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Abstract—Today, the popularity of self-driving cars is growing
at an exponential rate and is starting to creep onto the roads
of developing countries. For autonomous vehicles to function,
one of the essential features that needs to be developed is the
ability to perceive their surroundings. To do this, sensors such
as cameras, LiDAR, or radar are integrated to collect raw data.
The objective of this paper is to evaluate a fusion solution of
cameras and LiDARs (4 and 64 beams) for 3D object detection
in foggy weather conditions. The data from the two input sensors
are fused and an analysis of the contribution of each sensor
on its own is then performed. In our analysis, we calculate
average precision using the popular KITTI dataset, on which
we have applied different intensities of fog (on a dataset we have
called Multifog KITTI). The main results observed are as follows.
Performances with stereo camera and 4 or 64 beams LiDAR
are high (90.15%, 89.26%). Performance of the 4 beams LiDAR
alone decreases sharply in foggy weather conditions (13.43%).
Performance when using only a camera-based model remains
quite high (89.36%). In conclusion, stereo cameras on their own
are capable of detecting 3D objects in foggy weather with high
accuracy and their performance slightly improves when used in
conjunction with LIDAR sensors.

Index Terms—self-driving car, 3D object detection, foggy
weather condition, sensor fusion

I. INTRODUCTION

Nowadays, self-driving cars are becoming more and more
popular in developed countries. These cars have to make
accurate predictions such as lane detection, traffic sign de-
tection and obstacle detection. Due to the increasing impor-
tance and attractiveness of autonomous vehicles, a number of
self-driving car companies have emerged, and almost every
traditional automaker has invested in this segment to some
extent.

Much has been invested in researching hardware and soft-
ware for self-driving cars, making it an extremely hot research

topic. To better perceive the environment, self-driving cars are
equipped with sensors such as cameras, radars and LiDARs.
These sensors are used to collect data about the environment.
Then, the data is fed into predictive models such as semantic
classification, segmentation, and object detection to obtain
the information needed for vehicle navigation. In this way,
the vehicle can detect lanes, obstacles, and traffic signs to
make decisions such as wheel speed or steering wheel angle.
These models must perform with very high accuracy while
maintaining high safety standards. Therefore, the accuracy of
predictive models plays an important role in the operation of
self-driving cars.

In previous studies on environment perception, either a
camera-based [3], [6], [18], [19], [21] or LIDAR-based [5],
[11]–[15] detection algorithms were developed. The data
was collected under ideal conditions (daylight, without bad
weather). Such studies showed that LiDAR-based models
performed better than camera-based ones. This is because
LiDAR is an active sensor able to provide a very accurate
estimation of the distance from a self-driving car to an
obstacle, while a camera does not, especially at long distances.
Meanwhile, methods that combine both camera and LiDAR
have not produced the desired results that could take advantage
of the strengths of both systems [26]–[28]. Since 3D object
detection methods now provide stable results on data under
normal weather conditions , more attention needs to be paid
to study how these models can be used in extreme weather
conditions such as rain, snow, or fog [1], [10]. Furthermore,
we do not know which model (camera-based, LiDAR-based,
or fusion-based method) works best under these conditions.
There are many studies showing that data collected by LiDAR,
and cameras are significantly distorted in extreme weather
conditions, e.g. [1], [31], [32]. However, there are not many
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studies that show the impact of these distorted data on the
performance of the predictive model for 3D object detection.
The main objective of this study is to analyze the contribution
of the two sensors, i.e. camera and LiDAR, to 3D object
detection in foggy weather conditions. The contribution of this
paper is threefold:

• We divide and adapt the SLS-Fusion neural network [2]
to take into account stereo camera or LiDAR separately.
This leads to two different subneural networks.

• We study the performance of each subneural networks
in foggy weather conditions in comparison with SLS-
Fusion.

• We then analyze the performance of the 3D object detec-
tion models (for stereo camera and LiDAR) according to
six levels of fog applied to KITTI dataset.

After this introduction, in Section II there is a brief summary
of the state of the art in 3D obstacle detection by camera and
LiDAR, the two sensors being taken together or separately.
Section III describes the datasets used for the experiments.
Section IV explains the methodology chosen for 3D object
detection, the nature of the neural network used, and the
methodology for using the network when considering stereo
camera and LiDAR both jointly and separately, to analyze
their influence. Finally, Section V presents the results on the
performance of 3D object detection by camera and LiDAR. A
conclusion and short-term perspectives (Section VII) ends the
article.

II. RELATED WORK

This section places the proposed work in context. We
distinguish between three main relevant topics: camera-based
3D object detection in Section II-A, LiDAR-based 3D object
detection in Section II-B and fusion-based 3D object detection
in Section II-C.

A. Camera-based 3D object detection

With the success of deep learning-based methods for
camera-based classification and object recognition problems,
this has been followed up and extended to 3D object detection.
However, methods based only on camera sensors [3], [6],
[18], [19], [21] have difficulty determining precise depth, the
core element of the 3D vision problem. Deep MANTA [19]
is an early work on monocular 3D object detection. It finds
the optimal position by matching 2D and 3D keypoints. To
recover 3D geometry from 2D data, a 3D template is selected
from a template database based on the predicted similarity
between 3D templates. However, this requires maintaining a
huge database of 3D models and discards valuable information
that can be regressed directly from the image. By using several
geometric properties, Deep3DBox [20] utilizes the property
that the perspective projection of 3D corners should touch
at least one of the two 2D bounding boxes. In the case of
deterministic geometry constraints, any errors in 2D object
detection are locked into the 3D estimation. In MLF [21],
a multi-stage fusion algorithm is used to combine image
features with pseudo-LiDAR data. In that work, there is

no optimization process, only depth is combined with an
RGB image, which leads to suboptimal results. Since depth
information is essential for 3D detection, pseudo point cloud
using monocular or binocular data has been proposed [6].
That paper highlights the inefficiency of current methods for
3D object detection based on RGB-D images. A pseudo-
3D point cloud in LiDAR coordinate system is generated
by first predicting the depth map and then back-projecting.
According to [6], image-based depth maps can be converted
into a pseudo-LiDAR representation.

B. LiDAR-based 3D object detection

LiDAR does not provide information about the scene as
clearly as an image, but the point clouds obtained from LiDAR
are accurate estimations of the location of objects in space.
This is an important contribution that helps make LiDAR-
based methods superior to camera-based methods for 3D
object detection. They are usually divided into 3 types: multi-
view-based methods [11], voxel-based methods [12], [13], [15]
and point-based methods [5], [14]. In [11], a new single-
stage detector is proposed that performs 2D convolution on
the Bird’s-Eye-View (BEV). The objects to be detected do
not overlap in the BEV representation, which maintains the
physical scale. In addition, the BEV has a low computational
cost and is one of the fastest detectors. In [12], sparse convo-
lution operations are proposed to reduce memory consumption
and increase computational speed. In sparse convolution, con-
volution is performed only over non-empty voxels and not
over all voxels, as in traditional 3D convolution. With many
optimizations to adjust the representation differences, Faster
RCNN [16] and Mask RCNN [17] have been extended to point
cloud representations and are proposed in PointRCNN [5]. The
main advantage is to generate high quality 3D bounding box
proposals from a point cloud.

C. Fusion-based 3D object detection

Since both camera and LiDAR data have their own advan-
tages and disadvantages, various methods [26]–[28] have been
explored to incorporate both data into the same model, but
overall no significant superiority has been shown. The Frustum
PointNets method [26] uses a standard 2D CNN object detec-
tor to extract 2D regions, and then converts the coordinates of
the 2D regions into 3D space to create Frustum proposals. A
PointNet-like block is used to segment each point within the
frustum and obtain points of interest. Sophisticated 2D recog-
nition methods are used to obtain prior knowledge, reducing
the 3D search space and paving the way for its successors.
This method depends heavily on the accuracy of 2D detectors,
which is the main drawback of such a cascade approach. In
PointPainting [28], semantic segmentation information from
images is used to consolidate point clouds. To be precise,
PointPainting first applies semantic information to each pixel
to classify it. Then, a segmentation result, which is actually
a compact outline of the image features, is “painted” onto
the LiDAR points by projecting the LiDAR points directly
onto the segmentation mask. Finally, a 3D detector can be



used with LiDAR for applications such as localization and
classification. PointPainting uses segmentation values instead
of RGB attributes to enhance existing LiDAR-based networks.
Pseudo-LiDAR++ [3] uses Pseudo-LiDAR [6] as the basis for
developing a 3D detection architecture. To rectify the depth
estimation, Pseudo-LiDAR++ uses sparse 3D measurements
(synthetic 4 beams LiDAR). The architecture is independent of
any kind of LiDAR. However, this camera and LiDAR fusion
needs to be studied further for harsh weather conditions like
fog.

III. DATASETS USED

Detecting objects in foggy weather conditions is an im-
portant task for a self-driving car. For this reason, datasets
collected from sensors such as LiDAR and cameras must be
effectively fused into the model to improve the perception
system of autonomous vehicles. To achieve better 3D object
detection via depth maps, we use a new approach called Sparse
LiDAR and Stereo Fusion (SLS-Fusion) [2] to fuse the data
from stereo camera and LiDAR sensors.

To enable the operation of the SLS-Fusion system, the
synthetic Scene Flow dataset [9] is first used to train the neural
network model for depth estimation. This dataset collection
contains more than 35,000 stereo images with a size of
960×540 and a large ground truth variety for optical flow and
disparity. After depth prediction, the KITTI dataset [8] is used
to train the 3D object detection part of the SLS-Fusion method.
KITTI was chosen because it is one of the most common
datasets for autonomous driving. It contains hours of real
traffic scenarios recorded with both stereo and LiDAR sensors
under normal weather conditions. A total of 7,481 training
samples and 7,518 test samples are included. As detailed in
[29], the training dataset is divided into two parts: training
(3,712 samples) and validation (3,769 samples). On the other
hand, there are few datasets recorded in extreme weather
conditions. To address this problem, we decided to create a
dataset, derived from KITTI, augmented with foggy weather
conditions. To do this, we use a physics-based fog simulator
[10] that converts normal weather data from KITTI to foggy
weather data (this modified dataset is then called Multifog
KITTI). In this dataset, the level of fog is characterised
according to a visibility distance expressed in meters. Based
on the results of the simulated foggy system, we divide foggy
weather into six conditions or levels according to visibility
(level 1: 20-29 m, level 2: 30-39 m, level 3: 40-49 m, level 4:
50-59 m, level 5: 60-69 m, and level 6: 70-79 m).

The detection results of the SLS-Fusion method were ob-
tained by training with the Multifog KITTI data [1]. The
performance of the 3D object detector can be analyzed by
comparing the 3D predictor results with the annotated KITTI
data results. However, after creating the new dataset by using
the fog simulator, we found that many labeled objects (ground
truths) that were visible without fog became invisible in fog,
resulting in incorrect ground truths. For this reason, the ground
truths were filtered. The bounding boxes, which have a greater
distance to the sensor than the meteorological visibility, are

removed and not taken into account in the evaluation. When
we manually review the LiDAR and camera data, we see that
this method does remove objects that are completely invisible.

IV. METHODOLOGY

This section presents the 3D object detection algorithm
that we used in all experiments. The original model, which
considered stereo camera and LiDAR simultaneously, was
modified. Namely, a new representation was used for either
the stereo camera or the LiDAR.

A. Initial model representation: SLS-Fusion
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Fig. 1: Initial part of the depth estimation of the SLS-Fusion
algorithm [2] with stereo camera and LiDAR as inputs.

The three parts of the SLS-Fusion algorithm are depth
estimation, conversion of data representation, and LiDAR-
based 3D object detection. The depth estimation part is shown
in Figure 1. It uses a pair of stereo images and the re-projected
depth map of any type of LiDAR on both images as inputs.

The model combines stereo images (Il, Ir) with the cor-
responding stereo images (Sl, Sr) generated by re-projecting
LiDAR. Both images and point clouds are extracted using an
encoder-decoder network. The backbone is inspired by that of
DeepLiDAR [30]. Instead of only using left and right images
as in [4] and [3], the proposed network uses a weight-sharing
pipeline for both LiDAR and images (Il and Sl) and (Ir and
Sr). Following the decoding, the left and right features are fed
into the Depth Cost Volume (DeCV) found in [3] to calculate
the depth information loss. Like in [3], we use the smooth
L1loss function

∑
(u,v)∈Il

|d(u, v)−D(u, v)| , (1)

where a valid depth ground truth is denoted by d(u, v). The
depth map is denoted by D, where D(u, v) represents the
depth corresponding to pixel (u, v) on the left image Il. Based
on a pinhole model, pseudo point clouds are generated. Given
the depth D(u, v) and camera intrinsic matrix, the 3D position



(Xc, Yc, Zc) in the camera coordinate system for each pixel
(u, v) is given by

(depth) Zc = D(u, v), (2a)

(width) Xc =
(u− cU )× Zc

fU
, (2b)

(height) Yc =
(v − cV )× Zc

fV
, (2c)

where cU and cV are the coordinates of the principal point
and fU and fV are the focal length in pixel width and height,
respectively. Following [3], LiDAR is used to improve the
quality of the pseudo point cloud. Then, each point (Xc,
Yc, Zc, 1) is transformed into (Xl, Yl, Zl, 1) in the LiDAR
coordinate system (the real world coordinate system). Given

the camera extrinsic matrix C =

[
R t
0 1

]
, where R and t are

respectively the rotation matrix and the translation vector. The
pseudo point cloud can be determined as follows

Xl

Yl

Zl

1

 = C−1


Xc

Yc

Zc

1

 . (3)

Once the pseudo point cloud is obtained, it can be treated
as a normal point cloud, although its accuracy depends on the
quality of the predicted depth. Similar to Pseudo-LiDAR++
[3], the input (point clouds) is used to correct errors in the
pseudo point cloud. This is a refinement step to obtain a more
accurate point cloud. Then the depth map is converted to a
pseudo point cloud. The idea is to leverage the power of the
top leading LiDAR-based methods such as PointRCNN [5] to
eventually detect objects.

B. SLS-Fusion utilization for LiDAR and camera separately

Like [6] and [3], SLS-Fusion [2] involves 3 main steps:
depth estimation, data conversion, and LiDAR-based 3D object
detection. In our experiments, we try to analyze the contri-
bution of camera and LiDAR for the 3D object detection
task. Thus, the two sensors are considered separately. Figure 2
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Fig. 2: Modified part of the depth estimation of the SLS-Fusion
algorithm to adapt it for using only the camera as input.

shows the network representation for the stereo camera only.
We start from the global representation in Figure 1 and con-
sider the depth estimation task. In this global representation,
we indeed have 2 inputs to set up the depth map estimation:
one for the LiDAR and one for the stereo camera. As it can
be seen in Figures 2 and 3, in the networks for the LiDAR
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Fig. 3: Modified part of the depth estimation of the SLS-Fusion
algorithm to adapt it for using only the LiDAR as input.

and the stereo camera, the part that allows the prediction of the
depth maps changes. The last step, obstacle detection, remains
the same whether the depth map obtained from LiDAR or the
depth map obtained from the stereo camera is used. This is
the method used in SLS-Fusion.

As can be seen in Figure 2, the LiDAR has been eliminated.
Thus, the output depth map is based on the stereo camera as
input. In contrast, Figure 3 shows the model that uses LiDAR
only. In this case, the input data is the LiDAR and the output
depth map is based on the LiDAR only.

V. EXPERIMENTS

A. Evaluation Metrics

Common metrics [7], [8] are used to evaluate object detec-
tion algorithms. The Average Precision (AP) for both 3D and
Bird’s Eye View (BEV) is reported as AP3D and APBEV , re-
spectively, with thresholds of 0.5 and 0.7 for Intersection over
Union (IoU). The objects are classified into three difficulty
levels: Easy, Moderate and Hard, depending on the size of the
2D bounding box, the occlusion, and the degree of truncation
of the object appearing in the RGB image according to [8]. The
experiments are performed using the KITTI [8] and Multifog
KITTI [1] datasets. The original 3D object detection model
SLS-Fusion [2] and its modified version presented in Section
IV are used for all experiments.

B. Experimental Protocols

It has been shown that the combination of LiDAR and
camera does not outperform the results of models using only
LiDAR in normal weather conditions (without rain, fog). On
the other hand, LiDAR and camera data are strongly affected
by noise in foggy weather. In this case, we do not know what
is the best choice: to continue to fuse the two sensors or to
use them separately. That is the question we want to answer
here. We perform the following experiments: we test the SLS-
Fusion model with only camera or LiDAR inputs to see how
each sensor contributes to the performance of the model when
the data is affected by fog. To analyse the contribution of each
sensor, we first compare the results on the KITTI dataset with
those on the Multifog KITTI dataset. Knowing that the LiDAR
gives poor results in foggy weather, we try to see if a LiDAR
with more laser beams (64 instead of 4) would give better
results in those adverse conditions.

When analysing fog data, the visibility interval is included
in the data. For each level of visibility (level 1 to level 6),
object detection performance is considered. This can then



determine up to what visibility range the models can provide
acceptable performance.

C. Implementation Details

The procedure used is quite similar to the common pipeline
of Pseudo-LiDAR [6].

The depth estimation network is implemented in Pytorch.
To achieve faster convergence, complete depth maps from the
Scene Flow dataset are first used for training. Fine-tuning is
then performed on the 3,712 training samples in the KITTI
dataset for 100 epochs, with the batch size set to 4 and the
learning rate set to 0.001. Work reported by You et al. [3]
is followed to generate the simulated 4 beams laser LiDAR
(which is as similar as possible to the 4 beams sensor called
ScaLa) from the 64 beams LiDAR and then project it onto the
left and right image planes to feed into the depth estimation
network.

To make the pseudo point cloud closer to the real LiDAR
signals, following [6], reflectance is set to 1 and points higher
than 3 m from the ground are removed. Then the LiDAR-
based 3D object detector can be applied to these remaining
points.

For 3D object detection, PointRCNN [5], a LiDAR-based
method with a high performance, is used as a basis by many
other methods. The method is developed to consider the sparse
point cloud. In order to use the pseudo point cloud, we have
to make a pre-processing. This latter consists in subsampling
the pseudo point cloud in order to obtain a sparser point
cloud compatible with a 64 beams LiDAR. Then, the released
implementations of PointRCNN are directly used, and their
guidelines followed to train it on the training set of KITTI
object detection dataset only for the class “Car”, since car is
one of the main objects and occupies the largest percentage
in KITTI dataset, which causes imbalance between “Car” and
other classes.

VI. RESULTS AND DISCUSSION

As shown in Tables I, II and III, the results of different tests
using the SLS-Fusion method are shown for IoU (Intersection
over Union) of 0.5 and 0.7, respectively. In each cell of these
tables, a pair of numbers A/B corresponds to the results
obtained with the APBEV /AP3D metrics on the KITTI or
Multifog KITTI datasets. In describing the results, we have
considered the AP3D metric.

In Table I, the experiments are divided into 2 parts. The
upper part consists of experiments (1.1, 1.2, 1.3 and 1.4) on
the KITTI dataset. In contrast, the experiments in the lower
part (2.1, 2.2, 2.3, 2.4 and 2.5) were performed on the Multifog
KITTI dataset.

The upper part 1.1 reports the experiment mentioned in [2].
It is a test of the SLS-Fusion model, with a stereo camera and
a 4 beams LiDAR fused (L4+S) as inputs experimented on
the KITTI dataset. In the next two experiments, we present the
results in the same way, but 1.2 only takes a 4 beams LiDAR as
input (L4) and 1.3 only takes stereo camera as input (S). In this
part which concerns using the KITTI dataset without fog, one

notices, as expected, that the fusion of the stereo camera and
LiDAR provides good results 93.02% for Easy and IoU of 0.5.
In this configuration, a stereo camera provides better results
than a 4 beams LiDAR (89.39% versus 78.16%). Separating
the two sensors results in lower performance. This prompts
us to consider the two sensors jointly. On the other hand, if
we consider the 64 beams LiDAR (line 1.4), the results are
very promising (97.3% for Easy objects and an IOU of 0.5).
Nonetheless, the 64 beams LiDAR price is very high compared
to that of cameras and 4 beams LiDARs.

In the second part of Table I, we calculated the same
indicators as before, but on data with fog (Multifog KITTI).
Performance when fusing a stereo camera and a 4 beams
LiDAR (L4+S) remains high (90.15%) for Easy objects,
which demonstrates the viability of using both sensors at
the same time. The performance of the 4 beams LiDAR
alone (L4) decreases sharply (13.43%), which seems to show
that the 4 beams LiDAR is not useful in fog, and it is the
stereo camera (S) that has the highest contribution, as its
performance remains very high (89.36%). The combination
of stereo camera and 64 beams LiDAR provides good results
(89.26% for Easy objects) and for most of the types of objects,
but the stereo camera still plays the most important role.

Tables II, III and IV, show results on AP and according to
the visibility distances (from level 1 to level 6). In this config-
uration, we consider 3D detection performance by combining
a stereo camera and a 64 beams LiDAR analyzed by visibility
distance. For the Easy category (IoU of 0.5), the combination
of the two sensors (S+L64) leads to an AP greater than
82.52%. On the other hand, for the Moderate category (with
an IoU of 0.7), visibility distance plays a role, and we have an
AP gain of about 7.4% (difference between 46.71% at level
1 and 54.10% at level 6).

If we now look at the sensors separately and depending on
the visibility distance, we see the following. For the 64 beams
LiDAR (Table III), objects classified as Easy (with an IoU
of 0.5) are detected at 71.11% for visibility level of 20 m
(level 1), up to 84.95% for level 6. On the other hand, if we
consider Moderate objects (with an IoU of 0.7) we see that
at low visibility level 1, the AP is 17.24%. Conversely, the
AP at level 6 is 35.19%. We see that the results are better
when the visibility is better. However, the two results are bad
given the safety requirements of autonomous vehicles. All this
shows that in the presence of fog, the use of a LiDAR alone
does not provide satisfactory results.

Table IV provides the results for the stereo camera taken
into account alone, in foggy weather and as a function of the
visibility distance. For Easy objects (IoU of 0.5) we notice that
the AP does not vary much depending on visibility (maximum
96.17% of AP ). If we consider Moderate objects (with an
IoU of 0.7) we can note that the AP varies according to the
visibility distance, ranging from 46.70% to 54.09%. If we
compare the results to those of a 64 beams LiDAR, we can
clearly see the superiority of the stereo camera. Therefore, in
foggy weather, LiDAR alone is not suitable.



Idx Method Dataset Input 0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

1.1 SLS-Fusion KITTI L4+S 93.16/ 93.02 88.81/ 86.19 83.35/ 84.02 87.51/ 76.67 76.88/ 63.90 73.55/56.78
1.2 SLS-Fusion KITTI L4 84.02/ 78.16 72.98/ 68.92 66.34/ 63.92 56.72/ 38.82 49.25/ 32.02 44.14/ 29.75
1.3 SLS-Fusion KITTI S 89.50/ 89.39 78.54/ 77.46 75.19/ 69.77 82.21/ 66.54 62.18/ 47.18 56.41/ 43.07
1.4 PointRCNN KITTI L64 97.3/ 97.3 89.9/ 89.8 89.4/ 89.3 90.2/ 89.2 87.9/ 78.9 85.5/ 77.9
2.1 SLS-Fusion Multifog KITTI L4+S 90.27/ 90.15 79.17/ 78.01 76.12/ 70.21 83.42/69.57 62.79/ 48.19 56.84/44.85
2.2 SLS-Fusion Multifog KITTI L4 15.44/ 13.43 10.63/ 9.58 9.75/ 9.65 10.87/ 9.09 9.09/ 9.09 9.09/ 9.09
2.3 SLS-Fusion Multifog KITTI S 89.52/ 89.36 78.75/ 77.71 75.63/ 69.90 82.41/ 70.52 62.59/ 48.27 57.11/ 45.75
2.4 SLS-Fusion Multifog KITTI L64 81.61/ 77.31 56.89/ 53.87 49.83/ 47.80 58.35/ 42.57 38.80/ 29.27 34.63/ 25.25
2.5 SLS-Fusion Multifog KITTI L64+S 89.42/ 89.26 78.79/ 77.82 75.92/ 74.58 82.85/ 71.49 62.33/ 48.39 57.10/ 45.78

TABLE I: APBEV / AP3D results on the KITTI dataset for the category “Car” with IoU at 0.5 and 0.7 and on three levels of
difficulty: Easy, Moderate, and Hard. S, L4, L64 denote the stereo camera, the 4 beams LiDAR, and the 64 beams LiDAR,
respectively.

Visibility Num obj (train) Num obj (test) 0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

Level 1 2,363 2,200 88.95/ 88.68 75.29/ 69.78 69.59/ 68.15 77.05/ 64.99 57.15/ 46.71 54.83/ 44.05
Level 2 2,381 2,240 96.42/ 96.16 78.98/ 78.31 75.96/ 74.65 86.36/ 75.49 63.58/ 52.68 57.76/ 46.22
Level 3 2,249 2,369 89.24/ 89.03 78.15/ 77.27 76.45/ 74.37 83.91/ 71.51 62.69/ 47.98 57.19/ 45.49
Level 4 2,343 2,536 84.30/ 82.52 59.41/ 57.83 54.55/ 50.24 62.08/ 47.80 40.77/ 30.85 35.60/ 27.24
Level 5 2,353 2,372 89.85/ 89.75 83.31/ 77.86 76.68/ 74.60 85.88/ 74.76 62.98/ 52.52 56.85/ 46.52
Level 6 2,668 2,668 89.68/ 89.46 78.88/ 77.94 76.93/ 74.85 85.70/ 74.79 64.95/ 54.10 58.28/ 48.12

TABLE II: Detailed results for each fog density. The SLS-Fusion algorithm is applied to the Multifog KITTI dataset. It takes
stereo camera and 64 beams LiDAR as inputs in this case.

Visibility Num obj (train) Num obj (test) 0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

Level 1 2,363 2,200 73.64/ 71.11 48.72/ 45.54 44.73/ 40.27 43.84/ 26.12 27.55/ 17.24 26.30/ 16.94
Level 2 2,381 2,240 85.46/ 77.42 57.86/ 53.62 50.05/ 47.06 57.04/ 41.07 37.90/ 28.04 33.82/ 24.76
Level 3 2,249 2,369 83.38/ 78.72 57.60/ 54.59 50.38/ 48.69 56.03/ 43.49 38.18/ 29.29 32.00/ 25.71
Level 4 2,343 2,536 89.88/ 89.78 84.50/ 79.39 78.54/ 77.13 84.27/ 72.15 64.99/ 54.63 57.48/ 47.27
Level 5 2,353 2,372 83.47/ 82.84 58.26/ 57.17 50.44/ 49.29 66.79/ 54.62 42.25/ 34.84 36.83/ 30.28
Level 6 2,668 2,668 86.24/ 84.95 59.87/ 58.01 56.14/ 51.38 65.77/ 51.37 41.95/ 35.19 39.42/ 30.89

TABLE III: Detailed results for each fog density. The SLS-Fusion algorithm is applied to the Multifog KITTI dataset. It takes
64 beams LiDAR as input in this case.

Visibility Num obj (train) Num obj (test) 0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

Level 1 2,363 2,200 89.02/ 88.77 75.19/ 69.56 69.41/ 68.10 77.02/ 64.85 57.11/ 46.70 54.82/ 44.03
Level 2 2,381 2,240 96.47/ 96.17 78.97/ 78.29 75.91/ 74.66 86.31/ 75.45 63.57/ 52.66 57.75/ 46.20
Level 3 2,249 2,369 89.25/ 89.05 78.14/ 77.25 76.44/ 74.33 83.88/ 71.50 62.66/ 47.97 57.20/ 45.50
Level 4 2,343 2,536 84.33/ 82.55 59.40/ 57.81 54.53/ 50.20 62.07/ 47.79 40.75/ 30.84 35.60/ 27.23
Level 5 2,353 2,372 89.86/ 89.77 83.30/ 77.85 76.65/ 74.59 85.86/ 74.75 62.97/ 52.50 56.83/ 46.50
Level 6 2,668 2,668 89.70/ 89.47 78.85/ 77.92 76.92/ 74.84 85.68/ 74.77 64.93/ 54.09 58.26/ 48.10

TABLE IV: Detailed results for each fog density. The SLS-Fusion algorithm is applied to the Multifog KITTI dataset. It takes
stereo camera as input in this case.

VII. CONCLUSION

In this study, we have tested the capabilities of 3D obstacle
detection using two types of sensors: two versions of LiDAR
(4 beams and 64 beams) and a stereo camera. The developed
algorithms were tested on the KITTI dataset and then with
additional fog (Multifog KITTI). Based on obstacle detection
performance, we have analyzed several aspects: the contri-
bution of the two types of sensors both in normal weather
and in fog, when they are combined and when they are
used separately. The main result is that using LiDAR in
foggy weather leads to a slightly worse obstacle detection

performance (even worse when the LiDAR is a 4 beams laser
sensor). On the other hand, results based on stereo camera are
promising in foggy weather, regardless of level of visibility.

The results in Tables I, II, III and IV contain a lot of
information that needs to be interpreted in detail. In the context
of this article, and given the limited number of pages, we
presented summarised results, with main tendencies, and we
were not able to go in more depth in the interpretation. We
plan to do this shortly in a separate publication.

As a reminder, the results of this study are obtained on real
LiDAR and camera data, initially acquired in clear weather,



to which fog has been added. The model used is a simple
model, which considers only the macroscopic attenuation
phenomenon. This model has been calibrated on tests per-
formed in a controlled environment on standard sensors [10].
However, this model has two limitations. (i) First, it should
be verified that it is valid for the sensors used in the KITTI
dataset, because, depending on the sensor (brand, type, internal
settings), the impact of fog can be more or less strong. In the
case of the LiDAR, the threshold effects when passing from
the raw signals to the point cloud can have a strong impact
on the model we use. For the camera, the exposure setting
is not considered here, and may once again have an impact
not modeled here. (ii) The model used here does not consider
the microscopic phenomena of light diffusion. Thus, the halo
effects for the camera and the backscattering effects for a
LiDAR sensor are not simulated here. These different elements
are known limitations of the model and clearly explained. They
can have an impact on the results, so the results presented
here should not be taken as categorical, but as initial results
allowing to compare sensors, and to find data fusion solutions
adapted to the autonomous vehicle.

For future work, two options can be considered to circum-
vent the limitations of the model used here. The first would be
to perform acquisitions on real site, under real adverse weather
conditions. The second, more promising option, would be to
use more complex 3D models that implement microscopic
scattering phenomena and simulate the complete path of light
from objects to the sensor and the sensor itself.
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