
HAL Id: hal-03820240
https://hal.science/hal-03820240

Submitted on 18 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A stereo vision geometric descriptor for place
recognition and its GPU acceleration for autonomous

vehicles applications
Mohammed Chghaf, Sergio Alberto Rodriguez Florez, Abdelhafid Elouardi

To cite this version:
Mohammed Chghaf, Sergio Alberto Rodriguez Florez, Abdelhafid Elouardi. A stereo vision geomet-
ric descriptor for place recognition and its GPU acceleration for autonomous vehicles applications.
XXVIIIème Colloque Francophone de Traitement du Signal et des Images, GRETSI’22, Sep 2022,
Nancy, France. �hal-03820240�

https://hal.science/hal-03820240
https://hal.archives-ouvertes.fr

A stereo vision geometric descriptor for place recognition and its GPU
acceleration for autonomous vehicles applications

Mohammed CHGHAF1 , Sergio RODRIGUEZ FLOREZ1 , Abdelhafid EL OUARDI1

1Laboratoire SATIE, ENS Paris-Saclay, CNRS, Université Paris-Saclay,
Bâtiment 660 DIGITEO, rue Noetzlin, 91190, Gif-sur-Yvette, France

Mohammed.Chghaf@universite-paris-saclay.fr, Sergio.Rodriguez@universite-paris-saclay.fr,
Abdelhafid.Elouardi@universite-paris-saclay.fr

Résumé – Dans cet article, nous présentons un descripteur global géométrique dédié à la reconnaissance de lieux basé sur des nuages de points
issues d’une une caméra stéréo pour des applications de véhicules autonomes. Nous présentons d’abord l’approche utilisée pour enregistrer la
structure 3D de l’espace visible. Ensuite, nous proposons une optimisation paramétrique pour obtenir les meilleures performances en couplant les
caractérisitiques intrinsèques du capteur utilisé (caméra stéréo) et l’algorithme utilisé. Enfin, nous proposons une implémentation optimisée GPU
basée sur CUDA. Par rapport à un CPU, les temps de traitement sur GPU sont accélérés 7 fois sur une Jetson AGX Xavier et 30 fois avec une
GeForce RTX 3080.

Abstract – In this paper we present a geometric global descriptor dedicated for place recognition in autonomous vehicles applications that is based
on stereo camera generated point clouds. We first present the approach used to record the 3D structure of the visible space. Then, we propose
a parametric optimization to achieve the best performance by coupling the dedicated sensor (Stereo Camera) and the used algorithm. Finally, we
propose a GPU implementation based on CUDA. Compared to a CPU, processing times on GPU are accelerated 7 times on a Jetson AGX Xavier
and 30 times using a GeForce RTX 3080.

1 Introduction

Simultaneous Localization and Mapping (SLAM) has been widely
studied over the last years for autonomous ground vehicles (AGV).
Place recognition in particular is a core problem in SLAM. In
fact, recognizing the past places and adding loop pose constraints
to the pose graph can effectively reduce the cumulative error and
improve the positioning accuracy of an AGV. Many approaches
have been proposed in the literature to treat the place recognition
problem. In the context of AGV, it is often based on one of these
two sensors: Camera or LiDAR.

Existing Cameras provide a large amount of possibilities both
in quality and quantity of the relevant data to be used for loop
closure detection. Using this sensor, different approaches have
been proposed. Image-to-image place recognition is commonly
carried out using the Bag-of-Words model [1]. In general, first,
features (like ORB [2]) are extracted from selected keyframes.
These features are then grouped into vectors and used to select
loop closure candidates following the BoW scheme [3].

Unlike Camera-based place recognition, LiDARs have the abil-
ity to generate rich geometrical information in textureless envi-
ronments. Existing methods mainly focus on the extraction of the
structural information from point clouds and using it as a global
descriptor to find loop candidates. Scan Context [4] is a global
descriptor that encodes the 3D point cloud into a matrix describ-
ing the structural information of the scene based on the height,
the azimuthal and the radial information of the points. Alterna-
tively, Tomono et al. in [5] used geometric segments (e.g. planes

and lines) extracted from the point cloud to create a virtual scan.
These scans are then used to find correspondences between seg-
ments in order to achieve loop detection.

Although Camera-based place recognition is efficient in en-
vironments that contain rich features, their efficiency is limited
when the scenes lack of textures. On the other hand, LiDAR-
based place recognition can take advantage of the structural in-
formation present in the scene. Nevertheless, LiDAR-based sys-
tems remain more expensive than Camera-based systems.

In this paper, we present the following main contributions:

• Adaptation of the LiDAR Scan Context to stereo camera
point cloud context.

• A parametric optimization protocol of sensor-algorithm cou-
pling to achieve better performance in terms of loop detec-
tion accuracy.

• Implementation and acceleration of the proposed global
descriptor on GPU using CUDA

The remainder of this paper is structured into five sections, or-
ganized as follows: Section 2 presents the problem statement.
In Section 3 we discuss the parameters’ analysis process and the
metrics used for the evaluation. Section 4 presents the GPU im-
plementation of the proposed approach. Section 5 provides a
comparative analysis of the reported results. Further, a conclu-
sion and perspectives are drawn.

https://orcid.org/0000-0002-8725-1544
https://orcid.org/0000-0003-3029-7020
https://orcid.org/0000-0003-3665-2185

Sector 1

Sector5

Sector 10

Sector 20

Sector 25

Sector 30

Sector 35

Sector 40

Sector 45
Sector 50

Sector 55

Sector 60

Ring 5

Ring 10

Ring 15

Range = 80m

Figure 1: The partition applied to LiDAR scan. It is divided into
bins (like pink area) according to azimuthal (from 0 to 2π) and
radial (from center to maximum range) information. The yellow
and blue areas are the sector and the ring respectively.

10 20 30 40 50 60

sector

5

10

15

20

ri
n
g

0

1

2

3

4

5

Maximum
Height

0m

80m

Figure 2: Illustration of the Scan Context.

2 Problem presentation
The Scan Context is a global descriptor used for LiDAR point-
clouds. First, the 3D scan is divided into azimuthal and radial
bins in the sensor coordinate and in an equally spaced fashion.
Figure. 1 shows an illustration of this division. Each scan acts as
a global keypoint and thus is referred to as an egocentric place de-
scriptor. Ns and Nr are the number of sectors and rings, respec-
tively (Fig. 2 shows an illustration of a created Scan Context).
In this case, the maximum sensing range of a LiDAR sensor is
Lmax = 80m , the radial gap between rings is Lmax

Nr
and the cen-

tral angle 2π of a sector is equal to Ns . In this illustration, the
parameters are fixed Ns = 60 and Nr = 20, same as the authors
in [4]. In the created matrix, the value of the bin is determined
by the maximum height value of the points inside the bin.

Due to the limited FoV and the limited range of Cameras, the
fixed parameters for LiDAR are not adapted to the camera con-
text. Indeed, the FoV and the range must be further discretized to
obtain a reliable representation of the current scene. The Figure 3
shows the limitations of the Field-of-View of Stereo Camera gen-
erated point cloud and its maximum range along with the corre-

Sector 1

Sector5

Sector 10

Sector 20

Sector 25

Sector 30

Sector 35

Sector 40

Sector 45
Sector 50

Sector 55

Sector 60

Ring 5

Ring 10

Ring 15

Ring 20

Range = 20m

Sector 1

Sector 2

Sector 3

Sector 55
Sector 56

Figure 3: Illustration of the partition applied to 3D scan from
Stereo Camera and its corresponding left image.

sponding captured image. The geometrical information of points
detected on the left buildings are well represented in Sectors 1 to
3 (colored in yellow). On the other hand, the electrical pole and
the fence on the right are represented by the bins in Sectors 55
and 56 (colored in pink).

By contrast, increasing the number of sectors and rings used in
the process will significantly increase the computing time of the
descriptor. Therefore, reducing the overall performance of the
system. Hence, an algorithm architecture co-design approach is
necessary to harness the capabilities of this descriptor without
losing in timing performances.

3 Parametric optimization
In order to decide whether a place is revisited or not, the Scan
Context distance is computed. This distance has to satisfy an
acceptance threshold for the place to be classified as revisited.
The Scan Context is represented as a matrix and the Scan Context
distance between frame t and k is the sum of distances between
columns at a same index. A cosine distance is used to compute
a distance between two column vectors at the same index, cti and
cki . In addition, the sum is divided by the number of sectors for
normalization, like in Equ. 1.

d(SCt, SCk) =
1

Ns

Ns∑
i=1

(
1− cti · cki

||cti|| · ||cki ||

)
(1)

Our parametric optimization protocol of sensor-algorithm cou-
pling consists of evaluating the algorithm on different sequences
with different fixed numbers of sectors and rings. The accu-
racy of each configuration is analyzed using the precision-recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
c
is

io
n

CamPCL-100x260

CamPCL-140x260

CamPCL-140x60

CamPCL-20x260

CamPCL-20x60

CamPCL-60x260

LiDAR-20x60

Figure 4: Precision-recall curve for the Sequence 05 of KITTI
dataset [6].

20 40 60 80 100 120 140

sector

50

100

150

200

250

ri
n
g

Figure 5: Illustration of the Scan Context adapted to point cloud
generated from Stereo Camera.

curve. This curve shows the trade-off between precision and re-
call for different thresholds. In our context, we vary the accep-
tance threshold as a revisited place in the range of 0 and 1. A
large area under the curve indicates a high recall and a high pre-
cision. High precision relates to a low false positive rate, and
high recall relates to a low false negative rate. High scores for
both show that the classifier achieves accurate results (high pre-
cision), and returns mostly all positive results (high recall).

Figure. 4 shows the result of this analysis applied on the se-
quence 05 of the KITTI dataset [6]. CamPCL means that it is
a point cloud obtained from Camera. The first following num-
ber is the number of the rings. The second following number is
the number of sectors. Overall, LiDAR-based Scan Context still
outperforms the stereo Camera-based descriptor. However, by
increasing the number of sectors and rings used to describe the
scene, we can achieve comparable accuracy to the LiDAR-based
Scan Context. Despite the fact that it is limited in its Field-of-
View (90°) and in its range (20 m), the parametric study shows
that fixing Ns = 260 and Nr = 140 can guarantee satisfying
results for low-cost applications. Figure. 5 shows an illustration
of the Scan Context created from a stereo camera generated point
cloud where the number of sectors was fixed to 140 and the num-
ber of rings was fixed to 260.

CPU

Input stereo images

Scan context

Figure 6: Global parallelization scheme of the developed ap-
proach.

4 GPU Implementation

The Scan Context creation based on point cloud generated from
stereo camera can be efficiently parallelized on the GPU since all
the calculations can be accomplished out independently.

In order to generate this descriptor, we first calculated the dis-
parity map. We used the CUDA implementation proposed by
Hernandez-Juarez et al. in [7].

The next step is to generate the matrix representing the Scan
Context based on the generated point cloud from the disparity
map. By taking advantage of the SIMT (Single Instruction Mul-
tiple Threads) programming model offered by CUDA [8] for
NVIDIA GPUs, computing the Scan Context can be carried out
by launching many kernels executed in parallel by all the threads
on the CUDA-Cores. The same kernel is executed in parallel by
all the threads. With the CUDA architecture, threads are orga-
nized hierarchically. They are indeed grouped into thread blocks,
themselves grouped into thread block grids.

The proposed GPU implementation starts by computing the
disparity map using the input stereo images. The obtained dispar-
ity map is then divided into blocks that regroup multiple threads.
Finally, the implemented kernel, calculates the depth, the az-
imuth angle and the height of each pixel in the disparity map.
The computation results of these parallel threads are then used to
build the scan context. Figure. 6 illustrates the proposed pipeline
and the functional blocks that were parallelized on GPU. Algo-
rithm 1 presents the pseudocode of the proposed kernel. The
blockDim is fixed depending on the dimensions of the disparity
map created.

5 Results

The proposed approach was tested on the KITTI dataset [6]. Each
image is of dimensions 1241 × 376. The experiments using a
CPU implementation are carried out on a laptop with an Intel
i7-11800H CPU (2.30GHz) and 32GB memory. The GPU im-
plementation was performed using a GeForce RTX 3080 (1.37
GHz, 16 GB memory and 6144 CUDA-Cores) and a Jetson AGX
Xavier (1.38 GHz, 16 GB and 512 CUDA-Cores). In these im-
plementations, disparity maps were divided into a grid of 39×47
blocks of 256 threads. Table 1 summarizes the timing perfor-
mances achieved using various CamPCL Scan Context settings.

Algorithm 1: Pseudocode of the Scan Context Calcula-
tion Kernel

Input : Disp = Disparity map
Output: SC = Scan Context Descriptor

1 i = blockDim.x× blockIdx.x+ threadIdx.x
2 j = blockDim.y × blockIdx.y + threadIdx.y
3 if (i < Disp.rows) and (j < Disp.cols) then
4 if (Disp(i, j) > 0) and (Disp(i, j) < MaxDisp)

then
5 Depth = ComputeDepth(Disp(i, j));
6 if (Depth < 20) then
7 height = computeHeight(Depth, i);
8 ringId = determinRing(Depth, j);
9 sectorId = determinSector(Depth, j);

10 if (SC(ringId, sectorId) < height) then
11 SC(ringId, sectorId) = height;
12 end
13 end
14 end
15 end

Overall, we successfully reduce the computation time by 7 orders
of magnitude using the Jetson AGX and 30 orders of magnitude
usning the RTX 3080. In this study, we focus mainly on the per-
formance achieved by parallelizing all the computational load on
GPU. Indeed, the CPU-GPU architecture needs additional time
to upload the stereo images from the CPU to the GPU and then
to download the computed Scan Context to the CPU. In our case,
this transfer time is estimated on average to be 67ms, but it will
strongly depend on the architecture of the deployed system. It
will vary according to the CPU-GPU interface bus and the mem-
ory access time.

6 Conclusion
In this work, we presented an adaptation of the LiDAR Scan Con-
text to stereo camera point cloud context. First, a parametric
optimization and study was carried out to determine the sensor-
algorithm coupling and to find the best combination of parame-
ters necessary to achieve better performance in terms of loop de-
tection accuracy. Second, based on these parameters, we showed
that we can achieve satisfying results in loop closure detection
for a low-cost application. Finally, a GPU implementation was
proposed that takes into account the parameters specified by the
previous sensor-algorithm optimization protocol. We show that
a clear improvement in performance is achieved at a lower over-
all cost. In perspective, an in-depth study will focus on the ap-
plication of the same approach by combining both Camera and
LiDAR data. In particular, we will propose a SLAM system
dedicated for autonomous ground vehicle using both LiDAR and
Camera. Future work will also focus on the extension of this geo-
metric descriptor to odometry rather than only place recognition.
In order to meet real-time requirements of an embedded system,
an algorithm-architecture mapping approach will be necessary.

Dimensions of CPU Jetson GeForce
Stereo vision AGX Xavier RTX 3080
Scan Context (time in ms) (time in ms) (time in ms)

20× 60 223.92 32.38 7.41
(x6.91) (x30.21)

20× 260 228.09 34.32 8.35
(x6.64) (x27.31)

60× 260 235.97 35.69 8.41
(x6.61) (x28.05)

100× 260 256.35 36.84 8.37
(x6.95) (x30.62)

140× 60 258.81 33.34 8.63
(x7.76) (x29.98)

140× 260 280.57 37.06 8.76
(x7.57) (x32.02)

Table 1: Comparison of the per-frame processing time on CPU,
on a laptop GPU (the GeForce RTX 3080) and on an GPU for
embedded applications (Jetson AGX Xavier)

.

References
[1] NISTER, David et STEWENIUS, Henrik. Scalable recogni-

tion with a vocabulary tree. In : 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’06). IEEE, 2006. p. 2161-2168.

[2] RUBLEE, Ethan, RABAUD, Vincent, KONOLIGE, Kurt, et
al. ORB: An efficient alternative to SIFT or SURF. In : 2011
International conference on computer vision. IEEE, 2011. p.
2564-2571.

[3] GÁLVEZ-LÓPEZ, Dorian et TARDOS, Juan D. Bags of bi-
nary words for fast place recognition in image sequences.
IEEE Transactions on Robotics, 2012, vol. 28, no 5, p. 1188-
1197.

[4] KIM, Giseop et KIM, Ayoung. Scan context: Egocentric spa-
tial descriptor for place recognition within 3d point cloud
map. In : 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE, 2018. p. 4802-4809.

[5] TOMONO, M. Loop detection for 3D LiDAR SLAM using
segment-group matching. Advanced Robotics, 2020, vol. 34,
no 23, p. 1530-1544.

[6] GEIGER, Andreas, LENZ, Philip, et URTASUN, Raquel.
Are we ready for autonomous driving? the kitti vision bench-
mark suite. In : 2012 IEEE conference on computer vision
and pattern recognition. IEEE, 2012. p. 3354-3361.

[7] HERNANDEZ-JUAREZ, Daniel, CHACÓN, Alejandro,
ESPINOSA, Antonio, et al. Embedded real-time stereo es-
timation via semi-global matching on the GPU. Procedia
Computer Science, 2016, vol. 80, p. 143-153.

[8] BUCK, Ian. Gpu computing with nvidia cuda. In : ACM
SIGGRAPH 2007 courses. 2007. p. 6-es.

	Introduction
	Problem presentation
	Parametric optimization
	GPU Implementation
	Results
	Conclusion

