Li-Hsuan Chen

Sun-Yuan Hsieh
email: hsiehsy@mail.ncku.edu.tw

Ling-Ju Hung
email: ljhung@ntub.edu.tw

Ralf Klasing
email: ralf.klasing@labri.fr

S.-Y Hsieh

L.-J Hung

On the approximability of the single allocation p-hub center problem with parameterized triangle inequality

Keywords: hub allocation, stability of approximation, β-triangle inequality, metric graphs

For some β ≥ 1/2, a ∆ β -metric graph G = (V, E, w) is a complete edge-weighted graph such that w(v, v) = 0, w(u, v) = w(v, u), and w(u, v) ≤ β • (w(u, x)

Given a positive integer p, let H be a spanning subgraph of G satisfying the three conditions: (i) there exists a vertex subset C ⊆ V such that C forms a clique of size p in H; (ii) the set V \ C forms an independent set in H; and (iii) each vertex v ∈ V \ C is adjacent to exactly one vertex in C. The vertices in C are called hubs and the vertices in V \ C are called non-hubs. The ∆ β -p-Hub Center Problem (∆ β -pHCP) is to find a spanning subgraph H of G satisfying all the three conditions such that the diameter of H is minimized. In this paper, we study ∆ β -pHCP for all β ≥ 1 2 . We show that for any ǫ > 0, to approximate ∆ β -pHCP to a ratio g(β)ǫ is NP-hard and we give r(β)-approximation algorithms for the same problem where g(β) and r(β) are functions of β. For 3-

10 , we give an approximation algorithm that reaches the lower bound of approximation ratio g(β) where g

Additionally, for β ≥ 1, we show that g(β) = β • 4β-1 3β-1 and r(β) = min{ β 2 +4β 3 , 2β}. For β ≥ 2, the approximation ratio (i.e., upper bound r(β) = 2β is linear in β. For 3-

10 , we give an approximation algorithm that reaches the lower bound of approximation ratio g(β) where g

10 . For β ≤ 3- √ 3 2 , we show that g(β) = r(β) = 1, i.e., ∆ β -pHCP is polynomial-time solvable.

The hub location problems have various applications in transportation and telecommunication systems. Variants of hub location problems have been defined and well-studied in the literature (see the two survey papers [START_REF] Alumur | Network hub location problems: the state of the art[END_REF][START_REF] Campbell | Hub location problems[END_REF]). Suppose that we have a set of demand nodes that want to communicate with each other through some hubs in a network. A single allocation hub location problem requests that each demand node can only be served by exactly one hub. Conversely, if a demand node can be served by several hubs, then this kind of hub location problem is called multi-allocation. Classical hub location problems ask to minimize the total cost of all origin-destination pairs (see e.g., [START_REF] Todosijević | A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem[END_REF]). However, minimizing the total routing cost would lead to the result that the poorest service quality might be extremely bad. In this paper, we consider a single allocation hub location problem with min-max criterion, called ∆ β -p-Hub Center Problem which is different from the classic hub location problems. The min-max criterion is able to avoid the drawback of minimizing the total cost.

A complete edge-weighted graph G = (V, E, w) is called ∆ β -metric, for some β ≥ 1/2, if the distance function w(•, •) satisfies w(v, v) = 0, w(u, v) = w(v, u), and the β-triangle inequality, i.e., w(u, v) ≤ β •(w(u, x)+ w(x, v)) for all vertices u, v, x ∈ V . (If β > 1 then we speak about relaxed triangle inequality, and if β < 1 we speak about sharpened triangle inequality.) Lemma 1 ([START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF]) Let G = (V, E) be a ∆ β -metric graph for 1 2 ≤ β < 1. For any two edges (u, x), (v, x) with a common endvertex x in G, w(u, x) ≤ β 1-β • w(v, x).

Definition 1 Let G = (V, E, w) be a ∆ β -metric graph. A graph H is called a p-center spanning subgraph of G if there exists a set C H such that the following conditions are satisfied.

1. Vertices (hubs) in C H ⊂ V form a clique of size p in H.

2. Vertices (non-hubs) in V \ C H form an independent set in H.

Each non-hub

v ∈ V \ C H is adjacent to exactly one hub f (v) ∈ C H .
Let u, v be two vertices in a p-center spanning subgraph H of G. We use d H (u, v) = w(u, f (u)) + w(f (u), f (v)) + w(f (v), v) to denote the distance between u, v in H where w(v, f (v)) = 0 if v is a hub in H. Define D(H) = max u,v∈V d H (u, v). The notation C H is the set of hubs in the p-center spanning subgraph H. Notice that |C H | = p. We give the definition of the ∆ β -p-Hub Center Problem as follows. An example is given in Fig. 1.

∆ β -p-Hub Center Problem (∆ β -pHCP) Input: A ∆ β -metric graph G = (V, E, w) and a positive integer p. Output: A p-center spanning subgraph H * of G such that D(H *) is minimized among all p-center spanning subgraphs of G.

The ∆ β -pHCP problem is a general version of the original p-Hub Center Problem (pHCP) since the original problem assumes the input graph to be a metric graph, i.e., β = 1. We use pHCP to denote the ∆ β -pHCP for β = 1.

The pHCP is NP-hard in metric graphs [START_REF] Kara | On the single-assignment p-hub center problem[END_REF]. Several approaches for pHCP with linear and quadratic integer programming were proposed in the literature [START_REF] Campbell | Integer programming formulations of discrete hub location problems[END_REF][START_REF] Ernst | Uncapacitated single and multiple allocation p-hub center problem[END_REF][START_REF] Kara | On the single-assignment p-hub center problem[END_REF][START_REF] Meyer | A 2-phase algorithm for solving the single allocation p-hub center problem[END_REF]. Many research efforts for solving pHCP are focused on the development of heuristic algorithms, e.g., [START_REF] Brimberg | General variable neighborhood search for the uncapacitated single allocation p-hub center problem[END_REF][START_REF] Pamuk | Sepil: A solution to the hub center problem via a single-relocation algorithm with tabu search[END_REF][START_REF] Rabbani | Solving uncapacitated multiple allocation p-hub center problem by Dijkstra's algorithmbased genetic algorithm and simulated annealing[END_REF][START_REF] Yang | An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem[END_REF][START_REF] Yang | Solving fuzzy p-hub center problem by genetic algorithm incorporating local search[END_REF][START_REF] Yang | Optimizing fuzzy p-hub center problem with generalized value-at-risk criterion[END_REF]. Chen et al. [START_REF] Chen | Approximation algorithms for single allocation k-hub center problem[END_REF] proved that for any ǫ > 0, it is NP-hard to approximate pHCP to within a ratio 4/3ǫ. In the same paper, a 5 3 -approximation algorithm was given for pHCP.

Table 1: The lower and upper bounds on the approximation of SpHCP in ∆ β -metric graphs [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF]. [0.7737..., 1]

β lower bound g ′ (β) upper bound r ′ (β) [1 2 , 3- √ 3 2] 1 1 (3- √ 3 2 , 2 3] 1+2β-2β 2 4(1-β) 1+2β-2β 2 4(1-β) [2
5β+1 4 1 + 4β 2 5β+1 [1, 2] β + 1 2 β + 4β 2 -2β 2+β [2, ∞) β + 1 2 2β + 1
The Star p-Hub Center Problem (SpHCP) introduced in [START_REF] Yaman | Star p-hub center problem and star p-hub median problem with bounded path lengths[END_REF] is closely related to pHCP and wellstudied in [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF][START_REF] Chen | Approximation algorithms for the star k-hub center problem in metric graphs[END_REF][START_REF] Liang | The hardness and approximation of the star p-hub center problem[END_REF]. The difference between the two problems is that in SpHCP, the hubs are connected to a center rather than fully connected. Chen et al. [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF] showed that for any ǫ > 0, to approximate SpHCP in ∆ β -metric graphs to a ratio g ′ (β)ǫ is NP-hard and gave a series of r ′ (β) approximation algorithms to solve the same problem for some functions g ′ and r ′ . The values of the functions g ′ and r ′ are listed in Table 1. Moreover, in [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF], a subclass of metric graphs is identified such that SpHCP is polynomial-time solvable, and some r ′ (β)-approximation algorithms given in [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF] meet the approximation lower bounds.

If β = 1, ∆ β -pHCP is NP-hard and even NP-hard to have a (43ǫ)-approximation algorithm for any ǫ > 0 [START_REF] Chen | Approximation algorithms for single allocation k-hub center problem[END_REF]. In this paper, we investigate the complexity of ∆ β -pHCP parameterized by the βtriangle inequality. The motivation of this research for β < 1 is to investigate whether there exists a large subclass of input instances of ∆ β -pHCP that can be solved in polynomial time or admits polynomial-time approximation algorithms with a reasonable approximation ratio. For β ≥ 1, it is an interesting issue to see whether there exists a polynomial-time approximation algorithm with an approximation ratio linear in β.

Our study uses the well-known concept of stability of approximation for hard optimization problems [START_REF] Böckenhauer | Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | Stability of approximation[END_REF][START_REF] Hromkovič | Stability of approximation algorithms and the knapsack problem[END_REF][START_REF] Rozenberg | Hromkovič: Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF][START_REF] Klasing | A modern view on stability of approximation[END_REF]. The idea of this concept is similar to that of the stability of numerical algorithms. But instead of observing the size of the change in the output value according to a small change of the input value, one is interested in the size of the change of the approximation ratio according to a small change in the specification (some parameters, characteristics) of the set of problem instances considered. If the change of the approximation ratio is small for every small change in the set of problem instances, then the algorithm is called stable. The concept of stability of approximation has been successfully applied to several fundamental hard optimization problems. E.g. in [START_REF] Andreae | On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality[END_REF][START_REF] Andreae | Performance guarantees for approximation algorithms depending on parameterized triangle inequalities[END_REF][START_REF] Bender | Performance guarantees for the TSP with a parameterized triangle inequality[END_REF][START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF][START_REF] Böckenhauer | Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality (Extended Abstract)[END_REF][START_REF] Böckenhauer | Improved lower bounds on the approximability of the traveling salesman problem[END_REF][START_REF] Mömke | An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality[END_REF] it was shown that one can partition the set of all input instances of the Traveling Salesman Problem into infinitely many subclasses according to the degree of violation of the triangle inequality, and for each subclass one can guarantee upper and lower bounds on the approximation ratio. Similar studies demonstrated that the β-triangle inequality can serve as a measure of hardness of the input instances for other problems as well, in particular for the problem of constructing 2-connected spanning subgraphs of a given complete edgeweighted graph [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF], and for the problem of finding, for a given positive integer k ≥ 2 and an edge-weighted graph G, a minimum k-edge-or k-vertex-connected spanning subgraph [START_REF] Böckenhauer | On k-Edge-Connectivity Problems with Sharpened Triangle Inequality[END_REF][START_REF] Böckenhauer | On k-connectivity problems with sharpened triangle inequality[END_REF].

In Table 2, we list the main results of this paper. The curves of the functions listed in Table 2 are depicted in. Fig. 2 and3. The rest of this paper is organized as follows. In Section 2, for β > 3- √ 3 2 , we show that for any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a ratio g(β)ǫ. In Section 3, we give r(β)-approximation algorithms for the same problem where r(β) are functions of β.

If β ≤ 3- √ 3 2 , we show that g(β) = r(β) = 1, i.e., ∆ β -pHCP is polynomial-time solvable. For 3- √ 3 2 < β ≤ 5+ √ 5
10 , we give an approximation algorithm that reaches the lower bound of approximation ratio g(β) where g

(β) = 3β-2β 2 3(1-β) if 3- √ 3 2 < β ≤ 2 3 and g(β) = β + β 2 if 2 3 ≤ β ≤ 5+ √ 5 10 . For 5+ √ 5 10 ≤ β ≤ 1, we show that g(β) = 4β 2 +3β-1 5β-1 and r(β) = min{β + β 2 , 4β 2 +5β+1 5β+1 }. For β ≥ 1, g(β) = β • 4β-1 3β-1 and r(β) = min{ β 2 +4β
3 , 2β}. For β ≥ 2, the approximation ratio (i.e., upper bound r(β) = 2β is linear in β).

Table 2:

The main results where for any ǫ > 0, ∆ β -pHCP cannot be approximated within g(β)ǫ and has an r(β)-approximation algorithm. Fig. 2: The curves depict the functions in Table 2 for β ≤ 1.

β lower bound g(β) upper bound r(β) [1 2 , 3- √ 3 2] 1 1 (3- √ 3 2 , 2 3] 3β-2β 2 3(1-β) 3β-2β 2 3(1-β) [2 3 , 5+ √ 5 10] β + β 2 β + β 2 [5+ √ 5 10 , 3+ √ 29 10] 4β 2 +3β-1 5β-1 β + β 2 [3+ √ 29 10 , 1] 4β 2 +3β-1 5β-1 4β 2 +5β+1 5β+1 [1, 2] β • 4β-1 3β-1 β 2 +4β 3 [2, ∞) β • 4β-
We close this section with some notation and definitions. We use C H to denote the set of hub vertices in solution H. Let H * be an optimal solution of ∆ β -pHCP in a given β-metric graph G = (V, E, w). For a non-hub x in H * , we use f * (x) to denote the hub adjacent to x in H * . We use H to denote the best solution among all solutions in H where H is the collection of all solutions satisfying that all non-hubs are adjacent to the same hub for ∆ β -pHCP in a given β-metric graph G = (V, E, w).

Inapproximability results

In this section, we show that for β > 3- √ 3 2 , it is NP-hard to approximate ∆ β -pHCP to within a factor of g(β)ǫ where g(β) is listed in Table 2 and the curves of g(β) are depicted in Fig. 2 and3.

We start with the results for the smaller range of β.

Lemma 2 Let 3- √ 3 2 < β ≤ 2 3 . For any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a factor of 3β-2β 2 3(1-β) -ǫ.
Proof We will prove that, if ∆ β -pHCP can be approximated to within a factor 3β-2β 2 3(1-β)ǫ in polynomial time, for some ǫ > 0, then Set Cover can be solved in polynomial time. This will complete the proof, since Set Cover is well-known to be NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Fig. 3: The curves depict the functions in Table 2 for β > 1.

s i s j y H S ′ C H v u V S \ S ′ 1 1 1 β 1-β 1
Fig. 4: A feasible solution of ∆ β -pHCP obtained from an optimal solution of Set Cover where the rectangle part denotes the collection of pairwise adjacent hubs.

Let (S, U) be an instance of Set Cover where U is the universal set, |U | = n, and S = {S 1 , S 2 , . . . , S m } is a collection of subsets of U , |S| = m. The goal is to decide whether S has a subset S ′ of size k such that Si∈S ′ S i = U . In the following, we construct a β-metric graph G = (V ∪ S ∪ {y}, E, w) according to (S, U). For each element v ∈ U , construct a vertex v ∈ V , i.e., |V | = |U |. For each set S i ∈ S, construct a vertex s i ∈ S, |S| = |S|. We add a vertex y in G. The edge cost of G is defined in Table 3.

Table 3: The costs of edges (a, b) in G w(a, b) b ∈ S b ∈ V b = y a ∈ S 1 1 if b ∈ a β 1-β 2β otherwise a ∈ V 1 if a ∈ b 2β β 1-β 2β otherwise
Clearly, G can be constructed in polynomial time. It is easy to verify that G is a β-metric graph. Let G be the input of ∆ β -pHCP constructed according to (S, U) where p = k + 1.

Let S ′ ⊂ S be a set cover of (S, U) of size k > 1. We then construct a solution H of ∆ β -pHCP according to S ′ as follows. For each set S i ∈ S ′ , collect its corresponding vertex s i ∈ S ′ in G. Let C H = S ′ ∪ {y} be the set of hubs in H where |S ′ | = |S ′ | and connect all vertices in S \ S ′ to exactly one hub s j ∈ S ′ . For each v ∈ V , connect v to exactly one vertex s i ∈ S ′ satisfying v ∈ S i where S i is the corresponding set of the vertex s i (see Fig. 4). Since each v ∈ V is connected to a vertex s i ∈ S ′ satisfying that v ∈ S i , we see that w(v, s i) = 1. Hence D(H) = 3. Let H * denote an optimal solution of ∆ β -pHCP in G. We have D(H *) ≤ 3.

Assume that there exists a polynomial time algorithm that finds a solution

H of ∆ β -pHCP in G with D(H) < 3β-2β 2 1-β . W.l.o.g., assume that C H = S ′ ∪ V ′ ∪ Y ′ where S ′ ⊆ S, V ′ ⊆ V , and Y ′ ⊆ {y}. For any non-hub v in H, use f (v) to denote the hub in H adjacent to v. Recall that f (v) = v if v is a hub in H. For u, v in H, let d H (u, v) = w(u, f (u)) + w(f (u), f (v)) + w(v, f (v)
) be the distance between u and v in H.

Claim 1

The vertex y must be a hub.

Proof Suppose that y is not a hub in H. There are two cases.

-If f (y) ∈ S ′ , then all vertices v ∈ V must be adjacent to f (y) and satisfy w(v, f (y)) = 1; otherwise there exists an x ∈ V with

d H (x, y) = d H (x, f (y)) + w(f (y), y) ≥ 2β + β 1-β (since 2β ≥ 1) = 3β-2β 2 1-β .
This contradicts the assumption that D(H) < 3β-2β 2 1-β . Since all vertices v ∈ V must be adjacent to f (y) and satisfy w(v, f (y)) = 1, we see that the set in S with respect to the vertex f (y) ∈ S ′ forms a set cover of (S, U). This contradicts the assumption that the optimal solution of Set Cover is of size k > 1.

-If f (y) ∈ V ′ , then there exists an x ∈ V \ C H , otherwise p = k + 1 ≥ n which leads to a trivial instance. We see that

d H (x, y) = d H (x, f (y)) + w(f (y), y) ≥ 2β + β 1-β (since β < 1) ≥ 3β-2β 2 1-β ,
a contradiction to the assumption that D(H) < 3β-2β 2 1-β . Thus, y must be a hub, i.e., Y ′ = {y}.

Claim 2

The hub y is not adjacent to any non-hub in H.

Proof Suppose that the hub y is adjacent to a non-hub z ∈ (S ∪ V) \ C H , then there exists an x ∈ C H with

d H (x, z) = w(x, y) + w(y, z) ≥ β 1 -β + β 1 -β ≥ 3β -2β 2 1 -β ,
a contradiction to the assumption that D(H) < 3β-2β 2 1-β . Thus, y is not adjacent to any non-hub in H.

Claim 3 No v ∈ V \ V ′ is adjacent to any u ∈ V ′ . Proof Suppose that there exists a v ∈ V \ V ′ that is adjacent to u ∈ V ′ in H. We see that d H (v, y) = w(v, u) + w(u, y) = 2β + β 1 -β ≥ 3β -2β 2 1 -β , a contradiction to the assumption that D(H) < 3β-2β 2 1-β . Thus, no v ∈ V \ V ′ is adjacent to any u ∈ V ′ .
According to Claims 1, 2, and 3, in H all vertices V \ V ′ must be adjacent to vertices in

S ′ . If there exists a v ∈ V \ V ′ satisfying that w(v, f (v)) = 2β, then d H (v, y) = w(v, f (v)) + w(f (v), y) = 2β + β 1 -β = 3β -2β 2 1 -β , a contradiction to the assumption that D(H) < 3β-2β 2 1-β . Thus, each v ∈ V \ V ′ satisfies w(v, f (v)) = 1.
We see that the corresponding collection of sets representing vertices in S ′ , call S ′ , forms a set cover of V \ V ′ . For each u ∈ V ′ , pick a set S i ∈ S satisfying u ∈ S i , call the collection of sets S ′′ . It is easy to see that

|S ′′ | ≤ |V ′ |. Recall that |C H | = p = k + 1 and C H = S ′ ∪V ′ ∪{y}.
We obtain that S ′ ∪S ′′ forms a set cover of U of size at most k. This shows that if ∆ β -pHCP has a solution H with D(H) < 3β-2β 2 1-β that can be found in polynomial time, then Set Cover can be solved in polynomial time. However, Set Cover is a well-known NP-hard problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. By the fact that Set Cover is NP-hard and D(H *) ≤ 3, this implies that for any ǫ > 0, to approximate ∆ β -pHCP to a factor 3β-2β 2 3(1-β)ǫ is NP-hard. This completes the proof.

⊓ ⊔ S ′ 1 S ′ 2 H C H V 1 S 2 \ S ′ 2 1 1 1 V 2 S 1 \ S ′ 1 1 β 1-β -1 y β 1-β
Fig. 5: A feasible solution H obtained from an optimal solution of Set Cover

Lemma 3 Let 2 3 < β ≤ 5+ √ 5
10 . For any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a factor of β + β 2ǫ.

Proof We will prove that, if ∆ β -pHCP can be approximated to within a factor β + β 2ǫ in polynomial time, for some ǫ > 0, then Set Cover can be approximated to within a factor (1ǫ) ln n in polynomial time. But such Set Cover approximation is known to be NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. This will complete the proof.

Let (S, U) be an instance of Set Cover where U is the universal set, |U | = n, and S is a collection of subsets of U , |S| = m. The goal is to decide whether S has a subset S ′ of size k such that Si∈S ′ S i = U . In the following, we construct a

β-metric graph G = (V 1 ∪V 2 ∪S 1 ∪S 2 ∪{y}, E, w) of ∆ β -pHCP as follows. For each element v ∈ U , construct a copy of v in V 1 and another copy of v in V 2 , i.e., |V 1 | = |V 2 | = |U |. For each set in S, construct a vertex in S 1 and a vertex in S 2 , |S 1 | = |S 2 | = |S|. Let p = 2k + 1. The edge cost of G is defined in Table 4. Table 4: The costs of edges (a, b) in G w(a, b) b ∈ S 1 b ∈ S 2 b ∈ V 1 b ∈ V 2 b = y a ∈ S 1 1 β 1-β -1 1 if b ∈ a β 2 1-β β 1-β 2β otherwise a ∈ S 2 β 1-β -1 1 β 2 1-β 1 if b ∈ a β 1-β 2β otherwise a ∈ V 1 1 if a ∈ b β 2 1-β 2β β-β 2 +β 3 1-β β 1-β 2β otherwise a ∈ V 2 β 2 1-β 1 if a ∈ b β-β 2 +β 3 1-β 2β β 1-β 2β otherwise
Clearly, G can be constructed in polynomial time. It is easy to verify that G is a β-metric graph. Let G be the input of ∆ β -pHCP constructed according to (S, U) where p = 2k + 1.

Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆ β -pHCP according to S ′ . For each set S i ∈ S ′ , collect its corresponding vertex in S 1 (resp. S 2) to be a vertex in 5). Let H * denote an optimal solution of ∆ β -pHCP in G. We have D(H *) ≤ 1 1-β . Assume that there exists a polynomial time algorithm that finds a solution

S ′ 1 (resp. S ′ 2). Let C H = S ′ 1 ∪ S ′ 2 ∪ {y} be the set of hubs in H. Note that S ′ is a set cover. For each v ∈ V 1 , connect v to exactly one vertex in S ′ 1 representing a set S i ∈ S ′ satisfying the element v ∈ S i . Similarly, for each u ∈ V 2 , connect u to exactly one vertex in S ′ 2 representing a set S j ∈ S ′ satisfying the element u ∈ S j . We obtain that w(v, f (v)) = 1 and w(u, f (u)) = 1 where v ∈ V 1 , u ∈ V 2 , f (v) ∈ S ′ 1 , and f (u) ∈ S ′ 2 . For each vertex t 1 ∈ S 1 \ S ′ 1 , connect t 1 to exactly one vertex in S ′ 1 . For each vertex t 2 ∈ S 2 \ S ′ 2 , connect t 2 to exactly one vertex in S ′ 2 . We see that w(t 1 , f (t 1)) = 1, w(t 2 , f (t 2)) = 1, w(f (t 1), f (t 2)) = β 1-β -1, and w(y, f (t 1)) = w(y, f (t 2)) = β 1-β where f (t 1) ∈ S ′ 1 and f (t 2) ∈ S ′ 2 . Hence D(H) = max{ β 1-β + 1, 3} = 1 1-β (see Fig.
H of ∆ β -pHCP in G with D(H) < β+β 2 1-β . W.l.o.g., assume that C H = S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ where S ′ 1 ⊆ S 1 , S ′ 2 ⊆ S 2 , V ′ 1 ⊆ V 1 , V ′ 2 ⊆ V 2 , and Y ′ ⊆ {y}.

Claim 4

The vertex y must be a hub.

Proof Suppose that y is not a hub in H. We see that either

f (y) ∈ S 1 ∪ V 1 or f (y) ∈ S 2 ∪ V 2 . W.l.o.g., assume that f (y) ∈ S 1 ∪ V 1 . Then there exists an x ∈ S 2 ∪ V 2 with d H (x, y) = d H (x, f (y)) + w(f (y), y) ≥ β 2 1-β + β 1-β = β+β 2 1-β .
This contradicts the assumption that D(H) < β+β 2 1-β . Thus, y must be a hub, i.e., Y ′ = {y}.

Claim 5 The hub y is not connected to any non-hub in H.

Proof Assume that the hub y is connected to a non-

hub v ∈ V 1 ∪ V 2 \ C H , then there exists an x ∈ C H with d H (x, v) = w(x, y) + w(y, v) ≥ β 1-β + β 1-β ≥ β+β 2 1-β ,
a contradiction to the assumption that D(H) < β+β 2 1-β . Thus, y is not connected to any non-hub in H.

Claim 6 For all non-hubs v, if v ∈ V 1 , f (v) / ∈ V 2 ∪ S 2 and if v ∈ V 2 , f (v) / ∈ V 1 ∪ S 1 .
Proof Suppose that there exists a

v ∈ V 1 \ V ′ 1 that is adjacent to u ∈ V 2 ∪ S 2 in H. We see that d H (v, y) = w(v, u) + w(u, y) ≥ β 2 1 -β + β 1 -β ≥ β + β 2 1 -β , a contradiction to the assumption that D(H) < β+β 2 1-β . Thus, no v ∈ V 1 \V ′ 1 is adjacent to any u ∈ V 2 ∪S 2 . Analogously, no v ∈ V 2 \ V ′ 2 is adjacent to any u ∈ V 1 ∪ S 1 either. Claim 7 Either w(v, f (v)) = 1 for all v ∈ V 1 \ V ′ 1 or w(v, f (v)) = 1 for all v ∈ V 2 \ V ′ 2 .
Proof W.l.o.g., suppose that there exist a

v ∈ V 1 \ V ′ 1 and a u ∈ V 2 \ V ′ 2 with w(v, f (v)) > 1 and w(u, f (u)) > 1. By Claim 6, for all v ∈ V 1 \ V ′ 1 , f (v) ∈ V 2 ∪ S 2 and for all u ∈ V 2 \ V ′ 2 , f (u) ∈ V 1 ∪ S 1
. By Claim 5, the hub y is not adjacent to any non-hub. We see that

f (v) ∈ V 1 ∪ S 1 and f (u) ∈ V 2 ∪ S 2 and w(f (v), f (u)) ≥ min{ β 1-β -1, β 2 1-β , β-β 2 +β 3 1-β }. Thus, d H (u, v) = w(v, f (v)) + w(f (v), f (u)) + w(u, f (u)) ≥ 2β + min{ β 1 -β -1, β 2 1 -β , β -β 2 + β 3 1 -β } + 2β = 2β + β 1 -β -1 + 2β ≥ β + β 2 1 -β (since β ≤ 5+ √ 5 10), a contradiction to the assumption that D(H) < β+β 2 1-β . Thus, w(v, f (v)) = 1 for all v ∈ V 1 \ V ′ 1 or w(v, f (v)) = 1 for all v ∈ V 2 \ V ′ 2 .
We see that either

S ′ 1 forms a set cover of V 1 \ V ′ 1 or S ′ 2 forms a set cover of V 2 \ V ′ 2
where S ′ 1 is the corresponding collection of sets represented by vertices in S ′ 1 and S ′ 2 is the corresponding collection of sets represented by vertices in S ′ 2 . W.l.o.g., assume that

S ′ 1 forms a set cover of V 1 \ V ′ 1 . For each u ∈ V ′ 1 , pick a set S u ∈ S satisfying u ∈ S u , call the collection of sets S ′′ . It is easy to see that |S ′′ | ≤ |V ′ 1 | and S ′ 1 ∪ S ′′ forms a set cover of U . Notice that |S ′ 1 ∪ V ′ 1 | < |C H | = p = 2k + 1. Thus S ′ 1 ∪ S ′′
forms a set cover of U of size at most 2k. This shows that if ∆ β -pHCP has a solution H with D(H) < β+β 2 1-β then Set Cover has a 2-approximation algorithm running in polynomial time. However, to find a 2-approximation solution of Set Cover is a well-known NP-hard problem [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. By the fact that D(H *) ≤ 1 + β 1-β , we obtain that for any ǫ > 0, to approximate ∆ β -pHCP to a factor ≤ β ≤ 1. For any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a factor of

β + β 2 -ǫ is NP-hard. ⊓ ⊔ S ′ 1 S ′ 2 H C H V 1 S 2 \ S ′ 2 1 1 1 V 2 S 1 \ S ′
4β 2 +3β-1 5β-1 -ǫ.
Proof We will prove that, if ∆ β -pHCP can be approximated within a factor

4β 2 +3β-1 5β-1
ǫ in polynomial time for some ǫ > 0, then a 2-approximate solution of set cover problem can be found in polynomial time. This will complete the proof, since for any ǫ > 0, to approximate Set Cover to within a factor (1ǫ) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF].

Let (S, U) be an instance of the set cover problem, where U is the universal set, |U | = n, and S is a collection of subsets of U , |S| = m. The goal of the problem is to decide whether there exists a subset 5. It is not hard to see that any three vertices in G satisfy the β-triangle inequality.

S ′ ⊆ S of size k such that Si∈S ′ S i = U . Construct a β-metric graph G = (V 1 ∪ V 2 ∪ S 1 ∪ S 2 ∪ {y}, E, w) of ∆ β -pHCP as follows. For each element v ∈ U , construct a copy of v in V 1 and another copy of v in V 2 , i.e., |V 1 | = |V 2 | = |U |. For each set in S, construct a vertex in S 1 and a vertex in S 2 , |S 1 | = |S 2 | = |S|. Let p = 2k + 1. The edge cost of G is defined in Table
w(a, b) b ∈ S 1 b ∈ S 2 b ∈ V 1 b ∈ V 2 b = y a ∈ S 1 1 3β-1 β 1 if b ∈ a 4β -1 4β-1 β 2β otherwise a ∈ S 2 3β-1 β 1 4β -1 1 if b ∈ a 4β-1 β 2β otherwise a ∈ V 1 1 if a ∈ b 4β -1 2β 4β 2 4β-1 β 2β otherwise a ∈ V 2 4β -1 1 if a ∈ b 4β 2 2β 4β-1 β 2β otherwise
Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆ β -pHCP according to S ′ . For each set S i ∈ S ′ , collect its corresponding vertex in S 1 (resp. S 2) to be a vertex in

S ′ 1 (resp. S ′ 2). Let C H = S ′ 1 ∪ S ′ 2 ∪ {y} be the set of hubs in H. Note that S ′ is a set cover. For each v ∈ V 1 , connect v to exactly one vertex in S ′ 1 representing a set S i ∈ S ′ satisfying the element v ∈ S i . Similarly, for each u ∈ V 2 , connect u to exactly one vertex in S ′ 2 representing a set S j ∈ S ′ satisfying the element u ∈ S j . We obtain that w(v, f (v)) = 1 and w(u, f (u)) = 1 where v ∈ V 1 , u ∈ V 2 , f (v) ∈ S ′ 1 , and f (u) ∈ S ′ 2 . For each vertex t 1 ∈ S 1 \ S ′ 1 , connect t 1 to exactly one vertex in S ′ 1 . For each vertex t 2 ∈ S 2 \ S ′ 2 , connect t 2 to exactly one vertex in S ′ 2 . We see that w(t 1 , f (t 1)) = 1, w(t 2 , f (t 2)) = 1, w(f (t 1), f (t 2)) = 3β-1 β -1,
and w(y, f

(t 1)) = w(y, f (t 2)) = 4β-1 β where f (t 1) ∈ S ′ 1 and f (t 2) ∈ S ′ 2 . Hence D(H) = 5β-1 β
(see Fig. 6).

Let H * denote an optimal solution of ∆ β -pHCP. Then D(H *) ≤ 5β-1 β . Suppose that there exists a polynomial time algorithm for ∆ β -pHCP that computes a solution H such that D(H) < 4β 2 +3β-1

β . W.l.o.g., assume that C H = S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ be the set of hubs in H where S ′ 1 ⊆ S 1 , S ′ 2 ⊆ S 2 , V ′ 1 ⊆ V 1 , V ′ 2 ⊆ V 2 , and Y ′ ⊆ {y}.

Claim 8

The vertex y must be a hub, i.e., Y ′ = {y}.

Proof Suppose that y is not a hub and y is connected to a hub v ∈ C H . According to the edge cost in Table 5, there is a vertex u with w(u, v) = 4β -1. We see that

d H (y, u) ≥ w(y, v) + w(v, u) = 4β-1 β + 4β -1 = 4β 2 +3β-1 β .
This contradicts the assumption that D(H) < 4β 2 +3β-1 β . Thus, the vertex y must be a hub in H.

Claim 9

The hub y is not connected to any non-hub in H.

Proof Suppose that the hub y is connected to a non-hub v ∈ V \ C H , then there exists an x ∈ C H with

d H (x, v) = w(x, y) + w(y, v) ≥ 4β-1 β + 4β-1 β > 4β 2 +3β-1 β .
This contradicts the assumption that D(H) < 4β 2 +3β-1 β . Thus, y is not connected to any non-hub in H.

Claim 10 For all non-hubs v, if v ∈ V 1 , f (v) / ∈ V 2 ∪ S 2 and if v ∈ V 2 , f (v) / ∈ V 1 ∪ S 1 .
Proof Suppose that there exists a

v ∈ V 1 \ V ′ 1 that is adjacent to u ∈ V 2 ∪ S 2 in H. We see that d H (v, y) = w(v, u) + w(u, y) ≥ 4β -1 + 4β -1 β ≥ 4β 2 + 3β -1 β .
This contradicts the assumption that D(H) <

4β 2 +3β-1 β . Thus, no v ∈ V 1 \ V ′ 1 is adjacent to any u ∈ V 2 ∪ S 2 .
Suppose that there exists

a v ∈ V 2 \ V ′ 2 that is adjacent to u ∈ V 1 ∪ S 1 in H. We see that d H (v, y) = w(v, u) + w(u, y) ≥ 4β -1 + 4β -1 β ≥ 4β 2 + 3β -1 β .
This contradicts the assumption that D(H) <

4β 2 +3β-1 β . Thus, no v ∈ V 2 \ V ′ 2 is adjacent to any u ∈ V 1 ∪ S 1 . Claim 11 Either w(v, f (v)) = 1 for all v ∈ V 1 \ V ′ 1 or w(v, f (v)) = 1 for all v ∈ V 2 \ V ′ 2 .
Proof Suppose that there exist a

v ∈ V 1 \ V ′ 1 and a u ∈ V 2 \ V ′ 2 with w(v, f (v)) > 1 and w(u, f (u)) > 1. We see that d H (u, v) = w(v, f (v)) + w(f (v), f (u)) + w(u, f (u)) ≥ 2β + min{ 3β -1 β , 4β -1, 4β 2 } + 2β = 2β + 3β -1 β + 2β = 4β 2 + 3β -1 β , a contradiction to the assumption that D(H) < 4β 2 +3β-1 β . Thus, w(v, f (v)) = 1 for all v ∈ V 1 \ V ′ 1 or w(v, f (v)) = 1 for all v ∈ V 2 \ V ′ 2 .
We see that either

S ′ 1 forms a set cover of V 1 \ V ′ 1 or S ′ 2 forms a set cover of V 2 \ V ′ 2
where S ′ 1 is the corresponding collection of sets represented by vertices in S ′ 1 and S ′ 2 is the corresponding collection of sets represented by vertices in S ′ 2 . W.l.o.g., assume that S ′ 1 forms a set cover of

V 1 \ V ′ 1 . For each u ∈ V ′ 1 , pick a set S u ∈ S satisfying u ∈ S u , call the collection of sets S ′′ . It is easy to see that |S ′′ | ≤ |V ′ 1 | and S ′ 1 ∪ S ′′ forms a set cover of U . Notice that |S ′ 1 ∪ V ′ 1 | < |C H | = p = 2k + 1. Thus S ′ 1 ∪ S ′′ forms a set cover of U of size at most 2k. This shows that if ∆ β -pHCP has a solution H with D(H) < 4β 2 +3β-1 β then Set S ′ 1 S ′ 2 H C H V 1 S 2 \ S ′ 2 1 1 1 V 2 S 1 \ S ′ 1 1 2β 2β-1
Fig. 7: A feasible solution obtained from an optimal solution of Set Cover Cover has a 2-approximation algorithm running in polynomial time. However, to find a 2-approximation solution of Set Cover is a well-known NP-hard problem [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. By the fact that D(H *) ≤ 5β-1 β , we obtain that for any ǫ > 0, to approximate ∆ β -pHCP to a factor 4β 2 +3β-1 5β-1 ǫ is NP-hard. This completes the proof.

⊓ ⊔

Lemma 5 Let β ≥ 1. For any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a factor of β • 4β-1 3β-1 -ǫ.
Proof We will prove that, if ∆ β -pHCP can be approximated within a factor β • 4β-1 3β-1ǫ in polynomial time for some ǫ > 0, then a 2-approximate solution of set cover problem can be found in polynomial time. This will complete the proof of the lemma, since for any ǫ > 0, to approximate Set Cover to within a factor (1ǫ) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF].

Let (S, U) be an instance of the set cover problem, where U is the universal set, |U | = n, and S is a collection of subsets of U , |S| = m. The goal is to decide whether there exists a subset

S ′ ⊆ S of size k such that Si∈S ′ S i = U . Construct a β-metric graph G = (V 1 ∪ V 2 ∪ S 1 ∪ S 2 , E, w) of ∆ β -pHCP as follows. For each element v ∈ U , construct a copy of v in V 1 and another copy of v in V 2 , i.e., |V 1 | = |V 2 | = |U |. For each set S i ∈ S, construct a vertex in S 1 and a vertex in S 2 , |S 1 | = |S 2 | = |S|. Let p = 2k.
The edge cost of G is defined in Table 6. It is not hard to see that any three vertices in G satisfy the β-triangle inequality.

w(a, b) b ∈ S 1 b ∈ S 2 b ∈ V 1 b ∈ V 2 a ∈ S 1 1 2β 2β-1 1 if b ∈ a β•(4β-1) 2β-1 2β otherwise a ∈ S 2 2β 2β-1 1 β•(4β-1) 2β-1 1 if b ∈ a 2β otherwise a ∈ V 1 1 if a ∈ b β•(4β-1) 2β-1 2β β•(6β-2) 2β-1 2β otherwise a ∈ V 2 β•(4β-1) 2β-1 1 if a ∈ b β•(6β-2) 2β-1 2β 2β otherwise
Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆ β -pHCP according to S ′ . For each set S i ∈ S ′ , collect its corresponding vertex in S 1 (resp. S 2) to be a vertex in

S ′ 1 (resp. S ′ 2). Let C H = S ′ 1 ∪ S ′ 2 be the set of hubs in H. Note that S ′ is a set cover. For each v ∈ V 1 , connect v to exactly one vertex in S ′
1 representing a set S i ∈ S ′ satisfying the element v ∈ S i . Similarly, for each u ∈ V 2 , connect u to exactly one vertex in S ′ 2 representing a set S j ∈ S ′ satisfying the element u ∈ S j . We obtain that w(v, f (v)) = 1 and w(u, f

(u)) = 1 where v ∈ V 1 , u ∈ V 2 , f (v) ∈ S ′ 1 , and f (u) ∈ S ′ 2 . For each vertex t 1 ∈ S 1 \ S ′ 1 , connect t 1 to exactly one vertex in S ′ 1 . For each vertex t 2 ∈ S 2 \ S ′ 2 , connect t 2 to exactly one vertex in S ′ 2 . We see that w(t 1 , f (t 1)) = 1, w(t 2 , f (t 2)) = 1, and w(f (t 1), f (t 2)) = 2β 2β-1
where f (t 1) ∈ S ′ 1 and f (t 2) ∈ S ′ 2 . We see that D(H) = 6β-2 2β-1 (see Fig. 7). Let H * denote an optimal solution of ∆ β -pHCP. Then D(H *) ≤ 6β-2 2β-1 . Suppose that there exists a polynomial time algorithm for ∆ β -pHCP that computes a solution H such that D(H) < β•(8β-2) 2β-1 . W.l.o.g., assume that

C H = S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 is the set of hubs in H where S ′ 1 ⊆ S 1 , S ′ 2 ⊆ S 2 , V ′ 1 ⊆ V 1 , and V ′ 2 ⊆ V 2 . Claim 12 Either all non-hubs v ∈ V 1 \ V ′ 1 satisfy f (v) ∈ S 1 ∪ V 1 or all non-hubs u ∈ V 2 \ V ′ 2 satisfy f (u) ∈ S 2 ∪ V 2 . Proof If all non-hubs v ∈ V 1 \ V ′ 1 satisfy f (v) ∈ S 1 ∪ V 1 and all non-hubs u ∈ V 2 \ V ′ 2 satisfying f (u) ∈ S 2 ∪ V 2 , then the claim holds. If there are two non-hubs v, v ′ ∈ V 1 \ V ′ 1 satisfying f (v), f (v ′) ∈ S 1 ∪ V 1 , then d H (v, v ′) = w(v, f (v)) + w(f (v), f (v ′)) + w(f (v ′), v ′) ≥ β • (4β -1) 2β -1 + β • (4β -1) 2β -1 = β • (8β -2) 2β -1 ,
a contradiction to the assumption that D(H) < β•(8β-2) 2β-1 . This shows that there is at most one non-hub

v ∈ V 1 \ V ′ 1 satisfying f (v) ∈ S 1 ∪ V 1 .
Similarly, we can show that there is at most one non-hub

u ∈ V 2 \ V ′ 2 satisfying f (u) ∈ S 2 ∪ V 2 .
Suppose that there is exactly one non-

hub v ∈ V 1 \ V ′ 1 satisfying f (v) ∈ S 1 ∪ V 1 . If there exists a non-hub u ∈ V 2 \ V ′ 2 satisfying f (u) ∈ S 2 ∪ V 2 , then d H (v, u) = w(v, f (v)) + w(f (v), f (u)) + w(f (u), u) ≥ β • (4β -1) 2β -1 + β • (4β -1) 2β -1 = β • (8β -2) 2β -1 .
This contradicts the assumption that

D(H) < β•(8β-2) 2β-1 . Thus, if there is a unique non-hub v ∈ V 1 \ V ′ 1 satisfying f (v) ∈ S 1 ∪ V 1 , then all non-hubs u ∈ V 2 \ V ′ 2 satisfy f (u) ∈ S 2 ∪ V 2 . Similarly, we can show that, if there is a unique non-hub u ∈ V 2 \ V ′ 2 satisfying f (u) ∈ S 2 ∪ V 2 , then all non-hubs v ∈ V 1 \ V ′ 1 satisfy f (v) ∈ S 1 ∪ V 1 .
This completes the proof.

Claim 13 Either all v ∈ V 1 \ V ′ 1 satisfy w(v, f (v)) = 1 or all u ∈ V 2 \ V ′ 2 satisfy w(u, f (u)) = 1. Proof Suppose that there exist a v ∈ V 1 \ V ′ 1 and a u ∈ V 2 \ V ′ 2 with w(v, f (v)) > 1 and w(u, f (u)) > 1. We see that d H (u, v) = w(v, f (v)) + w(f (v), f (u)) + w(u, f (u)) ≥ 2β + 2β 2β -1 + 2β = β • (8β -2) 2β -1 .
This contradicts the assumption that D(H)

< β•(8β-2) 2β-1 . Thus, w(v, f (v)) = 1 for all v ∈ V 1 \ V ′ or w(v, f (v)) = 1 for all v ∈ V 2 \ V ′ .
According to Claims 12 and 13, We see that either S ′ 1 forms a set cover of

V 1 \ V ′ 1 or S ′ 2 forms a set cover of V 2 \ V ′
2 where S ′ 1 is the corresponding collection of sets represented by vertices in S ′ 1 and S ′ 2 is the corresponding collection of sets represented by vertices in S ′ 2 . W.l.o.g., assume that S ′ 1 forms a set cover of

V 1 \ V ′ 1 . For each u ∈ V ′ 1 , pick a set S u ∈ S satisfying u ∈ S u , call the collection of sets S ′′ . It is easy to see that |S ′′ | ≤ |V ′ 1 | and S ′ 1 ∪ S ′′ forms a set cover of U . Notice that |S ′ 1 ∪ V ′ 1 | < |C H | = p = 2k. Thus S ′ 1 ∪ S ′′ forms a set cover of U of size at most 2k. This shows that if ∆ β -pHCP has a solution H with D(H) < β•(8β-2) 2β-1
that can be found in polynomial time, then Set Cover can be 2-approximated in polynomial time. However, the 2-approximation of Set Cover is a well-known NP-hard problem [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. By the fact that D(H *) ≤ 6β-2 2β-1 , this implies that for any ǫ > 0, to approximate ∆ β -pHCP to a factor

β•(4β-1)
3β-1ǫ is NP-hard. This completes the proof.

⊓ ⊔

The following theorem concludes the results of Lemmas 2-5. It gives the lower bounds on the approximation ratio for ∆ β -pHCP in different ranges of β where β > 3-

√ 3 2
(see Fig. 2 and3).

Theorem 1 Let β > 3- √ 3
2 . For any ǫ > 0, it is NP-hard to approximate ∆ β -pHCP to a factor of g(β)-ǫ where

(i) g(β) = 3β-2β 2 3(1-β) if 3- √ 3 2 < β ≤ 2 3 ; (ii) g(β) = β + β 2 if 2 3 ≤ β ≤ 5+ √ 5 10 ; (iii) g(β) = 4β 2 +3β-1 5β-1 if 5+ √ 5 10 ≤ β ≤ 1; (iv) g(β) = β • 4β-1 3β-1 if β ≥ 1.

Polynomial-time algorithms

In this section, we show that for 1 2 ≤ β ≤ 3- √ 3

2 , ∆ β -pHCP can be solved in polynomial time. Besides, we give polynomial-time r(β)-approximation algorithms for ∆ β -pHCP for β > 3- √ 3

2 . The functions r(β) are listed in Table 2 and the curves of r(β) are depicted in Fig. 2 and3. For 3-

√ 3 2 < β ≤ 5+ √ 5
10 , our approximation algorithm achieves the factor that closes the gap between the upper and lower bounds of approximability for ∆ β -pHCP (see Fig. 2).

Lemma 6 Given an instance for ∆ β -pHCP with 1 2 ≤ β < 1, optimal solution H * , and the cost D(H *), the following statements hold. Proof Let H * be an optimal solution of the ∆ β -pHCP. If all non-hubs in H * are adjacent to the same hub, then the statement (i) holds directly.

Suppose that H * is an optimal solution such that at least two hubs are adjacent to non-hubs. Let edge (y 1 , z 1) be a longest edge in H * with one end vertex y 1 as a hub and the other end vertex z 1 as a non-hub, i.e., f * (z 1) = y 1 and w(z 1 , y 1) = ℓ 1 ≥ w(v, f * (v)) for all non-hubs v in H * . Let z 2 be an non-hub in H * satisfying that f * (z 2) = y 2 = y 1 . Let ℓ 2 = w(z 2 , y 2). By applying the following steps, we obtain a solution H of ∆ β -pHCP from H * satisfying that all non-hubs are adjacent to the same hub.

-Let all hubs in H * be hubs in H.

-Let all non-hubs in H * be adjacent to y 2 in H.

Since H * is an optimal solution, we see that

D(H *) ≤ D(H). Claim 14 If v is a non-hub and f * (v) = y 2 in H * , then w(v, y 2) ≤ β • (D(H *) -ℓ 2).
Proof Since v is a non-hub and f * (v) = y 2 in H * , we obtain that

w(v, y 2) ≤ β • (w(v, f * (v)) + w(f * (v), y 2)) (using β-triangle inequality) = β • (w(v, f * (v)) + w(f * (v), y 2) + w(y 2 , z 2) -w(y 2 , z 2)) = β • (d H * (v, z 2) -ℓ 2) (since w(y 2 , z 2) = ℓ 2) ≤ β • (D(H *) -ℓ 2). (since d H * (v, z 2) ≤ D(H *))
This completes the proof. Now we prove that D(H) ≤ max{1, min{ 3β-2β 2 3(1-β) , β + β 2 }} • D(H *). For u, v ∈ V , there are the following cases.

-

If (u, v) ∈ E(H), then d H (u, v) = w(u, v) ≤ D(H *) since β < 1.
-If (u, v) ∈ E(H) and both (u, y 2), (v, y 2) ∈ E(H). There are two subcases.

-

If (u, y 2), (v, y 2) ∈ E(H *), then d H (u, v) = d H * (u, v) ≤ D(H *). -If (u, y 2) ∈ E(H *) and (v, y 2) ∈ E(H *) or both (u, y 2), (v, y 2) ∈ E(H *
), then we have the following observations. Suppose that u = z 2 , we see that

d H (u, v) = w(u, y 2) + w(y 2 , v) ≤ ℓ 2 + β • (D(H *) -ℓ 2) (using u = z 2 and Claim 14) ≤ ℓ 2 + (D(H *) -ℓ 2) (since β < 1) = D(H *).
In the following, we assume that that u

= z 2 . If D(H *) -ℓ 2 ≤ β 1-β • ℓ 2 , then ℓ 2 ≥ (1 -β) • D(H *). (1
)
We have

d H (u, v) = w(u, y 2) + w(y 2 , v) ≤ w(u, f * (u)) + w(f * (u), y 2) + w(y 2 , v) (since β < 1) = w(u, f * (u)) + w(f * (u), y 2) + w(y 2 , z 2) -w(y 2 , z 2) + w(y 2 , v) = d H * (u, z 2) -ℓ 2 + w(y 2 , v) (using w(y 2 , z 2) = ℓ 2) ≤ (D(H *) -ℓ 2) + w(y 2 , v) (using d H * (u, z 2) ≤ D(H *)) ≤ (D(H *) -ℓ 2) + β • (D(H *) -ℓ 2) (using Claim 14) = (1 + β) • (D(H *) -ℓ 2) ≤ (1 + β) • (D(H *) -(1 -β) • D(H *)) (using inequality (1)) = (β + β 2) • D(H *). If D(H *) -ℓ 2 > β 1-β • ℓ 2 , then D(H *) > 1 1 -β • ℓ 2 . (2
)
We have

d H (u, v) = w(u, y 2) + w(y 2 , v) ≤ β 1 -β • ℓ 2 + w(y 2 , v) (by Lemma 1 and w(y 2 , z 2) = ℓ 2) ≤ β 1 -β • ℓ 2 + β • (D(H *) -ℓ 2) (according to Claim 14) = β • D(H *) + β • ℓ 2 • (1 1 -β -1) = β • D(H *) + β • ℓ 2 • (β 1 -β) ≤ β • D(H *) + β 2 • D(H *) (according to inequality (2)) = (β + β 2) • D(H *).
Using Lemma 1, we prove the other upper bound on d H (u, v) as follows.

d H (u, v) = w(u, y 2) + w(y 2 , v) ≤ β 1 -β • min{w(y 2 , y 1), w(z 2 , y 2)} + w(y 2 , v) (by Lemma 1) ≤ β 1 -β • min{w(y 2 , y 1), w(z 2 , y 2)} + β • (D(H *) -ℓ 2) (using Claim 14) ≤ β • D(H *) + (β 1 -β -β) • min{w(y 1 , y 2), ℓ 2 } ≤ β • D(H *) + (β 1 -β -β) • D(H *) 3 (since d H * (z 1 , z 2) = w(z 1 , y 1) + w(y 1 , y 2) + ℓ 2 ≤ D(H *) and ℓ 2 ≤ ℓ 1 = w(z 1 , y 1)) = D(H *) • 2β + β 1-β 3 = 3β -2β 2 3(1 -β) • D(H *).
This shows that D(H) ≤ max{1, min{ 3β-2β 2 3(1-β) , β + β 2 }} • D(H *). Now we give the following algorithm Concentrated Hub to find a solution H satisfying that all non-hubs are adjacent to the same hub.

Notice that the algorithm tries all n • (n -1) possibilities to find the only hub y 2 and the longest edge cost between non-hubs and y 2 in H. Since the algorithm computes a solution such that all of the non-hubs are adjacent to the same hub, it is not hard to see that the running time of Algorithm Concentrated Hub is O(n 3). We now prove that the algorithm Concentrated Hub finds a solution H satisfying that D(H) ≤ D(H). Since the algorithm Concentrated Hub tries all possibilities to find the only hub y 2 in H that is adjacent to all non-hubs, we may assume that in H we have y 2 as the unique hub that is adjacent to all non-hubs. We see that for two hubs

Algorithm: Concentrated Hub

x, x ′ ∈ C H , d H (x, x ′) = w(x, x ′) ≤ D(H *) ≤ D(H). Since y 2 is adjacent to all the other vertices v ∈ V \ {y 2 } in H, d H (y 2 , v) = w(y 2 , v) ≤ D(H *) ≤ D(H). For each hub v ∈ V \ C H and each vertex (hub or non-hub) v ′ ∈ V \ {y 2 , v}, since w(v, y 2) ≤ ℓ and w(v ′ , y 2) ≤ D(H) -ℓ, we obtain that d H (v, v ′) = w(v, y 2) + w(v ′ , y 2) ≤ ℓ + (D(H) -ℓ) = D(H).
This shows that D(H) ≤ D(H) and the proof is completed.

⊓ ⊔

Using Lemma 6, we obtain the following results.

Lemma 7 Let 1 2 ≤ β ≤ 3+ √ 29
10 . Then the following statements hold.

1. If β ≤ 3- √ 3 2 , then ∆ β -pHCP can be solved in polynomial time. 2. If 3- √ 3 2 < β ≤ 3+ √ 29 10 , there is a min{ 3β-2β 2 3(1-β) , β + β 2 }-approximation algorithm for ∆ β -pHCP.
Proof Let H * denote an optimal solution of the ∆ β -pHCP problem. Using Lemma 6, there is a polynomialtime algorithm for ∆ β -pHCP to compute a solution

H such that D(H) ≤ max{1, min{ 3β-2β 2 3(1-β) , β + β 2 }} • D(H *).
It is easy to determine the range of β. This completes the proof.

⊓ ⊔ Algorithm APXpHCP: Approximation algorithm for ∆ β -pHCP (G, c) Next, we give another algorithm called Algorithm APXpHCP for ∆ β -pHCP. Let ℓ be the largest edge cost in H * with one end vertex as a hub and the other end vertex as a non-hub, i.e., ℓ = max v∈V \C H * w(v, f * (v)) (see Fig. 8). Note that both Algorithm APX1 and Algorithm APX2 guess all possible edges (y, z) to be the longest edge in H * with y as a hub and z as a non-hub.

Lemma 8 Let H 1 be the solution returned by Algorithm APX1 and H * be an optimal solution. Then

1. for β ≤ 1, D(H 1) ≤ D(H *) + 4βℓ; and 2. for β ≥ 1, D(H 1) ≤ β 2 • D(H *) + 4βℓ
Algorithm APX1

1: Let H 1 be the graph found by the following steps. Initialize D(H 1) = ∞. 2: for y, z ∈ V and y = z do 3: let H ′ be the graph found by the following steps and C H ′ be the hub set in H ′ . Initialize C H ′ := ∅. 4: let ℓ = w(y, z) be the largest edge cost in an optimal solution H * with y as a hub and z as a non-hub. Let U := V \{y} and c 1 := y. 5:

C H ′ := C H ′ ∪ {c 1 }. 6: for x ∈ U do 7: if w(c 1 , x) ≤ ℓ then 8:
add an edge (x, c 1) in H ′ . 9:

U := U \ {x} 10:

end if 11:

end for 12:

while |C H ′ | < p and U = ∅ do 13: where ℓ is the largest edge cost in H * with one end vertex as a hub and the other end vertex as a non-hub, i.e., ℓ = max v∈V \C H * w(v, f * (v)).

i := |C H ′ | + 1 14: choose v ∈ U , let c i = v, connect c i to all other vertices in C H ′ , let U := U \ {v},
Proof Let H * be an optimal solution of ∆ β -pHCP and let f (u) be the hub adjacent to vertex u in H 1 and f (u) = u if u is a hub.

Removing edges with both end vertices in C H * = {s 1 , s 2 , . . . , s p } from H * obtains p components and each component is a star. Let S 1 , S 2 , . . . , S p be the p stars and s i be the center of star S i for i = 1, 2, . . . , p (see Fig. 8). W.l.o.g., assume that s 1 = y and (y, z) is the longest edge in H * with y as a hub and z as a non-hub, i.e., w(y, z) = ℓ. Notice that for each pair of vertices in V , Algorithm APX1 finds a solution H ′ based the assumption that they are the pair of y and z. Since H 1 is the best solution among all the possible solutions found by Algorithm APX1, w.l.o.g, we may assume that c 1 = y. Because for each v ∈ V \ C H * , w(v, f * (v)) ≤ ℓ, by using β-triangle inequality we obtain that for u, v ∈ S i ,

w(u, v) ≤ β • (w(u, s i) + w(v, s i)) ≤ 2βℓ.
Since the algorithm adds edges (v, c 1) in H 1 if w(v, c 1) ≤ ℓ (see Fig. 9), we see that

S 1 ⊂ N H1 [c 1] \ C H1 .
Notice that for each S j , j ≥ 2, if there exists a v ∈ S j specified as c i ∈ C H1 , then all the other vertices

s 1 = y s 2 s p s 3 H * ℓ C H * z
Fig. 8: An optimal solution H * with (y, z) being the longest edge with one end vertex as a hub and the other end vertex as a non-hub and w(y, z) = ℓ.

c 1 = y c 2 c j c 3 H 1 ≤ ℓ > ℓ > 2βℓ ≤ 2βℓ c p c j+1
Fig. 9: An approximate solution found with Algorithm APX1 in S j are connected to one of c 1 , c 2 , . . . , c i in H 1 . Moreover, for each c i , 1 < i ≤ |C H1 |, there exists an S j , 1 < j ≤ p, such that c i ∈ S j and S j ∩ C H1 = {c i }. Notice that if there exists an S j , 1 < j ≤ p, S j ∩ C H1 = ∅, then all vertices of S j must be connected to one of vertices in C H1 in H We next prove that if β ≥ 1, for u, v ∈ C H1 in H 1 , d H1 (u, v) = w(u, v) ≤ β 2 D(H *). Let f * (u) (resp. f * (v)) be the hub adjacent to u (resp. v) in H * where H * is an optimal solution. We see that

w(u, v) ≤ β • (w(u, f * (u)) + w(v, f * (u))) (using β-triangle inequality) ≤ β • (w(u, f * (u)) + β • (w(v, f * (v)) + w(f * (v), f * (u)))) (using β-triangle inequality) ≤ β • (w(u, f * (u)) + β • (w(v, f * (v)) + w(f * (v), f * (u)) + w(u, f * (u)) -w(u, f * (u)))) = β • (w(u, f * (u)) + β • (d H * (v, u) -w(u, f * (u))) ≤ β • (w(u, f * (u)) + β • (D(H *) -w(u, f * (u)))) (using d H * (v, u) ≤ D(H *)) ≤ β 2 • D(H *). (since β ≥ 1)
Notice that for all non-hubs u ∈

V \ C H1 , w(u, f (u)) ≤ 2βℓ. Thus, if β ≤ 1, for any u, v ∈ V d H (u, v) = w(u, f (u)) + w(f (u), f (v)) + w(v, f (v)) ≤ D(H *) + 4βℓ. (since w(f (u), f (v)) ≤ D(H *)) If β ≥ 1, for for any u, v ∈ V , d H (u, v) = w(u, f (u)) + w(f (u), f (v)) + w(v, f (v)) ≤ β 2 • D(H *) + 4βℓ. (since w(f (u), f (v)) ≤ β 2 • D(H *))
This completes the proof. ⊓ ⊔ Lemma 9 Let H 2 be the solution returned by Algorithm APX2 and H * be an optimal solution. Then,

1. D(H 2) ≤ max{D(H *), (1 + β) • (D(H *) -ℓ)} if β ≤ 1; and 2. D(H 2) ≤ max{ℓ + β(D(H *) -ℓ), 2β(D(H *) -ℓ)} if β ≥ 1 y v 1 v p-1 v 2 H 2 z
Fig. 10: An approximate solution found with Algorithm APX2 where ℓ is the largest edge cost in H * with one end vertex as a hub and the other end vertex as a non-hub, i.e., ℓ = max v∈V \C H * w(v, f * (v)).

Proof Let H * be an optimal solution. For a non-hub v, use f * (v) to denote the hub adjacent to v in H * . For a hub v in H * , let f * (v) = v. Notice that Algorithm APX2 guesses all possible edges (y, z) to be a longest edge in H * with one end vertex as a hub and the other end vertex as a non-hub. In the following we assume that w(y, z) = ℓ is the largest edge cost in H * with y as a hub and z as a non-hub.

Claim 15 For any hub

v ∈ C H2 \ {y} in H 2 , d H2 (v, y) ≤ D(H *) -ℓ. Proof For β ≤ 1, d H2 (v, y) = w(v, y) ≤ w(v, f * (v)) + w(f * (v), y) + w(y, z) -w(y, z) = d H * (v, z) -ℓ (w(y, z) = ℓ) ≤ D(H *) -ℓ
For β ≥ 1, the algorithm (p -1) vertices closest to y from V \ {y, z} as hubs. If v is a hub in H * , then

d H2 (v, y) = d H * (v, y) + w(y, z) -w(y, z) = d H * (v, z) -ℓ ≤ D(H *) -ℓ.
If v is a non-hub in H * , then there exists a hub v ′ in H * satisfying that w(v ′ , y) ≥ w(v, y). We obtain that

d H2 (v, y) = w(v, y) ≤ w(v ′ , y) + w(y, z) -w(y, z) = d H * (v ′ , z) -ℓ ≤ D(H *) -ℓ.
This completes the proof.

Claim 16 For any non-hub

v ∈ V \ (C H2 ∪ {z}) in H 2 , if v is a hub in H * or v is a non-hub adjacent to y, then d H2 (v, y) ≤ D(H *) -ℓ.
Proof Notice that v is a non-hub in H 2 adjacent to y and either v is a hub in H * or v is a non-hub adjacent to y, v = z. We obtain that

d H2 (v, y) = w(v, y) = w(v, y) + w(y, z) -w(y, z) = d H * (v, z) -w(y, z) = d H * (v, z) -ℓ (since w(y, z) = ℓ) ≤ D(H *) -ℓ
This completes the proof.

Claim 17 For any non-hub

v ∈ V \ (C H2 ∪ {z}) in H 2 , if v is a non-hub in H * satisfying that v is not adjacent to y, then d H2 (v, y) ≤ β • (D(H *) -ℓ).
Proof Notice that v is a non-hub in H 2 and v is a non-hub in H * satisfying that v is not adjacent to y, i.e., f * (v) = y. We obtain that

d H2 (v, y) = w(v, y) ≤ β • (w(v, f * (v)) + w(f * (v), y)) (using β-triangle inequality) = β • (w(v, f * (v)) + w(f * (v), y) + w(y, z) -w(y, z)) = β • (d H * (v, z) -ℓ) (since w(y, z) = ℓ) ≤ β • (D(H *) -ℓ).
This completes the proof.

Claim 18 Let u and v be two non-hubs in

H 2 . Then d H2 (u, v) ≤ max{D(H *), (1 + β) • (D(H *) -ℓ)} if β ≤ 1; and d H2 (u, v) ≤ max{ℓ + β • (D(H *) -ℓ), 2β • (D(H *) -ℓ)} if β ≥ 1.
Proof For two non-hubs u, v in H 2 , we have the following six cases.

d H2 (u, v) = w(u, y) + w(v, y) = d H2 (u, y) + d H2 (v, y) ≤ D(H *) -ℓ + β • (D(H *) -ℓ) (using Claims 16 and 17) = (1 + β) • (D(H *) -ℓ). If u = z, we see that d H2 (u, v) = w(y, z) + w(v, y) = ℓ + d H2 (v, y) (since w(y, z) = ℓ) ≤ ℓ + β • (D(H *) -ℓ). (using Claim 17)
(iii) Both u and v are non-hubs in H * and f * (u) = y and f * (v) = y. We see that

d H2 (u, v) = w(u, y) + w(v, y) ≤ d H2 (u, y) + d H2 (v, y) ≤ 2β • (D(H *) -ℓ). (using Claim 17) (iv) The vertex u is a hub in H * and v is a non-hub in H * satisfying that f * (v) = y. We see that d H2 (u, v) = w(u, y) + w(v, y) = d H * (u, v) ≤ D(H *). (v) The vertex u is a hub in H * and v is a non-hub in H * satisfying that f * (v) = y. We see that d H2 (u, v) = w(u, y) + w(v, y) ≤ d H2 (u, y) + d H2 (v, y) ≤ (D(H *) -ℓ) + β • (D(H *) -ℓ) (using Claims 16 and 17) = (1 + β) • (D(H *) -ℓ).
(vi) Both u and v are hubs in H * . For β ≥ 1, we obtain that

d H2 (u, v) ≤ β • (w(u, y) + w(v, y)) (using β-triangle inequality) = β • (d H2 (u, y) + d H2 (v, y)) ≤ 2β • (D(H *) -ℓ). (using Claim 16)
For β ≤ 1, since Algorithm APX2 picks (p -1) vertices farthest to y from V \ {y, z} as hubs in H 2 , there exist two vertices u ′ , v ′ ∈ C H2 satisfying that u ′ and v ′ are non-hubs in H * and w(u ′ , y) ≥ w(u, y) and w(v ′ , y) ≥ w(v, y). We obtain that d H2 (u, v) = w(u, y) + w(v, y) ≤ w(u ′ , y) + w(v ′ , y).

Next we show that w(u ′ , y) + w(v ′ , y) ≤ max{D(H *), (1 + β) • (D(H *)ℓ)}. There are three cases. a. If f * (u ′) = y and f * (v ′) = y, we see that w(u ′ , y)

+ w(v ′ , y) = d H * (u ′ , v ′) ≤ D(H *). b. f * (u ′) = y and f * (v ′) = y. We obtain that w(u ′ , y) + w(v ′ , y) = d H2 (u ′ , y) + w(v ′ , y) ≤ (D(H *) -ℓ) + β • (w(v ′ , f * (v ′)) + w(f * (v ′), y) + w(y, z) -w(y, z))
(using Claims 15 and β-triangle inequality)

= (D(H *) -ℓ) + β • (d H * (v ′ , z) -ℓ) (since w(y, z) = ℓ) ≤ (D(H *) -ℓ) + β • (D(H *) -ℓ)) (since d H * (v ′ , z) ≤ D(H *)) = (1 + β) • (D(H *) -ℓ). c. f * (u ′) = y and f * (v ′) = y. We obtain that w(u ′ , y) + w(v ′ , y) = β • (w(u ′ , f * (u ′)) + w(f * (u ′), y) + w(y, z) -w(y, z)) + β • (w(v ′ , f * (v ′)) + w(f * (v ′), y) + w(y, z) -w(y, z)) (using β-triangle inequality) = β • (d H * (u ′ , z) -ℓ) + β • (d H * (v ′ , z) -ℓ) ≤ 2β • (D(H *) -ℓ). (since d H * (u ′ , z) ≤ D(H *) and d H * (v ′ , z) ≤ D(H *)) ≤ (1 + β) • (D(H *) -ℓ). (since β ≤ 1) This shows that w(u ′ , y)+ w(v ′ , y) ≤ max{D(H *), (1 + β)•(D(H *)-ℓ)}. Notice that d H2 (u, v) ≤ w(u ′ , y) + w(v ′ , y
). Thus, for any two non-hubs u, v in H 2 satisfying that both u and v are hubs in

H * , d H2 (u, v) ≤ max{D(H *), (1 + β) • (D(H *) -ℓ) if β ≤ 1; and d H2 (u, v) ≤ 2β • (D(H *) -ℓ) if β ≥ 1. Notice that if β ≤ 1, ℓ + β(D(H *) -ℓ) ≤ D(H *) and 2β • (D(H *) -ℓ) ≤ (1 + β) • D(H *). Conversely if β ≥ 1, ℓ + β(D(H *) -ℓ) ≥ D(H *) and 2β • (D(H *) -ℓ) ≥ (1 + β) • D(H *).
Thus, for any two non-hubs

u, v in H 2 , if β ≤ 1, d H2 (u, v) ≤ max{D(H *), (1 + β) • D(H *)}; if β ≥ 1, d H2 (u, v) ≤ max{ℓ + β(D(H *) -ℓ), 2β • (D(H *) -ℓ)}.
This completes the proof.

Claim 19 For a non-hub u and a hub v in H

2 , d H2 (u, v) ≤ max{D(H *), (1 + β) • (D(H *) -ℓ)}.
Proof For a non-hub u and a hub v in H 2 , there are three cases.

(i) The vertex u is a non-hub adjacent to the hub y in H * , w(u, y) ≤ ℓ. By Claim 15, d H2 (v, y) ≤ D(H *)ℓ. We obtain that

d H2 (u, v) = w(u, y) + d H2 (v, y) ≤ ℓ + D(H *) -ℓ = D(H *).
(ii) The vertex u is a non-hub not adjacent to y in H * . We obtain that

d H2 (u, v) = w(u, y) + w(v, y) = d H2 (u, y) + d H2 (v, y) ≤ β • (D(H *) -ℓ) + (D(H *) -ℓ) (using Claims 17 and 15) = (1 + β) • (D(H *) -ℓ) (iii) The vertex u is a hub in H * . For β ≥ 1, we obtain that d H2 (u, v) = w(u, y) + d H2 (v, y) = w(u, y) + w(y, z) -w(y, z) + d H2 (v, y) = d H * (u, z) -ℓ + d H2 (v, y) (since w(y, z) = ℓ) ≤ D(H *) -ℓ + d H2 (v, y) (since d H * (u, z) ≤ D(H *)) ≤ 2 • (D(H *) -ℓ) (using Claim 15) ≤ (1 + β) • (D(H *) -ℓ) (since β ≥ 1)
For β ≤ 1, since Algorithm APX2 picks (p -1) vertices farthest to y from V \ {y, z} as hubs in H 2 , there exists a u ′ ∈ C H2 satisfying that u ′ is a non-hubs in H * and w(u ′ , y) ≥ w(u, y). Suppose that f * (u ′) = y. We see that

d H2 (u, v) = w(u, y) + w(v, y) ≤ w(u ′ , y) + d H2 (v, y) ≤ ℓ + d H2 (v, y) (since u ′ is a non-hub adjacent to y) ≤ ℓ + (D(H *) -ℓ) (using Claim 15) = D(H *)
Suppose that f * (u ′) = y. We see that

d H2 (u, v) = w(u, y) + w(v, y) ≤ w(u ′ , y) + d H2 (v, y) = d H2 (u ′ , y) + d H2 (v, y) ≤ β • (D(H *) -ℓ) + D(H *) -ℓ (using Claims 17 and 15) ≤ (1 + β) • (D(H *) -ℓ).
Thus, for a non-hub u and a hub v in H 2 ,

d H2 (u, v) ≤ max{D(H *), (1 + β) • D(H * -ℓ)}.
This completes the proof.

Claim 20 Let u, v be two hubs in H 2 , u = y and v = y. Then, d H2 (u, v) ≤ D(H *) if β ≤ 1 and d H2 (u, v) ≤ 2β • D(H * -ℓ) if β ≥ 1.
Proof For two hubs u, v in Proof Let H * be an optimal solution of ∆ β -pHCP. In this lemma, we show that for 3+ This completes the proof.

⊓ ⊔

We now prove that if 1 ≤ β ≤ 2, Algorithm APXpHCP is a (

β 2 +4β
3

)-approximation algorithm for ∆ β -pHCP.

(v) r(β) = β 2 +4β 3 if 1 ≤ β ≤ 2; (vi) r(β) = 2β if β ≥ 2.

Conclusion

In this paper, we have studied ∆ β -pHCP for all β ≥ 1 2 . A polynomial time algorithm is given to solve ∆ β -pHCP optimally for β ≤ 3- √ 3

2 . It is shown that for any ǫ > 0, to approximate ∆ β -pHCP to a ratio g(β)ǫ is NP-hard for β > 3- √ 3

2 . We give r(β)-approximation algorithms for the same problem for any β > 3- √ 3

2 . For β = 1, we see that the lower bound g(β) = 3 2 and upper bound r(β) = 5 3 of approximation ratios are small. However, for β > 1, the gap between the upper and lower bounds of approximability can be arbitrarily large. In future work, it is of interest to extend the range of β for ∆ β -pHCP such that the gap between the upper and lower bounds of approximability can be reduced for any β > 1.

Fig. 1 :

 1 Fig. 1: An example of ∆ β -pHCP with p = 4

Fig. 6 :

 6 Fig. 6: A feasible solution obtained from an optimal solution of Set Cover

 (i) There exists a solution H satisfying that all non-hubs are adjacent to the same hub andD(H) ≤ max{1, min{ 3β-2β 2 3(1-β) , β + β 2 }} • D(H *).(ii) There exists a polynomial-time algorithm to compute a solution H such that D(H) = D(H).

 1 and |C H1 | ≤ p. This shows that for all non-hub u ∈ V \C H1 , w(u, f (u)) ≤ 2βℓ. Suppose that |C H1 | < p and the algorithm selects p -|C H1 | vertices non-hubs to be hubs in Step 22 of Algorithm APX1. Thus, the algorithm always returns a feasible solution with |C H1 | = p. We then show that D(H 1) ≤ D(H *) + 4βℓ if β ≤ 1 and D(H 1) ≤ β 2 • D(H *) + 4βℓ if β ≥ 1. Suppose that β ≤ 1. For any u, v ∈ C H1 , d H1 (u, v) = w(u, v) ≤ D(H *).

(i)

 i Both u and v are non-hubs in H * and f *(u) = f * (v) = y. We see that d H2 (u, v) = d H * (u, v) ≤ D(H *).(ii) Both u and v are non-hubs in H * and f * (u) = y and f * (v) = y. If u = z, we see that

H 2 ,≤ β ≤ 1 .

 21 u = y and v = y, we see that d H2 (u, v) = w(u, v) ≤ D(H *) if β ≤ 1. We now prove that for β ≥ 1, for two hubs u, v inH 2 , u, v = y, d H2 (u, v) = w(u, v) ≤ 2β(D(H *)ℓ). By Claim 15, we see that d H2 (u, v) = w(u, v) ≤ β • (w(u, y) + w(v, y)) (using β-triangle inequality) = β • (d H2 (u, y) + d H2 (v, y)) ≤ 2β(D(H *)ℓ) (using Claim 15)This completes the proof.By Claims 15, 16, and 17, for any vertex v inH 2 , v = y, d H2 (v, y) ≤ max{D(H *)ℓ, β • (D(H *ℓ))}. Since for any v in H 2 , v = y and v = z, d H2 (v, z) = d H2 (v, y) + w(y, z) and w(y, z) = ℓ, we see that d H2 (v, z) ≤ max{D(H *), ℓ + β • (D(H *)ℓ))}.Using Claims 18, 19, and 20, we obtain that if β ≤ 1,D(H 2) ≤ max{D(H *), (1 + β) • (D(H *)ℓ)}; if β ≥ 1, D(H 2) ≤ max{ℓ + β(D(H *)ℓ), 2β(D(H *)ℓ)}.This completes the proof. Then, there is a (4β 2 +5β+1 5β+1)-approximation algorithm for ∆ β -pHCP.

√ 29 10 ≤ β ≤ 1 ,

 101 Algorithm APXpHCP returns a solution H such that D(H) ≤ (4β 2 +5β+1 5β+1) • D(H *).By Lemma 8 and Lemma 9, we see that the approximation ratio of Algorithm APXpHCP is r(β) = min{ D(H1) D(H *) , D(H2) D(H *) }. Note that if ℓ D(H *) ≥ β 1+β , then D(H 2) = D(H *). Assume that ℓ D(H *) < β 1+β , we see that D(H 2) ≤ (1 + β) • (D(H *)ℓ).The worst case approximation ratio of Algorithm APXpHCP happens when D(H 1) = D(H 2), i.e.,D(H *) + 4βℓ = (1 + β) • (D(H *)ℓ).This implies ℓ D(H *) = β 5β+1 . Thus, r(β) = min{ D(H1) D(H *) , D(H2) D(H *) } ≤ 1 + 4β 2 5β+1 .

Lemma 11 3)2 +4β 3) 6) = β 2 +4β 3 . 3 . 2

 11336332 Let 1 ≤ β ≤ 2. Then, there is a (β 2 +4β -approximation algorithm for ∆ β -pHCP.Proof We show that for 1 ≤ β ≤ 2, Algorithm APXpHCP returns a solution H such that D(H) ≤ (β • D(H *) where H * an optimal solution of ∆ β -pHCP.By Lemma 8 and Lemma 9, we see that the approximation ratio of Algorithm APXpHCP is r(β) = min{ D(H1) D(H *) , D(H2) D(H *) }. If ℓ D(H *) ≥ β 1+β , then max{ℓ + β(D(H *)ℓ), 2β • (D(H *)ℓ)} = ℓ + β(D(H *)ℓ) ≤ β • D(H *). Since β • D(H *) < β 2 • D(H *) + 4βℓ, we see that Algorithm APX2 always returns a better solution than Algorithm APX1 with the approximation ratio β <β 2 *) < β 1+β . We have max{ℓ + β • (D(H *)ℓ), 2β • (D(H *)ℓ)} = 2β • (D(H *)ℓ).The worst case approximation ratio of Algorithm APXpHCP happens when D(H 1) = D(H 2), i.e.,β 2 D(H *) + 4βℓ = 2β • (D(H *)ℓ). Since 1 ≤ β ≤ 2, we obtain that ℓ D(H *) = 2-β 6 . Thus, r(β) = min{ D(H1) D(H *) , D(H2) D(H *) } ≤ β 2 + 4β • (2-βThis completes the proof.⊓ ⊔We prove that if β ≥ 2, Algorithm APXpHCP is a 2β-approximation algorithm for ∆ β -pHCP.Lemma 12 For β ≥ 2, there is a 2β-approximation algorithm for ∆ β -pHCP.Proof Since β ≥ 2, by Lemmas 8 and 9 we see that Algorithm APX2 always returns a solution better than the solution returned by Algorithm APX1. Using Lemma 9, we obtain thatD(H 2) ≤ max{ℓ+β(D(H *)ℓ), 2β(D(H *)-ℓ)}. Since β ≥ 2, we see that D(H 2) ≤ max{ℓ+β(D(H *)-ℓ), 2β(D(H *)-ℓ)} ≤ 2βD(H *).This completes the proof.⊓ ⊔It is not hard to see that all algorithms given in this sections run in polynomial time. The following theorem concludes the results of Lemmas 6-12. It gives the upper bounds of approximation ratio for ∆ β -pHCP in different ranges of β. The curves of the upper bounds r(β) are depicted in Fig.2and Fig.Theorem Let β ≥ 12 . There exists a polynomial-time r(β)-approximation algorithm for ∆ β -pHCP where(i) r(β) = 1 if β ≤ 3- r(β) = β + β 2 if 5+

Table 5 :

 5 The cost of edges (a, b) in G

Table 6 :

 6 The cost of edges (a, b) in G

1 :

 1 Let H be the graph found by the following steps. Initialize D(H) = ∞. 2: for u, z ∈ V do 3: let H ′ be the solution found by the following steps. Initialize C H ′ = ∅.4:let u be the unique hub y 2 adjacent to non-hubs in H and w(u, z) = ℓ be the longest edge cost between non-hubs and y 2 in H. Let U := V \ {u} and C H ′ := {u}.

	5:	for v ∈ U do
	6:	if w(v, u) ≤ ℓ then
	7:	let v be a non-hub adjacent to u in H and U := U \ {v},
	8:	else
	9:	C H ′ := C H ′ ∪ {v}, i.e., v is a hub in H ′ .
	10:	end if
	11:	end for
	12:	j := |C H ′ |
	13:	if U = ∅ then
	14:	go to step 2.
	15:	else if j < p then
	16:	select (p -j) non-hubs that are farthest from u as hubs and update C H ′ accordingly.
	17:	end if
	18:	if D(H ′) < D(H) then
	19:	H := H ′
	20:	end if
	21: end for
	22: return H

 and let C H ′ := C H ′ ∪ {c i }. ′ | < p and U = ∅ then 22: arbitrarily select p -|C H ′ | non-hubs to be hubs and connect all edges between hubs. : Let H 2 be the graph found by the following steps. Initialize D(H 2) = ∞. 2: for y, z ∈ V and y = z do 3: let H ′′ be the graph found by the following steps and C H ′′ be the hub set of H ′′ . Initialize C H

	15:	for x ∈ U do
	16:	if w(x, c i) ≤ 2βℓ then
	17:	add edge (x, c i) in H ′ and U := U \ {x}.
	18:	end if
	19:	end for
	20:	end while
	21: if |C H 23: end if
	24:	if D(H ′) < D(H 1) then
	25:	H 1 := H ′
	26:	end if
	27: end for
	28: return H 1
	Algorithm APX2
	5:	connect y to all vertices in V .
	6:	if β ≤ 1 then
	7:	
	10:	end if
	11:	connect all pairs of vertices in C H ′′ .
	12:	if D(H ′′) < D(H 2) then
	13:	H 2 := H ′′
	14:	end if
	15: end for
	16: return H 2

1′′ := ∅. 4: let (y, z) be a longest edge in H * with one end vertex y as a hub and the other end vertex z as a non-hub i.e., f * (z) = y and w(z, y) ≥ w(v, f * (v)) for all non-hubs v. pick (p -1) vertices {v 1 , v 2 , . . . , v p-1 } farthest to y from V \ {y, z}. Let C H ′′ = {y, v 1 , v 2 , . . . , v p-1 }. 8: else 9: pick (p -1) vertices {v 1 , v 2 , . . . , v p-1 } closest to y from V \ {y, z}. Let C H ′′ = {y, v 1 , v 2 , . . . , v p-1 }.

Acknowledgments

The authors would like to thank the anonymous referees for their constructive comments that greatly improve the quality of the paper.

the p-hub center problem with parameterized triangle inequality. Part of this research was supported by the Ministry of Science and Technology of Taiwan under grant MOST 108-2221-E-006-105-MY3. Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the "Investments for the future" Programme IdEx Bordeaux -SysNum (ANR-10-IDEX-03-02). Research supported by the LaBRI under the "Projets émergents" program. L.