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Abstract—The strong growth in the number of connected mo-
bile devices has imposed new challenges in efficiently exploiting
the available networks resources. Code Domain Non-Orthogonal
Multiple Access (NOMA) technique appears as a tremendous
efficient solution. Each device uses its assigned code to simultane-
ously transmit its data along with the user identifier, without any
resource reservation exchange, saving precious wireless resources.
However, this requires a receiver capable of blindly detecting the
active users, which is highly complex. Driven by the promising
superposition property of quantum architecture, the goal of this
paper is to adapt and apply the quantum Grover algorithm for
Active User Detection (AUD) purpose in the context of NOMA, to
alleviate the search complexity. This adapted Grover’s algorithm
is compared with the optimal classical Maximum Likelihood (ML)
AUD receivers, as well as with the basic classical Conventional
Correlation Receiver (CCR). A benchmark on the probability of
AUD is assessed as a function of the Signal to Noise Ratio (SNR) of
the received signal. We show that our adapted Grover’s algorithm
is very promising in high SNR regime.

Index Terms—NOMA, AUD, Maximum Likelihood, quantum
algorithm, Grover’s algorithm

I. INTRODUCTION

Recently, the number of connected mobile devices has been
subject to a strong growth, and this will further accelerate
within few years to reach billions of devices. Indeed, their use
is spread across a variety of new applications in the human
daily life such as enhanced multimedia, faster data commu-
nication rates and machine type communication [1]. In this
context, resource sharing has become a key enabling feature
for allowing the simultaneous use of the network resources
between several users or devices [2]. Multiple access technolo-
gies have been proposed for the existing generations of mobile
systems (i.e. GSM, UMTS, LTE, 5G) such as Time Division
Multiple Access (TDMA), Frequency DMA (FDMA), Code
DMA (CDMA) and Orthogonal Frequency DMA (OFDMA).
These Orthogonal Multiple Access (OMA) schemes permit to
assign a specific resource to each of the transmitting node
with no (or almost no) inter-user interference. However, the
number of active nodes is limited to the number of resources,
and a contention-based random access is needed to allocate
these resources to the nodes which request to transmit at this
time.
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These two constraints lead to resource wasting as each
transmitting user may not be able to fully exploit the capacity
of its assigned resource, while high signaling overhead (often
higher then the data amount to be transmitted) is needed to es-
tablish the connection [3]. As a consequence, Non-Orthogonal
Multiple Access (NOMA) has been proposed and studied by
the scientific community to counter these drawbacks [3]. The
main idea is to allow the users to share the same resources
in a non-orthogonal way so as to relax the constraint due to
the limited number of resources, and to overload the network
to approach its capacity. The NOMA schemes can mainly be
classified into these two categories : power domain NOMA [4]
where users are differentiated by Signal to Noise Ratio (SNR),
and code domain NOMA where each device is identified by
its code such as Sparse Code Multiple Access (SCMA) [5],
Multi-User Shared Access (MUSA) [6] and Pattern Division
Multiple Access (PDMA) [7].

In this paper, we focus on the second category as no prior
information is needed before transmission. The devices can
transmit their data by using their code assigned once for all
at the factory. Besides, code domain NOMA permits to have
an all-in-one scheme where the identifier of the transmitting
device is provided by the code sequence, while some data
mapping can be added. For this setup, the key-enabling feature
is the ability to detect, in real time, the active subset among all
potential devices, also known as Active User Detection (AUD).
The device simplicity and the spectrum efficiency is obtained
at the cost of pushing the computation burden to the Base
station (BS) side.

The Maximum Likelihood (ML) is the optimal AUD. Its
principle is to evaluate the likelihood of any possible active
subset and identify the most likely one [8]. This AUD suffers
from high complexity which is not compatible with real time
implementation. Indeed, for a set of N devices, 2N combina-
tions have to be tested. Thus, iterative versions of the optimal
detector have been proposed and studied [8], [9] However,
quantum computation offers a promising perspective to over-
come the classical algorithm complexity and to implement the
ML in a more time-efficient way. Indeed, quantum algorithm
benefits from the superposition property which permits to
evaluate all cases simultaneously. Quantum algorithms have
already been proposed for wireless communications [10] to



jointly decode the transmitted symbols of all transmitting
users. But in [10], Multi-User Detection (MUD) was done
to recover data, based on the knowledge of the active nodes
set, while in this paper we consider the activity detection.

The contribution of this paper is the adaptation of the
quantum Grover algorithm [11] for detecting the set of active
users in a non-orthogonal CD NOMA communication scheme,
where the unipolar or the bipolar families of codes are
addressed. Besides, our proposed quantum algorithm will be
compared with the optimal classical ML as well as with the
Conventional Correlation Receiver (CCR). We further evaluate
the probability of success in detecting the active users as a
function of the SNR of the received signal.

Section II presents the basic principles of quantum and
the Grover’s algorithm. Section III talks about the adaptation
of Grover’s algorithm for AUD purposes and some classical
AUD receivers such as ML and CCR. Section IV presents the
simulation setup and the obtained results. Finally, section V
concludes the paper.

II. OVERVIEW ON QUANTUM COMPUTING

A. Quantum Principles

Thanks to their superposition property allowing to reduce
the complexity, quantum algorithms have gained wide interest
in the recent years. In particular, quantum Grover’s algorithm
needs only O(

√
N) [12] [13] for searching a value in a data

base of size N , while classical approach needs O(N).
Indeed, a superposition of states in quantum allows to have

two different bits values simultaneously in a single state |ψ⟩.
Thus, a new type of bits, so-called qubit is introduced, whose
notation |ψ⟩ is written as follows:

|ψ⟩ = α|0⟩+ β|1⟩ (1)

where α and β are normalized complex numbers which verify
α2 + β2 = 1. α2 and β2 are the probability of being in state
|0⟩ and |1⟩ respectively. For example, in order to have 100%
probability of |0⟩, we should have α = 1 and β = 0.

Even if α and β can both be complex values, the usual
convention considers the normalized case where α is a real,
with the equation as follows :

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (2)

where 0 ⩽ θ ⩽ π and 0 ⩽ φ ⩽ 2π [12]. This quantum state
can be represented with the Bloch Sphere [12].

B. Grover’s Algorithm

Grover Algorithm is the key quantum engine for searching
a value in an unsorted database. It is based on two main parts;
1) Oracle and 2) Diffuser as shown on Fig. 1. The Oracle aims
to mark the states which verify a given constraint (for example
address that contains the desired value (δ) for a database, or the
solution of a function), whereas the diffuser aims at amplifying
the marked states by the use of inverse mean [11].

H⊗n

H

H⊗n 2|0n⟩⟨0n| − I H⊗n

Diffuser Us

Repeat O(
√
N)

Oracle
Uδ

Fig. 1. Grover Scheme
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Fig. 2. General Grover Circuit with of 2 qubits

The function Uδ denotes the oracle action and can be
modeled as :

Uδ|x⟩ =

{
−|x⟩ if f(x) = δ

|x⟩ if f(x) ̸= δ
(3)

If f(x) corresponds to the desired value (δ), it marks |x⟩ with
(−1). Otherwise, i.e. if f(x) ̸= δ, the state amplitude remains
constant through the calculation. The oracle output feeds the
diffuser, which amplifies the marked states. Eq.(4) models the
diffuser functionality where |s⟩ is the equally superposition
of states that consists of a phase shifter (2|0n⟩⟨0n|) and the
identity matrix I .

Us = H⊗n(2|0n⟩⟨0n| − I)H⊗n = 2|s⟩⟨s| − I (4)

To do so, as illustrated in Fig. 2 for the two qubits case,
Grover’s Oracle [14] relies on four different registers. Index
register contains the argument of the function f , and will store
the solution at the end of the algorithm. The value register
contains the results of the function applied to the Index register
states. The reference register corresponds to the targeted value
δ. Finally, the mark register provides the negative sign into the
computation, to mark the valid states.

These operations amplify the searched states, but the ex-
pected solutions are only partially highlighted. Thus several
iterations of the Oracle and Diffuser are needed. Authors in
[15] have expressed the optimum number of iterations (Lopt)
to find a specific solution in a given database. It depends on
the number of valid solutions (S) and on the database size N ,
which is given by :

Lopt = ⌊π/4(
√
N/S)⌋ (5)

III. GROVER’S CIRCUIT DESIGN FOR MULTI-USER
DETECTION SCHEME

A. System Model

The main goal of this paper is to adapt the quantum Grover’s
algorithm for AUD purposes in a non-orthogonal multiple
access (NOMA) wireless communication systems. In Code
Domain NOMA systems, the transmitted data is spread with a



code containing SF chips, where SF is the spreading factor.
Herein, we consider a network with N users communicating
with the Base Station (BS). These users are mainly on sleep
mode, and initiate the transmission only when needed. We
focus on the initialization of the transmission, where the users
send their code for identification, and nothing otherwise. We
consider that each user i is assigned a unique code ci. We
model that a user is active by setting bi to 1 and to 0 when it
is idle. Since all the users are sharing the same medium, the
resulting received signal is the summation of all the transmitted
code from active users. We point out here that the transmission
scheme is still classical and the only quantum part lies in
the algorithm performed at the receiver side. For simplicity
purposes, we consider that the channel is modeled as a perfect
one with a gain h = 1, along with a normalized Additive White
Gaussian Noise (AWGN) denoted by n. Hence, the received
signal ỹ can be given by the following equation:

ỹ =

N∑
i=0

bici + n (6)

where N is the number of users, i is the user’s index, bi ∈
{0, 1} is the activity status of user i, ci is the corresponding
codeword and n is the Gaussian noise following N (0, σ2).
For comparison purposes, two families of codes will be
retained. The first one is formed by the bipolar codes, where
the component of each code ci belongs to the set {−1, 1}.
The second family is formed by unipolar codes, where the
components of each user’s code belong to the set {0, 1}.

Given the received signal and the set of users codes, the
problem that the receiver wants to solve is to detect the set of
active users, i.e. the set users verifying bi = 1.

B. Conventional Correlation Receiver

The Conventional Correlation Receiver (CCR) is the sim-
plest receiver and is widely used for AUD in wireless networks
[16]. This receiver correlates the received signal with the
targeted signature code’s sequence. The CCR detector can be
shortly described as follows:

• The sampled received ỹ = [y1, y2, ...ySF ] is multiplied
with code ci = [ci1, ci2, ...ciSF ] of the desired user i.

• The result of the product is integrated over all slots (SF ).
The output value corresponds to the decision variable.

• At the end, the decision variable is compared with a
predefined threshold T . Hence, a user is considered active
if the decision variable value is greater than T .

The operational correlation receiver is written as follows:

bi =

{
1 if

∑SF
j=1 ỹj .cij ≥ T

0 if
∑SF

j=1 ỹj .cij < T
(7)

where bi reflects the activity status of user i. The CCR has to
be done N times to retrieve the complete active user set.

C. Maximum Likelihood (ML)

The ML receiver is the optimal solution for AUD [17].
This detector identifies the most likely active users set b,

given the the received sequence. For an AWGN channel, the
maximum likelihood is obtained by searching the active user
set that minimizes the distance between its contribution and
the received signal. With ỹ and ci the received sequence and
the set of user’s signatures respectively, the ML receiver can
be given as follows, in an AWGN channel, and equiprobable
activity :

argminb∥ỹ −
N∑
i=1

bici∥2 (8)

where i is the index of a specific user among the N possible
ones. The ML solution suffers from a high computation
complexity O(2N ), as it is based on an exhaustive search
over all the existing possibilities. Thus, the high complexity of
the ML detector makes it intractable with classical processors
when the number of users increases.

D. Proposed Quantum Algorithm

Fortunately, quantum computing is quickly evolving and is
a promising solution to mitigate the complexity limitations
of the ML receivers. Our proposed algorithm is based on
Grover’s one. Each qubit of the index register corresponds to
the activity status of one user. They are all initialized with the
superposition state 1√

2
|0⟩ + 1√

2
|1⟩. We then apply quantum

gates customized to reflect the system behavior, so that to
compute all the possible signal signatures (one for each user
activity set). The value register then contains these signatures
in a superposed way. Finally, the received signal is fed into the
reference register, and compared to the value register’s states.
The identical state is marked with a negative sign, before
amplitude amplification in the diffuser part. This is performed
several times (Lopt), to reach the best accuracy.

However, before being fed into the reference register, the
received signal has to be pre-processed. Indeed, Grover’s
circuit can only be fed with binary data while our received
signal contains real components. To overcome this problem,
one simple way is to transform ỹ to the closest integer values
and then to convert it to binary numbers [18]. In compliance
with the involved families of codes (i.e. unipolar and bipolar),
the retained integer part of ỹ is denoted by ỹp and illustrated
as follows:

ỹp =

{
min(max(0, round(ỹ)), 2m − 1) c ∈ {0, 1}
min(max(round(ỹ),−2m − 1), 2m − 1) c ∈ {−1, 1}

(9)
where m is the number of used bits to represent each ỹp’s
component, and defines the scale of the processed values.

Note that all these previous operations are still performed
with classical devices and the quantum computation starts
with the Grover’s algorithm. Then, the Grover’s algorithm is
performed for the corresponding Lopt iterations in order to
detect the set of active users.

IV. SIMULATION SETUP AND RESULTS

A. System Example 1 : Unipolar Code

In order to obtain the performances of our proposed al-
gorithm, we have run simulations with the dedicated Python



library Qiskit. As the quantum behavior is evaluated with a
classical circuit, the performance evaluation remains resource
consuming. Thus, without loss of generality, we are using
reduced networks configurations to validate our approach. We
have selected a non-orthogonal code family with SF = 4,
and N = 5, whose codewords are: c1 = [0, 1, 0, 1], c2 =
[1, 0, 0, 1], c3 = [0, 1, 1, 0] c4 = [1, 1, 1, 0] and c5 = [0, 0, 1, 1].
We point out here that we selected a codes family which
handle the maximum number of users, while keeping a unique
signature for each active user set. With this constraint, we
ensure that, in a noiseless channel, the error probability of
AUD is null.
Based on these codes, we can compute all the possible
sequences ỹ that can be received in a noiseless condition.
The value observed in each slot depends on the users activity
indicator as follows :

ỹ =

ỹ1ỹ2ỹ3
ỹ4

 =

 b2 + b4
b1 + b3 + b4
b3 + b4 + b5
b1 + b2 + b5

 (10)

In order to compute the ideal signatures within Grover
algorithm, we have to implement an adder with quantum gates
[19]. Fig. 3 shows the corresponding circuit when adding qubit
|b1⟩ and |b2⟩, using ancilla qubits |v0⟩ and |v1⟩, providing the
sum S = |b1 ⊕ b2⟩ and the carry C = |b1 · b2⟩.

|b1⟩ |b1⟩
|b2⟩ |b2⟩
|v1⟩ S = |b1 ⊕ b2⟩
|v2⟩ C = |b1 · b2⟩

Fig. 3. Quantum Adder b1 ⊕ b2

The user’s code is added to the signal when active, and nothing
is done otherwise.

B. System Example 2 : Bipolar Codes

The same principle applies for the bipolar codes. The
difference is that the codes values belong to the set {−1, 1}.
We consider in this paper a family with SF = 4, and N = 5,
with the codewords c1 = [−1,−1, 1, 1], c2 = [1, 1, 1,−1]
, c3 = [−1,−1,−1,−1], c4 = [1,−1,−1, 1] and c5 =
[1,−1, 1,−1].

ỹ =

ỹ1ỹ2ỹ3
ỹ4

 =

−b1 + b2 − b3 + b4 + b5
−b1 + b2 − b3 − b4 − b5
b1 + b2 − b3 − b4 + b5
b1 − b2 − b3 + b4 − b5

 (11)

Contrarily to unipolar codes, bipolar codes lead to nega-
tive components. We thus use the binary two’s complement
representation. The positive components are directly added
with the previous quantum adder. Conversely, for the negative
contributions, the two’s complement of the value is computed
before the use of the quantum adder.

C. Results

We have evaluated and reported on Fig. 4 the network
performances for various configurations, as a function of the

SNR of the received signal. In this work, a success is defined
as recovering the exact user activity set. Thus, a false alarm,
or a misdetection within the set makes the set considered as
erroneous.

Fig. 4 illustrates the variation of the average Probability of
Success (Ps) in detecting the active set of users, as a function
of SNR, for the classical receivers as reference (ML, CCR) and
our proposed quantum Grover based algorithm, while using
unipolar codes (uni), as well as bipolar codes (bip). We note
here that Ps is averaged over 4000 independent realizations of
noise.

First of all, we can verify that the performance improves
when the SNR increases, whatever the receiver and the used
code family. Nevertheless, we can observe that the perfor-
mance improvement is faster for the quantum algorithm than
for the classical algorithms. This is due to the research
approach used in our quantum algorithm. Indeed, the oracle
searches for states states verifying exactly f(x) = δ. However,
in case of high noise, the signature is often modified and
becomes no longer valid. In this case, the oracle fails to find
a solution for f(x) = δ. Grover’s algorithm thus leads to the
random and equiprobable selection of active users among the
set of 2N possible solutions. This leads to a low probability of
success. To solve the problem of search accuracy in quantum
in the low SNR regime. Conversely, for low noise, the pre-
processing algorithm generally allows to retrieve the emitted
sequence, by cancelling the noise contribution. The increase
of the SNR allows be in the second situation much more
frequently, and thus to improve significantly the performances.

Moreover, by comparing the performance of unipolar and
bipolar codes, we can notice that the detection accuracy of
the classical algorithms is better when using bipolar codes.
This is due to the fact that the Euclidean distance is higher
between the components of the bipolar codes, making the
signature detection more reliable for the same noise level.
However, the performance gap is strongly reduced by using the
quantum algorithm. Indeed, as explained above, the detector
is perturbed when it receives an invalid sequence. However,
the probability of error is the same whatever the difference
between the received sequence and the transmitted sequence.
The advantage concerning the Euclidean distance for bipolar
codes with classical receivers does not apply in this case.

Besides, while comparing the performances of the different
receivers, we can observe that our quantum algorithm is less
performing than the CCR at low SNR. On the contrary, for
high SNR, it largely outperforms it and converges quickly
to the optimal ML, for the 2 families of codes. Meanwhile,
the CCR reaches its lower ceiling because of the interference
effect. Indeed, as the codes are not orthogonal, the CCR makes
errors because of the residual interference on the decision
variable of each user. On the contrary, the ML, whether it
is a classical or a quantum version, manages to get rid of this
interference by jointly considering all the users.

Finally, our quantum algorithm is characterized by a lower
complexity, since it requires O(

√
2N ) iterations, where the

classical ML requires O(2N ), (and N iterations for the CRR).



Fig. 4. Probability of Success as a function of the noise variance (σ2)

This study thus proves that this quantum ML can significantly
reduce the complexity compared to classical ML, while keep-
ing the same detection performance if the SNR is sufficient.
However, as we have implemented the simplest quantum
version of the ML, the performances can be further improved,
to comply with the optimal receiver even for lower SNR. This
can be done by improving the oracle, and looking for the states
that minimize the gap, i.e. verifying min||f(x)− δ|| (instead
of f(x) = δ currently), and/or improving the preprocessing.
It is also possible to extend this work to any receivers based
on ML.

V. CONCLUSION

In this paper, the quantum Grover’s algorithm is adapted
for AUD purposes for a non-orthogonal CD NOMA commu-
nication schemes. This adapted quantum algorithm is fed by
a noisy received signal, which has been reshaped in order
to be in compliance with the Grover’s algorithm constraints.
Our adapted Grover’s algorithm is compared with the optimal
ML and the CCR receivers for both CDMA unipolar and
bipolar codes, where the probability of success is evaluated as
a function of SNR. The results show that our adapted quantum
algorithm is very promising, especially when the SNR is
relatively high. Indeed, it reached the same performances than
the optimal ML, with a reduced computation complexity. Thus,
this works opens the way to quantum processing for AUD in
massive communication networks.
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