_REF] Sadrhaghighi | Flowshark: Sampling for high flow visibility in sdns[END_REF]. The choice of sampling rate, on the other hand, is crucial because it is highly dependent on the application requirements. A low sampling rate may result in a high rate of miss-classification, whereas a high sampling rate may overwhelm the controller with additional traffic overhead. In addition, the main flaw of this approach, which does not incorporate the learning process, is the static construction of such model [START_REF] Pacheco | Towards the deployment of machine learning solutions in network traffic classification: A systematic survey[END_REF]. In a dynamic networking environment, this flaw has a significant impact on the model's performance. Moreover, feature such as inter-arrival time is under timedomain measurement. Instability is the main problem with a time-domain measurement that it is always prone to performance degradation in dynamic network conditions. As a result, statistical-based traffic classification approaches are limited in their ability to handle the dynamics in next-generation highprecision networks due to these robustness flaws.

B. P4-switch as a classification machine

Naturally, the switch acts as a classification machine. Upon receiving an object (a packet), the switch first extracts the relevant features from its headers, such as IP, port, protocol type, packet size, etc. The parser extracts these fields where each field is itself a feature. The switch keeps these extracted features inside a Packet Header Vector (PHV) and then applies the pipeline process to the vector. Based on such motivation, the work in [START_REF] Xiong | Do switches dream of machine learning? toward in-network classification[END_REF] demonstrates the mapping of trained ML algorithms to reconfigure able match-action tables (RMTs) [START_REF] Bosshart | P4: Programming protocol-independent packet processors[END_REF]. Generally, the training module generates the resulting outputs in a decision tree where the control plane API called P4Runtime embeds the outputs into the switch's RMTs. The authors validate their work by classifying IoT traffic based on some statistical properties of the flows; however, they did not examine accuracy or efficiency. Another work investigates a clear trade-off between traffic identification time and classification accuracy inside PDP [START_REF] Xavier | Programmable switches for in-networking classification[END_REF]. Since packet and flow are the two core objects of classification decisions, it is hard to decide when picking one another. The per-flow based classification process is costly in terms of classification latency and resource consumption. Also, the demand for complex operations limits its applicability to PDP. On the other hand, there is no need to keep track of the packets in the per-packet case. Therefore, the resources overhead are not present anymore. However, it is hard to accurately identify the traffic class based on very little independent feature information provided by individual packets. Consequently, bringing accuracy efficiency to the network traffic classification process is still challenging and highly desirable in next-generation high-precision networks.

III. SYSTEM DESIGN

This section presents the necessary steps to deploy an ML model into a programmable networking device by using P4 language. Fig. 1 shows the high-level in-network classification architecture. The control plane characterises the source traffic and maps the resulted output into the data plane for online inference 1 . [START_REF] Poupart | Online flow size prediction for improved network routing[END_REF].

Knowledge (dataset) Features Extraction

Traffic features: TABLE II lists the features used to train ML models. The packet size is used for a single feature and the rest for multi-features model.

1) Feature extraction

The two core objects in network traffic classification are f low i and p j , which are used to extract information from traffic headers and payloads. The flows are mainly identified based on the statistical properties of traffic. However, keeping up-to-date flows' states in the switch is a resources intensive solution that needs extra memory and demand for complex operations to derive useful information from the aggregated data. In addition, the features derived from time-related metrics such as inter-arrival time may not be consistent and stable enough to serve the classifier in dynamic network conditions [START_REF] Erman | Offline/realtime traffic classification using semi-supervised learning[END_REF]. Also, network conditions such as bursty heavy loads and traffic congestion may affect the time-related metrics. To solve this problem, we used the most stable feature, namely packet size information, as input for the classifier [START_REF] Chen | Sequential message characterization for early classification of encrypted internet traffic[END_REF].

2) ML model training

The original dataset S i consists of packets of subflows (f i (1 : j)) and is further split into training S T i and testing S P i samples. After preparing the dataset, the next step is to characterize the traffic by applying the ML algorithm. There are many supervised learning approaches in the literature, but not all are appropriate for our work. In other words, since we aim to embed the ML model's output into the data plane, the necessary operations in the targeted model must be readily available in P4. Therefore, we decided to use a decision tree algorithm to cope with the P4 limitations. Given the P4 language's current primitives, a decision tree classifier is more suitable for such a task. Only comparison operation is required to classify an element x, and it can be easily expressed in P4 using if-else statements (see Fig. 2). T i is defined as a decision tree that predicts the flow class after receiving the j th packet for a flow f i .

3) ML to P4 converter

A decision tree algorithm makes decisions based on the values of input parameters (i.e., features) and can be represented with a tree structure. When using a decision tree to classify an element x, one must traverse the tree from root to leaf, respecting the conditions in each node until a leaf node is reached. This procedure can be easily implemented in general-purpose computer languages using recursion or repeating loops. In the P4 language, however, neither of these alternatives is available. As a result, hard-coding the tests and labels within the tree-nodes into if and else statements is an option. To that end, the ML to P4 component translates the model's if-else conditions into a P4 code that describes the generic behaviour for a given application.

B. Online inference

A general process of online inference is shown in Fig. 3. The switch maintains a few registers to record f low id, packet sizes, packet counter and other statistics such min/max/avg packet size and total number of bytes for the first few packets of each flow. The diagram depicts how each packet traversing the device is handled. For the incoming packets, the parser module extracts the relevant features (i.e., five tuples and packet size) from the header and keeps these features' values in the pipeline's metadata. The next step is to calculate the hash value for each flow based on the five tuples field from the packet's header. The flow id register keeps track of all classified flows to treat the belonging packets accordingly. For the incoming packets belonging to identified classes, the switch applies corresponding actions. In other words, the classified flows' packets will not necessarily go through the decision tree process and will be processed at a line rate. In the event where the flow is not classified, the switch verifies packet counter for the corresponding flow. Until the packet counter reaches the threshold, the parser extracts packet size and stores it into a size vector. Once the packet counter meets the threshold, a classification occurs on the size vector in following the if-else chain, encoded in P4 code. The flow's class will eventually be saved in the meta.class variable. The detailed steps are revealed by 

IV. PERFORMANCE EVALUATION

This section evaluates our proposed in-network traffic classification solution by considering a use case of IoT devices generating data traffic belonging to various QoS groups. We demonstrate the efficiency of our solution explicitly in accurately identifying the class of source devices at an earliest stage inside PDP with minimal usage of device resources.

We use packet capture (PCAP) traces of IoT devices released by [START_REF] Sivanathan | Classifying iot devices in smart environments using network traffic characteristics[END_REF] as our dataset. From the available dataset instances, we selected the PCAP files for nine days (from 22 to 30 Sep 2016), containing flows related to five applications comprising different IoT devices. Since we aim to identify the source devices based on a single feature (i.e., packet size), we only select the packet size feature for our ML model training which can be directly extracted from the header. 

1) Dataset

We divide the monitored devices to five classes: static smarthome devices (e.g., motion detector), sensors (e.g., weather station), audio (e.g., smart assistants), video (e.g., security camera), and appliance (e.g., photo frame). We select classes that can be assigned to various QoS groups: from high bandwidth (video) and low latency (sensor) to best effort (others classes). The devices belonging to the same class sharing the same traffic characteristics. Therefore, we select only one device from each class for validation in the data plane. TABLE I shows a summary of the dataset for these selected devices.

2) Experimental setup

The experimental procedure starts from training the ML model on the given IoT dataset to embedding the trained model' outputs to the data plane for online inference. We also observe the CPU and memory overhead added by the ML model to the P4 switch during online inference.

In order to compare the performance of our single featurebased traffic classification approach with a statistical method, we train two different ML models based on the features described in TABLE II. The statistical properties allow the capture of flow dynamics (e.g., duration and cumulative packet size at a given moment). However, the downside is extra resources overhead and limited support of crucial operations (e.g., division and square root) in P4. Therefore, it is impossible to compute better descriptive measures directly (e.g., average, variance, and standard deviation) for time-varying features when working with flows. In a single feature case, we can directly extract the packet size from the header and the only operation required to infer class is a value comparison.

The first step is to train ML models on selected samples from the dataset. We are using Python's scikit-learn 2 implementation of the decision tree classifier to build the models. The training set for both single and multi-feature models is the same. However, the feature extraction process differs in both cases. In addition, the input length (i.e., number of packets) and decision tree depth must be kept to a minimum to identify the flow class at the earliest possible stage. Therefore, we are observing the input length and depth of the tree to understand the impact on classification accuracy. The obtained results show that with a tree depth of four and an input length of four, the single-feature model provides good accuracy (99%) as shown in TABLE III. As a result, both parameters are set to four.

The next step of the experiment is to test the models in the data plane for online inference. We are applying both single and multi-feature models to all the packets in the test set. The data plane is implemented in P4, compiled with a target of behavioural model version 2 (BMv2) [START_REF]Performance of bmv2[END_REF]. Moreover, another experiment step is to assess the CPU and memory overhead added by both models to the regular packet processing to accomplish the actions required for classification (feature extraction, updating feature values, and identifying the flow class). 

3) Results

This subsection presents the obtained results, including the classification accuracy, the class identification time and the resources overhead added by ML models to the data plane.

Classification accuracy: TABLE IV summarizes the classification results of both single and multi-feature models using the following performance metrics: precision, recall and f1score. It is clearly shown that both models performed similarly for class identification. The confusion matrix for online inference of both models is shown Fig. 4, with the accuracy of both models being similar.

2 https://scikit-learn.org/ Class identification time: This performance criterion concerns packet residence time inside the switch's pipeline. It can be obtained by calculating the packet forwarding latency throughout the pipeline processing. Equation 1 is used to calculate the identification time T fi of a particular flow f i . It is the sum of j th packet processing time and the time spent in feature extraction and values updating process by unclassified packets (1 : j -1) ∈ f i .

T fi = T j∈fi t + T (1:j-1)∈fi t (1)
The average flow identification time for each class is shown in Fig. 5. In the multi-features case, the class identification time increases with the number of features. This can be explained by the necessary operations for calculating statistical properties and updating corresponding flow entries in the memory.

Classification cost: the last set of results concerns the cost of network traffic classification inside PDP in terms of CPU and memory consumption of the switch. Again, it is slightly higher in the multi-features case, indicating that an increase in the number of features directly impacts the device's memory and computational resources. (See 

4) Discussion

The obtained results reveal that instead of classifying the flow based on statistical properties that are prone to network dynamics, affect the class identification time and adds-up extra resources overhead at the device; we can accurately and efficiently identify the network traffic only based on the sequential packet size information of the first few packets by each flow. Since we are using packet size information as an input, the applications having large-sized messages such as high-quality video streaming will cause fragmentation at the network layer, affecting the overall class identification time. However, as shown in TABLE VI, the payload size in emerging and latency-critical IoT applications is less than the maximum transmission unit (MTU). As a result, our proposed approach is potentially applicable to high precision networks where the latency-critical applications will benefit greatly. Meanwhile, taking a single feature as the input increases the system utilization in terms of CPU and memory consumption. In addition, despite having good accuracy, the one fit model becomes outdated due to the changing traffic pattern. At the same time, the network device memory needs to be carefully maintained. Therefore, it is vital to continuously monitor the network device, remove inactive match-action rules from the device memory, and use the telemetry data to train the model better to keep an updated model in the data plane. All these limitations and considerations are subject to our future work. In this paper, we presented an accurate and efficient approach for network traffic classification inside PDP that can identify various of IoT traffic at an early stage by considering only a single feature as an input. Our proposed solution mainly consists of two phases, (i) offline model training at the control plane and (ii) online inference in the data plane. The first phase uses a data training algorithm to identify the traffic source based on a single feature, while the second phase uses the resulted outputs as match-action rules inside PDP to identify the flow class at runtime. The simulation results show that accurate and early-stage network traffic classification is achievable inside PDP by considering only the first few packets' sizes information of each flow as an input. Our proposed solution achieves high precision early-stage network traffic classification, allowing efficient differentiated QoS provisioning.

Fig. 1 :Fig. 2 :

 12 Fig. 1: In-network traffic classification architecture

Fig. 3 :

 3 Fig. 3: Packet processing pipeline in the data plane

Fig. 4 :Fig. 5 :

 45 Fig. 4: Confusion matrices for single feature (left) and multi-feature (right) model

TABLE I :

 I Dataset summary

	Device	Class	# of flow # of packets
	Amazon Echo (AE)	Smart assistants	16788	270840
	Security Camera (SC)	Cameras	1601	144187
	Motion Detector (MS) Smart home devices	6411	233329
	Photo-Frame (PF)	Appliances	5439	23561
	Weather Station (WS)	Sensors	979	11623

TABLE II :

 II Selected features

	Feature	Type	Short Description
	SrcPort	Stateless	Source port
	DstPort	Stateless	Destination port
	Pkt size	Stateful	Size of the packet
	Min pkt size	Stateful	Size of the smallest packet
	Max pkt size	Stateful	Size of the largest packet
	Avg pkt size	Stateful	Average packet size of flow
	Total bytes	Stateful	Cumulative sum of IPv4 packet size

TABLE III :

 III Varying input length and tree depth

				Input Length	
	Tree Depth	1	2	3	4	5
	1	55% 55% 72%	72%	75%
	2	60% 60% 76%	84%	84%
	3	71% 71% 83%	91%	91%
	4	73% 73% 73% 99% 99%
	5	73% 75% 90%	99%	99%

TABLE Classification results

 Classification 

		Single-feature model	Multi-features model
	Class Precision Recall F1-Score Precision Recall F1-Score
	AE	0.99	1.00	0.99	1.00	1.00	1.00
	MS	1.00	1.00	1.00	1.00	1.00	1.00
	PF	0.99	0.99	0.99	1.00	0.96	0.98
	SC	1.00	0.92	0.96	0.94	0.91	0.99
	WS	0.98	1.00	0.99	0.98	1.00	0.99

TABLE V )

 V .

TABLE V :

 V Classification cost

	Model Type	CPU	Memory
	Single feature	6.1%	0.39%
	Multi-features 7.4%	0.49%

Our source code is publicly available at https://github.com/em-saqib/inc