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ABSTRACT

Lagrangian statistics and particle transport in edge plasma turbulence are investigated using the Hasegawa–Wakatani model and its modified
version. The latter shows the emergence of pronounced zonal flows. Different values of the adiabaticity parameter are considered. The main goal
is to characterize the role of coherent structures, i.e., vortices and zonal flows, and their impact on the Lagrangian statistics of particles.
Computationally intensive long time simulations following ensembles of test particles over hundreds of eddy turnover times are considered in
statistically stationary turbulent flows. The flow topology is characterized using the Lagrangian Okubo–Weiss criterion in order to split the flow
into topologically different domains. In elliptic and hyperbolic regions, the probability density functions (PDFs) of the residence time have self-
similar algebraic decaying tails. However, in the intermediate regions, the PDFs exhibit exponentially decaying tails. Topologically conditioned
PDFs of the Lagrangian velocity, and acceleration and density fluctuations are likewise computed. The differences between the classical
Hasegawa–Wakatani system and its modified version are assessed, and the role of zonal flows is highlighted. The density flux spectrum, which
characterizes the contributions of different length scales, is studied, and its inertial scaling is found to be in agreement with predictions based on
dimensional arguments. Analyzing the angular change of particle tracers at different time scales, corresponding to coarse grained curvature, com-
pletes the study, and these multiscale geometric statistics quantify the directional properties of the particle motion in different flow regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098501

I. INTRODUCTION

Drift-wave turbulence and zonal flows in the tokamak edge
crucially determine the dynamics of magnetically confined plasma
flow, its confinement properties, and non-diffusive transport. In recent
years, there has been a significant interest in understanding this prob-
lem from a Lagrangian perspective. In this approach, transport proper-
ties of the system are studied by tracking the trajectories of large
ensembles of tracers. In numerical simulations, this is accomplished
by solving the equations for the trajectories of test particles in a given
velocity field, e.g., the E � B velocity field in the guiding center
description of a plasma. One of the main lessons learned from the
Lagrangian approach is that coherent structures have a profound
influence on transport. In particular, the combined effect of the trap-
ping by eddies and the long displacements induced by zonal shear
flows typically gives rise to non-diffusive transport.1–3 From the
Lagrangian point of view, non-diffusive transport is characterized by

the anomalous scaling of the statistical moments of the particle’s dis-
placements hdx2i � tc, where dx denotes the particle’s displacements,
t denotes the time, 0 < c < 2, and h i denotes the ensemble average.
In the case of diffusive transport we have c ¼ 1, whereas for non-
diffusive transport c 6¼ 1.

It has been experimentally and numerically observed that edge
turbulence typically develops coherent structures, e.g., blobs, stream-
ers, and shear flows; see, for example, Ref. 1 and references therein.
The understanding of the role of these coherent structures on the
particle and heat transport is a critical step to guaranteeing the con-
finement needed in a fusion reactor. However, establishing a quanti-
tative connection between coherent structures (e.g., vortices and
zonal flow) and transport, and in particular, anomalous diffusion
(e.g., sub-diffusion and superdiffusion), can be a highly nontrivial
task. Studies based on simple transport models [e.g., chaotic advec-
tion models (see, for example, Ref. 4)] and on generalized random
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walk models (e.g., continuous time random walks) have shown that
typically, when the trapping effects of eddies dominate, c < 1, and
transport is sub-diffusive (i.e., slower than diffusion). However, when
zonal flows dominate, transport along the zonal flow becomes highly
anisotropic while radial transport essentially vanishes. Although in
fusion plasmas radial transport is the main concern, poloidal trans-
port is also of interest. Beyond fusion plasmas, transport in the direc-
tion of the zonal flow is a problem of significant interest in
geophysical flows, e.g., the Gulf Stream. However, establishing this
connection at a quantitative level has proved elusive in the case of
flows with complex spatiotemporal structures (e.g., turbulent plasmas
and fluids), because in these systems, the coherent structures typically
exhibit complicate dynamics. For example, in 2D turbulence, the size
and location of trapping regions changes unpredictably in space and
time due to vortex merging and decay. In the case of bounded flows,
boundary layers create intense vorticity dominated regions near the
walls that might temporally trap particles. Moreover, a particle that is
“trapped” in an eddy will not necessarily be confined to a region in
space since the eddy might be moving throughout the whole domain.
Further complications appear in systems that exhibit rapid transport
phenomena that give rise to intermittent large particle displacements.
This type of phenomena, sometimes referred to as “avalanche-like”
transport, is routinely observed in plasma turbulence models near
marginal stability. In this case, tracers are transported over large dis-
tances by short-lived coherent structures.

The key question then is, given a Lagrangian trajectory of a
tracer, xðtÞ, in a flow with a complex spatiotemporal dynamics, how
can we characterize the signatures of trapping due to eddies and long-
displacements (flights), from the information contained in the trajec-
tory? The answer to this question is important, because it is the first
step to characterize the statistics of trapping and flights in turbulent
transport. This statistics is the cornerstone in the construction of effec-
tive models for nondiffusive transport in the context of the continuous
time random walk model and in fractional diffusion, see, for example,
Refs. 2 and 3.

In Ref. 5, the authors showed for the large plasma device (LAPD)
that turbulence fluctuations have non-Gaussian characteristics, while
the radial flux of plasma density is similar to Bohm diffusion. The lat-
ter is not valid in large tokamaks where zonal flows suppress transport.
Garland et al.6 presented a study investigating the influence of colli-
sionality on intermittency in drift-wave turbulence using both numeri-
cal and experimental approaches, the latter for the TJ-K stellerator;
they showed an increase in intermittency with increasing collisionality
for density fluctuations. The study in Ref. 7 revealed the importance of
considering local magnetic curvature properties as a factor in the
decoupling of density and potential fluctuations leading to intermit-
tency in drift-wave turbulence.

As mentioned before, when the coherent structures are time
independent and fixed in space, the answer to this question is simple:
trapping (flight) events correspond to sections of the trajectory for
which xðtÞ is contained in an eddy (shear flow). For general flows,
Ref. 8 proposed a simple characterization based on the intuition that
the radial component of the Lagrangian velocity would stay small
(and varying sign rapidly) while trapped and become large (with a
well-defined sign) during a flight event. This idea was implemented in
Ref. 9 to study the non-Gaussian statistics of trapping and flight
events in near-critical dissipative-trapped-electron-mode turbulence.

Reference 10 proposed a definition of trapping based on the time that
nearby particles stay close to study anomalous diffusion and exit time
statistics of tracers in a fluid model of resistive pressure-gradient-driven
plasma turbulence. In the study of mesoscale transport in near critical
resistive pressure-gradient-driven turbulence in toroidal geometry pre-
sented in Ref. 11, a flight was defined as the portion of the trajectory
that keeps the same sign in the radial velocity. Despite the fact that
these studies provided valuable insight into the nature of nondiffusive
transport in plasma turbulence, there is a need to provide a more con-
clusive, systematic, and quantitative measure of trapping and flight
events from a Lagrangian perspective. As a first step to address this
important challenging problem, in this paper, we propose a method to
characterize the Lagrangian statistics of tracers based on the topological
properties of the turbulence. Based on a previous work in Ref. 12, we
characterize the topology of a flow using the Okubo–Weiss criterion,
which provides a conceptually simple tool to partition a flow into topo-
logically different regions: elliptic (vortex dominated), hyperbolic
(deformation dominated), and intermediate (turbulent background). A
quantity of interest to be considered is the curvature of particle trajec-
tories, which is directly related to Lagrangian acceleration and charac-
terizes their intermittency.13 However, different from Ref. 12, which
was limited to Navier–Stokes fluid turbulence, we consider the
Hasegawa–Wakatani (HW) system that provides one of the simplest
models to study cross field transport by electrostatic drift waves in
magnetically confined plasmas, in general, and in the plasma edge, in
particular. More precisely, the HWmodel describes 2D drift-wave tur-
bulence in a collision dominated plasma in a slab geometry and is valid
in the confined steep-gradient region just inside the last closed flux
surface.14 In this model, some aspects of the strong E�B shear pedes-
tal flow can be captured by the poloidal zonal flow observed in the
modified version of the HW model. For a detailed discussion, one can
refer to Ref. 15.

In addition to the classical Hasegawa–Wakatani model, we con-
sider a modified version proposed in Ref. 16. and used in Ref. 17. This
modified version exhibits pronounced zonal flows for large adiabatic-
ity values, and the flow characteristics differ significantly from those
obtained in the classical version of the model.

As a second step, geometric statistics of the particle trajectories
are carried out by analyzing the angular change of particle tracers at
different time scales. The thus obtained angular curvature angle corre-
sponding to coarse grained curvature of the trajectories quantifies the
directional properties of the complex particle motion in different flow
regimes from a Lagrangian perspective. The directional change of a
particle is then directly related to the coarse grained curvature. It yields
a timescale dependent measure and can characterize the time correla-
tion of the direction of a particle in a turbulent flow. Thus, the multi-
scale characteristic of turbulence can be revealed from a Lagrangian
perspective and is related to the topology of the Lagrangian trajecto-
ries, see Ref. 13. To avoid confusion, the Lagrangian curvature consid-
ered in this study is understood in the sense of the trajectory curvature
and must not be confused with the magnetic curvature. One can also
note that there is a possible link with the recently introduced longitu-
dinal and transversal Lagrangian structure functions.18

The remainder of the manuscript describes the Hasegawa–
Wakatani turbulence model in Sec. II and recalls the Okubo–Weiss
criterion used to partition the flow into distinct regions. Tools for per-
forming directional Lagrangian statistics, including the coarse-grained
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curvature angle, are likewise introduced in Sec. II. Results on Eulerian
statistics and Lagrangian conditional statistics for different flow regimes
are presented and discussed in Sec. III. Finally, we conclude and give
some perspectives for future work in Sec. IV.

II. EDGE TURBULENCE MODEL

As a numerically tractable model for edge turbulence, we consider
the Hasegawa–Wakatani turbulence model describing the drift wave-
zonal flow interaction in a two-field coupled system in a shearless slab
geometry.19 A sketch illustrating the flow configuration, considering a
two-dimensional slab in the radial-poloidal plane, is given in Fig. 1.

A. Eulerian description

The closed set of equations, describing the evolution of vorticity
x ¼ r2/ of the E�B motion (with / being the electrostatic poten-
tial) and of the plasma density fluctuations n, reads

@

@t
� �r2

� �
r2/ ¼ r2/;/

� �
þ cð/� nÞ; (1)

@

@t
� Dr2

� �
n ¼ n;/½ � � u � r ln ðhniÞ þ cð/� nÞ: (2)

All quantities are dimensionless and have been suitably normalized, as
described in Refs. 20 and 21. The coordinates x and y denote the radial
and poloidal directions, respectively. The constant parameters D and �
are, respectively, the cross field diffusion of the plasma density fluctua-
tions n and the kinematic viscosity. The adiabaticity c is given by

c ¼ Tek2z
e2n0gxci

; (3)

with Te being the electron-temperature, kz the effective parallel wave-
number (i.e., parallel to the magnetic field), e the electron charge, n0
the reference plasma density, g the electron resistivity, and xci the ion-
gyro-frequency. The Poisson bracket is defined as ½a;b�¼ @a

@x
@b
@y� @a

@y
@b
@x.

The mean plasma density hni acts as a source driving the density fluc-
tuation dynamics. In particular, for a profile of the form hni¼ n0ðxÞ
¼N0 expð�x=LnÞ, where N0 is a constant number density and Ln is a

characteristic length scale for the density gradient, the second term on
the right-hand side of Eq. (2) reduces to �Cux , where C¼ðN0=LnÞ is
the mean density gradient. The electrostatic potential / plays for the
E�B velocity the role of a stream-function, u¼r?/, where
r? ¼ð�@y;@xÞ, i.e., we have ux ¼�@/=@y and uy ¼ @/=@x. The
coupling term cðn�/Þ, present in both equations, is related to the par-
allel current density and triggers the electrostatic plasma instability.
The adiabaticity parameter c, which quantifies the collisionality of ions
and electrons, determines the dynamics. Large collisionality corre-
sponding to small c values coincides with the hydrodynamic 2D limit
characterized by the presence of long living coherent vortices in the
E�B flow and almost passive advection of the density fluctuations.
Intermediate values of c of order unity yield dynamics, which are sup-
posed to be close to tokamak edge-turbulence, the so-called quasi-adia-
batic regime. In the limit c!1, we obtain the Hasegawa–Mima
model,22 which corresponds to the Charney equation for Rossby waves
used for modeling geophysical flows, also known as the geostrophic
regime. Note that geometrical variations of the magnetic field can be
neglected as the domain is chosen sufficiently small, i.e., of size 64 qs,
where qs is the Larmor radius. The magnetic field lines of the unper-
turbed constant magnetic field are straight, and they are assumed to be
perpendicular to the slab. In addition to the classical Hasegawa–
Wakatani model (cHW), described above, we also consider a revised
version, named modified Hasegawa–Wakatani model (mHW), which
was introduced in Ref. 16. To obtain zonal flows for large adiabaticity
values, ky ¼ 0 modes of the coupling term [cð/�nÞ] are set to zero in
mHW, similarly to what has been done in Ref. 17.

The Lagrangian acceleration of tracer particles aL, advected by
the E�B velocity can be defined in the Eulerian reference frame using
the momentum evolution equation

aL ¼
@r?/
@t

þ /;r?/
� �

¼ �rpþ �r2u�r
?

r2
cðn� /Þ½ �; (4)

where p denotes pressure and r?=r2 denotes the Biot–Savart
operator.

Equations (1) and (2) are solved numerically in a double-periodic
domain of size 642qs

2. To this end, a fully dealiased pseudo-spectral
method with a resolution of 10242 grid points is used. The time step is
5� 10�4 and for the diffusivity of the plasma density and the kine-
matic viscosity we use D ¼ 5� 10�3 and � ¼ 5� 10�3, respectively.
This results in a Schmidt number of unity (Sc ¼ �=D ¼ 1). The value
of C in the mean density gradient of plasma density fluctuations is
equal to one, i.e., C¼ 1.

The simulations are initialized with Gaussian random initial con-
ditions and run until a saturated, fully developed turbulent flow is
obtained. This transition phase is typically quite time consuming and
may take millions of time steps. Subsequently, 104 particles were uni-
formly injected, and their velocity and acceleration were monitored
during a large number of large-scale turn-over times (Table I). The
eddy turn-over time tk is defined as 1=

ffiffiffiffiffiffiffiffiffiffiffi
2Zrms
p

, where Zrms is the RMS
enstrophy. It is of the same order of magnitude in the different
regimes, �0:5 for c � 2 for classical Hasegawa–Wakatani (cHW) and
�1 for modified Hasegawa–Wakatani (mHW). The adiabaticity is
varied between c¼ 0.01 and 4 to obtain different flow regimes. Series
of long time simulations have been performed for both cHW and
mHW. Compared to the simulations in Ref. 17 we use instead of
hyperviscosity classical Newtonian viscosity. Qualitatively, the results

FIG. 1. Sketch of the flow configuration in the 2D slab geometry in the tokamak
edge modeled by the Hasegawa–Wakatani system, where x denotes the radial
direction and y the poloidal direction. A mean plasma density gradient in the radial
direction C is imposed, and the 2D flow in the domain of size 64 qs is computed,
where qs is the Larmor radius. The computational domain is illustrated by the red
square. A snapshot of the vorticity field for modified Hasegawa–Wakatani (mHW)
with zonal flows is shown on the right.
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are similar, which show that the dynamics does not critically depend
on the choice of the small scale damping.

B. Lagrangian description: Trajectories, curvature,
and coarse-grained curvature

Considering passive tracer particles in drift-wave turbulence is
motivated by analyzing, for instance, the transport of impurities in the
plasma edge. In the Lagrangian setting, the time evolution of a tracer
particle position xðtÞ obeys to the classical differential equation

dx
dt
¼ u xðtÞ; tð Þ; (5)

completed with the initial position of the tracer particle xðt ¼ 0Þ
¼ x0. The velocity u is obtained at the particle position xðtÞ using
bicubic interpolation from the velocity field, and the time advance-
ment of particles is done using a second-order Runge–Kutta scheme
with time step 5� 10�4. The curvature j of the particle trajectory xðtÞ
is also considered in this study, in particular, for analyzing Lagrangian
intermittency12 and defined by

j ¼ an
jjuLjj2

; (6)

where an is the component of the Lagrangian acceleration, in Eq. (4),
normal to the velocity vector. The curvature vanishes when the particle
velocity and the acceleration vectors are parallel, and we can note that
j � 0. All the Lagrangian statistics are computed using ensemble and
time averages (with the exception of the residence time where only
ensemble averaging is applied), and the subscript L is used to denote
Lagrangian quantities. Further details on the simulations using Eqs. (1)
and (2) can be found in Ref. 20. For the Lagrangian part of the study,
we refer to Ref. 23, where a similar investigation was performed for
Navier–Stokes turbulence.

To get insight into the complex multiscale dynamics of drift-
wave turbulence and zonal flows from a Lagrangian perspective, we
quantify directional motion in stochastic trajectories statistically at dif-
ferent time scales using the curvature angle.13,24 To determine this
directional change, the angle between subsequent particle displace-
ment increments is evaluated as a function of the timelag, and, thus,
multi-scale geometric statistics can be performed. We define the

Lagrangian spatial increment as dXðx0; t; sÞ ¼ xðtÞ � xðt � sÞ, where
xðtÞ is the position of a fluid particle at time t, passing through point
x0 at the reference time t ¼ t0 and advected by a velocity field u,
Eq. (5), as illustrated in Fig. 2. The cosine of the angle Hðt; sÞ between
subsequent particle increments, introduced in Ref. 24 and analyzed in
three-dimensional homogeneous isotropic turbulence13 and in two-
dimensional homogeneous isotropic and confined turbulence,25 is

cos ðHðt; sÞÞ ¼ dXðx0; t; sÞ � dXðx0; t þ s; sÞ
jdXðx0; t; sÞj jdXðx0; t þ s; sÞj : (7)

The curvature angle H can be related to the curvature j introduced in
Eq. (6). In the limit when s goes to zero, the curvature angle yields the
curvature j, as discussed in Refs. 13 and 26. For finite values of s, we
obtain a finite time curvature measure Kðt; sÞ, corresponding to a
coarse grained curvature and the influence of s can be analyzed. To
this end, the scale-dependent curvature angle must be properly nor-
malized, i.e., dividing Hðt; sÞ by 2sjjujj, and thus, we obtain Kðt; sÞ
¼ HðsÞ=ð2sjjujjÞ.

C. Lagrangian flow topology

The Okubo–Weiss criterion27,28 is a well-established tool to char-
acterize the topology of turbulent flow fields. Hereby, the flow field
can be partitioned into topologically distinct regions, i.e., into vorticity
dominated regions, which correspond to elliptic zones, strong defor-
mation regions which correspond to hyperbolic zones and likewise
into intermediate regions. At a given time instant, the flow parameter
Q, also called the Weiss value, is determined as

Q ¼ s2 � x2; (8)

where x ¼ @xuy � @yux is the vorticity and s2 ¼ s21 þ s22 is the defor-
mation with

TABLE I. Physical parameters of the cHW and mHW simulations, where c denotes
the adiabaticity. Root mean squares of the total energy and enstrophy are denoted,
respectively, by Erms and Zrms. The Reynolds number Rk is based on the Taylor
microscale k, and � denotes the kinematic viscosity. The mean eddy turn over time
is denoted by tk and the time interval where the statistical analyses were done by td,
corresponding in all cases to about 150 tk.

Configurations k ¼
ffiffiffiffiffiffi
Erms
p

Zrms
Rk ¼ k

ffiffiffiffiffiffi
Erms
p

� tk ¼ 1ffiffiffiffiffiffiffiffi
2Zrms
p td

tk

c ¼ 0:01 cHW 1.53 679 0.49 307
c ¼ 0:05 cHW 1.09 432 0.39 388
c ¼ 0:10 cHW 0.95 341 0.37 404
c ¼ 0:70 cHW 0.74 218 0.35 427
c ¼ 2:00 cHW 0.82 225 0.42 354
c ¼ 4:00 cHW 1.13 283 0.64 234
c ¼ 2:00 mHW 3.27 380 3.96 38
c ¼ 4:00 mHW 3.14 345 4.03 37

FIG. 2. Sketch of the coarse-grained curvature angle H and the curvature j. A
sample trajectory is superimposed to a vorticity field. Three trajectory positions xðtÞ
at three time instants, t � s; t, and t þ s are marked by green dots and used to
determine the curvature angle H.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 102301 (2022); doi: 10.1063/5.0098501 29, 102301-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


s1 ¼
@ux
@x
� @uy
@y

; s2 ¼
@uy
@x
þ @ux
@y

: (9)

Then using the local value of Q, the flow domain can be partitioned in
three disjoint regions, as suggested, for instance, in Ref. 12:

(i) strongly elliptic for which Q � �Q0 (vorticity dominated),
(ii) strongly hyperbolic for which Q � Q0 (deformation dominated),
(iii) intermediate regions for which �Q0 < Q < Q0.

The threshold value Q0 can be chosen, for instance, as the stan-
dard deviation of Q, i.e., Q0 ¼

ffiffiffiffiffiffiffiffiffi
hQ2i

p
, where h�i is the ensemble aver-

age. The space-time-dependent function, given in Eq. (8), Qðx; tÞ is
the Eulerian definition of the Weiss field. Alternatively, given a trajec-
tory xðtÞ obtained from the solution of Eq. (5), the Lagrangian Weiss
field is defined as the time-dependent function QLðtÞ ¼ QðxðtÞÞ, i.e.,
the value of Q along the particle trajectory. Motivated by conditional
Lagrangian statistics, we focused in this study on the Lagrangian
Weiss field, a technique we introduced in Ref. 12. To this end, the
Weiss field is considered along individual particle trajectories rather
than as a function of the spatial coordinates in the flow. Classically, the
Okubo–Weiss criterion is applied in an Eulerian framework only and
comes with a theoretical justification. The Okubo–Weiss criterion is
based on the linearization of the Navier–Stokes equation and the
assumption that the strain field remains frozen. Some of its limitations
are discussed in Ref. 29.

Based on this partitioning of the flow, the residence time can be
considered for different regions. The time during which a particle
remains in the same zone (strong elliptic, strong hyperbolic, or inter-
mediate regions) can be determined.

III. RESULTS
A. Flow topology and Eulerian statistics

A series of six simulations has been performed for the classical
Hasegawa–Wakatani system and two simulations have been con-
ducted for the modified system. Table I summarizes the physical
parameters of the eight configurations. Different values of the adiaba-
ticity are considered ranging from 0.01, corresponding to a hydrody-
namic regime, via 0.7 relevant for edge turbulence in fusion plasmas
and called a quasi-adiabatic regime, up to values of 4.0, which yields a
geostrophic regime and is similar to Hasegawa–Mima flows. For the
two modified cases mHW, we consider c¼ 2 and c¼ 4 with the moti-
vation to obtain zonal flows.

After a transient, exhibiting drift-wave instabilities, all configura-
tions reach a statistically steady regime, see Appendix. The present
study focuses on the statistically steady state obtained for different
cases.

The Eulerian spectrum of kinetic energy is defined as

Ekinðk; tÞ ¼
1
2

ð
RðkÞ
F jx�x0 uðx; tÞ � uðx0; tÞ

h i
dRðkÞ; (10)

where F denotes the 2D Fourier transform with respect to the separa-
tion vector x � x0 and RðkÞ is the circular wavenumber shell of radius
k. The spectrum of density fluctuations Enðk; tÞ is defined correspond-
ingly, replacing u by n. The kinetic energy spectrum in Fig. 3 (top left)
quantifies the contribution of the different length scales (or wavenum-
bers) and exhibits a k�4 power law behavior for all considered
cHW cases. This is consistent with previous works, see, e.g., Ref. 30.

The two mHW cases yield likewise clear power laws; however, the
slope is steeper and found to be close to –6. For the spectra of the den-
sity fluctuations also power laws can be observed (Fig. 3 top right), but
their slopes differ and vary from �2 in the hydrodynamic case (which
is different from the classical Batchelor scaling corresponding to �1)
to steeper spectral slopes for higher values of c. For cHW, this is con-
sistent with what is found in Ref. 5 for large azimuthal wavenumbers,
i.e., a power law close to/ k�6 using the BOUT code.31

Similar to investigations on turbulent transport in incompressible
Navier–Stokes turbulence in the presence of an imposed mean scalar
gradient,32–34 we now consider the mean density flux uxn, where ux
and n are the radial velocity fluctuations and the density fluctuations,
respectively. The mean scalar flux term (here, the mean density flux
term) represents the influence of the turbulent fluctuations on the
mean scalar profile (here the mean density profile) in the context of
fluid turbulence. The importance of this term has been discussed in
detail by Schiestel.35 Note that for large collisionality, i.e., for small c
values the density equation (2) corresponds indeed to a passive scalar
equation with mean scalar gradient Cux . The mean flux contribution at
the different length scales can be quantified considering the density flux
spectrum, also known as co-spectrum in the literature, see e.g., Ref. 34
and references therein. Like the energy spectrum (10), it is defined by
computing the Fourier transform of the correlation between ux and n,

Fuxnðk; tÞ ¼
1
2
Re

ð
RðkÞ
F jx�x0 uxðx; tÞ nðx0; tÞ

h i
dRðkÞ

" #
: (11)

The co-spectrum Fuxn is real valued, and by construction, we have

ux n ¼
ð1
0

FuxnðkÞ dk; (12)

where the flux density dFðkÞ ¼ FuxnðkÞ dk quantifies the contributions
of the mean density flux across different length scales (or wavenumbers).

Interestingly, the co-spectrum naturally connects the Eulerian
and the Lagrangian flow description, as the density field yields some
extent insight into the Lagrangian dynamics of the velocity field. The
Lagrangian timescale relates the energy spectrum with the scalar flux
spectrum36 and, thus, provides a link between the scalar field and the
Lagrangian dynamics of the turbulent velocity field. The Lagrangian
spectral timescale sðkÞ can be defined by

sðkÞ ¼ C�1jFuxnðkÞj
EkinðkÞ

; (13)

and dimensional analysis yields a spectrally local estimate

sðkÞ / k3EkinðkÞ
� ��1=2

; (14)

which was proposed in Ref. 34. In our case, the scalar field corresponds
to the density fluctuations, and the above results shall be valid at least
in the limit of small c values in the cHW case. We, thus, obtain an esti-
mation for the scaling of the density flux in the inertial range

FuxnðkÞ / C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkinðkÞ
k3

r
: (15)

From a physical point of view, the timescale sðkÞ corresponds to a cor-
relation time. The decorrelation of turbulent scales in an inertial range
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is generally due to straining or shearing. If we consider a steep kinetic
energy distribution, this straining at a scale k is not only due to scales
around k but may also be due to the interaction with all scales with
wavenumbers smaller than k, cf. Ref. 37. Indeed, in 2D Navier–Stokes
turbulence, the slope k�3 in energy spectra is the limit value between
dynamics dominated by either local or non–local interactions. Only
for spectra steeper than �3, one can show that nonlocal interactions38

are dominant. Some discussion about nonlocal and local interactions
on the intermittency corrections in three-dimensional turbulence can
be also found in Laval et al.39 So the slopes obtained in the energy
spectra using the HWmodel, i.e., n � 4, are clearly indicators for non-
local interactions at least at small scales. This interaction with small
scales is taken into account by using instead of a spectrally local esti-
mate, a “straining” time

sðkÞ /
ðk
k0

p2EkinðpÞ dp
" #�1=2

: (16)

In particular, this time behaves qualitatively differently from the local
timescale for kinetic energy spectra EkinðkÞ / k�n for n> 3. Note that

k0 is a cutoff wavenumber to remove the infrared divergence. Using
the dimensional analysis in Eq. (14), the timescale would satisfy
sðkÞ � kðn�3Þ=2, while the “straining” time estimate in Eq. (16) yields
sðkÞ � k0, valid for steep kinetic energy spectra. The latter implies also
that the scalar flux spectrum and the kinetic energy spectrum satisfy
the same scaling, FuxnðkÞ / EkinðkÞ.

Inspecting Fig. 3 (bottom left) shows that for all cHW cases, we
obtain a clear scaling behavior of k�7=2 for the density flux spectrum
as predicted in Eq. (15) with the observed k�4 scaling of the kinetic
energy spectrum [Fig. 3 (top left)]. For c¼ 0.7, the relevant case for
edge turbulence in fusion plasmas, this scaling is particularly well pro-
nounced. The spectral timescale sðkÞ shown in Fig. 3 (bottom right)
exhibits the corresponding k1=2 scaling, according to Eq. (14). Note
that the rough estimation based on the Cauchy–Schwarz inequality
and proposed by Smith et al.40 yields FuxnðkÞ / EkinðkÞ1=2EnðkÞ1=2. It
would, thus, predict slopes ranging from �3 to �9=2 for the cHW
cases, which are clearly not found, as illustrated for 2D Navier–Stokes
turbulence.34 Further research is certainly required to understand why
the constant behavior k0 is found for c ¼ 4 cHW. For mHW, we find
a scaling of FuxnðkÞ / k�6, which is steeper than the expected �9=2

FIG. 3. Top: Eulerian kinetic energy spectra EkinðkÞ (left) and Eulerian spectra EnðkÞ of density fluctuations (right). Bottom: density flux spectra FuxnðkÞ (left) and spectral
timescale sðkÞ ¼ C�1jFuxnðkÞj=EkinðkÞ (right). All the spectra are obtained using time-averaging with 75 snapshots taken at regular time intervals in the statistically stationary
regimes. Dots in the spectra indicate negative values, plotted by taking the absolute value.
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slope and, thus, cannot be justified in Eq. (15). The corresponding
spectral timescale sðkÞ in Fig. 3 (bottom right) shows a constant
behavior, i.e., a horizontal line for more than one decade and is, hence,
independent of the wavenumber. This is in agreement with the
“straining” timescale, defined in Eq. (16), the estimate for steep kinetic
energy spectra. The observed k�6 scaling of the density flux spectra,
i.e., we have FuxnðkÞ / EkinðkÞ can, therefore, be explained.

Now we consider higher order statistics and analyze the probabil-
ity density functions (PDFs) of the different Eulerian quantities, which
are computed using ensemble averaging. To this end, histograms of
snapshots of the considered fields are computed using 100 bins.
Subsequently, time-averaging with 75 snapshots taken at regular time
intervals in the statistically stationary regime is applied. The PDFs of
Eulerian vorticity, shown in Fig. 4 (left), exhibit a change in behavior
with c. For the adiabatic regime (c¼ 0.7) and the case c � 2 cHW, the
PDFs have an almost Gaussian shape. The PDFs of Eulerian density in
Fig. 4 (right) appear to be Gaussian, except for the hydrodynamic
regime where we can observe a small deviation from the parabolic
shape for large positive and negative values. Concerning the modified
case (cf. the second moment order for the corresponding Lagrangian
quantities in Table II), the PDFs of density and vorticity show peaks at
values different from zero, which can be attributed to the dominant
contributions of the shearing zonal flows to the vorticity in these cases.

The PDFs of Eulerian density flux along x and y-directions are
plotted in Fig. 4 (bottom). The PDFs are almost symmetric and exhibit

heavy tails for c¼ 0.01. For larger values of c, an exponential behavior
can be observed, and the variance (cf. Table II) decreases with increas-
ing c and, thus, the range of values likewise shrinks. The difference is
more significant for small adiabaticity values and almost insignificant
for c > 0:7 (cHW). As a conclusion, the density fluxes have larger val-
ues and are more important for hydrodynamic regimes with extreme
values much larger for c¼ 0.01. For the two mHW cases (cf. Table II),
we observe strongly reduced density flux values, which again might be
due to the presence of zonal flows.

The snapshots of vorticity, density, three-level Eulerian Weiss
fields, and the density flux in the radial direction, in Fig. 5, illustrate
the different flow regimes obtained by varying the adiabaticity. The
snapshots are taken at a time, which is representative for a statistically
stationary state. For low adiabaticity, c¼ 0.01, the flow regime is close
to the ones obtained in hydrodynamic turbulence. The simulations for
large c values are computationally very demanding due to a long tran-
sient phase (cf. Appendix). Zonal flows occur periodically after subse-
quent destabilization by shear flows. The flow visualizations in Fig. 5,
i.e., vorticity, density, three-level Eulerian Weiss fields, and the density
flux in the radial direction also include some sample trajectories. We
observe that the flow structures in the vorticity field change with c and
in the mHW case, we observe pronounced zonal flows in the poloidal
direction. This change of behavior can be likewise found in the corre-
sponding density and density flux fields. In the Weiss fields, we can
see that elliptic regions dominate the flow fluid for low adiabaticity

FIG. 4. Top: PDFs (normalized by the corresponding standard deviation) of Eulerian vorticity (left) and density fluctuations (right). Bottom: PDFs (normalized by the correspond-
ing standard deviation) of Eulerian density flux in x and y-directions.
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and become decreasingly important for increasing adiabaticity, which
is in agreement with the observations in Ref. 41. Strongly hyperbolic
regions are localized in the cells which are surrounding the vortices.
We can also note that the dominant structures are circular for low
adiabaticity and become thinner and more elongated for large adiaba-
ticity. It reveals also that the strong hyperbolic regions are not concen-
trated anymore in cells surrounding the vortices for large adiabaticity
values. As a consequence, the strong elliptic regions are less localized.
Concerning the zonal flows, strong elliptical and hyperbolic regions
are located in the ascending regions and exhibit similar large shape,
while only intermediate zones are present in the descending regions.
Finally, some sample trajectories of three particles for the different
configurations are plotted in Fig. 5 (bottom). From c ¼ 0:01 cHW to
c ¼ 0:1 cHW, the trajectories are similar. For increasing c values from
0.7 on for cHW, they are more elongated. For modified HW, the par-
ticles exhibit almost straight line trajectories. This is due to the pres-
ence of zonal flows which destroy the formation and presence of
vortices. The particles are confined in a band with the same velocity
along the y-direction, and only “few” particles are able to escape and
change zones.

B. Lagrangian statistics

The PDFs of the Lagrangian velocity and acceleration, the latter
computed using Eq. (4), shown in Fig. 6, exhibit a change of behavior
with c. The corresponding values of the centered second order
moments and the flatness are given in Table II. The PDFs of the
Lagrangian velocity display Gaussian shape for classical HW, except for
large c values where small asymmetries appear in the velocity along the
y-direction. The PDFs of the Lagrangian velocity in the modified HW
are of a different nature with symmetric heavy tails for the x-direction.
The PDFs of Lagrangian acceleration exhibit exponential shape for
large adiabaticity values (the flatness values in Table II are close to 6,
corresponding to a Laplace distribution) with a smaller width for
increasing c, corresponding to reduced variance quantified in Table II,
and heavy tails for small c corresponding to large flatness values, which
is in agreement with the findings in Ref. 20. For c ¼ 2 mHW (results
not shown), some asymmetry does appear for the x-direction.

In Fig. 7 (top), we observe that the PDFs of the Lagrangian vor-
ticity and density are almost identical to the PDFs of the

corresponding Eulerian quantities shown in Fig. 4. For a statistically
stationary flow which is incompressible, it is expected that for advected
quantities (here vorticity and density), the Lagrangian particle samples
the Eulerian flow domain uniformly due to the volume preserving
property of the flow field and, thus, for sufficient long time averages
the statistics coincide, assuming ergodicity. The almost perfect agree-
ment between Eulerian and Lagrangian PDFs, thus, confirms that the
statistical sampling is sufficient. In the PDFs of the Lagrangian vortic-
ity, it is found, for low adiabaticity values, that asymmetries are pre-
sent, corresponding to positively skewed PDFs. For the adiabatic
regime and c � 2 ðcHWÞ, the PDFs have an almost Gaussian shape.
Furthermore, the PDFs of Lagrangian density fluctuations are
Gaussian for large adiabaticities. The mean values (not shown) are, as
expected, almost equal to zero. In contrast, we can observe strong dif-
ferences for second order moments and flatness values, as quantified
in Table II. We observe that the variance in density decreases with
increasing adiabaticity, except for c¼ 4 for which we find a larger
value. The flatness values likewise decrease with increasing c, and we
can identify a sub-Gaussian behavior with values below 3.

The PDFs of Lagrangian Weiss values, in Fig. 7 (bottom), are
negatively skewed, i.e., they show more negative values for low adiaba-
ticities, similar to what was observed in Ref. 41. This is reflected in
the presence of more pronounced vortical structures in the flow, as it
can be observed in Fig. 5. However, in Ref. 41 the variances are compa-
rable and this is the skewness that best differentiates the hydrodynamic
and adiabatic regimes; while in this study, the values of adiabaticity
affect the different moments that allow us to characterize the PDFs in
Table II. In particular, the variance decreases for larger values of c. This
is probably due to a lower Reynolds number in Ref. 41. For increasing
adiabaticities, the PDFs become increasingly symmetric, which corre-
sponds to the absence of the vortical structures and, thus, a significant
change of flow topology. However, for modified HW, the increase in
asymmetry in the PDFs of Lagrangian Weiss values for large c reveals
that some vortical structures are formed due to the presence of shear
flows, which tend to destabilize and generate Kelvin–Helmholtz vorti-
ces. The PDFs of the Weiss values in Fig. 7 nicely illustrate also the
large differences in the range of Q. Splitting the flow field into three
distinct regions is based on the standard deviation of Q, which is in the
mHWmuch smaller. This means that even if the values of Q are much

TABLE II. Second order centered moments, M2, and flatness, F, of different Lagrangian quantities, i.e., the x-component of velocity (uxL) and acceleration (a
x
L), Weiss value (QL),

vorticity (xL) and density (nL) computed from the corresponding PDFs. Only the skewness S of QL is shown, since the other quantities yield skewness values close to zero.
(The values of the moments for Eulerian quantities are almost the same as for Lagrangian quantities.)

uxL axL QL xL nL uxL axL QL xL nL QL

Configurations M2 F S

c ¼ 0:01 cHW 5.0086 28.4189 15.6211 4.2059 182.0711 4.9765 40.6484 86.0252 14.3067 3.3713 �7.1784
c ¼ 0:05 cHW 4.1107 20.3524 20.5109 6.8190 56.3207 3.7661 32.8554 67.1198 7.7039 3.0216 �5.9186
c ¼ 0:10 cHW 3.3151 12.5433 16.4683 7.4005 31.5241 3.4671 28.6267 58.1253 5.5382 2.8321 �5.0000
c ¼ 0:70 cHW 2.2778 5.2765 9.1490 8.1136 7.6012 3.2973 8.6850 13.5941 3.0570 2.8147 �1.5099
c ¼ 2:00 cHW 1.9671 3.2987 4.2101 5.6229 6.6556 3.4499 6.9236 11.1652 3.0240 2.9646 �1.0842
c ¼ 4:00 cHW 1.6056 1.1687 0.7853 2.3188 13.0173 3.4526 6.2109 18.3221 3.4360 2.7814 �1.6767
c ¼ 2:00 mHW 0.0046 0.0011 0.0001 0.0636 0.6399 12.2982 18.2834 33.5518 1.8105 2.5214 �2.9332
c ¼ 4:00mHW 0.0148 0.0050 0.0009 0.0621 0.3197 14.3581 28.3987 92.1782 8.2050 4.9547 �4.7475
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smaller in the case of zonal flows (cf. Table II), we still observe hyper-
bolic and elliptic regions, as shown in Fig. 5 (right column).

Table II shows the second order moment values and the flatness
of the different Lagrangian quantities. The skewness values, which
quantify the asymmetry of the PDF, are only given for the Weiss value,
as for the other quantities values close to zero are found.

C. Residence times

As it is difficult to adopt an objective definition of a trapping
event and the construction of the waiting-time PDF is nontrivial, one

possible procedure is to use the PDF of residence times in strongly
elliptic regions, to construct the waiting-time distribution. This PDF
provides an objective quantitative measure of the time a particle stays
on a vortex. Motivated by this approach, which has been applied in
Ref. 12 for 2D Navier–Stokes turbulence, we consider, thus, the PDFs
of the residence time conditioned with respect to the three-level
Lagrangian Weiss value, shown in Fig. 8. These PDFs determine the
probability that a given Lagrangian tracer stays in a region with the
same value of the three-level normalized Weiss field for a given time s.
Note that Gaussian fluctuations, characteristic of the turbulent

FIG. 5. Flow visualizations for cHW with c ¼ 0:01; 0:7, and 4.0, and for mHW with c¼ 4.0 (from left to right). From top to bottom: snapshots of vorticity field x, density fluctua-
tion field n, three-level Weiss field Q3, density flux in x-direction ux n, and three typical tracer trajectories in the statistically stationary regime. Here, Q3 is the trinary Weiss field
with values �1; 0, and 1 computed from Q using the threshold Q0 defined in Sec. II C.
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background, yield an exponential decay of the residence time PDF.
This behavior, observed for 2D Navier–Stokes in Ref. 12, is still present
for different flow regimes obtained with the Hasegawa–Wakatani
model, that is to say, algebraic tails for strongly hyperbolic and elliptic
regions, and exponential decay for intermediate regions, which can be
modeled by a Poisson process. The longest residence times are found
for intermediate regions. The times are longer for strongly elliptic
regions than for strongly hyperbolic regions, which are explained by

the particle trapping in elliptic zones. Although similar slopes are
obtained for Navier–Stokes and hydrodynamic regimes in the strong
elliptic regions, the slopes of the different regions are different for the
different regimes, which means that the information of the different
dynamics is contained in the value of the slopes for residence time and
not in algebraic or exponential behaviors. The difference between the
elliptic and hyperbolic regions tends to disappear for the largest c
value. This is confirmed by the mean and centered second order

FIG. 6. PDFs (normalized by the corresponding standard deviation) of the x-component of Lagrangian velocity (left) and Lagrangian acceleration (right).

FIG. 7. PDFs (normalized by the corresponding standard deviation) of Lagrangian vorticity (top left), Lagrangian density fluctuations (top right) and Lagrangian Weiss value
(bottom center).
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moments shown in Table III. Moreover, we can remark that the stron-
gest mean residence time and centered second order moment are
found for intermediate regions, while the weakest values appear for
strongly hyperbolic regions. The influence of adiabaticity is weak for

strongly elliptic and hyperbolic regions, illustrated by the fact that the
exponents do not differ much. For intermediate regions, the adiabatic-
ity has a stronger influence by changing significantly the shape of the
PDFs as a function of the adiabaticity. We can note also that the

FIG. 8. PDFs (normalized by the mean eddy turn over time) of residence time conditioned with respect to the three-level Lagrangian Weiss value for cHW with c¼ 0.01 (top left),
c¼ 0.7 (top right), c¼ 4 (bottom left), and mHW with c¼ 4 (bottom right). The superscripts e, h, and i correspond to elliptic, hyperbolic, and intermediate regions, respectively.

TABLE III. Mean values, M1, and centered second order moments, M2, of the residence time conditioned with respect to the
three-level Lagrangian Weiss value in elliptic, hyperbolic, and intermediate flow regions.

Elliptic Hyperbolic Intermediate Elliptic Hyperbolic Intermediate

Configurations M1 M2

c ¼ 0:01 cHW 1.6293 0.6383 18.9589 89.7212 5.1834 1510.6079
c ¼ 0:05 cHW 1.3667 0.4343 10.1370 42.7289 1.3205 404.3433
c ¼ 0:10 cHW 1.2164 0.4726 7.3025 23.7842 0.6241 196.5689
c ¼ 0:70 cHW 1.1092 0.6207 3.5919 7.7833 0.2904 40.5284
c ¼ 2:00 cHW 1.1889 0.7495 4.1236 9.0669 0.4016 59.8395
c ¼ 4:00 cHW 1.4298 1.0489 6.4262 9.9284 0.8594 126.2423
c ¼ 2:00 mHW 3.2256 3.7636 30.5442 19.1787 19.7127 2527.8072
c ¼ 4:00 mHW 2.4194 2.5951 36.3946 15.7416 10.5522 3034.8132
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behaviors are the same for large adiabaticity c � 0:7 cHW.
Concerning the modified HW case, the residence times are somewhat
longer for strongly hyperbolic regions than for elliptic ones, because
the shapes of these two zones are of the same nature as confirmed by
the visualizations in Fig. 5. We can also note that the behavior of the
strongly elliptic and hyperbolic zones is similar for c ¼ 0:01 cHW and
c ¼ 4 mHW despite the qualitatively distinct flow profiles. This may
result from the mobility of the flow structures.

D. Conditional Lagrangian statistics

The conditional PDFs are computed from the ensemble average
of different Lagrangian quantities for the same region, i.e., elliptic,
hyperbolic, and intermediate regions. As a consequence, the integral of
each PDF is equal to one.

Figure 9 shows the PDFs of the Lagrangian velocity in the x-
direction conditioned with respect to the three-level Weiss value, and
Table IV assembles the corresponding moments. First, we find that
the intermediate zones dominantly determine the shape of the total
PDF. The differences between the zones tend to disappear with
increasing adiabaticity for classical HW. Moreover, the differences are

much more pronounced for the modified HW case. The behavior of
the y-component of the Lagrangian velocity (not shown) is very simi-
lar with respect to the contribution of the different zones and their
shape. An exception is the modified HW case due to the presence of
zonal flows in the y-direction.

The PDFs of Lagrangian acceleration in the x-direction condi-
tioned with respect to the three-level Weiss value and the correspond-
ing moments are given in Fig. 10 and Table V, respectively. The
intermediate zones yield the largest contribution to the total PDF;
however, the contributions from elliptic and hyperbolic regions are
not negligible. Similarly as for the Lagrangian velocities, the differences
between the zones are less pronounced with increasing adiabaticity for
classical HW, and the discrepancies are more significant for modified
HW. The same trend for the contribution of the different zones is
observed for the y-component of the Lagrangian acceleration (not
shown here).

Figure 11 shows the PDFs of curvature again conditioned with
respect to the three-level Weiss value. We can see that they are very
similar to the ones obtained for hydrodynamics shown in Ref. 12. For
small adiabaticity, the PDFs decay algebraically with an exponent
somewhat stronger than –2, which demonstrates the presence of

FIG. 9. PDFs (normalized by the corresponding standard deviation) of Lagrangian conditional x-component velocity with respect to the three-level Lagrangian Weiss value for
cHW with c¼ 0.01 (top left), c¼ 0.7 (top right), c¼ 4 (bottom left), and mHW with c¼ 4 (bottom right). The superscripts e, h, and i correspond to elliptic, hyperbolic, and inter-
mediate regions, respectively.
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intermittency in these regimes. For large adiabaticity, the decay expo-
nent is precisely �2, which is exactly the exponent we predict from
Gaussian PDFs of the Lagrangian velocity in two-dimensions. This
can be explained by the fact that 1=u2 yields an inverse chi-square dis-
tribution. As a consequence, the decay exponent of the PDF of 1=u2 is
�2.42 The PDF of curvature is, therefore, an additional tool to quantify

the presence of Lagrangian intermittency. From this latter point, we
can conclude that the hydrodynamic regime is slightly intermittent.
The regimes then become decreasingly intermittent for increasing
adiabaticity since the deviation from the decay exponent –2 becomes
less and less important. Furthermore, for the different regimes, we can
claim that the intermediate regions are not intermittent from a
Lagrangian point of view.

Motivated by Ref. 5 where the authors studied the radial flux of
plasma density, we analyze the density gradients in the different flow
regions.

The PDFs of density gradients in the radial direction, @n=@x,
conditioned with respect to the three-level Weiss value and its corre-
sponding moments are shown in Fig. 12 and Table VI for two cases,
c¼ 0.7 and 4 for cHW. The PDFs in the poloidal direction, @n=@y are
not shown as their shape is similar. For the adiabatic regime (cHW
with c¼ 0.7), we find exponential tails for the total flow and the flow
conditioned with the three level Weiss values. The deformation domi-
nated regions yield the largest variance, while for intermediate and
vortical regions similar values as in the PDF of the total flow can be
observed. In contrast in the geostrophic regime (cHW with c¼ 4), all
density gradient PDFs are Gaussian-like and, thus, have a parabola

TABLE IV. Centered second order moments M2 of the Lagrangian conditional veloc-
ity in the x-direction with respect to three level Weiss value.

Configurations Total Elliptic Hyperbolic Intermediate

c ¼ 0:01 cHW 5.0086 14.4400 22.1881 4.0210
c ¼ 0:05 cHW 4.1107 7.3493 11.1180 3.6194
c ¼ 0:10 cHW 3.3151 4.9838 6.6300 3.0151
c ¼ 0:70 cHW 2.2778 2.8150 3.0719 2.1254
c ¼ 2:00 cHW 1.9671 2.5252 2.7331 1.8108
c ¼ 4:00 cHW 1.6056 2.1397 2.3951 1.4678
c ¼ 2:00 mHW 0.0046 0.0162 0.0176 0.0028
c ¼ 4:00 mHW 0.0148 0.0679 0.0820 0.0092

FIG. 10. PDFs (normalized by the corresponding standard deviation) of Lagrangian conditional x-component acceleration with respect to the three-level Lagrangian Weiss
value for cHW with c¼ 0.01 (top left), c¼ 0.7 (top right), c¼ 4 (bottom left), and mHW with c¼ 4 (bottom right). The superscripts e, h, and i correspond to elliptic, hyperbolic,
and intermediate regions, respectively.
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shape. Their variances are similar too. For the hydrodynamic regime
(cHW with c¼ 0.01, not shown here), we observe heavy tails of the
density gradients in both directions for negative Weiss values, i.e., vor-
ticity dominated regions. In the intermediate regions, we find expo-
nential tails, similar to the PDFs of the total field. For the deformation
dominated regions, the variance is strongly reduced. Finally, for mHW

(results not shown here), the zonal flows have a pronounced signature
in the density gradient PDFs in the radial direction, while in the poloi-
dal direction exponential tails can be seen. These results are consistent
with Ref. 5, since exponential tails correspond to non-Gaussian char-
acteristics of the turbulent fluctuations, and the radial flux of plasma
density behaves similar to Bohm diffusion.

E. Mean curvature angle

The directional change of tracer particles is analyzed by consider-
ing the curvature angle, as defined in Eq. (7) and the coarse-grained
curvature at different scales, introduced in Sec. II B. Figure 13 (left)
shows the mean curvature angle, hðsÞ 	 hjHðt; sÞji, where h�i denotes
the ensemble and time average as a function of the time increments
for different adiabaticity values. The mean angles increase monotoni-
cally from 0 to p=2. This means that particles have for small s the ten-
dency going straight, similar to what was found in Ref. 13, while for
very large s their motion becomes uncorrelated and they have the
same probability traveling in any direction. This results in a mean
angle of p=2, as we are taking the absolute value and do not distin-
guish between left and right turns. For all regimes, i.e., cHW and
mHW, we identify for small s a clear linear scaling behavior / s,

FIG. 11. PDFs of Lagrangian conditional curvature j with respect to the three-level Lagrangian Weiss value for cHW with c¼ 0.01 (top left), c¼ 0.7 (top right), c¼ 4 (bottom
left), and mHW with c¼ 4 (bottom right).

TABLE V. Centered second order moments M2 of the Lagrangian conditional accel-
eration in the x-direction with respect to three level Weiss values.

Configurations Total Elliptic Hyperbolic Intermediate

c ¼ 0:01 cHW 28.4189 365.0659 202.4553 9.4091
c ¼ 0:05 cHW 20.3524 159.6248 100.1495 8.8480
c ¼ 0:10 cHW 12.5433 74.1288 45.5502 6.3184
c ¼ 0:70 cHW 5.2765 14.8643 9.8476 3.5906
c ¼ 2:00 cHW 3.2987 8.2545 5.6727 2.3909
c ¼ 4:00 cHW 1.1687 2.7853 1.8783 0.9165
c ¼ 2:00 mHW 0.0011 0.0062 0.0044 0.0004
c ¼ 4:00 mHW 0.0050 0.0400 0.0277 0.0023
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followed by a transition without a clearly observed powerlaw scaling of
s1=2. This so-called inertial scaling that we would expect at least in the
case c ¼ 0:01 cHW is absent and probably only visible in much larger
resolution computations. A change of the curvature occurs for s � tk
in the classical cases and much later for the modified cases. This is in
agreement for cHW with Ref. 13 since different behaviors are pre-
dicted theoretically in Navier–Stokes for s
 tk, for intermediate

values of s and for large s. In Fig. 13 (right), the zoom illustrates for
large s that for c> 0.01 the mean angle is slightly larger than p=2.
Concerning the modified case, where zonal flows are present, the
multi-scale curvature is radically diminished at all time-lags, reflecting
the reduced radial motion of the fluid particles and the anisotropy of
the flow structure. We can also note that for mHW the behavior at
large s is different. Instead of presenting an asymptotic value for c¼ 2
and 4 for the mHWmodel, the mean angles decrease similarly to what
is found for flows in porous media.43 One possible explanation for the
asymptotic behavior for the largest s is that the value reflects the pro-
portion of particles that change the flow region.

Figure 14 (left) shows the mean coarse-grained curvature angle
jcðsÞ with jcðsÞ 	 hjKðt; sÞji, where Kðt; sÞ ¼ HðsÞ=ð2sjjujjÞ and
h�i denotes the ensemble and time average as a function of the time
increments for different adiabaticity values. We find that the mean cur-
vatures decrease monotonically from values of 0:5� 1:8 to 6� 10�3,
when s increases. For all regimes and for s=tk < 1, the coarse-grained
curvature exhibits an algebraic scaling behavior which should tend to a
constant 1=ð2jjuðtÞjjÞ when s! 0 because Hðt; s! 0Þ � s. For
large s, the same algebraic scaling behavior / s�1 is observed in all
cases, as expected, since Hðt; s!1Þ � p=2. In Fig. 14 (right), the
zoom at large s illustrates that the slope of the mean coarse-grained

FIG. 12. PDFs (normalized by the corresponding standard deviation) of Lagrangian conditional density gradient in the x-direction with respect to three level Weiss value for
cHW with c¼ 0.7 (left) and c¼ 4 (right). The superscripts e, h, and i correspond to elliptic, hyperbolic, and intermediate regions, respectively.

TABLE VI. Centered second order moments M2 of the Lagrangian conditional den-
sity gradient in the x-direction with respect to three level Weiss values.

Configurations Total Elliptic Hyperbolic Intermediate

c ¼ 0:01 cHW 369.9536 86.5196 500.4799 374.6142
c ¼ 0:05 cHW 150.2175 33.3487 264.3132 151.8040
c ¼ 0:10 cHW 79.6720 19.2353 166.9093 79.1641
c ¼ 0:70 cHW 6.6706 4.3437 13.5971 6.0811
c ¼ 2:00 cHW 2.1487 2.6816 3.0584 1.9588
c ¼ 4:00 cHW 1.4374 1.7607 1.9080 1.3386
c ¼ 2:00 mHW 0.0629 0.0850 0.0550 0.0539
c ¼ 4:00 mHW 0.0466 0.1284 0.1051 0.0376

FIG. 13. Mean curvature angle hðsÞ as a function of s=tk for the different flow regimes. A corresponding zoom for large increments s=tk is shown on the right.
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curvature angle is the same for different adiabaticity values c in the case
of cHW. In contrast for mHW with c ¼ 2 and 4 mHW, we find
instead of a pronounced s�1 scaling that jcðsÞ fluctuates, which is
probably due to the presence of zonal flows.

IV. CONCLUSIONS

We performed extensive numerical studies for a wide parameter
range of the classical Hasegawa–Wakatani model and its modified ver-
sion governing the plasma flow and the observed electrostatic drift-
wave turbulence in the tokamak edge. The modified Hasegawa–
Wakatani model allows us to assess the influence of zonal flows. In the
proposed Lagrangian approach, different statistics were performed for
ensembles of tracers along their trajectories. Conditional averages
using the Okubo–Weiss criterion were computed, and the flow topol-
ogy was decomposed into different regions, vortical, or deformation
dominated and intermediate regions. The influence of the adiabaticity
parameter c, which is related to the parallel dynamics of the plasma
and the nonlinear cascades in the parallel direction, has been investigated
in a systematic way, including the quasi adiabatic regime of relevance to
edge plasma turbulence. Moreover, we also performed simulations for
values beyond the ones relevant for describing plasma edge turbulence to
explore a large parameter space. We also studied the adiabatic limit
(c� 1) for which the model reduces to a Hasegawa–Mima type equa-
tion, i.e., geostrophic flows and the limit c
 1 for which we recover a
Navier–Stokes system, i.e., hydrodynamic flows. Furthermore, moti-
vated by the fact that in the classical system the turbulent flow remains
isotropic for low values of the adiabaticity parameter and zonal flows
are absent, we performed simulations for a modified Hasegawa–
Wakatani system.

The Eulerian and Lagrangian statistics allowed us to characterize
the unalike complex dynamics of the flows and the tracer transport, as
mentioned above.

Analyzing the co-spectrum of velocity and density fluctuations in
the radial direction yields insight into the contributions of the density
flux at different length scales. Indeed, the co-spectrum decomposes the
total flux into scale-wise contributions, and thus, we can quantify the
strength of the flux for different wavenumbers k. For details, we refer
to Refs. 34 and 44 and the cited references therein. The observed iner-
tial scaling of k�7=2 is found to be in good agreement with predictions
based on dimensional arguments.

Another important result is that the behavior of the residence
time, observed in two-dimensional homogeneous isotropic turbu-
lence,12 is still valid for the different Hasegawa–Wakatani regimes.
The influence of vortex trapping, which explains the longest residence
times in strong elliptic regions, tends to disappear with increasing
adiabaticity and the residence times from strong elliptic and hyper-
bolic regions become of the same order. Moreover, the presence of
zonal flows that induces shear flows, for modified HW, implies a
slightly larger contribution from strong hyperbolic regions compared
to strong elliptical ones. Furthermore, the conditional Lagrangian sta-
tistics with respect to three level Weiss values reveal that the interme-
diate zones are responsible for the total PDF, and the differences
between the different zones are reduced with increasing adiabaticity
for classical HW. However, again due to the presence of shear flows,
the contributions of intermediate zones are still of major importance
for modified HW. Indeed, the strong elliptic and hyperbolic regions
are located in the zone where shear flows appear.

An analysis of radial density gradients shows that PDFs have
exponential tails in the cHW quasi-adiabatic regime. These results are
in agreement with Ref. 5 where the authors showed that turbulence
fluctuations have non-Gaussian characteristics, while the radial flux of
plasma density is similar to Bohm diffusion.

Directional statistics considering the angular change of the
Lagrangian tracer particles reveal a multiscale measure for the coarse
grained curvature. We, thus, quantified the directional properties of
the complex particle motion at different time scales for the different
flow regimes.

In forthcoming work, multiscale angular Lagrangian statistics
can be considered to characterize the directional change of inertial par-
ticles and their clustering, e.g., related to impurities in the plasma, at
different time scales and show the significance of zonal flows for
transport.
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APPENDIX: FLOW DYNAMICS

To get insight into the flow dynamics, the time evolution of
kinetic energy Ekin ¼ 0:5hu2i and total energy Etot ¼ Ekin þ 0:5hn2i
are shown in Fig. 15. After some transition time, exhibiting drift-
wave instabilities, all configurations reach a statistically steady state,
even if some fluctuations in the energy are still present. In the cHW
case, the fluctuations are more important for c¼ 4 than for c¼ 2.

The thickened part of the lines corresponds to the time interval,
about 150 mean eddy turn over times in all cases, where the statis-
tics of the particle trajectories have been performed.
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