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Introduction

In this paper, we are concerned with the problem of front propagation for the Fisher-KPP (FKPP) equation influenced by a Keller-Segel chemotaxis term:

(1.1)

# U t `χpV x U q x " U xx `U p1 ´U q ´dV xx " U ´V in p0, 8q ˆR,
with the condition V pt, ¨q P L 8 (to guarantee uniqueness for the second equation in (1.1)). Here χ P R and d ą 0 are the strength of the chemotaxis and its length-scale, respectively. In this paper, we are interested in 'negative chemotaxis,' which corresponds to χ ă 0. This is the phenomenon in which individuals secrete a chemical (chemorepellent) that repels nearby individuals when sensed by them. To rephrase this slightly, intraspecific interactions manifest as a 'drift' that 'spreads out' the population. The model (1.1) and others like it have been studied extensively in the past few decades, see [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] for the original derivation of the Keller-Segel equation and [START_REF] Murray | Mathematical biology. I[END_REF][START_REF] Perthame | Transport equations in biology[END_REF] for overviews of its significance in mathematical biology.

In reaction-diffusion systems such as (1.1), one can understand front propagation through the study of traveling wave solutions, which are special solutions of the form V pt, xq " V px ´ctq and U pt, xq " U px ´ctq for some c P R, after a slight abuse of notation. We are motivated by 'invasion fronts,' so that we consider U p´8q " 1 and U p`8q " 0. In this case, (1.1) becomes (1.2)

# ´cU x `χ pV x U q x " U xx `U p1 ´U q ´dV xx " U ´V in R,
with the additional condition that V P L 8 . The existence of these solutions as well as the positivity of the speed, c ą 0, has been proved using routine methods [START_REF] Henderson | Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis[END_REF].

Our goal is to understand how the behavior of c " cχ,d depends on χ and d. We seek a precise description of how the nonlocal drift V x 'speeds up' the traveling wave. As we discuss in the sequel, this connects to three ongoing threads of research: enhancement of propagation by (Quentin Griette) Laboratoire de Mathématiques Appliquées du Havre, Université Le Havre Normandie (Christopher Henderson) Department of Mathematics, University of Arizona (Olga Turanova) Department of Mathematics, Michigan State University E-mail addresses: quentin.griette@univ-lehavre.fr, ckhenderson@math.arizona.edu, turanova@msu.edu.

advection, the role of nonlinearity in front propagation (i.e., 'pushed' and 'pulled' fronts), and the effect of nonlocality in front propagation.

When χ{d and d are sufficiently small, it is known that the minimal speed cχ,d " 2, while the minimal speed satisfies cχ,d « |χ| {2 ? d when 1 ! ´χ ! d [START_REF] Henderson | Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis[END_REF]. Here we complete the picture, showing, roughly that there are positive constants c pm,ε and c hyp,ν , such that (1.3) lim inf where ν ą 0. The constants c pm,ε and c hyp,ν are the minimal wave speeds for, respectively, the porous medium FKPP model (PME) and the hyperbolic FKPP-Keller-Segel model (HYP) (see below). The former is explicit (see (2.5)), taking the value c pm,0 " 1 { ? 2 in the case ´χ Ñ 8, that is, ε " 0. The latter is not explicit; however, we provide a positive lower bound for it.

We also obtain partially matching upper bounds. For the limit (1.3), we construct a particular sequence of traveling waves for which the lower bound is attained in the limit (in the case ε " 0). For the limit (1.4), we construct a sequence of traveling waves that, after scaling, converge to a discontinuous traveling, which is presumed to be the minimal speed wave (see the discussion in [START_REF] Griette | Traveling waves with continuous profile for hyperbolic Keller-Segel equation[END_REF]).

Our arguments are based on the convergence of suitably rescaled solutions of (1.2) to the hyperbolic FKPP and porous medium FKPP equations mentioned above. This clarifies the relationship between the three equations and involves the development of novel estimates in settings where regularity does not arise from ellipticity.

The first step in our analysis is to perform a scaling that allows for the possibility of a nontrivial asymptotic limit. We define, upxq " U px a |χ|q, vpxq " V px a |χ|q c " c a |χ| , and ν " d ´χ .

Then, (1.2) yields: up´8q " 1, up`8q " 0, v P L 8 , and

(TW)

$ & % ´cu x ´pv x uq x " 1 |χ| u xx `up1 ´uq ´νv xx " u ´v in R.
We use c χ,ν to denote the minimal speed of traveling wave solutions to (TW) (see (2.4)). We now recast our goal with the new objects in hand. The two limits (1.3) and (1.4) correspond, now, to understanding the scaling of the minimal speed c χ,ν when, respectively, p´1 χ , νq Ñ pε, 0q for ε ě 0 and p´1 χ , νq Ñ p0, νq for ν ą 0. Notice that in each case, there is a loss of ellipticity in (TW), and the consequential degeneration of regularity estimates is a major source of difficulty in our analysis. We refer to the former limit as the porous medium regime and the latter as the hyperbolic regime. We now present some heuristics that clarify this terminology and motivate our main results.

Heuristics and summary of main results. The first asymptotic limit we consider is ν Ñ 0 and ´χ Ñ 1 {ε, for ε ě 0. Note that the second equation in (TW) suggests that u and v should approach the same limit in this regime. Using this ansatz along with the formal limits c Ñ c pm and u, v Ñ u pm suggests (PME) ´cpm pu pm q x ´ppu pm q x u pm q x " εpu pm q xx `upm p1 ´upm q in R.

We establish that this convergence does indeed occur. The main challenge is obtaining enough compactness to ensure convergence of the nonlinear terms in (TW): namely, the quadratic term u 2 and, especially, the term pv x uq x . This model, the porous medium FKPP equation, is well understood, see [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF][START_REF] De | Travelling waves and finite propagation in a reaction-diffusion equation[END_REF][START_REF] Kawasaki | Effects of long-range taxis and population pressure on the range expansion of invasive species in heterogeneous environments[END_REF] and references therein. In particular, it is known that the minimal speed of (PME) is strictly positive and an explicit expression for this quantity is available; see (2.5) in Subsection 2.1.1. We use this, together with our convergence result, to deduce a lower bound on the limiting speed c pm , from which the estimate (1.3) follows.

The second asymptotic limit we consider is ν Ñ ν hyp ą 0 and ´χ Ñ 8. In this case, the limiting equation is expected to be (HYP)

#

´chyp pu hyp q x ´ppv hyp q x u hyp q x " u hyp p1 ´uhyp q ´νhyp pv hyp q xx " u hyp ´vhyp in R.

This equation has been introduced and studied in [START_REF] Fu | A cell-cell repulsion model on a hyperbolic Keller-Segel equation[END_REF][START_REF] Fu | Existence and uniqueness of solutions for a hyperbolic Keller-Segel equation[END_REF][START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]. In addition, (HYP) and similar models are used in modeling tumor growth; see, e.g., [START_REF] Fu | A cell-cell repulsion model on a hyperbolic Keller-Segel equation[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF][START_REF] Kim | Uniform convergence for the incompressible limit of a tumor growth model[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF]. We prove that, in this regime, traveling wave solutions to (TW) do indeed converge to those of (HYP). Two key challenges are that solutions to (HYP) are irregular (in some cases, discontinuous), and that the theory of solutions to (HYP) is not as well-developed as that for (PME). Thus, a large portion of our analysis is devoted to characterizing the general behavior of solutions to (HYP) and establishing a lower bound on the minimal speed c hyp,ν hyp . We are thus able to establish a lower bound on any limiting speed c hyp , and from there deduce (1.4).

In addition, for each ν hyp ą 0, we construct solutions of (HYP), called sharp traveling waves, and show that, as ν hyp Ñ 0, these special solutions converge to those of (PME) with ε " 0. We use this to deduce partially matching upper bounds on the speeds.

We postpone the rigorous statements of our main results until the next section. For the convenience of the reader, we summarize them here:

Theorem 2.1: Traveling wave solutions of (TW) converge, as ν Ñ 0 and 1 ´χ Ñ ε, for ε ě 0, to those of (PME). Moreover, the limiting speed is bounded from below away from zero. Theorem 2.5: Traveling wave solutions of (TW) converge, as 1 ´χ Ñ 0 and ν Ñ ν hyp , for ν hyp ą 0, to those of (HYP). Moreover, the limiting speed is bounded from below away from zero. Theorem 2.6 and Theorem 2.8: There exist sharp traveling wave solutions to (HYP), and they converge, as ν hyp Ñ 0, to those of (PME) with ε " 0. This yields an upper bound on the minimal speed of traveling wave solutions to (TW) in the 1 ´χ Ñ 0 and ν Ñ ν hyp limit.

Background and main results

This section is devoted to rigorously stating our main results and describing their proofs and significance. In the first subsection, we state several preliminary facts and fix notation. Then, in Subsection 2.2, we discuss our results on the porous medium regime; in particular, we state Theorem 2.1. Subsection 2.3 is devoted to our work on traveling wave solutions for (HYP). Then, in Subsection 2.4, we state Theorem 2.5, which concerns the limit of solutions to (TW) in the hyperbolic regime, and describe its proof. Our work on the matching lower bounds for the speeds, Theorems 2.6 and 2.8, is then discussed in Subsection 2.5. Finally, Subsection 2.6 is devoted to discussion of related work.

2.1. Preliminaries. Before precisely stating and discussing our results, it is useful to make some basic observations about traveling wave solutions pu, vq to (TW). First, we note that v is given by the convolution of u and a kernel:

(2. [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] vpxq " pK ν ˚uqpxq where K ν pxq "

1 ? ν K ˆx ? ν ˙and Kpxq " 1 2 e ´|x| .
Second, using (2.1), a simple comparison principle argument shows that (2.2) 0 ă u, v ă 1.

Finally, note that the first equation in (TW) may also be written as

(2.3) ´pc `vx qu x " 1 |χ| u xx `u ˆν `v ν ´ˆν `1 ν ˙u˙.
This is often useful in the sequel.

2.1.1. Discussion of minimal speeds. Here, we discuss and fix notation for minimal speeds of traveling waves for the various problems that we work with in this paper. We begin with,

(2.4) c χ,ν " inftc : there is a traveling wave solution pc, u, vq to (TW)u.

In analogous models, there is an infinite half-line of speeds admitting traveling waves. We believe that this property holds here: a traveling wave solution pc, u, vq to (TW) exists for all c P rc χ,ν , 8q.

We do not prove this here, although we believe that the proof is straightforward. Instead, we simply note that [33, Theorem 1.2] and (2.1) imply that

c χ,ν ě 2 ?
´χ , while an easy compactness argument yields that the infimum in (2.4) is attained. In this sense, the term minimal speed for c χ,ν is justified, although we caution the reader that this is often used in the context of having a half-line of speeds. Next, we denote, c pm,ε " inftc : there is a traveling wave solution pc pm , u pm q to (PME)u

This quantity, and the corresponding traveling wave solutions, are well-understood. For instance, in the case ε " 0, it is known [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF] that no traveling wave solutions to (PME) exist with speed c pm P r0, c pm,0 q; that the traveling wave with speed c pm,0 is sharp (which means tu pm ą 0u " pω, `8q for some finite ω); and that if c pm ą c pm,0 , then u pm is positive on all of R. Moreover, we have the following expression, [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF][START_REF] De | Travelling waves and finite propagation in a reaction-diffusion equation[END_REF][START_REF] Kawasaki | Effects of long-range taxis and population pressure on the range expansion of invasive species in heterogeneous environments[END_REF] (2.5)

c pm,ε " # 1 ? 2 `?2ε if 1 ą 2ε, 2 ? ε if 1 ď 2ε,
which may be found (upon carrying out the appropriate rescaling) in [START_REF] Kawasaki | Effects of long-range taxis and population pressure on the range expansion of invasive species in heterogeneous environments[END_REF]Eq (32)] and [4, Section 2] for ε " 0. Finally, we will denote, c hyp,ν hyp " inftc : there is a traveling wave solution pc hyp , u hyp , v hyp q to (HYP)u.

In our work, we consider solutions to (HYP) in the sense of Definition 2.2. In [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF][START_REF] Griette | Traveling waves with continuous profile for hyperbolic Keller-Segel equation[END_REF] specific traveling wave solutions to (HYP) have been constructed and estimates on their speeds obtained. However, the behavior of arbitrary traveling waves has not, to our knowledge, been studied before.

In particular, to our knowledge, no lower bounds exist in the literature for c hyp,ν .

2.2.

The porous medium regime. Our main result on this limit is:

Theorem 2.1. Fix any ε ě 0.

(i) The minimal speeds have the asymptotics:

lim inf ´χÑ 1 ε ,νÑ0 c χ,ν ě c pm,ε .
(ii) Consider any sequence pχ n , ν n q and any corresponding traveling wave solutions pc n , u n , v n q of (1.2). If lim sup c n ă 8, then there exists pc, uq solving (PME) and a subsequence indexed by n k such that, under the normalization

(2.6) min xď0 u n pxq " u n p0q " δ
for some fixed δ P p0, 1q, the following convergence of pc n k , u n k , v n k q to pc, uq holds:

c n k Ñ c, u n k Ñ u in L 8 loc ,
and v n k á u in H 1 loc . We make three notes. First, the normalization (2.6) is not a restriction: the system (TW) is translation invariant and u is a continuous function connecting 1 and 0, so (2.6) holds after a suitable translation.

Second, due to the Sobolev embedding theorem, the convergence of

v n k occurs in C 1 {2
loc . Surprisingly, this is stronger than the notion of convergence of u n k . This is related to the main difficulties and the method of proof, see below.

Finally, we note that Theorem 2.1.(i) follows directly from Theorem 2.1.(ii). Indeed, by simply taking a sequence χ n and ν n such that corresponding speed c n attains the limit inferior of c χ,ν , the convergence in Theorem 2.1.(ii) implies that the limiting speed c is larger than c pm,ε . We describe this more precisely in the proof of Theorem 2.1 (see Section 4).

We now describe the difficulties inherent in proving Theorem 2.1.(ii). First, we note the possible issue of degeneracy of v n as ν n Ñ 0. Indeed, the second equation in (TW) together with (2.2) yield the immediate bound, }pv n q x } L 8 ď Op 1 { ? ν n q. Since the right-hand side approaches infinity as ν n approaches zero, one cannot rely simply on the relative compactness of C 1 in L 8 . Further, examining (TW), it is clear that, even in the ε ą 0 case, one cannot rely on elliptic regularity theory to provide strong enough estimates on u n to take the limit in Theorem 2.1, as a priori the v n -coefficients may blow up like Op 1 {νnq.

A naïve first attempt to prove Theorem 2.1 might be to use the L 8 -bounds in (2.2) to pass to a weak-˚limit in L 8 . This, however, will fail due to the quadratic terms. Even the u 2 term in (TW) is problematic, as weak-* convergence in L 8 is not sufficient to guarantee that the weak-˚limit of u 2 n is u 2 . More worrisome is the ppv n q x u n q x term. Hence, one requires greater regularity of u n or v n , uniform in n, to pass to the limit.

Since we are performing a 'vanishing viscosity' limit, a second possible approach might be to take inspiration from the robust theory of viscosity solutions [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] that was developed to solve vanishing viscosity problems and attempt to perform a half-relaxed limit [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF], which requires only L 8 -regularity of the involved functions. One's optimism for this approach grows when considering the analogy with numerical schemes, which were proven to converge via visocity solution methods [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], due to the similarity of v x to a discrete derivative of u:

v x pxq « upx `?νq ´upx ´?νq 2 ? ν ,
at least in an averaged sense. This approach, however, does not work, as the work in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] requires the assumption that the scheme is 'monotone.' This, roughly, translates to (TW) admitting a comparison principle, which it does not. As such, this approach does not work.

To overcome these difficulties, we combine two major ingredients. The first is an energy estimate, Lemma 4.1: by multiplying (TW) by log u, integrating by parts, and using that K ν " ϕ ν ˚ϕν for some ϕ (see (3.5)), we find,

ż |ϕ ν ˚pu n q x | 2 dx ď c.
Since ϕ ν is 'nice enough,' this estimate leads to a uniform H 1 -bound and Hölder continuity of v n . Hence, we can take a weak limit of v n in H 1 , which is sufficient regularity to pass to a limit with the ppv n q x u n q x term in (TW). Unfortunately, it is does not immediately help with the u 2 n term in (TW).

The next major ingredient, Lemma 4.3, is a decay of oscillations estimate, which states, roughly,

max rx´ν 1{4 n ,x`ν 1{4 n s u n ´min rx´ν 1{4 n ,x`ν 1{4 n s u n ď Opν 1 {8 n q.
Note that this is not enough to provide a uniform bound in any Hölder space, but it is enough, along with the regularity of v n to imply that

}u n ´vn } L 8 ď Opν 1 {8
n q. This, along with the convergence of v n , is enough to understand the convergence of u 2 n . The key Lemma 4.3 is established by using the regularity of v n and a partial monotonicity result (Lemma 3.2).

2.3.

Traveling wave solutions of (HYP). As described in the introduction, a key part of our work is understanding solutions of (HYP) and bounds on the traveling wave speeds. This subsection is devoted to describing our main results on this.

2.3.1.

Definition and general properties of hyperbolic traveling waves. The first equation in (HYP) is degenerate, so, before we can proceed, the notion of solution must be clarified. To motivate the definition, notice that the first equation in (HYP) may also be written (cf. (2.3)):

(2.7)

´pc `pv hyp q x qpu hyp q x " u hyp ˆνhyp `vhyp

ν hyp ´ˆν hyp `1 ν hyp ˙uhyp ˙.
This is often useful in the sequel. In particular, we see that u hyp is satisfies a 'nice' ordinary differential equation away from any zeros of c`pv hyp q x . Hence, we can restrict to classical solutions away from these singular points. This leads to the following: Definition 2.2. Let c hyp P r0, `8q, u hyp P L 8 , and v hyp P W 2,8 , and denote Z :" tx : c hyp `pv hyp q x pxq " 0u.

We say pc hyp , u hyp , v hyp q is a solution to (HYP) if the second equation in (HYP) is satisfied almost everywhere and u hyp is nonnegative, bounded, in C 1 loc pZ c q, satisfies (HYP) pointwise on Z c , and satisfies

(2.8) u hyp ˆνhyp `vhyp ν hyp ´ˆν hyp `1 ν hyp ˙uhyp ˙" 0 in IntpZq.
This definition follows along the lines of previous works [START_REF] Fu | A cell-cell repulsion model on a hyperbolic Keller-Segel equation[END_REF][START_REF] Fu | Existence and uniqueness of solutions for a hyperbolic Keller-Segel equation[END_REF][START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]. Amazingly, despite being a fairly weak notion of solution, Definition 2.2 is strong enough to prove that, for any traveling wave, Z must either be empty or a single point and, if there is a point in Z, then there is a jump discontinuity at that point: Proposition 2.3 (Hyperbolic traveling waves). Suppose that pc, u, vq is a solution of (HYP) in the sense of Definition 2.2. Consider that u is nonconstant; that is, assume that both tu ă 1u and tu ą 0u have positive measure. Then c ą 0 and there are two possibilities:

(1) Z " ∅. In that case, u P C 8 loc pRq is a classical solution to (HYP).

(2) Z is consists of a single point: Z " tx 0 u. In that case, u has a single jump discontinuity at x 0 , with tu ą 0u " p´8, x 0 q. Moreover, u P C 8 loc pRztx 0 uq and u satisfies, at the jump,

upx 0 q " ν hyp `vpx 0 q ν hyp `1 .
Although this full claim is difficult to prove, the reason that Z is nowhere dense is quite easy to see. Consider a traveling wave solution pc hyp , u hyp , v hyp q to (HYP) with positive speed c hyp ą 0. Were IntpZq to be nontrivial, then (2.9) 0 " u hyp ˆνhyp `vhyp ν hyp ´νhyp `1 ν hyp u hyp ˙in IntpZq.

On the other hand, the definition of Z implies that pv hyp q xx " 0 on IntpZq so that, by (HYP),

(2.10) u hyp " v hyp in IntpZq.

These two equalities (that is, (2.9) and (2.10)) hold simultaneously only if v " 0 or v " 1. This, however, is not compatible with the definition of Z, which implies that pv hyp q x " ´chyp ă 0. This contradiction implies that Z must be nowhere dense. The proof of Proposition 2.3, which is given in Section 8, is based on a careful analysis of (HYP). There are three major steps to this: (1) we use the observation from [30, Proof of Lemma 5.4] that u satisfies a formula that is explicit in v on Z c (Lemma 8.1); (2) we show a strong maximum principle type argument: u cannot tend to 0 at some point in Z c without being uniformly zero on the entire maximal interval in Z c ; (3) u cannot tend to positive limits on the endpoints of a maximal interval of Z due to a technical argument using the convexity of v (coming from the second equation in (HYP) and the explicit form of the limit coming from (1)) near the endpoints of the interval.

Then [START_REF] An | Quantitative steepness, semi-FKPP reactions, and pushmipullyu fronts[END_REF] shows that any maximal interval of Z c must be half-infinite. This implies that Z is either empty, a single point, or a closed interval. On the other hand, we have already described above why Z has an empty interior. It follows that Z is either empty or a single point. 2.3.2. Exponential decay. We establish another key property that holds for solutions of (HYP), (TW), as well as a certain 'slab problem' for (TW): namely, once u reaches a critical level ν{pν `1q, it decays exponentially. This is stated precisely in Proposition 5.2.

The proof of Proposition 5.2 is quite intricate, but essentially boils down to the fact that if u were approximately constant on a large interval, then, due to (2.1), v « u and v x « 0 on that interval. These two approximate equalities, when combined with (2.7), imply that u « 1 or u « 0, which is not consistent with the fact that u is approximately constant and 0 ă u ă 1. Hence, u must 'drop' by a proportion over every fixed large interval. The main complications in proving this are (1) suitably quantifying the above heuristics, and (2) dealing with the u xx term in the case (TW).

The exponential decay of Proposition 5.2 is used in various places in the paper, such as Theorem 2.6 (see below). As such, it is important that it applies uniformly for (HYP) and (TW). Hence, complication (2) is unavoidable in our work. It is also the main source of difficulty.

2.3.3.

Bounds on the speed of solutions of (HYP). In order to show that Theorem 2.5 does not yield a trivial bound, we show that c hyp,ν hyp ą 0: Proposition 2.4. Fix ν M ą ν m ą 0. Then there exists c ą 0, depending only on ν M and ν m , such that, if ν hyp P pν m , ν M q, then, (2.11) c hyp,ν hyp ě c.

If pc ν hyp , u ν hyp , v ν hyp q is a traveling wave solution of (HYP) and the singular set Z of v ν hyp consists of a single point, then we have the refined estimate:

(2.12)

c ν hyp P ˜?ν hyp 2ν hyp `1 , 1 2 ? ν hyp ¸.
We note that the dependence on ν m can probably be removed by a limiting argument similar to the one contained in the proof of Theorem 2.8, below (see, e.g., Lemma 7.6 and Lemma 7.7).

The bounds in (2.12) match those proved in [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]Theorem 2.7] for the particular traveling wave constructed there. The novelty in (2.12) is that it holds for any traveling wave with a discontinuity, while the proof in [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF] relies on the monotonicity of the constructed wave. Our proof uses essentially the same observations as [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF] with an additional partial monotonicity result (Lemma 5.1).

The main contribution of Proposition 2.4 is the generality of the bound (2.11). It has been observed in [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF][START_REF] Griette | Traveling waves with continuous profile for hyperbolic Keller-Segel equation[END_REF] that if pc, u, vq is a solution of (HYP) then (2.13) c ě supp´v x q holds, and quite precise bounds have been proved for particular waves that have been constructed. (i) The minimal speeds have the asymptotics:

lim inf ´χÑ8,νÑν hyp c χ,ν ě c hyp,ν hyp .
(ii) Consider any sequence pχ n , ν n q such that ´χn Ñ 8 and ν n Ñ ν hyp , and let pc n , u n , v n q be any corresponding traveling wave solutions to (TW). If sup c n ă 8, then there exists pc, u, vq solving (HYP) and a subsequence indexed by n k such that, under the normalization

(2.14) u n p0q " δ,
for any δ P p0, ν hyp {ν hyp `1q, the following convergence of pc n k , u n k , v n k q to pc, u, vq holds: there is a set Z that is either empty or contains a single point such that ' u n k and v n k converge to u and v, respectively, locally uniformly in C k pZ c q, for any k, ' v n k converges to v weak-˚in W 2,8 , and ' c n k converges to c.

We now discuss the proof of Theorem 2.5. As above, Theorem 2.5.(i) reduces to the case Theorem 2.5.(ii), so we only discuss the latter. The main difficulty here is clear: (TW) loses ellipticity and the limiting equation (HYP) has no ellipticity.

Thus, in order to take a limit, one proceeds in the following way. First, since lim sup

nÑ8 }v n } W 2,8 ď 1 ν hyp and }u n } L 8 ď 1
one can take weak-˚limits to obtain v and u that are related by ´νv xx " u ´v weakly. The limit above allows us to define Z " tx : c `vx pxq " 0u. However, we need to establish stronger convergence of u n and v n to eliminate the possibility that this 'singular set' Z might be quite large and complicated.

An additional problem is that, at this point, our notion of convergence of the u n is not strong enough to deduce (HYP) as a limiting equation in Z c . However, an indication that it is possible to deduce better regularity of the u n in Z c is that (2.3) yields

pu n q x " 1 ´pc n `pv n q x q ˆ1 |χ n | pu n q xx `un ˆνn `vn ν n ´νn `1 ν n u n ˙˙,
which, imagining that |χ n | " 8 momentarily, yields a W 1,8 bound for u n on compact subsets of Z c when n is sufficiently large. By 'perturbing' off of this observation, we are able to show that, subsequentially, u n converges to u in C k pZ c q for any k, see Lemma 6.1. At this point in the proof, Z and the behavior of u on Z is not understood. An argument based on the partial monotonicity of u (Lemma 3.2) that is reminiscent of the decay of oscillations argument discussed above allows us to show that (2.8) is satisfied. This final ingredient allows us to conclude that the liming object solves (HYP) in the sense of Definition 2.2.

2.5. Upper bounds on the asymptotics of the minimal speed. It is natural to wonder how sharp the bounds on the minimal speeds c pm,ε and c hyp,ν hyp in Theorem 2.1 and Theorem 2.5 are. In contrast to the arguments of these theorems, one would like to take a limit of a sequence of minimal speed traveling waves. Unfortunately, there is no known characterization of the minimal speed waves of (TW).

We must, instead, approach the problem by constructing a sequence of traveling waves directly using what we know about the minimal speed waves for (PME) and (HYP). As described in Subsection 2.1.1, it is known that the minimal speed traveling wave for (PME) when ε " 0 is the one that is 0 after some x 0 : upxq " 0 for x ą x 0 . For (HYP), it is believed that the minimal speed traveling wave is a discontinuous one, corresponding to case (ii) in Proposition 2.3 (see the discussion after Theorem 1.4 in [START_REF] Griette | Traveling waves with continuous profile for hyperbolic Keller-Segel equation[END_REF]). Hence, in each case, we construct a sequence of traveling wave solutions to (TW) that approximate these waves.

2.5.1. The hyperbolic case. Our first construction is related to the scaling associated to the hyperbolic model. It is proved in Section 7.1.

Theorem 2.6. Fix any ν hyp ą 0 and sequences χ n Ñ ´8 and ν n Ñ ν hyp . There exists corresponding solutions pc n , u n , v n q to (TW) and a solution pc ν hyp , u ν hyp , v ν hyp q to (HYP), such that: (i) u ν hyp , v ν hyp , u n , and v n are nonincreasing in x for all n;

(ii) we have, (2.15) pv ν hyp q x p0q `cν hyp " 0;

(iii) along a subsequence χ n k Ñ ´8 and ν n k Ñ ν hyp , the following limits hold uniformly locally in R, C 1 pRzt0uq, and weak-˚in W 2,8 , respectively:

lim n k Ñ8 pc n k , u n k , v n k q " pc ν hyp , u ν hyp , v ν hyp q.
The traveling wave solution of (HYP) constructed in Theorem 2.6 is discontinuous: this follows by combining item (2.15) with case (ii) in Proposition 2.3 (see also [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]Theorem 2.7]). Interestingly, this provides a completely different construction of traveling wave solutions to (HYP) from that of [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]. Further, this construction works for all values of ν hyp , whereas that of [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF] involves a restriction to ν hyp smaller than some threshold (see [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF]Assumption 2.3]).

The important consequence of the discontinuity of u ν hyp is the partial converse to Theorem 2.5 that comes from combining Theorem 2.6 with Proposition 2.4: Corollary 2.7. For ν hyp ą 0, the minimal speeds have the asymptotics:

lim sup ´χÑ8,νÑν hyp c χ,ν ď c ν hyp ď 1 2 ? ν hyp ,
where c ν hyp is the speed associated to the family defined in Theorem 2.6.

The construction of the wave in Theorem 2.6 follows the standard procedure: use the Leray-Schauder index to construct a solution to the 'slab problem,' i.e., an appropriate approximate solution to (TW) on a 'slab' r´L, Ls, and then take L Ñ 8. The main difficulty is in ensuring that the construction yields a discontinuous traveling wave solution of (HYP): in other words, ensuring that (2.15) holds. To this end, taking advantage of the structure of (TW), we consider ũpxq :" u n pxqe |χ| cn x`vn pxq 2 , and notice that any maximum of ũ occurs where |pv n q x `c| ď Op1{|χ n |q (see (7.31)).

The goal is, thus, to guarantee the existence of a maximum and show that it remains 'near' the origin, regardless of χ n . The existence of the maximum is guaranteed by working with the 'slab problem,' whose boundary conditions guarantee an interior maximum (see (7.29)). From the form of ũ and that v n is bounded, it follows that a maximum cannot occur too far to the left. On the other hand, the aforementioned exponential decay (Proposition 5.2) guarantees that pv n q x decays exponentially, so that |pv n q x `c| ď Op1{|χ|q cannot hold too far to the right.

We had previously mentioned that it is crucial for the exponential decay estimate to apply uniformly to (HYP) and (TW). This last step is one of the reasons for this: we must be able to apply it to solutions of (TW) on the 'slab' uniformly as χ Ñ ´8.

2.5.2. The porous medium case. Taking any decreasing, discontinuous traveling wave solutions to (HYP), we prove that, as ν hyp OE 0, they converge to the minimal speed traveling wave of (PME). This is contained in Section 7.2.

Theorem 2.8. Consider the family of traveling wave solutions pc ν hyp , u ν hyp , v ν hyp q to (HYP) constructed in Theorem 2.6. Then

lim ν hyp Ñ0 pc ν hyp , u ν hyp q " ˆ1 ? 2 , u pm ˙,
where u pm is the unique minimal speed traveling wave solution to (PME) with ε " 0 and tu pm ą 0u " p´8, 0q.

The proof of Theorem 2.8 relies on the ideas and estimates developed for Theorem 2.1. The main issue is to ensure that the limiting object has support to the left of the origin; that is, u ν hyp Ñ 0 on all of R. To do this, we show first obtain a preliminary lower bound on c using 'bulk-burning rate' style arguments (see [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF]) and then leverage the fact that pv ν hyp q x p0q " ´cν hyp ă 0 to obtain a uniform lower bound on u ν hyp « v ν hyp on p´8, 0q as ν ν hyp OE 0.

By combining Theorem 2.8 and Theorem 2.6 with a careful double limit, we arrive at the following converse to Theorem 2.5: Corollary 2.9. For ν hyp ą 0, the minimal speeds have the asymptotics:

lim ´χÑ8,νÑ0 c χ,ν " c pm,0 " 1 ? 2 .
As the proof of Corollary 2.9 is elementary, we omit it.

2.6. Related work. Front propagation in the three models (1.1), (PME), and (HYP) have been the subject of intense interest in recent years; see, e.g., [START_REF] Bertsch | A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic Fisher KPP equation[END_REF][START_REF] Bramburger | Exact minimum speed of traveling waves in a Keller-Segel model[END_REF][START_REF] Fu | A cell-cell repulsion model on a hyperbolic Keller-Segel equation[END_REF][START_REF] Hamel | Propagation in a Fisher-KPP equation with non-local advection[END_REF][START_REF] Henderson | Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis[END_REF][START_REF] Li | Traveling wave solutions to the density-suppressed motility model[END_REF][START_REF] Li | Traveling waves in a Keller-Segel model with logistic growth[END_REF][START_REF] Gregoire Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF][55][START_REF] Rachidi | Traveling wave solutions for fully parabolic Keller-Segel chemotaxis systems with a logistic source[END_REF][START_REF] Rachidi | Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source?[END_REF] for a selection of those works closest to the present one. We note, however, that there is also active study on the behavior on finite domains: see, e.g., [START_REF] Horstmann | Boundedness vs. blow-up in a chemotaxis system[END_REF][START_REF] Tello | A chemotaxis system with logistic source[END_REF] and articles referencing them. The majority of the work related to (1.1) is dedicated to the aggregation case χ ą 0. This is, perhaps, due to the historical interest in positive chemotaxis that stems from its elegant theory of blowup [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF][START_REF] Carlen | Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation[END_REF][START_REF] Kiselev | Suppression of chemotactic explosion by mixing[END_REF]. Although there are many interesting and difficult features to study in the positive chemotaxis case, it is unlikely that front speed-up will occur. Heuristically, aggregation 'pushes' a traveling wave to the left on average.

2.6.1. Propagation enhancement by advection. In the context of turbulent combustion, it has long been understood that advection can 'enhance' reactions by exposing unreacted fluid to the reacting region. For flows that are imposed, that is, the drift term is linear, this has been thoroughly investigated over the past several decades, see [START_REF] Kirsch | Asymptotics of the KPP minimal speed within large drift[END_REF][START_REF] Hamel | Speed-up of combustion fronts in shear flows[END_REF][START_REF] Majda | Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales[END_REF][START_REF] Nolen | A variational principle for KPP front speeds in temporally random shear flows[END_REF][START_REF] Nolen | Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows[END_REF][START_REF] Ryzhik | KPP pulsating front speed-up by flows[END_REF][START_REF] Xin | Sharp asymptotic growth laws of turbulent flame speeds in cellular flows by inviscid Hamilton-Jacobi models[END_REF][START_REF] Xin | Asymptotic growth rates and strong bending of turbulent flame speeds of G-equation in steady two-dimensional incompressible periodic flows[END_REF][START_REF] Xin | Periodic orbits of the ABC flow with A " B " C " 1[END_REF] for a representative selection of the literature. Although the interpretation of the equation is quite different here, the effect we are studying is the same. Here, the 'reaction' is reproduction, and the advective effect of chemotaxis that speeds up fronts is that individuals feel a 'push' to less populated areas, where the per capita reaction rate 1 ´u is highest.

What makes the proofs difficult in our setting is the fact that the flow ´χv x is not imposed, it depends nonlinearly on u. Further, it depends nonlocally on u; that is, if the profile of u is changed at some x far , it changes the flow ´χv x pxq at every x, even if |x far ´x| " 1 (see (3.1)). Heuristically, this makes the behavior of the drift hard to predict as one must understand the entire profile of u, not just its local behavior. Technically, this nonlocality means that (TW) (and (HYP)) do not enjoy a comparison principle. Given the reliance on the construction of sub-and supersolutions in the study of reaction-diffusion equations, the lack of a comparison principle is a serious issue.

2.6.2. Nonlocal advection. The previous paragraph leads to another area that, probably due to its difficulty, has been much less explored: the role of nonlocal advection in front propagation. We note a few examples below. A major motivation for us is to develop an understanding of models where nonlocality plays an essential role, as few precise results exist at present.

Beyond the chemotaxis results discussed above, as well as other -taxis effects (e.g., [START_REF] Calvez | Mathematical modeling of cell collective motion triggered by self-generated gradients[END_REF][START_REF] Demircigil | When self-generated gradients interact with expansion by cell division and diffusion. analysis of a minimal model[END_REF][START_REF] Marchant | Travelling wave solutions to a haptotaxis-dominated model of malignant invasion[END_REF][START_REF] Walker | Global existence of classical solutions for a haptotaxis model[END_REF]), there is the reactive-Boussinesq system that, in a sense, dates back to [START_REF] Malham | Global solutions to a reactive Boussinesq system with front data on an infinite domain[END_REF]. This, roughly, represents a model for turbulent combustion in which the density differences arising from the temperature changes lead to a buoyancy force that induces a drift in the fluid. Due to its extreme complexity, beyond the existence of traveling waves, very few precise results exist; see, e.g., [START_REF] Belk | Existence of reaction-diffusion-convection waves in unbounded strips[END_REF][START_REF] Berestycki | Non-planar fronts in Boussinesq reactive flows[END_REF][START_REF] Constantin | Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions[END_REF][START_REF] Texier | Problèmes de réaction-diffusion-convection dans des cylindres non bornés[END_REF][START_REF] Vladimirova | Flame enhancement and quenching in fluid flows[END_REF][START_REF] Vladimirova | Model flames in the Boussinesq limit: the effects of feedback[END_REF]. We note also a 'Burgers-Boussinesq' model studied in [START_REF] Bramburger | The speed of traveling waves in a FKPP-Burgers system[END_REF][START_REF] Constantin | Propagation and quenching in a reactive Burgers-Boussinesq system[END_REF]. 2.6.3. Pushed and pulled fronts. One of the oldest problems in reaction-diffusion is that of 'pushed' versus 'pulled' fronts: where is the important behavior that drives the front forward? More precisely, is the wave pulled by growth far ahead of the front in the linearized regime where u « 0 or is the wave pushed by nonlinear behavior near the front? While this can be phrased in many ways, with varying precision and technical sophistication, for our purposes, this boils down to whether the front speed is linearly or nonlinearly determined. This question is also called the selection problem, referring to whether the linear or nonlinear behavior 'selects' the minimal speed. We refer to [START_REF] Ben-Jacob | Pattern propagation in nonlinear dissipative systems[END_REF][START_REF] Ebert | Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts[END_REF][START_REF] Stokes | On two types of moving front in quasilinear diffusion[END_REF][START_REF] Wim Van Saarloos | Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection[END_REF][START_REF] Wim Van Saarloos | Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence[END_REF] for early discussions of this problem, as well as [START_REF] An | Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation[END_REF][START_REF] An | Quantitative steepness, semi-FKPP reactions, and pushmipullyu fronts[END_REF][START_REF] Avery | Pushed-to-pulled front transitions: continuation, speed scalings, and hidden monotonicity[END_REF][START_REF] Avery | Universal selection of pulled fronts[END_REF][START_REF] Elaine | Minimal travelling wave speed and explicit solutions in monostable reaction-diffusion equations[END_REF] for recent progress on it. We note especially [START_REF] Garnier | Inside dynamics of pulled and pushed fronts[END_REF] for an interesting treatment of pushed.

In the context of (1.2), fronts are 'pulled' when the minimal speed cχ,d " 2 and fronts are 'pushed' when the minimal speed cχ,d ą 2. The main result of [START_REF] Henderson | Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis[END_REF] is that there is a pulled regime when |χ| and d are sufficiently small and there is a pushed regime when 1 ! ´χ ! d. The current work completes this picture by establishing the precise 'pushed' behavior in the remaining regimes 1 ! ´χ « d and d ! ´χ (Theorems 2.5 and 2.6). Very interestingly, the authors of [START_REF] Avery | Pushed-to-pulled front transitions: continuation, speed scalings, and hidden monotonicity[END_REF] develop a numerical approach to finding the pushed-pulled transition point and apply it to many examples, including (TW). Our results in the ν Ñ 0 limit agree with their numerical conclusions: the transition takes place at ´χ " 1 {ε " 2 (see (2.5)).

A few preliminary facts

We shall use several results from [START_REF] Henderson | Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis[END_REF]. There, these results are established for χ either positive or negative, but here we only state the version for χ ă 0 since that is the context of the present work.

First is a monotonicity result, with our scaling taken into account. This is a rephrasing of [35, Lemma 2.3], but they are equivalent. Lemma 3.1. [35, Lemma 2.3] Let χ ă 0 and ν ą 0. Suppose that pc, u, vq be a solution to (TW). Define

x d " inf " x : upxq ă 2 2 `1{ν * .
Then u is nonincreasing on px d , 8q.

We note that an analogous result (Lemma 5.1) holds for the hyperbolic case (HYP). This, however, requires some understanding of the structure of Z (recall Definition 2.2) in order to prove, so we postpone it.

Next, we record a basic property of u, which is the basis of Lemma 3.1 and will be important in many of our arguments. Lemma 3.2. Let χ ă 0, ν ą 0, and let pc, u, vq be a solution to (TW). If x m is a local minimum (resp. maximum) of u then upx m q ě pν `vpx m qq{pν `1q (resp. ď).

Proof. Indeed, suppose that x m is a local minimum of u. Then we have that, by (2.3),

u ˆ1 `v ν ´ν `1 ν u ˙" ´pc `vx qu x ´1 |χ| u xx ď 0.
By the nonnegativity of u, we have that

1 `v ν ď ν `1 ν u or, equivalently, ν `v ν
`1 ď u, as claimed. The proof of the second claim is very similar and is omitted.

From (2.1), an elementary calculation yields the following oft-used expression for v x :

v x pxq " 1 2ν ż 8 0 e ´y ?
ν pupx `yq ´upx ´yqq dy. (3.1) Another consequence of (2.1), which is crucial to the proof of Theorem 2.1, is the following refinement:

Lemma 3.3. Let ν ą 0. Then (3.2) K ν " ϕ ν ˚ϕν ,
where the kernel ϕ ν is defined as,

(3.3) ϕ ν pxq " 1 ? ν ϕ ˆx ? ν ˙with ϕpxq " 1 π K 0 p|x|q ě 0,
where K 0 is the modified Bessel function of the second kind that has the asymptotics

K 0 pxq « # log 2 |x| ´γ if 0 ă x ! 1, a π 2x e ´x `1 `O `1 x ˘˘if x " 1.
Here γ « .5772 is the Euler-Mascheroni constant. Further, }ϕ ν } L 1 " 1.

Proof. The scaling in ν is clear, so we show the argument for the case ν " 1. From (2.1) and a direct computation, we find

Kpξq " 1 ? 2π ż e ´|x|`iξx dx " 1 ? 2π 1 |ξ| 2 `1 .
Hence, we can take (3.4) φpξq " p2πq

1 {4 a Kpξq " 1 a ξ 2 `1 .
By the convolution theorem, it follows that

(3.5) K " q p K " ? 2π p φ φq " ϕ ˚ϕ, from which (3.2) follows.
The fact that ϕ is given by (3.3) follows from [1, equation 9.6.21]. Next, the L 1 -norm of ϕ is computed easily:

ˆż |ϕpxq| dx ˙2 " ˆż ϕpxq dx ˙2 " p ? 2π φp0qq 2 " ? 2π Kp0q " ż Kpxq dx " 1,
where second and fourth equalities are due to the definition of the Fourier transform, the third equality is the definition of ϕ (3.4), and the final equality is a direct computation. This concludes the proof.

Finally, we will use the property that if φ P L 1 pRq is even and f, g P L 1 pRq X L 8 pRq, then,

ż R f pxqpφ ˚gqpxq dx " ż R pf ˚φqpxqgpxq dx. (3.6) 
4. The porous medium scaling regime: proof of Theorem 2.1

In this section, we prove Theorem 2.1. First, we obtain some preliminary estimates on u and v. The main estimates are a bound in H 1 of v that is uniform in χ and ν as well as a decay of oscillations estimate on u. The proof of Theorem 2.1.(ii) is contained in Section 4.3.

Preliminary lemmas: regularity of v.

A key element of the proof of Theorem 2.1 is the following identity: Lemma 4.1. Let pc, u, vq be a solution to (TW). For any ν ą 0 and χ ă 0, we have

ż pϕ ν ˚ux q 2 dx `1 |χ| ż pu x q 2 u dx `ż |up1 ´uq log u| dx " c.
Before proving Lemma 4.1, we point out two bounds that follow from this and that are useful in taking the limit in Theorem 2.1.

Corollary 4.2. Under the assumptions of Lemma 4.1, we have that ż pv x q 2 dx ď c and rvs C 1{2 ď ? c.

Proof. First, we have, by the expression (3.2) for K ν (recall that v " K ν ˚u (2.1)), Young's inequality for convolutions, the fact that ϕ ν has L 1 -norm one (Lemma 3.3), and Lemma 4.1, (4.1)

}v x } L 2 " }φ ν ˚pφ ν ˚uq x } L 2 ď }pφ ν ˚uq x } L 2 ď ? c.
Next, notice that, for any x ă y,

|vpxq ´vpyq| ď ż y x |v x pzq|dz ď a |y ´x| ´ż y x v x pzq 2 dz ¯1{2 ď a c|x ´y|,
where the last inequality follows from (4.1). The desired estimate thus follows.

We now prove the crucial identity, Lemma 4.1.

Proof of Lemma 4.1. We multiply the first equation in (TW) by log u and integrate over r´L, Ls for L " 1 to obtain,

´c ż L ´L u x log u dx " ż L ´Lpv x uq x log u dx `1 |χ| ż L ´L u xx log u dx `ż L ´L up1 ´uq log u dx.
Integrating by parts where possible, we find

´cupLq log upLq `cup´Lq log up´Lq `c ż L ´L u x dx " v x pLqupLq log upLq ´vx p´Lqup´Lq log up´Lq ´ż L ´L v x u x dx `1 |χ| pu x pLq log upLq ´ux p´Lq log up´Lqq ´1 |χ| ż L ´L pu x q 2 u dx `ż L ´L up1
´uq log u dx. We claim that all boundary terms vanish as L Ñ 8. Indeed, by assumption up´8q " 1 and up`8q " 0, so that elliptic regularity implies that u x p˘8q " 0 " u xx p˘8q. Similarly, v x p˘8q " 0 " v xx p˘8q. Thus, after integrating also the last term on the left, we find

´c " ´ż v x u x dx ´1 |χ| ż pu x q 2 u dx `ż up1 ´uq log u dx.
Here is the key step. From the expression (3.2) for v and properties of convolution, we find v x " ϕ ν ˚ϕν ˚ux . Using this in the first term on the right-hand side, and then recalling the property (3.6) of convolution, we find, ´c " ´ż pϕ ν ˚ϕν ˚ux qu x dx ´1 |χ|

ż pu x q 2 u dx `ż up1 ´uq log u dx " ´ż pϕ ν ˚ux q 2 dx ´1 |χ| ż pu x q 2 u dx `ż up1 ´uq log u dx.
The desired estimate follows upon recalling that p1 ´uq log u ď 0 for all u ě 0.

4.2.

Preliminary lemmas: decay of oscillations of u. Formally taking ν to zero in the second equation of (TW) indicates that we should expect u ´v to converge to zero. This is exactly what we now prove, in a quantitative way. A significant issue, though, is that we do not have any regularity estimates on u that are uniform in ν and χ. To get around this, we use the uniform estimates that we have established on v to prove the following decay of oscillations of u as ν Ñ 0.

Lemma 4.3. If pc, u, vq is a solution to (TW) with χ ă 0 and 0 ă ν ă 8, then there is a universal constant C ą 0 such that

(4.2) max rx0´ν 1{4 ,x0`ν 1{4 s upxq ´min rx0´ν 1{4 ,x0`ν 1{4 s upxq ď Cp ? c `1qν 1 {8 .
As a result, we have

(4.3) }u ´v} L 8 ď Cp ? c `1qν 1 {8 .
Proof. First, note that we may restrict to ν sufficiently small so that

(4.4) 1 e ν ´1{4 ă ν 1 {8
and ν ă 1.

Indeed, when ν is large enough that (4.4) does not hold then the proof is finished by possibly increasing C and using (2.2).

Next, we note that (4.3) follows easily from (4.2) and (2.1). Indeed, for any x 0 , we have

vpx 0 q ď ż ν 1{4 ´ν1{4 e ´|y| ? ν 2 ? ν ˆmax rx0´ν 1{4 ,x0`ν 1{4 s u ˙dy `żr´ν 1{4 ,ν 1{4 s c e ´|y| ? ν 2 ? ν dy ď ż ν 1{4 ´ν1{4 e ´|y| ? ν 2 ? ν ´upx 0 q `Cp ? c `1qν 1 {8 ¯dy `e´ν ´1{4 ď upx 0 q `pCp ? c `1q `1qν 1 {8 .
The argument for the lower bound on vpx 0 q is similar, and (4.3) follows.

Fix any x 0 P R. We actually shall prove max

rx0´ν 1{4 ,x0`ν 1{4 s upxq ď vpx 0 q `p? 3c `1qν 1 {8
and min

rx0´ν 1{4 ,x0`ν 1{4 s upxq ě vpx 0 q ´p? 3c `1qν 1 {8 , (4.5)
from which (4.2) follows. We prove these two bounds separately, beginning with the bound on the maximum. A key ingredient in both is the regularity of v: due to Corollary 4.2, for all x P rx 0 ´3ν

1 {4 , x 0 `3ν .

We now begin by proving the upper bound on the maximum in (4.5). Our goal is to leverage Lemma 3.2 to obtain an upper bound on u. A substantial complication, however, is that Lemma 3.2 is only applicable at a local extremum, while the maximum of u over rx 0 ´ν1 {4 , x 0 `ν1 {4 s may occur at the boundary and we do not a priori have control over upx 0 ˘ν1 {4 q. As such, our approach is to identify an interval containing rx 0 ´ν1 {4 , x 0 `ν1 {4 s for which we can establish a suitable bound on u at the end points.

We now find such an interval. For any x P rx 0 ´2ν 1 {4 , x 0 `2ν 1 {4 s, let

y x :" argmin rx´ν 1{4 ,x`ν 1{4 s u.
Then, due to (2.1), (4.4), and the fact that }u} L 8 ď 1, we find

vpxq ě ż rx´ν 1{4 ,x`ν 1{4 s 1 2 ? ν e ´|x´y| ? ν ˆmin rx´ν 1{4 ,x`ν 1{4 s u ˙dy
" upy x q ´1 ´e´ν ´1{4 ¯ě upy x q ´ν1 {8 .

Thus, rearranging the above inequality and using (4.6) yields,

upy x q ď vpxq `ν1 {8 ď vpx 0 q `?3cν 1 {8 `ν1 {8 .
Applying (4.4), we find (4.7)

upy x q ď vpx 0 q `p? 3c `1qν 1 {8 .
Notice that this is exactly the inequality that we wished to prove, albeit only for y x . This suggests that the interval we should work on has endpoints y x for well-chosen x, which is what we do now. Let y ˘" y x0˘2ν 1{4 and notice that, due to (4.4) and the definition of y ¨, (4.8)

y ´P rx 0 ´3ν 1 {4 , x 0 ´ν1 {4 s and y `P rx 0 `ν1 {4 , x 0 `3ν 1 {4 s.
As a result, rx 0 ´ν1 {4 , x 0 `ν1 {4 s Ă ry ´, y `s. We shall now use the argument, based on Lemma 3.2 and outlined above, to establish, (4.9) max ry´,y`s upxq ď vpx 0 q `p? 3c `1qν 1 {8 .

According to (4.8), the first inequality in (4.5) follows from (4.9).

Let x m P ry ´, y `s be the maximum of u over ry ´, y `s. If x m is one of y ˘, then (4.9) holds by virtue of (4.7). Thus, let us consider the case that x m P py ´, y `q. Then x m is the location of a local maximum. Using Lemma 3.2, we find, at x m , max ry´,y`s u " upx m q ď 1 1 `ν pvpx m q `νq ď vpx m q `ν.

Recalling (4.6) and (4.8), we have max ry´,y`s u ď vpx 0 q `?3cν

1 {8 `ν ď vpx 0 q `p? 3c `1qν 1 {8 .

This concludes the proof of the first inequality in (4.5).

The proof of the second inequality in (4.5) follows along the same lines. We include it in order to show the necessary (slight) modifications; however, we provide less exposition due to its similarities to the proof above. First, fix any x P rx 0 ´3ν

1 {4 , x 0 `3ν 1 {4 s and let ỹx " argmax

rx0´ν 1{4 ,x0`ν 1{4 s u.
Then, using the expression (2.1) for v and the definition of K ν we find, vpxq "

ż rx´ν 1{4 ,x`ν 1{4 s K ν px ´yqupyq dy `ż|y´x|ąν 1{4 K ν px ´yqupyq dy ď ż rx´ν 1{4 ,x`ν 1{4 s 1 2 ? ν e ´|x´y| ? ν ˆmax rx´ν 1{4 ,x`ν 1{4 s u ˙dy `e´ν ´1{4 ď upỹ x q `ν1 {8 .
Thus, recalling (4.6), we find (4.10) vpx 0 q ď vpxq `?3cν 1 {8 ď upỹ x q `p? 3c `1qν 1 {8 .

As in the proof of the first inequality in (4.5), let ỹ˘" ỹx0˘2ν 1{4 , and, as before, notice rx 0 ν1{4 , x 0 `ν1{4 s Ă rỹ ´, ỹ`s . Hence, it is enough to establish the stronger claim: min rỹ´,ỹ`s upxq ě vpx 0 q ´p? 3c `1qν 1 {8 .

To this end, let x min be the location of the minimum of u over the interval rỹ ´, ỹ`s . If x min " ỹ˘, then we are finished by (4.10). Otherwise, x min is an interior minimum and we find, via Lemma 3.2, upx min q ě vpx min q `ν 1 `ν ě vpx min q 1 `ν ě p1 ´νqvpx min q ě vpx min q ´ν ě vpx 0 q ´?3cν We note that a byproduct of (4.14) is that c ą 0 as (4.13) and (4.15) imply that u is nonconstant. We use this in the proof of monotonicity below. Further, it must be up`8q " 0 (otherwise the integral on the left hand side of (4.14) would be infinite).

Next, we show that u is a distributional solution to (PME). To this end, fix any ψ P C 2 c pRq. At the level of u n , multiply (TW) by ψ and integrate by parts to obtain:

c n ż u n ψ x dx `ż pv n q x u n ψ x dx " 1 |χ n | ż u n ψ xx dx `ż u n p1 ´un qψ dx.
Using (4.11) and (4.12) and taking n Ñ 8, we find

(4.16) c ż uψ x dx `ż u x uψ x dx " ε ż uψ xx dx `ż up1 ´uqψ dx,
that is, ū is a distributional solution to (PME).

To deduce the desired bound on the limiting speed, we appeal to the results of [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF] concerning solutions of (PME). However, the notion of solution given in [4, equation (2.3)] is, at first glance, different from that of distributional solutions. However, as we establish below, the two notions are equivalent. (We also remark that these notions are the same as that of viscosity solution [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]; however, since we do not use this fact in our work, we do not provide a proof).

We also note that if ε ą 0, then solutions of (PME) are classical; thus, the following lemma is only interesting when considering solutions of (PME) in the case ε " 0. Lemma 4.4. Suppose 0 ă α ă 1 and u P H 1 loc pRq satisfying 0 ď u ď 1 on R, with lim xÑ´8 upxq " 1 and lim xÑ´8 upxq " 0. Suppose c ą 0. Then the following are equivalent:

(1) pu, cq is a distributional solution of (PME).

(2) there exists ω P p´8, `8s such that tu ą 0u " p´8, ωq, we have u P C 2,α p´8, ωq; and u satisfies (PME) classically on p´8, ωq and is strictly decreasing on p´8, ωq.

We note that the hypotheses of the lemma and item (2) comprise exactly the definition of solution in [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF].

We first state and prove the following basic fact that we will use twice in the proof of Lemma 4.4.

Lemma 4.5. Suppose 0 ď u ď 1 is a classical, nonconstant solution of (PME) on pa, bq, for some a ă b. Suppose u has a local minimum at x P pa, bq and upxq ‰ 1. Then upxq " 0.

Proof. Since x is an interior minimum, we have u x pxq " 0 and ´uxx pxq ď 0. Evaluating (PME) at x then yields, 0 ě upxqp1 ´upxqq. Since upxq ‰ 1 and 0 ď u ď 1 holds, we find upxq " 0, as desired.

Proof of Lemma 4.4. If ε ą 0, elliptic regularity theory implies that u is smooth and is a classical solution to (PME) and therefore the conclusion of the proposition holds. Thus, we assume ε " 0.

Let u be as in the statement of the lemma. We shall establish that u is a distributional solution if and only if item (2) holds.

If u is a solution in the sense of item (2), then the fact that u is a classical solution of (PME) on the region where u ą 0 immediately yields that u is a distributional solution.

Thus, let us assume that u is a distributional solution of (PME). Let ω " suptx : upxq ą 0u.

We remark that our assumption up`8q " 1 implies ω ą ´8. Fix any x 0 ă ω. By the continuity of u and the fact that up´8q " 1, we have inf p´8,x0q upxq ą 0.

Thus, (PME) is a uniformly elliptic equation with C α coefficients on p´8, x 0 q. Elliptic regularity theory implies that u P C 2,α p´8, x 0 q and solves (PME) in the classical sense on p´8, x 0 q. Since x 0 is arbitrary, it follows that u solves (PME) classically on p´8, ωq.

We shall now establish that u is nonincreasing on p´8, ωq. Indeed, suppose not. Then u has a local minimum at some x P p´8, ωq with upxq ‰ 1 (here we are using that u is nonconstant, which is true by assumption.) Lemma 4.5 therefore implies upxq " 0, contradicting the definition of ω. Therefore, we conclude that u is indeed nonincreasing on p´8, ωq.

Let us once more fix an arbitrary x 0 P p´8, ωq. A standard strong maximum principle argument, after differentiating (PME), shows that u x ă 0 on p´8, x 0 q. Since x 0 is arbitrary, it follows that u solves (PME) classically on p´8, ωq and is strictly decreasing there. Now we note that if ω " `8, then the proof is complete. So, let us assume ω is finite. We shall now establish that u " 0 on pω, 8q. To this end, suppose not. Hence, suppose, by way of contradiction, that there is some x M ą ω such that upx M q ą 0. Since u cannot have a positive local minimum by Lemma 4.5, either u has a global maximum on pω, 8q or u is nondecreasing on pω, 8q. In either case, we may take x M such that, for all sufficiently small µ, (4.17)

upx M q P p0, 1q and u x ě 0 on px M ´µ, x M q.

As we showed earlier in the proof, we have, (4.18) u ą 0 and u x ď 0 in p´8, ωq.

For any µ ą 0, take ψ µ to be a C 2 test function such that supppψ µ q Ă rω ´µ, x M s pψ µ q x ą 0 in pω ´µ, x m q, ψ µ " 1 on rω, x M ´µs and pψ µ q x ă 0 in px M ´µ, x M q. (4. [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF] Applying (4.16) with this choice of test function ψ µ and recalling that ε " 0, we find

ż ψ µ up1 ´uq dx " c ż upψ µ q x dx `ż u x upψ µ q x dx " c ż ω ω´µ upψ µ q x dx `c ż x M x M ´µ upψ µ q x dx `ż ω ω´µ u x upψ µ q x dx `ż x M x M ´µ u x upψ µ q x dx ď c 3{2 ? µ `c ż x M x M ´µ upψ µ q x dx `ż ω ω´µ u x upψ µ q x dx `ż x M x M ´µ u x upψ µ q x dx ď c 3{2 ? µ `ż ω ω´µ u x upψ µ q x dx `ż x M x M ´µ u x upψ µ q x dx ď c 3{2 ? µ `ż x M x M ´µ u x upψ µ q x dx ď c 3{2 ? µ.
The first inequality above comes from the choice of ψ µ (4. [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF]) and the Hölder bound on u (4.14).

The second inequality comes from the fact that, for µ sufficiently small, u ą 0 and pψ µ q x ă 0 on rx M ´µ, x M s. The third inequality comes from the monotonicity of u on p´8, ωq, as recalled in (4.18), and the choice of ψ µ (4. [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF]). The final inequality comes from (4.17) and (4. [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF]). Thus, we conclude that

ż x M ω up1 ´uq dx " lim µÑ0 ż ψ µ up1 ´uq dx ď 0.
The left hand side is strictly positive since u is continuous and upx M q P p0, 1q. This is a contradiction and concludes the proof that u is nonincreasing. This completes the proof.

Finally, we turn to:

Proof of Theorem 2.1.(i) using Theorem 2.1.(ii). Fix ε ě 0. It is enough to show that for any sequence pχ n , ν n q, with ´1 χn Ñ ε, ν n Ñ 0, and corresponding traveling wave solutions pc n , u n , v n q to (TW), satisfy the lower bound lim inf nÑ8 c n ě c pm .

Thus, consider such a sequence. If lim inf nÑ8 c n " 8, then we are finished. Hence, we may assume that the limit inferior of c n is finite and, up to passing to a subsequence, we may assume that c n converges to it. In other words, we assume that there is c P r0, 8q such that lim nÑ8 c n " c.

Thus, we are in the setting of Theorem 2.1.(ii), and hence obtain a subsequence pc n k , u n k , v n k q such that pc n k , u n k q converges to a distributional solution pc, uq of (PME). If ε ą 0, then the results of [START_REF] Kawasaki | Effects of long-range taxis and population pressure on the range expansion of invasive species in heterogeneous environments[END_REF] imply c ď c pm . And, in the case ε " 0, the results of [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF], together with Lemma 4.4, imply c ď c pm . Thus the proof is complete.

5.

The hyperbolic scaling regime: the structure of Z, monotonicity, exponential decay, and the lower bound on the speed

In this section, we deduce several general facts that hold for any solution to (HYP). These are used in several places throughout the sequel, so it is convenient to establish them here, although many proofs are postponed to Section 8 due to their length and complexity.

5.1. The structure of Z and the behavior of u on Z c . 5.2. Monotonicity of u for the hyperbolic model. We state a monotonicity lemma that applies also to the hyperbolic model (notice that Lemma 3.1 is stated only for (TW)).

Lemma 5.1. Suppose that pc, u, vq is a traveling wave solution to (HYP). Let

x d " inf " x : upxq ă 2 2 `1{ν * .
Then u is nonincreasing on px d , 8q.

Proof. We consider two cases based on Proposition 2.3. First, when Z " H, u and v are smooth. In this case, the argument of Lemma 3.1 can be repeated verbatim. It is sketched below (see the final paragraph of this proof).

Next consider the case when Z " tx 0 u for some x 0 . There is nothing to prove on px 0 , 8q as u " 0 on that domain. Additionally, recalling Proposition 2.3, we have upx 0 q ą upx 0 q.

On the other hand, the proof that u is nonincreasing on px d , x 0 q is exactly the same as Lemma 3.1, so we only sketch it briefly. It is proved by contradiction. Take the leftmost local minimum lying below 2 {p2 `νq. Then, due to (HYP), u " pν `vq {pν `1q at this point. On the other hand, u ě 2 {p2 `νq to the left of this point. Using (2.1), this implies that v ą 1 {p2 `νq at this point, which, in turn, yields pν `vq {pν `1q ą 2 {p2 `νq at this point, a contradiction. The only wrinkle in this context is the possible discontinuity of u, but this is avoided by the domain restriction assumption: x ă x 0 . As such, we omit the details and refer the interested reader to [ We note that, importantly, the proof below has the advantage of applying equally to three different settings, one of which is 'slab problem,' where pu, vq satisfies (TW) only on the finite interval r´L, Ls (see Section 7 and, more specifically, (7.5)). In this case, we must specify which choice of v we use since boundary data is not imposed. We take the solution v defined by (5.2) vpxq " K ν ˚ū where ūpxq "

$ ' & ' % 1 for x ď ´L, upxq for x P r´L, Ls, 0 for x ě L.
The result is the following: Proposition 5.2. Fix any χ 0 ă 0, ν M ą ν m ą 0 and C M ą 0. Suppose that c P r0, C M s, ν P rν m , ν M s, and u satisfies (5.1). Assume one of the three settings below: either (i) χ ď χ 0 and pc, u, vq solves (TW) on R with up`8q " 0, or (ii) pc, u, vq solves (HYP) on R with up`8q " 0, or (iii) pc, u, vq solves (TW) on r´L, Ls for some L ą 0 with up´Lq " 1, upLq " 0, and upxq " 0 for x ě L and v satisfies (5.2).

Then

(5.3) upxq ď Cup0qe ´θx for all x ě 0, where C and θ depend only on χ 0 , ν M , ν m , and C M .

Let us point out the content of the above result. Working on (at least) the half-line r0, 8q, standard ODE theory tells us that u decays exponentially eventually. It, however, does not tell us when the exponential decay 'kicks in.' This leaves open the possibility of a sequence of traveling waves pc n , u n , v n q of (HYP) such that u n is 'nearly constant' and Op1q on r0, ns for a large n before u n begins decaying exponentially to zero. The above proposition rules this out. This is crucial in the proof of the lower bound (2.11) in Proposition 2.4.

As the proof is quite long and technical, it is postponed to Section 8.

5.4.

General bounds on the traveling wave speed: Proposition 2.4. We now prove the bounds on the minimal speed c hyp .

Proof of Proposition 2.4. We consider two cases depending on the structure of Z.

Case one: Z " tx 0 u. First, we show the upper bound as it is very simple. By Proposition 2.3, upxq " 0 for all x ą x 0 . We thus note that c " ´vx px 0 q " 1 2ν

ż signpyqe ν .

For future use, we point out that, from the third inequality and the fact that u " 0 on px 0 , 8q, we have (5.4) c " ´vx px 0 q " 1 ? ν vpx 0 q.

Next, we establish a lower bound for vpx 0 q. By definition of Z (Definition 2.2) and by Proposition 2.3, we find (5.5) v x px 0 q " ´c, upx 0 q " ν `vpx 0 q ν `1 , and upx 0 q " 0.

By Lemma 5.1,

(5.6) upxq ě min " 2 2 `1{ν , ν `vpx 0 q ν `1 * for all x ă x 0 .
We claim that (5.7) vpx 0 q ě ν 2ν `1 . If this were not true then the minimum in (5.6) is given by upxq ě ν `vpx 0 q ν `1 . It then follows that

vpx 0 q " ż x0 ´8 e ´|x0´y|{ ? ν 2 ? ν upyqdy ě ż x0 ´8 e ´|x0´y|{ ? ν 2 ? ν ν `vpx 0 q ν `1 dy " 1 2 ν `vpx 0 q ν `1 ,
which implies that (5.7) does in fact hold. On the other hand, using (5.5)

(5.8) vpx 0 q "

ż x0 ´8 e ´|x0´y|{ ? ν 2 ? ν upyqdy " ´?ν ż x0 ´8 ´e´|x0´y|{
? ν 2 ? ν ¯xupyqdy " ´?νv x px 0 q " ? νc.

Putting together (5.5) and (5.8), we find

c ě ? ν 2ν
`1 . This concludes the proof in the case where Z " tx 0 u. Case two: Z is empty. We now consider the case when Z " H. In this case, (5.9) supp´v x q ď c.

Indeed, ´vx ‰ c on R since Z " H and, since vp´8q " 1 and vp`8q " 0, it cannot be that ´vx ą c on R. If c ą 1, the proof is finished. Hence, we consider only the case where c ă 1. We first note that, up to translation, the normalization (5.1) in conjunction with the monotonicity of u (recall Lemma 5.1) yield (5.10) upxq ě ν ν `1 when x ă 0 and upxq ď ν ν `1 when x ą 0. Next, let C and θ be as in (5.3) and take (5.11) L " max

" 0, 1 θ log ˆ2C 1 `θ? ν ˙* .
Notice that C and θ depend only on ν as we are working under the assumption that c ă 1. Hence L depends only on ν.

Using the expression (3.1), followed by the exponential decay (5.3) and (5.10), yields,

´?νv x p0q " Recalling (5.9) finishes the proof of case two.

ż
6. The hyperbolic scaling regime: proof of Theorem 2.5

With the general results of the previous section in hand, we may now prove Theorem 2.5; that is, for any sequence pc n , u n , v n q solving (TW) with χ n Ñ ´8 and ν n Ñ ν ą 0, we have that lim inf nÑ8 c n ě c hyp .

Notice that the normalization (2.14), along with Lemma 3.1 and the fact that u n p´8q " 1 and u n p`8q " 0 yields Moreover, by Proposition 5.2, there are C, θ ą 0, independent of n, such that u n pxq ď Ce ´θx for all x ą 0.

We use these inequalities in order to guarantee the nontriviality of a limit. We now begin the proof.

Proof of Theorem 2.5. As in the proof of Theorem 2.1, it suffices to prove Theorem 2.5.(ii) as the claim (i) follows by simply taking a subsequence c n k that realizes the limit inferior. Up to the extraction of a subsequence, u n Ñ u and v n Ñ v weak-˚in L 8 and W 2,8 , respectively, and c n Ñ c ě 0. It immediately follows v that solves the second line of (HYP) weakly.

We have the following two results, whose proofs we postpone until Section 6.1. The first is regarding the smoothness of u on Z c : Lemma 6.1. In the setting above, for every k P N, x 0 P Z c , and ε ą 0 such that px 0 ´ε, x 0 `εq Ă Z c , there is n 0 and C such that

}u n } C k px0´ε 2 ,x0`ε 2 q ď C,
where the constants C and n 0 depend only on k, x 0 , ε, c, and v. Lemma 6.2. In the setting above, pc, u, vq satisfy (2.8).

With Lemma 6.1 and Lemma 6.2, we see that u n converges to u in C 1 on Z c . It follows that pc, u, vq is a solution of (HYP) in the sense of Definition 2.2.

Next, we check the boundary conditions up´8q " 1 and up`8q " 0. The latter follows directly since, by Proposition 5.2, each u n satisfies u n pxq ď Ce ´θx for all x ě 0.

The limit on the left is more delicate. First notice that by Lemma 6.1, there is x such that u is smooth on p´8, xq. Next notice that lim sup xÑ´8 upxq ď 1.

Hence, it is enough to show that ě 1, where

" lim inf xÑ´8 upxq.
This is now our aim. We make note of two facts first:

(6.2) lim inf xÑ´8 vpxq ě and ě δ ą 0,
where the first inequality follows by (2.1) and the second from (6.1). Since u ď 1, either u is eventually monotonic (that is, up to decreasing x, u is monotonic on p´8, xq) or u has a sequence of local minima on which its value tends to . In either case, we can choose x n to be a sequence of points tending to ´8 such that lim nÑ8 upx n q " and lim nÑ8 u x px n q " 0.

Evaluating (2.7) at x n , we find

0 " lim nÑ8 u x px n qp´c ´vx px n qq " lim nÑ8 upx n q ˆν `vpx n q ν ´ν `1 ν upx n q ˙ě ˆν ` ν ´ν `1 ν ˙.
By (6.2), it follows that ν ` ν ď ν `1 ν which is equivalent to 0 ď νp ´1q.

We conclude that " 1, which, due to the discussion above, yields up´8q " 1, as claimed. Thus, pc, u, vq is a traveling wave solution to (HYP), which concludes the proof.

6.1. Proof of the first main lemma: Lemma 6.1.

Proof. We show only the C 1 regularity as the higher regularity may be established by differentiating the equation and apply the same argument. Due to the convergence of v n to v, there is δ ą 0 and n 0 such that if n ě n 0 then

|pv n q x `c| ě δ in px 0 ´3ε {4, x 0 `3ε {4q.
Using then (2.3), we find, on px 0 ´3ε {4, x 0 `3ε {4q,

|pu n q x | " 1 |pv n q x `c| ˇˇˇ1 |χ| pu n q xx `un ˆν `vn ν ´ˆν `1 ν ˙un ˙ˇˇď 1 δ ˇˇˇ1 |χ| pu n q xx `un ˆν `vn ν ´ˆν `1 ν ˙un ˙ˇˇˇ. (6.3)
By the mean value theorem, there is ξ P px 0 ´3ε {4, x 0 ´ε{2q and ξ r P px 0 `ε{2, x 0 `3ε {4q such that |pu n q x pξ q| " ˇˇˇu n px 0 ´ε{2q ´un px 0 ´3ε {4q ε {4 ˇˇˇď 4 ε and |pu n q x pξ r q| " ˇˇˇu n px 0 `3ε {4q ´un px 0 `ε{2q ε {4 ˇˇˇď 4 ε .

(6.4)

The second inequality follows from the fact that 0 ď u n ď 1. By elliptic regularity theory, u n is smooth. Hence, there is ξ P rξ , ξ r s such that (6.5) |pu n q x pξq| " max rξ ,ξrs

|pu n q x | ě max rx0´3 ε {4,x0`3 ε {4s |pu n q x |.
If ξ " ξ or ξ r , then the conclusion follows from (6.4) and (6.5). On the other hand, if ξ is an interior minimum, then pu n q xx pξq " 0 and (6.3) yields

|pu n q x pξq| ď 1 δ ˇˇˇu n ˆν `vn ν ´ˆν `1 ν ˙un ˙ˇˇˇď 1 δ ν `1 ν .
In view of (6.5), the proof is finished.

6.2. Proof of the second main lemma: Lemma 6.2.

Proof. Consider any closed interval rx, xs Ă Z with x ă x. We note that, by the definition of Z, it must be that v x " ´c on rx, xs. We have two important consequences from this: (6.6) v xx " 0 on rx, xs, and (6.7) v is nonincreasing on rx, xs.

We claim that, up to extracting a subsequence, (6.8)

u n Ñ v as n Ñ 8 in L 2 prx, xsq.
We postpone its proof momentarily and show how to conclude. Fix any smooth function ψ with support in px, xq, multiply it against (2.3), and take n Ñ 8 to find ż ψ x pv x `cqu dx `ż ψv xx u dx " lim nÑ8 ˆż ψ x ppv n q x `cn q u n dx `ż ψpv n q xx u n dx " ´lim nÑ8 ż ψ ppv n q x `cn q pu n q x dx " lim

nÑ8 ż ψ ˆνn `vn ν n ´ˆν n `1 ν n ˙un ˙un dx " ż ψ ˆν `v ν ´ˆν `1 ν ˙v˙v dx.
Above we used that pv n q xx á v in L 2 prx, xsq and that v n Ñ v in L 8 prx, xsq. Recalling that v x `c " 0 on rx, xs, yields 0 "

ż ψ ´ν `v ν ´´ν `1 ν ¯v¯v dx,
which concludes the proof. We now prove (6.8), which is the most difficult part. We first note that u n converges weakly to v in L 2 prx, xsq. Using the second equation in (TW), we have that the weak limit u of u n clearly satisfies u " v ´νv xx .

Using this and (6.6), we deduce that u " v; hence,

u n á v in L 2 prx, xsq.
Fix ε, δ ą 0. Our next step is to show that, for all n sufficiently large and up to extracting a subsequence, (6.9) u n ě v n ´ε on px `δ, x ´δq.

Before showing (6.9), we show how to conclude (6.8) Note that (6.9) was used in the first equality. Clearly, (6.8) follows after taking δ, ε Ñ 0. We now show that (6.9) holds. As the proof is quite intricate, we briefly outline the main idea here. We first show that, were (6.9) to be false, the weak convergence of u n and v n to v implies the existence of points y n and z n between which u n ´vn travels from being bigger than ´ε{2 to being ´ε. Choosing a 'good' point between them, we can use the fact that v n is 'nearly' decreasing (see (6.12)) along with the partial monotonicity result Lemma 3.2 to find a nontrivial interval where u n ´vn remains smaller than ´ε{2, which is not consistent with the weak convergence of u n and v n to v.

First, by the weak convergence of u n to v, we have that there exists y n P px, x `δq such that (6.10) u n py n q ě v n py n q ´ε 2 .

If this were not true, ż ψpv n ´un q ě ε 2 ż ψ dx, for any nonnegative, nontrivial test function ψ supported in px, x `δq. This contradicts the fact that u n á v and v n Ñ v.

Next, let z n to be the first time in py n , x n ´δq that (6.11) u n pz n q " v n pz n q ´ε

If no such point exists, then (6.9) holds and we are finished. Hence, arguing by way of contradiction, we assume z n exists. Notice that, by the C 1 -convergence of v n to v and (6.7), there is n sufficiently large such that (6.12)

pv n q x ď ε 100p1 `x ´xq on rx, xs.
As a consequence, using the concavity of v, we have u n pz n q " v n pz n q ´ε ď pv n py n q `pv n q x py n qpz n ´yn qq ´ε ă v n py n q `ε 100 ´ε ă u n py n q,

where the first inequality follows by (6.12) and the second inequality is due to the choice of y n (6.10). We next claim that there exists a point ζ n P ry n , z n s such that (6.13) u n pζ n q ď v n pζ n q ´3ε 4 and pu n q x pζ n q ă 0.

We construct this as follows. Let

ζ n " min "

x P ry n , z n q : u n pxq " v n pxq ´3ε 4 ´εpx ´yn q 50p1 `x ´xq * .

That ζ n exists follows from the definition of z n (6.11) and that ζ n ą y n follows from the definition of y n (6.10). Since u n ´vn ą ´3ε {4 ´εpx ´ynq {50p1 `x ´xq in py n , ζ n q, it must be that pu n q x pζ n q ď ˆvn ´3ε 4 ´εpx ´yn q 50p1 `x ´xq ˙x pζ n q.

After applying (6.12), we conclude (6.13).

We claim that (6. 

ż ψpv n ´un q ě ε 2 ż ψ dx ą 0.
This contradicts the weak convergence of u n and v n to v. We now show that (6.14) holds. To establish this, let y min be the first local minimum of u n after ζ n . We first consider the case where y min does not exist or where

y min ě x.
In this case, from to the lack of an interior minimum and the fact that pu n q x pζ n q ă 0 (by construction, see (6.13)), it follows that u n is decreasing on pζ n , xq. In this case, for any y P pζ n , xq, (6.15) u n pyq ď u n pζ n q ď v n pζ n q ´3ε 4 ď v n pyq `ε 100p1 `x ´xq py ´ζn q ´3ε 4 ă v n pyq ´ε 2 .

The first inequality is because u n is decreasing, the second inequality is due to (6.13), the third inequality is due to (6.12), and the last inequality is due to the width of the domain. This establishes (6.14).

We next consider the case where y min P pζ n , xq. The same reasoning as in (6.15) yields u n py min q ă v n py min q ´ε 2 .

Lemma 3.2, however, implies that u n py min q ě ν `vn py min q ν `1 ě v n py min q.

Thus, we have reached a contradiction, and hence, this case cannot occur. This concludes the proof of (6.14). As detailed above, this yields (6.9), which, in turn, completes the proof of the lemma.

7. The partially matching upper bounds: proof of Theorems 2.6 and 2.8

Here we construct special solutions that, in a sense, saturate the bounds obtained in Theorem 2.1 and Theorem 2.5. We begin by constructing a traveling wave solution to (HYP).

7.1.

A sequence converging to the discontinuous hyperbolic wave: Theorem 2.6. Here we establish the existence of a sequence of solutions to (TW) that converges to a discontinuous hyperbolic traveling wave. Our construction proceeds in the usual way, by approximating traveling waves solutions to (TW) by solutions to a well-chosen Dirichlet problem in a finite slab. The main novelty in our setting is to construct a solutions such that v x p0q `c « 0 as |χ| Ñ 8. In view of Proposition 2.3 and Lemma 6.2, this is enough to deduce that, in the limit, there is a jump discontinuity at the origin. The convergence of the sequence thus yield a new method to construct traveling waves for the hyperbolic problem (HYP), different from the original one provided in [START_REF] Fu | Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation[END_REF] and that does not require the same technical assumption. 7.1.1. The main proposition and the proof of Theorem 2.6. The main proposition used in establishing Theorem 2.6 is the following: Proposition 7.1. Fix any χ ă 0, ν ą 0, and δ P p0, ν {pν `1qq. There exists a traveling wave pc, u, vq solving (TW) such that u and v are decreasing and c, u satisfy,

c P ˜1 a |χ| c ν ν `1 , 1 ? ν `2 a |χ| c ν `1 ν
¸, up0q " δ, up´8q " 1, and up`8q " 0.

Moreover, for |χ| sufficiently large, there is a constant C ą 0, depending on ν and δ only, and a point x χ P p´C, Cq such that

(7.1) pv x px χ q `cq 2 ď 4 |χ| ν `1 ν .
Before establishing Proposition 7.1, we show how to use it to prove Theorem 2.6.

Proof of Theorem 2.6. Fix any ν hyp ą 0 and take any sequence χ n Ñ ´8, ν n Ñ ν hyp . Let pc n , u n , v n q be the solution of (TW) guaranteed by Proposition 7.1. By Theorem 2.5.(ii), there is pc, u, vq that is a solution of (HYP) in the sense of Definition 2.2 to which pc n , u n , v n q converges along a subsequence. This additionally gives that up´8q " 1 and up`8q " 0.

The monotonicity of u and v follows directly from that of u n and v n . Let x n P p´C, Cq be the point such that (7.2)

ppv n q x px n q `cn q 2 ď 4 |χ n | ν n `1 ν n .
Up to passing to a further subsequence, there exists x ˚P r´C, Cs such that x n Ñ x ˚as n Ñ 8.

The convergence of v n is weak-˚in W 2,8 , so that (7.2) implies,

v x px ˚q `c " 0.
This, along with Proposition 2.3 and Lemma 6.2, implies that Z " t0u and that upx ´q " ν `vpx ˚q ν `1 ą 0 and upx `q " 0. This concludes the proof, up to translating by x ˚.

7.1.2. Constructing a solution: the proof of Proposition 7.1. The main step in constructing the traveling wave of Proposition 7.1 is to solve the 'slab problem':

(7.3) # ´cu x ´1 |χ| u xx " puv x q x `up1 ´uq, x P p´L, Lq, up´Lq " 1, upLq " 0, where (7.4) v " K ν ˚ū where ūpxq " $ ' & ' % 1 for x ă ´L, upxq for x P r´L, Ls, 0 for x ą L.
This is achieved through a number of steps and relies on the Leray-Schauder index.

To this end, for fixed χ ă 0, ν ą 0, c ą 0, and τ P r0, 1s, we define the operator F τ acting on u P C 1 pr´L, Lsq by F τ puq :" ũpxq, where ũpxq is the unique solution to the equation (

# ´1 |χ| ũxx pxq ´cũ x pxq `ũpxq " τ pupxqv x pxqq x `upxq `2 ´upxq ˘, for all x P p´L, Lq ũp´Lq " 1, ũpLq " 0, for v given by (7.4). For any bounded open set Ω Ă C 1 pr´L, Lsq, we use ipF τ , Ωq to denote the Leray-Schauder index of F τ acting on Ω. We refer the reader to [START_REF] Zeidler | Nonlinear functional analysis and its applications[END_REF]Chapter 14] for the definition of Leray-Schauder index. We remark that fixed points u of F τ correspond exactly to solutions of, (

# ´cu x ´1 |χ| u xx " τ puv x q x `up1 ´uq, x P p´L, Lq, up´Lq " 1, upLq " 0, where v is given by (7.4). For τ " 0 we recover a classical slab problem for FKPP waves. For τ " 1 we have our target problem (7.3).

Lemma 7.2 (Index in the slab). Let 0 ă χ m ă χ M , 0 ă ν m ă ν M , 0 ă c m ă c M and α P p0, 1q be fixed. Fix |χ| P rχ m , χ M s, ν P rν m , ν M s, and c P rc m , c M s. There exists M 0 ą 0 such that for all M ě M 0 , the Leray-Schauder index of F τ in the bounded open set (7.7) Ω :"

# u P C 1,α `r´L, Ls ˘: # 0 ă upxq ă 1,
for all x P p´L, Lq, ´M ă u x pxq ă 0, for all x P r´L, Ls,

+ Ă C 1,α pr´L, Lsq
is equal to 1 for τ P r0, 1s:

(7.8) ipF τ , Ωq " 1 for τ P r0, 1s.

The constant M 0 only depends on χ m , χ M , ν m , ν M , c m , and c M .

Proof. First, we note that v solves the equation ´νv xx pxq " upxq ´vpxq pointwise for all x P p´L, Lq, so that v is bounded in C 2,α `p´L, Lq ˘and continuous as a function of u P C 0,α pr´L, Lsq in the same space; if u P C 1,α `p´L, Lq ˘then v P C 3,α `p´L, Lq ˘and depends continuously on u. Clearly F τ maps C 1,α pr´L, Lsq into C 1,α pr´L, Lsq and is continuous with respect to the parameter τ for the C 1,α norm. Moreover by the Schauder estimates F τ is compact for the C 1,α pr´L, Lsq topology.

Next we show that the Leray-Schauder index of F τ (see [START_REF] Zeidler | Nonlinear functional analysis and its applications[END_REF]Proposition 14.5]) is non-zero in the open set Ω for a sufficiently large constant M . The proof consists of two main parts: first, we show that the Leray-Schauder index of F 0 is 1, and, second, we establish that F τ has no fixed point on the boundary of Ω for τ P p0, 1s. The consequence of these two facts and the homotopy invariance property of the Leray-Schauder index is that (7.8) holds.

Step one: the Leray-Schauder index of F 0 is 1. For τ " 0, the equation (7.6) is the classical FKPP traveling wave equation on the slab r´L, Ls. Hence, this step is essentially 'folklore'; however, being unable to find a published proof, we include it here. First, we note that it is known that this equation has a unique solution u 0 which is strictly decreasing and satisfies sup xPp´L,Lq |u 0

x pxq| ă `8 (and hence lies in Ω upon taking M large enough): the uniqueness and monotonicity follow from 'sliding' arguments [START_REF] Berestycki | Travelling fronts in cylinders[END_REF], while the bound on u 0

x follows from elliptic regularity theory. Since fixed points of F τ correspond exactly to solutions of (7.6), we deduce that F 0 has a unique fixed point u 0 P Ω and u 0 is strictly decreasing.

Next we compute ipF 0 , Ωq, the Leray-Schauder index of F 0 in Ω. Since u 0 pxq is the unique fixed-point of F 0 in Ω, we have by [69, Proposition 14.5]: (7.9) ipF 0 , Ωq :" ipDF 0 pu 0 q, Bp0, 1qq " p´1q a , where DF 0 is the Fréchet derivative of F 0 in C 1 pr´L, Lsq and a is the sum of algebraic multiplicities of all eigenvalues of DF 0 pu 0 q that are greater than 1. This formula, however, is conditional on the fact that 1 is not an eigenvalue of DF 0 pu 0 q, which we prove now. The Fréchet derivative DF 0 can be computed as DF 0 puqh " h where (7.10) # ´1 |χ| hxx pxq ´ch x pxq `hpxq " hpxq `2 ´2upxq ˘, for all x P p´L, Lq, hp´Lq " hpLq " 0.

Notice that the coefficient in the right-hand side of (7.10) is a nonnegative function, therefore DF 0 pu 0 q is order-preserving. We now show that DF 0 pu 0 q does not have an eigenvalue larger than one. We argue by contradiction, in which case, DF 0 pu 0 q has principal eigenvalue λ ě 1. Then there must exist hpxq ą 0 such that DF 0 pu 0 qh " λh; that is,

(7.11) $ & % ´ch x ´1 |χ| h xx `h " h `2 ´2u 0 λ ď h `2 ´2u 0 ˘, in p´L, Lq,
hp´Lq " hpLq " 0.

However the function kpxq :" ´u0

x pxq ą 0 satisfies (7.12)

# ´ck x ´1 |χ| k xx `k " k `2 ´2u 0 ˘, in p´L, Lq,
kp´Lq " ´u0

x p´Lq ą 0, kpLq " ´u0

x pLq ą 0, where the sign of u 0

x p´Lq and u 0 x pLq are known from Hopf's Lemma. Due to the boundary conditions, we have that Ah ă k for A sufficiently small. Letting A 0 " suptA : Ah ă k on p´L, Lqu, we see that A 0 h ď k and there exists x 0 P p´L, Lq such that A 0 hpx 0 q " kpx 0 q. If λ ą 1, it follows that A 0 h x px 0 q " kpx 0 q and A 0 h xx px 0 q ď k xx px 0 q, and that violates (7.11) and (7.12) (notice that A 0 h also satisfies (7.11)). If λ " 1, the strong maximum principle implies that A 0 h´k ": C is a negative constant. Taking the difference between (7.11) and (7.12) we find that C " `2 ´2u 0 pxq ˘C ðñ 1 ´2u 0 pxq " 0, which is a contradiction since upLq " 0. We conclude that DF 0 pu 0 q does not have any eigenvalues larger than 1. We, thus, conclude that a " 0 in (7.9) and ipF 0 , Ωq " 1.

Step two: there is no fixed point in the boundary of Ω. Suppose by contradiction that there exists τ P p0, 1s and a function u P BΩ such that F τ puq " u. Since u P BΩ, at least one of the following equalities holds:

upxq " 0 for some x P p´L, Lq, (7.13) upxq " 1 for some x P p´L, Lq, (7.14) u x pxq " 0 for some x P r´L, Ls, (7.15) u x pxq " ´M for some x P r´L, Ls. (7.16)

We will show that none of those equalities can hold, which is a contradiction.

First, we note that elliptic regularity theory implies that, by increasing M , we can ensure that (7.16) does not hold. And, due to the boundary condition on u, we have that (7.13) and (7.14) cannot occur unless (7.15) occurs. Thus, we conclude that there exists x ˚P r´L, Ls such that u x px ˚q " 0.

We now use Hopf's Lemma to find, u x p´Lq ă 0 and u x pLq ă 0, so we obtain that, actually, x ˚P p´L, Lq. Defining wpxq :" u x pxq we have (7.17)

$ ' & ' % ´cw x pxq ´1 |χ| w xx pxq " τ pw x pxqv x pxq `2wpxqv x pxq `upxqv x pxqq `wpxqp1 ´2upxqq, if x P p´L, Lq,
wp´Lq " u x p´Lq, wpLq " u x pLq.

Evaluating (7.17) at x " x ˚(which is a local maximum for w) we have (7.18) 0 ď τ upx ˚qv x px ˚q.

However, since u is decreasing and non-constant, we have v x px ˚q ă 0, therefore (7.18) is a contradiction. Therefore (7.15) cannot hold. This concludes the proof of the claim of Step 2 and, therefore, the proof of the lemma as well.

We can immediately deduce from Lemma 7.2 the existence of a continuum of waves in τ and c for a fixed L ą 0.

Corollary 7.3. For each 0 ă c ă `8, there exists a connected set C Ă r0, cs ˆC1,α pr´L, Lsq such that (i) for each pc, uq P C the function u solves (7.3) with speed c, and (ii) there is a pair pc, uq P C for each c P r0, cs.

Proof. Let c ą 0 be given. By Lemma 7.2 there exists a M ą 0 such that for c " 0, the index of F 1 (defined in (7.5)) in the set Ω defined in (7.7) is equal to 1. Moreover it has been shown that there are no fixed-points of F 1 with u P BΩ and F 1 is continuous with respect to c. By a direct application of the global continuation principle [69, Theorem 14.C], there exists a continuum C composed with fixed-points of F 1 , connecting t0uˆΩ to tcuˆΩ. Since fixed points of F τ correspond exactly to solutions of (7.6), Corollary 7.3 is proved. Lemma 7.4. Let upxq be a decreasing solution to (7.3). Then ϕpxq ď upxq ď ϕpxq, where ϕpxq is the solution to the FKPP equation

(7.19) # ´cϕ x pxq ´1 |χ| ϕ xx pxq " ϕpxq `1
´`ν`1 ν ˘ϕpxq ˘, x P p´L, Lq, ϕp´Lq " ν {pν `1q, ϕpLq " 0, and ϕpxq is the solution to the FKPP equation (7.20)

#

´´c ´1 ? ν ¯ϕx pxq ´1 |χ| ϕ xx pxq " `ν`1 ν ˘ϕpxq p1 ´ϕpxqq , x P p´L, Lq, ϕp´Lq " 1, ϕpLq " 0.

In particular if ε P p0, 1q and L is sufficiently large, we have

(7.21) up0q ě p1 ´εq ν 1 `ν , if c ă 2 a |χ| c ν ν `1 , and 
(7.22) up0q ď e ´L|χ| 2 ˆc´1 ? ν `c´c ´1 ? ν ¯2´4 1 |χ| p ν`1 ν q ˙, if c ´1 ? ν ě 2 a |χ| c ν `1 ν .
Proof. Indeed upxq is a subsolution to (7.20) and a supersolution to (7.19). Since both (7.20) and (7.19) satisfy the comparison principle, we have (7.23) ϕpxq ď upxq ď ϕpxq for all x P p´L, Lq.

To obtain (7.21), it is enough to show that ϕpxq converges to ν ν`1 locally uniformly as L Ñ `8 since c is smaller than the minimal speed of the FKPP equation (7.20) (when defined on R), which is 2 { a |χ| a ν {pν `1q. We briefly outline why this is true. First, it is simple to construct a subsolution to (7.19) To obtain (7.22) we take c satisfying the inequality in (7.22) and note that the function ϕpxq :" Ae

´|χ| 2 ˆc´1 ? ν `c´c ´1 ? ν ¯2´4 1 |χ| p ν`1 ν q
˙x is a super-solution for (7.20) as long as ϕp˘Lq ě φp˘Lq. This last condition is equivalent to the condition:

A ě e ´L|χ| 2 ˆc´1 ? ν `c´c ´1 ? ν ¯2´4 1 |χ| p ν`1 ν q ˙.
Hence, taking A to be exactly equal to the quantity on the right-hand side of the previous line, we find φ ď ϕ. Together with (7.23), this implies (7.22). Lemma 7.4 is proved.

As a consequence of Corollary 7.3 and Lemma 7.4, we obtain the following result:

Proposition 7.5. For all δ P p0, ν {pν `1qq, there exists L δ ą 0 such that for all L ě L δ there exists a solution pu, c δ q to (7.3) such that u P C 1 pr´L, Lsq is decreasing and satisfies up0q " δ, and the speed satisfies, c δ P pc, cq , where c and c are given by, Proof. Fix ε ą 0 such that δ ă p1 ´εqp ν {pν `1qq. Let C be the connected set of solutions pc, uq P r0, cs ˆC1,α pr´L, Lsq to (7.3) provided by Corollary 7.3. The map Φ : C Ñ R defined by Φpc, uq " up0q is continuous. Hence, the image ΦpCq is connected. Let ū be a solution corresponding to c and let u be a solution corresponding to c such that pc, ūq, pc, uq P C. These exist due to Corollary 7.3. Next, let L be large enough so that the conclusion of Lemma Lemma 7.4 holds, we find that there exists pc, uq P C with Φpc, uq " up0q " δ. This completes the proof.

We are now in the position to prove Proposition 7.1.

Proof of Proposition 7.1. Fix ν ą 0, χ ă 0, and δ P ´0, ν ν`1 ¯. By Proposition 7.5, for L sufficiently large, there exists a pc L , u L , v L q with (7. [START_REF] Demircigil | When self-generated gradients interact with expansion by cell division and diffusion. analysis of a minimal model[END_REF] c L P pc, cq , where c and c are given by (7.24), such that u solves (7.3) and u L p0q " δ. By a standard diagonalization procedure, up to taking a subsequence, there exists pc, u, vq and a sequence pc Ln , u Ln , v Ln q with L n Ñ `8 such that c Ln Ñ c and u Ln Ñ u and v Ln Ñ v locally uniformly in C 2 . The convergence implies that pc, u, vq solves (TW). The limit up`8q follows from Proposition 5.2 and the limit up´8q " 1 follows easily by standard arguments (see, e.g., the arguments used to establish that up´8q " 1 in the proof of Theorem 2.5) and the facts that u is monotonic and up0q " δ.

The remaining thing to prove (7.1): the smallness of v x `c at a point for |χ| sufficiently large. This is the main difficulty in the proof. We do this now. Actually, we establish this at a point x n P p´L n , L n q and argue that x n remains in a bounded interval around the origin as n Ñ 8. For the remainder of the proof, we'll denote pc Ln , u Ln , v Ln q as pc n , u n , v n q. In addition, we now we clarify what we mean by |χ| sufficiently large. First, we recall from Proposition Proposition 2.4 that c hyp ą 0 holds. Now we take |χ| sufficiently large so that Theorem 2.5.(i) guarantees that any traveling wave solution of (HYP) satisfies (7.26) c ě c hyp 2 ą 0.

In addition, we take |χ| large enough so that holds. In the remainder of the proof, |χ| will not be further increased.

We shall now establish (7.1). `vn px n q ν ´ˆν `1 ν ˙un px n q ´|χ|ppv n q x px n q `cn q 2 4 ˙, so that (7.31) |χ|pv x px n q `cn q 2 4 ď ν `1 ν .

Next, we show that x n is contained in a bounded interval around the origin. The fact that x n cannot be too negative follows from (7.30). We now show that x n cannot be too positive. First notice that, due to (7.26) 

|v x px n q `cn | ď c n 2 .
From (2.1) and Proposition 5.2, it is clear that there are positive constants C 1 , θ 1 ą 0, independent of L and χ (recall that we have already restricted to χ sufficiently large, so there is no dependence on χ through Proposition 5.

2), such that

|v x | ď C 1 e ´θ1 x .
Combining this with (7.32), we find that either x n ď 0 or

c n ´C1 e ´θ1 xn ď c n 2 , which yields 1 C 1 e θ 1 xn ď 2 c n ď 8 c hyp .
Taking the logarithm of both sides, we find (7.33)

x n ď 1 θ 1 log ´8C 1 c hyp ¯,
which is the desired bound.

Up to passing to a further subsequence, there is x ˚such that x n Ñ x ˚as n Ñ 8. From the C 1 convergence (recall that }v n } W 2,8 ď Cp1 `1{νq) of v n to v, it follows that

pv x px ˚q `cq 2 ď 4 |χ| ν `1 ν .
The bounds on x ˚follow directly from (7.30) and (7.33). This completes the proof.

7.2. Converging to the porous medium wave: Theorem 2.8. We now show that discontinuous traveling wave solutions to (HYP) converge to traveling wave solutions to (PME). We work with the solutions constructed in Theorem 2.6. We point out the properties that we use: first, (7.34) u ν is nonincreasing, pv ν q x p0q " ´cν , and u ν " 0 in p0, 8q.

The first is due to Theorem 2.6.(i), the second follows from (5.4), and the third follows from Theorem 2.6.(ii) and Proposition 2.3. Additionally, we have that (7.35) ´cν ă pv ν q x pxq ă 0 for x P p´8, 0q and u ν is smooth in p´8, 0q.

Next, we observe that u and v are close, depending on ν. Indeed, as pc, u, vq is constructed as a limit of solutions to (TW), we may apply the estimate Lemma 4.3 (7.36) }u ν ´vν } L 8 ď Cp ? c ν `1qν 1 {8 , for some universal C ą 0. Similarly, we also have, from Lemma 4.1 and Corollary 4.2, (7.37)

ż |u ν p1 ´uν q log u ν | dx ď c ν and rv ν s C 1{2 , }pv ν q x } L 2 ď ? c ν .
We begin by obtaining an upper bound on c. Note that this does not follow from the previously established upper bound in Proposition 2.4. For notational ease, we drop the ν subscript here. Lemma 7.6. Suppose that pc, u, vq is a traveling wave solution to (HYP) satisfying (7.34) and (7.35). Then vpxq ě pc `xq|x| for all x P p´c, 0q and c ď 2.

Proof. First notice that the second claimed inequality follows from the first since v ď 1. Hence, we now focus on the first inequality. Fix any x ă 0. Integrate (HYP) over rx, 0s and recall (7.34) to find ż 0

x up1 ´uq dx " ´cup0q `cupxq ´up0qv x p0q `upxqv x pxq " pc `vx pxqqupxq.

Since u is nonincreasing, we have |x|upxq ě ż 0

x up1 ´uq dx " pc `vx pxqqupxq.

After dividing by upxq and rearranging, we find c ´|x| ď ´vx pxq.

By the mean value theorem, we can find ξ x P rx, 0s so that vpxq " vp0q `vx pξ x qx " vp0q `p´v x pξ x qq|x| ě vp0q `pc ´|ξ x |q|x| ě vp0q `pc ´|x|q|x| ě pc ´|x|q|x|.

The proof is completed by evaluating the above at x " ´c{2:

v ´´c 2 ¯ě ´c ´c 2 ¯c 2 " c 2 4 .
Next, we show that c cannot degenerate to zero as ν OE 0. Notice that this is important because the generic lower bound in Proposition 2.4 degenerates as ν OE 0. Lemma 7.7. Fix any ν M ą 0. Suppose that pc, u, vq is a traveling wave solution to (HYP) with ν P p0, ν M q satisfying (7.34)- (7.37). Then there is c ą 0, depending only on ν M , such that c ą c.

Proof. First note that we need only check ν ! 1 due to Proposition 2.4. Before beginning, we describe the intuition behind the proof. If c is small, (7.37) forces u to transition from 1 to 0 'quickly' and v to be nearly constant. This is not consistent with the fact that (7.36) makes u and v 'close.'

To this end, let

x " v ´1p2{3q and x r " v ´1p1{3q. Notice that, due to (7.37), it follows that

(7.38) 1 3 " |vpx q ´vpx r q| ď a c|x ´xr |.
Then, in view of (7.36) and up to decreasing ν 0 , we have Rearranging this completes the proof.

We are now in position to complete the proof of the theorem.

Proof of Theorem 2.8. We establish this by showing that any sequence has a subsequence that converges in the claimed manner. To this end, fix pc n , u n , v n q with ν n OE 0 as n Ñ 8. Using Lemma 7.6, (7.37), and (7.36) and after passing to a subsequence, we obtain c and ū such that c n Ñ c, u n Ñ ū locally uniformly, and v n Ñ v locally uniformly in C α loc for any α P p0, 1{2q and weakly in H 1 loc . From (7.36) we know that ū " v so ū is continuous (even C 1 {2 ). We also not that, since u n is nonincreasing for every n, so is ū. We use this often in the next paragraphs.

First, we check the qualitative behavior of ū. Note that, due to Lemma 7.7, we have that c ą 0. Then, from Lemma 7.6 and the monotonicity of u, we have that ū ą 0 for x P p´8, 0q. In fact, we have ūpxq ě ūp´c{2q ě c2 {4 for all x ď ´c 2 .

In view of (7.37) and using the same arguments as in the proof of (4.15), we conclude that ūp´8q " 1. Additionally, from (7.34), we have that ūpxq " 0 on p0, 8q. In summary, ūp´8q, and tu " 0u " r0, 8q.

Next, we briefly show that ū is a distributional solution to (PME). Testing the equation satisfied by u n with a smooth function ϕ supported on a compact interval I Ă p´8, 0q, we find that:

c n ż pu n qϕ x `ż u n pv n q x ϕ x " ż u n p1 ´uq n ϕ.
The first integral converges to ş ūϕ x and the last to ş ūp1 ´ūqϕ because u n Ñ u locally uniformly. The middle integral converges to ş ūv x ϕ x " ş ūū x ϕ x because u n Ñ u locally uniformly (hence strongly in L 2 pIq), and v n Ñ v weakly in H 1 pIq. Thus ū P H 1 loc is a distributional solution of (PME) on p´8, 0q. It follows from classical arguments that ū P C 2,α loc p´8, 0q and is a classical solution of (PME) on p´8, 0q, and that u is strictly decreasing. Thus u is a solution of (PME) in the sense of Lemma 4.4 ((2)), and we conclude that u is a distributional solution on R.

Since ū " 0 on p0, 8q (recall (7.34)), it follows that ū is the minimal speed traveling wave solution to (PME) [START_REF] Donald | Density-dependent interaction-diffusion systems[END_REF]. It follows that c " 1{ ? 2. This completes the proof.

Proofs of technical lemmas

8.1. Exponential decay: Proposition 5.2.

Proof of Proposition 5.2. First, we point out that the normalization (5.1) guarantees that u is nonincreasing on x ě 0. In cases (i) and (iii) this is due to Lemma 3.1 and the boundary data up`8q " 0 and upLq " 0, respectively. In case (ii), this follows from Lemma 5.1. Moreover, we can also compare with points to the left of the origin. Indeed, the monotonocity results above indicate that upxq ě up0q for x ď 0. Hence, (8.1) if x ě 0 and z ď x then upzq ě upxq.

Next, the proof for solutions of (HYP) is significantly easier than for solutions of (TW), so we show only the proof in the setting of the latter equation. Actually, by formally taking χ " ´8 in the computations below, one arrives immediately at a proof for solutions of (HYP).

We start by defining the following constants. First, let A 0 " 4 log 8 so that e ´3A0{4 `e´A0{4 ď 1{4.

Next, define, (8.2) A " max

" A 0 , 1 ν , 64cp2ν `1q ν * and µ " min " 1 8 , 1 16cp2ν `1q , |χ 0 |Aν 2 * .
We shall prove that (8.3) upx 0 `A? νq ď p1 ´µqupx 0 q.

Notice that x ´3A ? ν{4 ď x 0 . We bound the first integral with (8.1) and the second and third integrals with (8.4) 

´e´3A{4 ``1 ´e´3A{4 ˘p1 ´µq ``1 ´e´A{4 ˘p1 ´µq ¯upx 0 q " ˆ1 2 p1 ´µqp2 ´e´3A{4 ´e´A{4 q `1 2 e ´3A{4 ˙upx 0 q ě ˆp1 ´µq `p1 ´µq ˆ´e ´3A{4 ´e´A{4 2 ˙˙upx 0 q, from which (8.5) follows by using that A ě A 0 and µ ď 1{8. Next, we use (8.5) and the monotonicity of u to find, for all x P rx 0 x 0 `3A ? ν{4s,

1 `vpxq ν ´ˆν `1 ν ˙upxq ě 1 `ˆ´1 ´1 4ν ˙upx 0 q.
We use the inequality upx 0 q ď 2ν{p2ν `1q, which follows from (5.1) and monotonicity, to bound the right-hand side from below and obtain

(8.6) 1 `vpxq ν ´ˆν `1 ν ˙upxq ě 1 ´4ν ´1 4ν 2ν 2ν `1 " 1 2 1 2ν
`1 for all x P rx 0 , x 0 `3A ? ν{4s.

Our next ingredient is the observation that, for all x ě x 0 , we have, ( Indeed, the equality follows from the expression (2.1) for v. The inequality holds pointwise on the integrand, which can be seen by considering two cases. First, when x 0 ´y ě 0, this is due to (8.1).

In the other case, when x 0 ´y ă 0, Lemma 3.1 implies that upx 0 ´yq ě ν{pν `1q. On the other hand, (8.1) implies that upx 0 `yq ď up0q " ν ν `1 . Hence, upx 0 `yq ´upx 0 ´yq ď 0, as claimed. This finishes the proof of (8.7).

Next, define (8.8) F :" " x P rx 0 , x 0 `A? νs : u 1 pxq ą ´2µupx 0 q A ? ν * .

These are the points where u is flat, hence the F notation. Note that, due to (8.4),

µupx 0 q ď upx 0 q ´upx 0 `A? νq ď ż F u x pxq dx ă |F | 2µupx 0 q A ? ν , so that |F | ě A ? ν 2 .
It is useful to further restrict F . Let (8.9) F " F X rx 0 , x 0 `3A ? ν{4s, which has

| F | ě A ? ν 4 
.

We shall now establish a lower bound on u xx that holds on F . To this, end, we use (8.8) and the equation (2.3) satisfied by u and v, to find, for all x P F , 2µupx 0 q A ? ν c ě ´cu x pxq " upxq ˆ1 `vpxq ν ´ˆν `1 ν ˙upxq ˙`v x pxqu x pxq `uxx pxq |χ| .

We now use (8.13) and (8.14) to bound the second and third terms on the right-hand side of (8.12) from above, and also use (8.4) to bound the left-hand side of (8.12) from below, to obtain p1 ´µqupx 0 q ď upx 0 `A? νq ď upx 0 q ´|χ|A 2 ν 32 ¨8p2ν `1q upx 0 q `A|χ|c ? νµupx 0 q " upx 0 q ˆ1 ´|χ|A ? ν ˆA? ν 32 ¨8p2ν `1q ´cµ ˙˙.

Our choice of A and the fact that µ ď 1{8 implies that p1 ´µqupx 0 q ď upx 0 q `1 ´|χ|A ? ν{2 ˘, which yields the desired contradiction by our choice of µ, completing the proof.

8.2. The structure of Z: Proposition 2.3. We begin by establishing some properties of the set of discontinuities of u.

8.2.1. Some helpful lemmas. First we obtain a semi-explicit form of u on Z c . This allows us to deduce its behavior at each boundary point of Z.

Lemma 8.1. Under the assumptions of Proposition 2.3, suppose that there is x m P Z c . Take the maximal interval px ´, x `q Ă Z c such that x m P px ´, x `q. Let τ : R Ñ I x be the solution to the differential equation

# τ 1 ptq " ´c ´v1 pτ ptqq , τ p0q " x m , for any x m P px ´, x `q. Then, denoting vptq :" v pτ ptqq, we have,

(8.16) u `τ ptq ˘" upx m q exp ş t 0 ν`vpsq ν ds ( 1 `upx m q ν`1 ν ş t 0 exp ş r 0 ν`vpsq ν ds ( dr for all t P R.
Moreover, assuming that upx m q ą 0 and that if x ˘" ˘8, then the limit vpx ˘q exists, we have: when v x px m q ă ´c, The next results establish that, if u jumps to 0 at some point x 0 P R and v x does not oscillate too much at this point, then u stays equal to 0 either on px 0 , `8q or on p´8, x 0 q. Lemma 8.2. Suppose that the conditions of Proposition 2.3 hold.

(i) If there exists x 0 P Z and x0 ą x 0 such that upx 0 q :" lim xOEx0 upxq " 0 and px 0 , x0 q Ă Z c , then c ą 0 and upxq " 0 and vpxq " c ? νe ´x´x 0 ? ν for all x ą x 0 .

(ii) There cannot exist x 0 P Z and x 0 ă x 0 such that px 0 , x 0 q Ă Z c and upx 0 q :" lim xÕx0 upxq " 0.

Our last result allows us to exclude the possibility of a singular point x P Z inside the region tu ą 0u. Since its proof is so short, we include it here. Lemma 8.3. Suppose that the conditions of Proposition 2.3 hold. Let px 0 , x 1 q Ă Z c be a maximal connected subset. It cannot be that x 0 and x 1 are finite and upx 0 q, upx 1 q ą 0.

Proof. Suppose by contradiction that both x 0 and x 1 are finite. Then, by Lemma 8.1,

lim xÑx 0 v xx pxq " lim xÑx 0 vpxq ´upxq ν " 1 ν ˆvpx 0 q ´vpx 0 q `ν 1 `ν ˙" νpvpx 0 q ´1q 1 `ν ă 0. Therefore v x pxq " v x px 0 q `ż x x0 v xx pyq dy ă v x px 0 q " ´c, if x is sufficiently close to x 0 . Similarly, lim xÑx 1 v xx pxq " lim xÑx 1 vpxq ´upxq ν " 1 ν ˆvpx 1 q ´vpx 1 q `ν 1 `ν ˙" νpvpx 1 q ´1q 1 `ν ă 0. Therefore v x pxq " v x px 1 q `ż x x1 v xx pyq dy ą v x px 1 q " ´c, if x is sufficiently close to x 1 .
By the continuity of v x and the mean value theorem, there must exists x ˚P px 0 , x 1 q such that v x px ˚q " ´c, in which case x ˚P Z; however this is impossible because I " px 0 , x 1 q Ă Z c by definition. The contradiction proves the lemma.

8.2.2. The proof of Proposition 2.3. We are now in a position to prove Proposition 2.3. We write the proof in multiple parts. First we show that Z has the decomposition claimed (that is, either Z " ∅ or Z " tx 0 u contains exactly one point). Then we prove the qualitative behavior claimed in cases (1) and [START_REF] An | Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation[END_REF].

Proof of the decomposition of Z in Proposition 2.3. We split the proof in two cases, based on whether c is zero or positive. We begin with the former, which we show cannot occur.

Case one: c " 0. If Z " R, then v x " 0. From the second equation in (HYP), it follows that u " v. From (2.7), we have 0 " u ppν `vq ´pν `1quq in R.

These two identities can hold if upxq " 0 or 1 for every x P R. Since u " v, it is continuous. Hence, u " 0 or 1. This contradicts the hypothesis that u ı 0 and u ı 1 and, thus, concludes the proof when Z " R.

If Z ‰ R, we may take any maximal interval px 0 , x 1 q Ă Z c , and it must be that either x 0 ą ´8 or x 1 ă `8. Let us consider the former case, but the latter is similar (and, thus, omitted). The maximality of this interval implies that x 0 P Z.

By Lemma 8.2, if upx 0 q " 0, then c ą 0, which is a contradiction. Hence, upx 0 q ą 0. If x 1 is finite and upx 1 q " 0, we have that upx 0 q " 0 due to Lemma 8.2, which is a contradiction. If x 1 is finite and upx 1 q ą 0 then Lemma 8.3 is violated. (Note that, in all cases, the existence of the limit follows from Lemma 8.1). It follows that x 1 " `8. Now, as c " 0 and px 0 , 8q Ă Z c , the definition of Z (see Definition 2.2) and the intermediate value theorem imply that v x has a constant sign on px 0 , 8q. Since v is bounded, there must be a sequence y n Ñ 8 such that v x py n q Ñ 0 as n Ñ 8. Note also that, since x 0 P Z, v x px 0 q " 0. Using these facts, along with (HYP) and that u is bounded and c " 0, we find " lim nÑ8 `vx py n qupy n q ´vx px 0 qupx 0 q ˘" 0.

Since 0 ď u ď 1 and u P C 1 loc px 0 , 8q, it follows that either u " 0 or u " 1, which is, as above, a contradiction. It follows that c ‰ 0.

Case two: c ą 0. First, we show that Z c is nonempty and any maximal interval it contains is infinite.

Since v is bounded and c ą 0, it cannot be that Z " R. Hence, Z c is nonempty. Take any maximal interval px 0 , x 1 q Ă Z c . There are three cases to consider: either (i) x 0 " ´8 and x 1 " `8, (ii) x 0 ą ´8, or (iii) x 1 ă `8. The proof is finished in case (i). Case (iii) is handled exactly as case (ii); hence, we only show the proof of case (ii).

Suppose that x 0 ą ´8. If upx 0 q " 0, it follows from Lemma 8.2 that v x pxq " ´ce ´x´x 0 ? ν ą ´c for all x ą x 0 .

Hence, px 0 , 8q Ă Z c , finishing the claim. In the other case, where upx 0 q ą 0, then Lemma 8.3 implies that x 1 " `8. This concludes the proof that Z c is nonempty and any maximal intervals it contains are infinite.

From the above, we conclude that Z is either empty, a single point, or a closed interval. We need to rule out the last option. The proof for this was outlined in Section 2 (see the discussion around (2.9)), and, hence, is omitted. This completes the proof.

Proof of the qualitative behavior of u in Proposition 2.3.(1). The case where Z " H requires only that we establish the regularity of u. This, however, follows directly from Lemma 8.1.

Proof of the qualitative behavior of u in Proposition 2.3.(2). Here, there is x 0 such that Z " tx 0 u. By construction of Z, v x `c has a constant sign on p´8, x 0 q and on px 0 , 8q. Since v is bounded, it follows that v x `c ą 0 on both intervals. Hence, (8.17) v x `c ą 0 on Z c

We require (8.17) in order to determine which case to use in Lemma 8.1 when we apply it below. By Lemma 8.1, if u is positive anywhere on a connected component of Z c , then it is positive on the entire connected component. Hence, we have three cases: either u ą 0 on Z c , u " 0 on p´8, x 0 q, or u " 0 on px 0 , 8q.

Case one: u ą 0 on Z c . Then Lemma 8.1 implies that, up to a redefinition at x 0 , u is continuous on R and we have νv xx px 0 q " vpx 0 q ´upx 0 q " vpx 0 q ´ν `vpx 0 q ν `1 ă 0.

In the last inequality, we used that tu ă 1u has positive measure so that, due to (2.1), vpx 0 q ă 1.

On the other hand, x 0 is the location of a minimum of v x `c, implying that v xx px 0 q " 0. This is a contradiction. Hence, case one may not occur.

Case two: u " 0 on p´8, x 0 q. We apply Lemma 8.2 and find that u " 0 on px 0 , 8q. Hence, u " 0 almost everywhere, which contradicts our assumption that t0 ă uu has positive measure. Hence, case two cannot occur.

Case three: u " 0 on px 0 , 8q. By assumption, u is positive on a positive measure subset of R. Hence, u is positive on a positive measure subset of p´8, x 0 q. We then apply Lemma 8.1 to conclude that upx 0 q P ! 0, ν `vpx 0 q ν `1 ) .

If upx 0 q " 0, then Lemma 8.2 implies that u " 0 on p´8, x 0 q, which contradicts the assumption that t0 ă uu has positive measure. It follows that upx 0 q " ν `vpx 0 q ν `1 , which concludes the proof.

The combination of the above establishes Proposition 2.3 in full. Proof of Lemma 8.1. We first note that the vector field on the right-hand side of (8.15) is globally Lipschitz continuous, therefore the solution to (8.15) is well-defined and unique on R. Since u satisfies (2.7) on px ´, x `q, the function ūptq :" u `τ ptq ˘solves the equation ū1 ptq " τ 1 pxqu 1 `τ ptq ˘" ūptq ˆν `vptq ν ´ˆν `1 ν ˙ūptq ˙for all t P R.

This implies that ūptq " u `τ ptq ˘must be given by (8.16). Now, assume upx m q ą 0. Note that, for all t P R, we have ν vpsq ds dl does not vanish for t P R. It may, however, tend to zero as t Ñ ´8.

Consider first the case where v x px m q ă ´c. Then τ is strictly increasing with lim tÑ`8 τ ptq " x ànd lim tÑ´8 τ ptq " x ´. We first compute the limit as t Ñ `8. Notice that, as t Ñ `8, ν `vpx `q ν `1 .

(8.18) Next we deal with the limit t Ñ ´8. We note that the numerator of the right-hand side of (8.16) approaches 0 as t approaches ´8. As for the denominator, it is clearly increasing and bounded on p´8, 0q, and therefore it has a limit. We distinguish two cases, based on whether that limit is positive or zero. Then, arguing exactly as in (8.18) yields lim tÑ´8 ūptq " ν `vpx ´q ν `1 . This concludes the proof in the case where v x px m q ă ´c.

If v x px m q ą ´c then τ is a strictly decreasing function with τ ptq Ñ x ˘as t Ñ ¯8. By applying a similar method, we get the conclusion claimed in the lemma. Lemma 8.1 is proved.

Proof of Lemma 8.2. We include only the proof of (i), as the proof of (ii) is similar. Without loss of generality, we may take x0 P Z Y t`8u; that is, px 0 , x0 q is the maximal connected interval in Z c with x 0 as a left endpoint. Since 0 ď u, v ď 1, v xx px 0 q " vpx 0 q ´upx 0 q ν ď 1 ν .

It follows that v x pxq " v x px 0 q `ż x x0 v xx pyq dy ď ´c `1 ν px ´x0 q, from which we deduce the inequality ´c ´vx pxq ě ´1 ν px ´x0 q.

Let (8.19) x0 " suptx ą x 0 : upxq ď mintvpxq, 1{4uu.

We first show that x0 ě x0 , and then we use this to show that x0 " `8, which will conclude the proof. Since u P C 1 loc px 0 , x0 q, upx 0 q " 0, and v ą 0 (recall (2.1)), x0 is well-defined and x0 ą x 0 . Then, for any x P px 0 , mintx 0 , x0 uq, It immediately follows that u is decreasing on px 0 , mintx 0 , x0 uq; however, since upx 0 q " 0, it follows that u " 0 on this set. Following the definition of x0 (8.19), it follows that x0 ě x0 . We now show that x0 " `8. We argue by contradiction, assuming that x0 ă `8. In this case, x0 P Z (see the first paragraph of the proof). Hence, by the previous paragraph and (HYP), we find # νv xx " v in px 0 , x0 q, v x px 0 q " v x px 0 q " ´c. This is clearly not possible as the first line implies that v x is strictly increasing over rx 0 , x0 s (recall that v is strictly positive due to (2.1)), while the second line implies that v x is the same at two points. It follows that x0 " `8; hence, u " 0 on px 0 , 8q.

We omit the proof of the form of v on px 0 , 8q as this follows directly from the fact that νv xx " v on px 0 , 8q along with the boundedness and positivity of v.

Finally, it is clear from the form of v and its positivity that c ą 0. This concludes the proof.

  ´xr | min rx ,xrs up1 ´uq| log u| ď ż xr x up1 ´uq| log u| dx ď c.

  yq ´upx ´yq ˘dy ď 0.
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 23 Proofs of Proposition 2.3's helper lemmas.

ˆ1 `upx m q ˆν ` 1

 1 

  that the numerator tends to zero, we find lim yOEx ´upyq " lim tÑ´8 ūptq " 0.

  where we use that 1 {p1 `νq ě 1 ´ν in the third inequality, that v ď 1 to get the fourth inequality, and the estimate (4.6) in the last inequality. The claim then follows by(4.4). This concludes the proof. 4.3. Proof of Theorem 2.1. We establish the second part of Theorem 2.1.Proof of Theorem 2.1.(ii). First we address the notion of convergence. Since c n is bounded uniformly above, by assumption, there is c such that c n Ñ c as n Ñ 8 up to passing to a subsequence. Similarly, by Corollary 4.2 and the bound }v} L 8 ď 1, we obtain u P H 1 X C Next, we investigate what qualitative properties u enjoys. First, by (2.2), we have 0 ď u ď 1. Next, from the normalization (2.6) and the uniform convergence of u n to u (4.12), it follows that Next, we argue that up´8q " 1. By Lemma 4.1, Corollary 4.2, and the convergence of v n and u n to u, implies that

	(4.13)				min
	(4.14)	rus C 1{2 ď	?	c and	ż	|u x | 2 dx `ż |up1 ´uq log u| dx ď c ă `8.
	By (4.13) and the regularity of u (4.14), the above implies that
	(4.15)					up´8q " 1.
							1 {2 X L 8 such that, as
	n Ñ 8,					
	(4.11)		v n Ñ u	weakly in H 1 loc and strongly in C α loc ,
	for any α P p0, 1 {2q. Finally, due to Lemma 4.3 and (4.11), we have
	(4.12)				u n Ñ u	in L 8 loc .

1 {8 ´ν, xď0 upxq " up0q " δ.

  35, Lemma 2.3].

	5.3. Quantified exponential decay. A key part of our work in Proposition 2.4 and Theorem 2.6
	is a quantitative exponential decay bound that we state below. For convenience, up to translation,
	we use the normalization (2.14), so that			
	(5.1)	up0q ď	ν	ν `1 .

  from it. Noting (2.2) and using that u n , v n á v, we have that rx`δ,x´δs v dx ´ż 1 rx`δ,x´δs v dx " 2δ `2ε|x ´x|.

		ż x		
	lim sup	pu n ´vn q 2 dx	
	nÑ8	x		
			ż x´δ		ż x´δ
		ď 2δ `lim sup	|u n ´vn | dx ď 2δ `ε|x ´x| `lim sup	|u n ´vn `ε| dx
		nÑ8	x`δ	nÑ8	x`δ
			ż x´δ
		" 2δ `ε|x ´x| `lim sup	pu n ´vn `εq dx
			nÑ8	x`δ
				ż	ż
		ď 2δ `2ε|x ´x| `lim sup nÑ8	1 rx`δ,x´δs u n dx ´lim inf nÑ8	1 rx`δ,x´δs v n dx
		" 2δ `2ε|x ´x| `ż 1	

  14) u n pyq ď v n pyq ´ε 2 for all y P pζ n , xq. Before proving this, we show how to conclude the proof by contradiction that started with the existence of z n . Indeed, up to taking a further subsequence, we have that ζ n Ñ ζ 8 , for some ζ 8 . Then, take any nonnegative, nontrivial test function ψ supported on a compact subset of pζ 8 , xq. Note that the fact that ζ n ă z n ď x ´δ ensures that the support of ψ is nontrivial.

	By (6.14), we
	observe that
	lim inf nÑ8

  of the form ε R e ´λR x cos ´πx 2R ¯on p´R, Rq, with ε R , λ R , and R chosen depending only on 2 { Hence, φp0q ą ε R for all L ě R.On the other hand, after taking L Ñ 8, φ converges to some function φ 8 solving (7.19) on R. Since c is smaller than the minimal speed, φ must be a trivial solution. By above, φ 8 ą 0, and, hence, can only be ν {pν `1q.

	a |χ|	a ν {pν `1q ´c.

  From the definition of ũ, that u n ď 1 and v n ď 1, the fact that x ă 0 and the upper bound on c n from (7.25), we find,

								To this end, let
										ũpxq :" u n pxqe |χ| cn x`vn pxq 2	.
	Then ũ satisfies the equation			
	(7.28)	´1 |χ|	ũxx "	ũ ˜1	`vn pxq ν	´ˆν	`1 ν	˙un pxq	´ppv n q x `cn q 2 |χ| 4 1	¸in p´L n , L n q.
	Let us take L n ě ´1 ´2 |χ| log δ 2 ´1¯p cq ´1. ũpxq ď e ¯c´1 and consider any x ď ´2 |χ| log δ 2 |χ| 2 pcnx`1q ď e |χ| 2 pcx`1q ď e |χ| 2 p 2 |χ| log δ 2 q " δ 2 .
	Thus, we have,								
	(7.29)	sup |χ| log δ xPp´Ln,p 2 2 ´1qpcq ´1q	ũpxq ď	δ 2	ă δ,	ũp0q " δe	|χ| 2 vp0q ě δ,	ũpL n q " 0 ă δ,
	which proves that ũ has an interior global maximum x n satisfying,
	(7.30)							x n P	ˆˆ2 |χ|	log	2 δ	´1˙p	cq ´1 , L n	˙.
	Testing (7.28) at the location of the maximum x n , we have
		0 ď	´1 |χ|	ũxx "	ũ ˆ1		

  , we may assume that

	c n ě	c hyp 4	,
	up to increasing n. Combining this with (7.27) and (7.31) yields
	(7.32)		

  . This yields

	vpxq ě	ż ´3A ? ´8	ν{4	e 2 ? y ? ν ν	upx 0 qdy`ż ´3A 0 ?	ν{4	e 2 ? y ? ν ν	p1 ´µqupx 0 qdy	`ż A ? 0	ν{4	´y ? ν e 2 ? ν	p1 ´µqupx 0 qdy
	"	1										
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as long as x 0 ě 0 and u solves (TW) on rx 0 , x 0 `A? νq. We point out that the dependence on ν m , ν M , and C M is clear due to the explicit nature of A and µ.

Before beginning with the proof of (8.3), we show how it yields the claim. Fix any x and let n x " t x A ?

ν u be such that An x ? ν ď x ă Apn x `1q ? ν.

Then, by the monotonicity of u pointed out at the outset of the proof, it follows that upxq ď upAn x ? νq.

On the other hand, applying (8.3) n x times yields upxq ď upAn x ? νq ď p1 ´µqupApn x ´1q ? νq ď ¨¨¨ď p1 ´µq nx up0q ď p1 ´µq

Hence, up to establishing (8.3), the proof is complete. We now prove (8.3). We argue by contradiction: assume there exists x 0 ą 0 such that (8.4) upx 0 `A? νq ě p1 ´µqupx 0 q.

Since the proof is quite intricate, let us explain the main idea. The monotonicity of u and (8.4) indicates that u is approximately constant on a large interval. Given its definition, it follows that v « u on this interval. Using then (TW) and expanding the pv x uq x term, we find

Let us ignore the second order term, which is only a technical issue. Next note that we expect v x u x ě 0 due to the monotonicity of u x on r0, 8q. Finally, since u changes by µu over an interval of length, A ? ν, we expect:

Canceling a u term on each side and noting that u ď ν{pν `1q ă 1, would yield a contradiction since the left hand side tends to zero as A Ñ 8 or µ Ñ 0, but the right hand side is positive. This is roughly how the proof proceeds. Most of the technical difficulty is in dealing with the second order term. We now proceed with the proof. The first step is to establish that, under the assumption (8.4), we have, (8.5) vpxq ě upx 0 q{8 for all x P rx 0 , x 0 `3A ? ν{4s.

To this end, from (2. where the second inequality follows from the estimates (8.7) as well as (8.6).

To begin to put these ingredients together, we use Taylor's theorem to find,

Next, recall from (8.9) that F Ă rx 0 , x 0 `3A ? ν{4s and | F | ě A ? ν{4. Together with the fact that u x px 0 q is non-positive we thus find,

u `x0

`A? ν ˘ď upx 0 q `żx0`A