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Abstract—Weaning a patient from mechanical ventilation is a
critical task in Intensive Care Units, but it can be made safer
by using Lung Ultrasound scoring. This scoring is currently
done visually by specialists based on Lung Ultrasound artifacts
among which are A-lines. Automating this scoring may help
standardizing results and saving time for clinicians. In this paper,
we propose a method to automatically detect A-lines by using
both the intensity profile of the LUS image and morphological
operations. A score is then assigned to significant lines and
represents the possibility of them being A-lines. The proposed
method shows promising results in differentiating Alines from
other elements with an Area Under the Curve of 0.95; further-
more, using a threshold at 0.5 to detect A-lines leads to very
good performances with an accuracy of 95% and a F(.5- score
of 0.84.

Index Terms—Lung Ultrasound, A-lines, automatic detection,
confidence estimation

I. INTRODUCTION

Knowing when to wean a patient from mechanical ventila-
tion is a critical task in Intensive Care Units (ICU): waiting
too long makes the patient less likely to manage natural
breathing, and weaning him too quickly is associated with an
increased risk of postextubation distress. One way to predict
whether the patient is ready for the weaning is to use Lung
Ultrasound (LUS) to estimate aeration changes during the
spontaneous breathing trial [1]. The estimation of aeration
changes in the lung is based on the scoring of LUS images
according to the following criteria: 1) normal aeration: pres-
ence of lung sliding with A-lines (thin, horizontal or slightly
curved artifacts), or less than two isolated B-lines (vertical
artifacts originating from the pleural line); 2) moderate loss
of lung aeration: multiple, well-defined B-lines; 3) severe loss
of lung aeration: multiple coalescent B-lines; and 4) lung
consolidation: presence of a tissue pattern characterized by
dynamic air bronchograms [1]. However, this scoring, being
done visually, requires both formation and experience for the
clinician, and may vary depending on the operator. Therefore,
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image processing methods that identify the significant lines on
LUS images could be a great help for both novice practitioners
and for specialists to save time.

These last years, there has been a promising increase in
the research for automating the evaluation of LUS images
because (among other reasons) of the outbreak of COVID-
19, which can be detected by LUS [2], [3]. However, while
some research proposes automatic scoring of the LUS images
[4]-[8], none of these methods is based on the scoring system
used to predict the risk of postextubation distress. Some other
approaches are directed towards the identification of special
patterns on LUS images, but most of this research is focused
on the detection and evaluation of B-lines, these being one
of the most significant elements to estimate the state of a
lung in LUS images [8]-[18]. Only few approaches try to
segment the A-lines, mostly by using the Radon transform of
the LUS image [11]-[13], or a morphological top-hat operation
followed by an adaptive filter [19]. These methods have not
been evaluated quantitatively on their performances in A-lines
detection, either because it was not the main objective of the
study, or because it was a more qualitative evaluation.

In this context, we propose a method to identify the A-lines
in LUS images in a flexible way: instead of a binary estimation
of the presence of an A-line, the method presented in this
paper gives a level of confidence related to the possibility of
a significant line detected in the LUS image being an A-line.
This allows clinicians to know how much confidence they can
have in the given result and whether or not they should double-
check it.

This article is organized as follows: Section II describes the
proposed method, Section III presents the used dataset, and
finally, Section IV discusses the results of the testing phase.

II. METHOD

This section describes the proposed method for A-lines
detection and confidence estimation. Before anything else, pre-



processing is necessary in order to remove any annotation
added by the imaging ultrasound machine on the LUS frame,
to rescale the intensity values between 0 and 255, and to
crop the frame to keep only the smallest rectangular image
containing all the LUS information. The result of this opera-
tion is presented in Figure la. In our dataset, A-lines appear
as arcs of a circle of 3-7 pixels thickness. Our method for
their detection is thus based on the detection of bright arcs
of a circle, which are considered A-line candidates, and the
evaluation of three of their characteristics: their position, the
contrast with their neighborhood and the continuity of the
brightness in the detected line.

In order to study these characteristics, five steps are con-
sidered: pleural line detection, study of the vertical intensity
profile of the LUS image. morphological operations to enhance
potential lines in the image, scoring of each candidate line, and
final decision among the candidates lines using a threshold.
These steps are described hereafter.

1) Pleural line detection: as the following steps rely on the
pleural line position to estimate if the detected line position
makes it likely to be an A-line, the pleural line is identified
by the clinician (cf Figure 1b). Doing it manually prevents
errors on the detection of this element which is crucial to
identify the A-lines, and in extreme cases, where the pleural
line cannot be detected in the image, it leads to the immediate
conclusion that the LUS image contains no A-lines (because
they are reflections of the pleural line that cannot occur in the
absence of pleural line).

From this point on, everything is done automatically.

2) LUS vertical intensity profile: in order to determine
A-line candidates, the intensity profile of the LUS image is
studied so as to identify any peak of brightness (relative to its
surroundings). To this end, the pleural line being identified, the
area under it is scanned to get the profile of the mean intensity
of each arc of a circle having for center the peak of the LUS
image cone (cf Figure 1c). The resulting profile is smoothed
with a Gaussian filter (¢ = 5) to remove the high-frequency
variations due to the noisy nature of the LUS images, while
preserving the lines (cf Figure 1c). Every maximum detected
on the final curve is a candidate line for being an A-line.

3) Morphological operations: In order to evaluate if the
candidate lines have not been detected thanks to a localized
peak of brightness (and that they do present a long and
thin bright intensity profile), some morphological operations
are applied to the LUS frame to highlight long and thin
elements. First, the contrast of the LUS frame is greatly
increased by setting to O every pixel whose value is under
the 98th percentile of intensity of the image, and rescaling
the rest between 0 and 255 (cf Figure 1d). Then, an Alternate
Sequential Filter (ASF) is applied to this image (cf Fig. le).
This step consists in alternating morphological openings and
closings with a structuring element of growing size. Here, the
structuring element is chosen as an horizontal line (because
most of the A-lines, independently of their orientation, contain
at least an horizontal part) of length increasing from 2 to
30 pixels. To identify more precisely the long bright regions

characteristic of A-lines, an opening with a structuring element
of size 5 x 40 is then applied on the result of the ASF (cf
Figure 1f).
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Fig. 1: Steps of the proposed method: (a) Pre-processed
image; (b) Pleural line (in blue) identification; (c) Original and
smoothed intensity profile of the image; (d) Image after con-
trast adjustment; (e) Image after the ASF operation; (f) Image
after the opening operation; (g) Result of the detection with
the detected A-lines displayed in green.



4) Scoring: To estimate the possibility that the candidate
lines are A-lines, both the intensity profile of the frame and
the result of the morphological operations are used. A score
between 0 and 1 is given to each line for each of the three
parameters taken into account, and these scores are then
aggregated. The three considered parameters are:

e position of the candidate line: it corresponds to the radius
of the arc of a circle considered as a candidate line. As
this position p should be a multiple of the distance between
skin and the pleural line (denoted by d;, here, and typically
between 40 and 130 pixels in our dataset), the score s; given
to this parameter is determined by Algorithm 1 (with m being
an imprecision margin considered on each side of the position
of the pleural line, equal to 3 pixels).

Algorithm 1 Scoring of the position of a candidate line

Input: p,m,d,
Output: s

1: 51+ 0

2: for k in [2,3,4] do

3 ifp>k(ds, —m) & p < k(dsp +m) then

4: s1+1

5. else if p > k(ds, +m) & p < (k+0.5)d,, then

N p—dap(k+0.5)
: 51 = T05d.,+km

7. else if p < k(ds, —m) & p > (k —0.5)d,, then
. P_d-<p(k_0-5)

8 51 = “08d,, —Fm

9: end if

10: end for

The score is 1 when the position of the A-line is a multiple
of the distance between the skin and the pleural line, and it
decreases as the line goes away from these positions until it
reaches 0;

e contrast between the line and its neighborhood: it is as-
sessed through the derivative of the intensity profile, both
before (score s5 1) and after (score so o) the position of the
candidate line. This derivative is calculated on the smoothed
profile of intensity of the LUS image, and its value at five
pixels before the position of the candidate line and at five
pixels after are studied. In order to ensure that the line is bright
enough compared to its surroundings, the higher in absolute
value those two derivatives are, the higher the score associated
to this parameter is. The function giving the score to one
of the derivative d depending on its absolute value has been
determined experimentally and is detailed in Algorithm 2;

e result of the ASF and opening operations: they are used
to ensure that the line is continuous and has not been detected
thanks to a single peak of brightness. Let ASF),.cs and Opyes
be Boolean values that indicate whether something has been
detected after the ASF and the opening operations, respectively
(note that Opres < ASF)pyes). Furthermore, we define L as
the length in pixels of the detected element (in the opening if
something has been detected there or in the ASF otherwise)
and H its height. Considering these notations, the score sg
given to this parameter is determined by Algorithm 3.

Algorithm 2 Scoring of the contrast of a candidate line

Input: d
Output: s;

1: if |d| < 0.15 then

s2+0
else if |d| < 0.5 then

sg  0.57 x |d| — 0.085
else if |d| < 1.25 then

s2 < 1.067 x |d| — 0.33
else

S < 1
end if

O RN R LN

Algorithm 3 Scoring of the result of the morphological
operations for a given candidate line

Input: Opres, ASFpres, L, H
Output: s3
1: if Opres then
s3 < 0.6
else if ASFj,.s then
S3 < 0.5
else
S3 < 0.4
end if
if L > 100 then
9: s3 < s3+0.4
10: else if L > 80 then
11: s3 < s3+0.3
12: else if L > 60 then
13: S3 < s3+ 0.2
14: end if
15: if L/H < 3 then
16: sz < max(s3([L/H] —2),0)
17: end if

A S o

This algorithms means that if nothing has been detected by the
ASF at the position of the line candidate (every pixel of the
line in the image after the ASF operation is equal to 0) then the
score is 0.4: this is because experience has shown that some A-
lines are not horizontal enough to be highlighted by the ASF,
and thus the absence of detection after the ASF operation does
not mean that there is no A-line at the considered position. If
something has been detected at the position of the line after
the ASF operation but disappeared after the opening, then the
score is a little higher; and if something has been detected
after the ASF and is still perceptible after the opening, then
the score increases once again. After this first score is given to
the considered line, the shape of the detected element is taken
into account: if it is long, like an A-line should be, then the
score is increased, and it is decreased if it is too thick (because
it means that a bright extensive region is located here, which
does not match the profile of an A-line).

In order to conclude on the number and position of the A-
lines in the frame, the scores are then aggregated by a weighted
average operation that gives the confidence level ¢ (Equation 1)
that the line is an A-line. This operation has been chosen
because some A-lines do not respect one of their theoretical
characteristics (e.g. their position is slightly off from where it
should be). In this case, this operation allows for compensation



if the other parameters are strong enough to make it clear that
the detected line is an A-line in spite of that. The scores are
aggregated as follows:

c= (0.581 + 82,1 + S22 +83)/35 @))

This gives a lot of influence to whether the line is contrasted
enough from its neighborhood; and a little less influence to the
position in order to limit false detections which only have a
truly accurate position. Furthermore, if the line is distant from
the skin more than five times the distance between the pleural
line and the skin, ¢ is set to O as there is almost never an
A-line at this position.

5) Validation: The final step to identify A-lines is to
consider three regions (because there is almost never more
than three A-lines in a LUS image). Each region is centered
around the depth of a multiple of the distance between the
skin and the pleural line. This is to ensure that there is
at most one A-line detected in each region: thus, for each
region, only the candidate line with the best score is kept.
This line is considered to be an A-line if the confidence level
which has been attributed to it is higher than a threshold 7
(cf Figure lg obtained for 7 = 0.5). This validation step,
for 7 = 0.5, enables the eliminate 3.66 false detections per
image in average, while only discarding 0.19 true detections
per image.

In the example in Figure 1, the confidence level of the two
detected lines are both 0.89, and the confidence level of the
line detected in the third region is 0.25, which means that this
candidate line is not an A-line, as it can been seen in Figure 1a.

III. DATASET

The dataset used to test the proposed method includes
LUS images from seven patients admitted to the ICU of the
hospital La Pitié-Salpétriere in Paris, which have undergone a
successful spontaneous breathing trial and as such have been
extubated afterwards. The clinical information of these patients
(mean values) is detailed in Table 1.

TABLE I: Patient data.

No. of patients Sex Age BMI (kg/m?)
7 M(4)-F(3) 52 24
2MV: Mechanical Ventilation

MV? (days)
7

For each patient, LUS has been conducted just before the
extubation as well as 2 hours after the extubation, 24 hours
and 48 hours after the extubation if the patient was still at the
ICU, and at the time of his discharge if he was discharged
before 48 hours.

Lung Ultrasound was performed with a Philips Sparq, 2-
to 4-MHz convex probe (cardiac probe) set to 40 frames/s.
Each LUS sequence contains 81 frames and lasts for about 2
seconds. Each intercostal space of upper and lower parts of the
anterior, lateral, and posterior regions of the left and right chest
wall was carefully examined, for a total of 12 LUS sequences
by patient and time of acquisition. This amount to a total of
244 sequences and 19763 LUS frames.

IV. RESULTS AND DISCUSSION

The proposed method has been applied on one image of
every sequence of the aforementioned dataset, and has been
judged on the score given to every candidate line. Thus, a true
positive here is an A-line whose score is higher than 7 and
a false positive is a candidate line which is not an A-line but
has a score higher than 7 as well. With these definitions, the
ROC (Receiver Operating Characteristic) curve representing
the sensitivity of the method against its specificity shows an
area under the curve of 0.95 (cf Figure 2), demonstrating that
the proposed scoring method has a great capacity to distinguish
between A-lines and other elements.

Receiver Operating Characteristic Curve
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Fig. 2: ROC curve and its Area Under the Curve (AUC).

Because A-lines are patterns indicating a healthy lung, it is
more important not to detect them wrongly than to detect all
of them. Thus, to evaluate the choice of a threshold of 0.5 for
the A-lines detection we use the F0.5-score, which corresponds
to the harmonic mean between the precision and the recall by
considering the precision to be two times as important as the
recall. The performance of the method with 7 = 0.5 for this
measure is 0.84, and its accuracy is 95%, proving this choice
of threshold to be relevant for the given situation.

The proposed method is, to our knowledge, the only one
that has been quantitatively evaluated on A-lines detection.
It has been developed with the intention of being used for an
automatic classification estimating the aeration of the lung, and
to this end, is based on the scoring of the level of confidence
that can be given to the fact that the detected line is an A-line.
Indeed, for future works such as developing a classifier for the
whole LUS scoring, having such an information may allow
the classifier to estimate more accurately the score to give to
the LUS image. Finally, the proposed method obtained great
results on the task of A-lines scoring and detection, that we
hope to confirm on an independent cohort of future patients.

ACKNOWLEDGMENT

The authors are thankful to Dr Vincent Joussellin and Dr
Vincent Bonny who acquired the data at the hospital La
Pitié-Salpétriere (AP-HP) under the protocol NCT04180410
promoted by Bioserenity.



[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

A. Soummer, S. Perbet, H. Brisson, C. Arbelot, J.-M. Constantin, Q. Lu,
and J.-J. Rouby, “Ultrasound assessment of lung aeration loss during a
successful weaning trial predicts postextubation distress,” Critical Care
Medicine, vol. 40, p. 2064-72, May 2012.

C. McDermott, M. Lacki, B. Sainsbury, J. Henry, M. Filippov, and
C. Rossa, “Sonographic diagnosis of COVID-19: A review of image
processing for lung ultrasound,” Frontiers in Big Data, vol. 4, p. 612561,
Mar 2021.

L. Zhao and M. A. Lediju Bell, “A review of deep learning applications
in lung ultrasound imaging of COVID-19 patients,” BME Frontiers,
vol. 2022, Feb 2022.

S. Roy, W. Menapace, S. Oei, B. Luijten, E. Fini, C. Saltori, I. Huijben,
N. Chennakeshava, F. Mento, A. Sentelli, E. Peschiera, R. Trevisan,
G. Maschietto, E. Torri, R. Inchingolo, A. Smargiassi, G. Soldati,
P. Rota, A. Passerini, and L. Demi, “Deep learning for classification
and localization of Covid-19 markers in Point-of-Care lung ultrasound,”
IEEE Transactions on Medical Imaging, vol. 39, pp. 2676-2687, May
2020.

Z. Hu, Z. Liu, Y. Dong, J. Liu, B. Huang, A. Liu, J. Huang, X. Pu,
X. Shi, J. Yu, Y. Xiao, H. Zhang, and J. Zhou, “Evaluation of lung
involvement in Covid-19 pneumonia based on ultrasound images,”
BioMedical Engineering OnLine, vol. 20, p. 27, Mar 2021.

F. Mento, T. Perrone, A. Fiengo, A. Smargiassi, R. Inchingolo, G. Sol-
dati, and L. Demi, “Deep learning applied to lung ultrasound videos
for scoring Covid-19 patients: A multicenter study,” The Journal of the
Acoustical Society of America, vol. 149, p. 3626-3634, May 2021.

L. Carrer, E. Donini, D. Marinelli, M. Zanetti, F. Mento, E. Torri,
A. Smargiassi, R. Inchingolo, G. Soldati, L. Demi, F. Bovolo, and
L. Bruzzone, “Automatic pleural line extraction and Covid-19 scoring
from lung ultrasound data,” IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, vol. 67, p. 2207-2217, Nov 2020.

C. Baloescu, G. Toporek, S. Kim, K. McNamara, R. Liu, M. M. Shaw,
R. L. McNamara, B. I. Raju, and C. L. Moore, “Automated lung
ultrasound B-line assessment using a deep learning algorithm,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 67, p. 2312-2320, Nov 2020.

R. Moshavegh, K. L. Hansen, H. M. Sgrensen, M. C. Hemmsen, C. E.
M.D., M. B. Nielsen, and J. A. Jensen, “Novel automatic detection
of pleura and B-lines (comet-tail artifacts) on in vivo lung ultrasound
scans,” in Medical Imaging 2016: Ultrasonic Imaging and Tomography
(N. Duric and B. Heyde, eds.), vol. 9790, pp. 157 — 163, International
Society for Optics and Photonics, SPIE, 2016.

R. Moshavegh, K. L. Hansen, H. Mgller-Sgrensen, M. B. Nielsen,
and J. A. Jensen, “Automatic detection of B-lines in in wvivo lung
ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 66, p. 309-317, Feb 2019.

O. Karakus, N. Anantrasirichai, A. Aguersif, S. Silva, A. Basarab,
and A. Achim, “Detection of line artefacts in lung ultrasound images
of Covid-19 patients via non-convex regularization,” IEEE Transac-
tions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67,
p. 2218-2229, Nov 2020.

N. Anantrasirichai, M. Allinovi, W. Hayes, and A. Achim, “Automatic
B-line detection in paediatric lung ultrasound,” in 2016 IEEE Interna-
tional Ultrasonics Symposium (IUS), pp. 1-4, 2016.

N. Anantrasirichai, W. Hayes, M. Allinovi, D. Bull, and A. Achim, “Line
detection as an inverse problem: Application to lung ultrasound imag-
ing,” IEEE Transactions on Medical Imaging, vol. 36, p. 2045-2056,
Oct 2017.

C. Brusasco, G. Santori, E. Bruzzo, R. Tro, C. Robba, G. Tavazzi,
F. Guarracino, F. Forfori, P. Boccacci, and F. Corradi, “Quantitative lung
ultrasonography: A putative new algorithm for automatic detection and
quantification of B-lines,” Critical Care, vol. 23, Dec 2019.

W. E. Weitzel, J. Hamilton, X. Wang, J. L. Bull, A. Vollmer, A. Bowman,
J. Rubin, G. H. Kruger, J. Gao, M. Heung, and P. Rao, “Quantitative
lung ultrasound comet measurement: Method and initial clinical results,”
Blood Purification, vol. 39, no. 1-3, p. 3744, 2015.

L. J. Brattain, B. A. Telfer, A. S. Liteplo, and V. E. Noble, “Auto-
mated B-line scoring on thoracic sonography,” Journal of Ultrasound in
Medicine, vol. 32, no. 12, p. 2185-2190, 2013.

R. J. G. van Sloun and L. Demi, “Localizing B-lines in lung ultra-
sonography by weakly supervised deep learning, in-vivo results,” IEEE

(18]

[19]

Journal of Biomedical and Health Informatics, vol. 24, p. 957-964, Apr
2020.

X. Wang, J. S. Burzynski, J. Hamilton, P. S. Rao, W. F. Weitzel, and J. L.
Bull, “Quantifying lung ultrasound comets with a convolutional neural
network: Initial clinical results,” Computers in Biology and Medicine,
vol. 107, p. 3946, 2019.

H. Susanti and Suprijanto, “Image processing framework for pleural
line (A-line) detection in video lung ultrasonography,” in 2020 IEEE-
EMBS Conference on Biomedical Engineering and Sciences (IECBES),
p. 99-102, Mar 2021.



