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DIFFUSIVE LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK
MODEL: QUANTITATIVE AND STRONG CONVERGENCE

RESULTS∗

ALAIN BLAUSTEIN†

Abstract. This work tackles the diffusive limit for the Vlasov-Poisson-Fokker-Planck model. We
derive a priori estimates which hold without restriction on the phase-space dimension and propose a
strong convergence result in a L2 space. Furthermore, we strengthen previous results by obtaining an
explicit convergence rate arbitrarily close to the (formal) optimal rate, provided that the initial data
lies in some Lp space with p large enough. Our result holds on bounded time intervals whose size
grow to infinity in the asymptotic limit with explicit lower bound. The analysis relies on identifying
the right set of phase-space coordinates to study the regime of interest. In this set of coordinates
the limiting model arises explicitly.

Key words. Hydrodynamic limit, Vlasov-Poisson-Fokker-Planck system, Drift-Diffusion Pois-
son model
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1. Introduction.

1.1. Physical model and motivation. In this article, we study a plasma com-
posed of moving electrons and fixed ions. We denote by fε(t,x,v) ≥ 0 the density
of electron at time t ∈ R+, position x ∈ Kd with K ∈ {T,R} and velocity v ∈ Rd

whereas the density of ions is given by ρi(x) ≥ 0 with ρi ∈ L1
(
Kd
)
. We focus on the

Vlasov-Poisson-Fokker-Planck (VPFP) model, which describes a situation where the
particles interact through electrostatic effects and where electrons are subjected to
collisions with the ion background. Considering the regime in which the electron/ion
mass ratio and the mean free path of electrons have the same magnitude, the VPFP
model reads

(1.1)



∂t f
ε +

1

ε
v · ∇x f

ε +
1

ε
Eε · ∇v f

ε =
1

ε2
∇v · [v fε + ∇v f

ε ] ,

Eε = −∇x ϕ
ε , −∆x ϕ

ε = ρε − ρi , ρε =

∫
Rd

fε dv ,

fε(0,x,v) = fε0 (x,v) ,

where the self consistent electric field Eε is induced by Coulombian interactions be-
tween charges whereas the Fokker-Planck operator on the right-hand side of the first
line in (1.1) accounts for collisions with the ion background. A detailed description
of the re-scaling process in order to derive (1.1) may be found in [19, 34]. Since mass
is conserved along the trajectories of (1.1), we normalize fε as follows∫

Kd×Rd

fε0 dx dv = 1 .
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2 A. BLAUSTEIN

When K = T, we also impose the compatibility assumption∫
Kd×Rd

fε0 dx dv =

∫
Kd

ρi dx ,

which is then satisfied for all positive time t ≥ 0. In this article, we focus on the
asymptotic analysis of (1.1) in the diffusive regime corresponding to the limit ε≪ 1.

1.2. Formal derivation. In this section, we carry out a formal analysis of the
diffusive regime. Our purpose is to derive the limit of fε as ε → 0 and to explain
the key idea of this article in order to rigorously justify this limit. Considering the
leading order term in equation (1.1), we deduce that as ε vanishes, fε converges to
the following local equilibrium of the Fokker-Planck operator

fε ∼
ε→0

ρε ⊗M ,

where M stands for the standard Maxwellian distribution over Rd

(1.2) M(v) = (2π)
− d/2

exp

(
− 1

2
|v|2

)
,

and where the spatial distribution ρε given in (1.1) solves the following equation,
obtained after integrating the first line in (1.1) with respect to v

∂t ρ
ε +

1

ε
∇x ·

∫
Rd

v fε dv = 0 .

It is unfortunately trickier to compute the limit of ρε. The difficulty stems from
the free transport operator in the first line of (1.1) which induces a stiff dependence
with respect to fε in the equation on ρε. The key idea is therefore to cancel this
stiff dependence by considering a modified spatial distribution πε. To this aim, we
introduce a re-scaled version gε of fε

(τεv g
ε) (t,x,v) = fε(t,x,v) , ∀ (t,x,v) ∈ R+ ×Kd × Rd ,

where τx0 g denotes the function obtained by translating any function g in the direc-
tion x0 ∈ Rd, that is

τx0 g(t,x,v) := g(t,x+ x0,v) , ∀ (t,x,v) ∈ R+ ×Kd × Rd .

Defining the new variable y := x + εv and operating the change of variable x → y
in the first line of (1.1), it turns out that gε solves the following equation

∂tg
ε +

(
∇y +

1

ε
∇v

)
·
[
τ−1
εv (Eε fε)

]
−∆y g

ε =
1

ε2
∇v ·[v gε +∇v g

ε ] +
2

ε
∇v ·∇y g

ε,

where one may notice that the free transport operator has been canceled in the re-
scaling process. Therefore, the marginal πε of gε defined as

πε (t,y) =

∫
Rd

gε (t,y,v) dv =

∫
Rd

τ−1
εv f

ε (t,y,v) dv , ∀ (t,y) ∈ R+ ×Kd ,

solves the following equation, obtained after integrating the equation on gε with re-
spect to v

(1.3) ∂t π
ε + ∇y ·

[ ∫
Rd

τ−1
εv (Eε fε) (t,y,v) dv

]
− ∆y π

ε = 0 .
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In the limit ε → 0, we have ρε ∼ πε and thus Eε ∼ Iε, where

(1.4) Iε = −∇y ψ
ε , −∆y ψ

ε = πε − ρi .

Furthermore, the translation operator τ−1
εv in (1.3) cancels as ε → 0. Therefore, the

dependence with respect to fε is removed from the nonlinear term in (1.3), that is∫
Rd

τ−1
εv (Eε fε) (t,y,v) dv ∼ Iε πε .

Therefore, we deduce

πε −→
ε→0

ρ ,

where ρ solves the following drift-diffusion-Poisson equation

(1.5)


∂t ρ + ∇x · [E ρ ] − ∆x ρ = 0 ,

−∆x ϕ = ρ − ρi , E = −∇x ϕ ,

Since we have πε ∼ ρε, this leads to the following formal result

fε −→
ε→0

ρ⊗M .

As it turns out, the set of coordinates (y,v), with y := x+ εv is very convenient to
study the diffusive regime: it removes from the equation on ρε the stiff dependence
with respect to fε due to the transport operator. Instead, we end up with equa-
tion (1.3) which is close to the limiting model (1.5). Therefore, the modified spatial
distribution πε will play a key role in our analysis.

The present work consists in rigorously justifying this formal derivation. It is
the continuation of a long process in order to justify the diffusive limit of the VPFP
model.
The story starts in [34], in which F. Poupaud and J. Soler demonstrate strong conver-
gence of fε on short time intervals without restriction on the dimension. The present
article is somehow close to [34] since it uses the same functional framework. Their
key idea is to estimate the norm |||fε|||p (defined in Section 2 below), which in turn
provides a L∞-control over the field Eε. F. Poupaud and J. Soler manage to control
|||fε|||p on short time intervals. This estimate allow them to prove strong compactness
of the sequence (ρε)ε>0 and to pass to the limit in the nonlinear term thanks to their
L∞-control over Eε. In the same article, F. Poupaud and J. Soler remove the short
time restriction and obtain local in time weak convergence in dimension d = 2. In
this case, the Coulomb potential has a particular structure which allows them to pass
to the limit in the nonlinear term. Their strategy was then extended by T. Goudon
[22] who proved similar results for Newtonian interactions when d = 2.
The story goes on in [18], in which N. El Ghani and N. Masmoudi prove strong and
local in time convergence without restriction on the dimension d. Their method relies
on averaging lemmas [21, 15] to prove strong compactness of the spatial distributions
(ρε)ε>0 associated to free energy solutions (fε)ε>0 to (1.1). In such a weak regularity
framework, the nonlinear term in (1.1) may not be defined. Hence, authors use renor-
malization techniques introduced by R. J. Diperna and P.-L. Lions [14] to pass to the
limit in the nonlinear term. This approach was initially designed to treat the case
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of a linearized Boltzmann operator [28]. Since then, it has been extended in various
directions including multi-species models [36], Vlasov-Maxwell-Fokker-Planck model
[17] and strongly magnetized plasma models [26].
More recently, authors adapted hypocoercivity methods [35, 16, 24] to the present
situation in order to achieve global in time convergence. This is the case of [27], in
which M. Herda and M. Rodrigues prove global in time strong convergence in weakly
nonlinear regime (that is, under joint restrictions on the Debye length and the size of
the initial data) when d = 2. The main difficulty to prove global in time convergence is
that the Fokker-Planck operator in (1.1) acts only on the velocity variable and there-
fore gives no straightforward information regarding the asymptotic behavior of ρε as
t→ +∞. Hypocoercivity methods rely on constructing of a modified relative entropy
functional designed to recover dissipation with respect to the spatial variable. In [27],
M. Herda and M. Rodrigues design such functional, allowing to deduce global in time
convergence of the sequence (fε)ε>0. Using similar methods, exponential relaxation
as t → +∞ had already been proved in [25], in a weakly nonlinear setting. We also
mention [1], which proves that the linearized model associated to (1.1) relaxes expo-
nentially fast towards equilibrium as t → +∞ with uniform rates in the limit ε → 0.
Authors deduce the same result on the nonlinear model in the case d = 1.
In perturbative settings, precise results are available [37], based on a spectral analysis
of (1.1), treating simultaneously the diffusion limit with explicit convergence rates in
ε and the long time behavior with optimal exponential rate in t.

In this article, we propose a strong convergence result in some L2 space and prove
that it occurs at rate O(εβ), with β = (p − d)/(p − 1) if fε0 lies in some Lp space:
the (formal) optimal convergence rate is reached as p → +∞. Our analysis is non-
perturbative and it holds in any dimension d ≥ 1. Our convergence estimate holds on
bounded time intervals [0, T ε], for some explicitly given T ε (see Theorem 2.1) which
satisfies T ε → +∞ as ε → 0. We point out that it should be possible to adapt our
analysis to Newtonian interactions as long as the macroscopic model does not develop
singularities but we do not follow this path to avoid these issues.

The article is organized as follows: in Section 2, we give our functional setting
and state our main result, in Section 3 we derive uniform estimates for the solution
to (1.1), then we conclude with Section 4 in which we prove our main result.

2. Functional setting and main result. In the forthcoming analysis, we work
with the following norm defined for all exponent p ≥ 1

|||f |||p =

(∫
Kd×Rd

∣∣∣∣ fM
∣∣∣∣p M dx dv

)1/p

,

and denote by Lp (M) the set of all function whose latter norm is finite. Furthermore,
we denote ∥·∥Lp the usual norm over Lp

(
Kd
)
.

Existence and uniqueness theory for (1.1) has been widely investigated and there-
fore it will not be our concern here. We mention [13] in which global classical solutions
are constructed in dimension d = 1, 2, [30, 31] which extend this result to dimension
d = 3 in both the friction and frictionless cases and notably prove regularizing effects
and thus obtain infinite regularity, [8] in which existence and uniqueness of a global
strong solution is obtained when d = 3 and with uniform bounds on the initial data
and then [9] in which regularizing effects are proved for this weak solution, finally, we
mention [11] which treats the case of an initial data in Lp and constructs solutions
in dimensions d = 3, 4. Since this article does not require any constraint on the di-
mension, we consider a strong solution to (1.1) in dimension d ≥ 1. Our main result
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reads as follows

Theorem 2.1. Consider some exponent p > d and set

(γ , β) =

(
1− d

p
,
p− d

p− 1

)
.

Suppose that the sequence (fε0 )ε> 0 meets the following assumption
(2.1)

|||fε0 |||p + sup
|x0| ≤ 1

(
|x0|−β |||τx0

fε0 − fε0 |||p
)
+ ε−β (∥πε

0 − ρε0∥Lp + ∥ρε0 − ρ0∥Lp) ≤ mp ,

for some positive constant mp independent of ε. On top of that, suppose

(2.2) ρ0 ∈ Lp ∩ L∞ (Kd
)
, and ρi ∈ Lp+1 ∩ L∞ (Kd

)
,

and define

Cρ0,ρi := max
(
∥ ρ0 ∥2Lp , ∥ ρi ∥2−2/p2

Lp+1 , ∥ ρ0 ∥L∞ , ∥ ρi ∥L∞

)
.

Consider strong solutions (fε)ε> 0 to (1.1) and ρ to (1.5) with initial data (fε0 )ε> 0

and ρ0 respectively. For all time T > 0, there exist two positive constants CT and εT
such that for all ε ≤ εT , it holds

∥fε − ρM∥L2([0,T ] , L2(M)) ≤ CT ε
β .

More precisely, there exists a constant C only depending on exponent p and di-
mension d such that for all ε ≤ 1 it holds

∥fε − ρM∥L2([0,t] , L2(M)) ≤ εβ
(
Cm2 p′

p eCρ0,ρi
C t + eC

−1
ρ0,ρi

C m2
p eCρ0,ρi

C t
)
,

where p′ = p/(p− 1) and for all time t less than T ε, where T ε is defined as

T ε =
1

Cρ0,ρi
C

ln

1 +
Cρ0,ρi

4 |||fε0 |||
2
p + Cm2

p ε
γ(1+ 2

p−1 )
ε−γ

 ,

which ensures T ε −→ +∞ as ε→ 0.

The main difficulty consists in estimating the nonlinear term Eεfε in (1.1). Indeed,
if we follow the same method as in [34] and take directly its |||·|||p-norm, we end up
with the following differential inequality for |||fε|||p, which blows up in finite time

d

dt
|||fε|||pp ≲ |||fε|||p+2

p .

The key point is therefore to include the re-scaled marginal πε in our computations.
More precisely, we perform the following decomposition

Eε = (Eε − Iε) + (Iε −E) + E ,

where E and Iε are given in (1.5) and (1.4) respectively. We rely on a functional
inequality to prove that (Eε − Iε) is of order εγ |||fε|||p and estimate (Iε −E) and E
thanks to the properties of drift-diffusion equation (1.5). It enables to derive the
following differential inequality

d

dt
|||fε|||pp ≲ εγ |||fε|||p+2

p .

From the latter inequality, we bound |||fε|||p on time intervals with size of order |ln ε|
; this provides a global in time estimate in the limit ε→ 0.
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3. A priori estimates. The main object of this section consists in deriving a
priori estimates for (1.1) in Lp (M) (see (1) in Proposition 3.3). Building on this
key estimate, we deduce that πε given by (1.3) converges towards the solution ρ to
the macroscopic model (1.5) (see (2) in Proposition 3.3) and prove equicontinuity for
solutions to (1.1) (see Proposition 3.5). Let us first introduce some notations and
recall a functional inequality that will be used in the proofs of this section. For all
function ρ ∈ Lp∩L1

(
Kd
)
with p > 1, which in the caseK = Tmeets the compatibility

assumption ∫
Kd

ρdx = 0 ,

there exists a unique solution ∆−1
x ρ in W 2,p

(
Kd
)
to the Poisson equation (see [20,

Section 9.6]) 
∆x ϕ = ρ ,∫
Kd

ϕ dx = 0 , if K = T .

Furthermore, thanks to Morrey’s inequality, we have the following estimate

(3.1)
∥∥∇x ∆−1

x ρ
∥∥

C 0,γ ≤ md,p ∥ρ∥Lp ,

for all exponent p > d, where the constant md,p only depends on (d, p) and where
C 0,γ stands for the set of bounded, γ-Hölder functions, with γ = 1 − d/p.
In this section, we denote by ∆p the dissipation of Lp-norms due to the Laplace
operator

∆p [ ρ ] = (p− 1)

∫
Kd

| ∇x ρ |2 | ρ |p−2
dx ,

and by Dp the dissipation of Lp (M)-norms due to the Fokker Planck operator

Dp [ f ] = (p− 1)

∫
Kd×Rd

∣∣∣∣∇v

(
f

M

)∣∣∣∣2 ∣∣∣∣ fM
∣∣∣∣p−2

M dx dv .

We start with the following intermediate result which will be essential in order to
propagate Lp (M)-norms.

Lemma 3.1. Consider a smooth solution fε to equation (1.1). For all exponent
p > d and all positive ε, it holds

∥Eε − Iε ∥L∞ ≤ Cd,p ε
γ |||fε|||p , ∀ t ∈ R+ ,

where exponent γ is given by γ = 1−d / p, and where Cd,p is a constant only depending
the dimension d and exponent p. In the latter estimates, the electric fields Eε and Iε

are given by (1.1) and (1.4).

Proof. We consider some positive ε and some (t,x) ∈ R+ ×Kd. We have

(ρε − πε) (t,x) =

∫
Rd

(
fε − τ−1

εv f
ε
)
(t,x,v) dv .

Applying the operator ∇x ∆−1
x to the latter relation and taking the supremum over

all x in Kd, we obtain

∥Eε − Iε ∥L∞ ≤
∫
Rd

∥∥∇x ∆−1
x

[
fε − τ−1

εv f
ε
]
(t, ·,v)

∥∥
L∞ dv .
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To estimate
(
fε − τ−1

εv f
ε
)
(t, ·,v), we notice that for each v ∈ Rd, it holds∥∥∇x ∆−1

x

[
fε − τ−1

εv f
ε
]
(t, ·,v)

∥∥
L∞ ≤ |εv|γ

∥∥∇x ∆−1
x fε(t, ·,v)

∥∥
C 0,γ ,

and therefore apply Morrey’s inequality (3.1) which yields

∥Eε − Iε ∥L∞ ≤ md,p ε
γ

∫
Rd

∥fε(t, ·,v)∥Lp |v|γ dv .

Then we rewrite the latter inequality as follows

∥Eε − Iε ∥L∞ ≤ md,p ε
γ

∫
Rd

(∫
Kd

∣∣∣∣fε(t,x,v)M(v)

∣∣∣∣p dx

) 1
p

|v|γ M(v) dv .

Applying Hölder’s inequality to the latter relation, we deduce the result

∥Eε − Iε ∥L∞ ≤ md,p ε
γ

(∫
Rd

|v|
p γ
p−1 M(v) dv

) p−1
p

|||fε|||p .

We now provide estimates for the macroscopic model (1.5)

Proposition 3.2. Consider a smooth solution ρ to equation (1.5). For all expo-
nent p, lying in (1,+∞), it holds

∥ ρ(t) ∥Lp ≤ max
(
∥ ρ0 ∥Lp , ∥ ρi ∥1−1/p2

Lp+1

)
, ∀ t ∈ R+ .

Furthermore, it holds

∥ ρ(t) ∥L∞ ≤ max (∥ ρ0 ∥L∞ , ∥ ρi ∥L∞) , ∀ t ∈ R+ .

where ρi is given in (1.5).

We postpone the proof of this result to Appendix A since it is not the main point in
our analysis.

We turn to the main result of this section, in which we provide estimates in
Lp (M) for the solution fε to (1.1). As a direct consequence, we derive convergence
estimates for πε and fε respectively towards ρ and the local equilibrium ρε M.

Proposition 3.3. Consider some exponent p > d and set γ = 1 − d / p. Let
(fε)ε>0 be a sequence of smooth solutions to (1.1) whose initial conditions meet as-
sumption (2.1) and ρ be a smooth solution to (1.5) whose initial condition meets (2.2).
There exists a constant C only depending on exponent p and dimension d such that
for all ε ≤ 1, and for all t less than T ε (where T ε is given in Theorem 2.1)

1. it holds
|||fε|||p ≤ 2

(
|||fε0 |||p + εγ(

1
2 + 1

p−1 ) Cmp

)
eCρ0,ρi

C t ,

where mp and Cρ0,ρi are respectively defined in (2.1) and (2.2) ;
2. it holds

∥πε − ρ ∥L2 (t) ≤ εβ Cm2 p′

p eCρ0,ρi
C t ,

where β = (p− d) / (p− 1) and p′ = p/(p− 1);
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3. it holds

∥fε − ρε M∥L2([0,t] , L2(M)) ≤ εC m2
p e

Cρ0,ρi
C t .

Proof. The core of this proof consists in deriving item (1) in Proposition 3.3. To
do so, we consider some positive ε and for t ∈ R+ define u as follows

u(t) = |||fε(t)|||2p + ε−α ∥(πε − ρ) (t)∥2Lp ,

for some positive α which needs to be determined. Our strategy consists in estimating
each one of the term composing u(t) separately and then to propose a combination
of these two estimates which allow us to close the estimate on u. In order to simplify
notations, we omit the dependence with respect to (t,x,v) when the context is clear.
Furthermore, we denote by Cd,p a generic positive constant depending only on expo-
nent p and dimension d in this proof.

We start by estimating |||fε(t)|||p. To do so, we multiply the first line in (1.1) by

|fε/M|p−1
and integrate over Kd × Rd, this yields

1

p

d

dt
|||fε|||pp =

− 1

ε

∫
Kd×Rd

[
v · ∇x f

ε + ∇v ·
(
Eε fε − 1

ε
(v fε + ∇v f

ε )

)] ∣∣∣∣ fεM
∣∣∣∣p−1

dx dv .

To estimate the latter integral, we first point out that the contribution of the free
transport operator cancels since we have∫

Kd×Rd

v · ∇x f
ε

∣∣∣∣ fεM
∣∣∣∣p−1

dx dv =
1

p

∫
Kd×Rd

∇x ·
(

|fε|p

Mp−1
v

)
dx dv = 0 .

According to the latter observation, we deduce that the time derivative of |||fε|||p
verifies

1

p

d

dt
|||fε|||pp +

1

ε

∫
Kd×Rd

∇v ·
[
Eε fε − 1

ε
M∇v

(
fε

M

)] ∣∣∣∣ fεM
∣∣∣∣p−1

dx dv = 0 ,

where we also used the relation v fε + ∇v f
ε = M∇v (f

ε/M). An integration by
part with respect to v in the integral term of the latter relation yields

1

p

d

dt
|||fε|||pp +

1

ε2
Dp [ f

ε ] =
p− 1

ε

∫
Kd×Rd

Eε f
ε

M
∇v

(
fε

M

) ∣∣∣∣ fεM
∣∣∣∣p−2

M dx dv .

Taking the uniform norm of Eε and applying Young’s inequality in the right hand
side of the latter relation, we deduce the following differential inequality

(3.2)
1

p

d

dt
|||fε|||pp +

1 − η

ε2
Dp [ f

ε ] ≤ p− 1

4 η
∥Eε∥2L∞ |||fε|||pp ,

for all positive η. Then we replace ∥Eε∥2L∞ as follows in the latter estimate

∥Eε∥2L∞ ≤ 3
(
∥Eε − Iε ∥2L∞ + ∥ Iε − E ∥2L∞ + ∥E ∥2L∞

)
,
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and estimate the norm ∥Eε − Iε ∥L∞ applying Lemma 3.1, the quantities
∥ Iε − E ∥L∞ , ∥E ∥L∞ applying Morrey’s inequality (3.1). It yields for all η > 0
(3.3)
1

p

d

dt
|||fε|||pp +

1− η

ε2
Dp [ f

ε ] ≤ Cd,p

η

(
ε2 γ |||fε|||2p + ∥πε − ρ ∥2Lp + ∥ ρ ∥2Lp

)
|||fε|||pp .

We now estimate ∥(πε − ρ) (t)∥Lp . To do so, we multiply the difference between

equation (1.3) and the first line of (1.5) by (πε − ρ ) |πε − ρ |p−2
and integrate with

respect to y over Kd, this yields

1

p

d

dt
∥πε − ρ ∥pLp =

−
∫
Kd

∇y ·
[ ∫

Rd

τ−1
εv (Eεfε) dv −Eρ−∇y (πε − ρ)

]
(πε − ρ ) |πε − ρ|p−2

dy ,

then we integrate by part with respect to y in the latter integral term and obtain

1

p

d

dt
∥πε − ρ ∥pLp + ∆p [π

ε − ρ ] = A ,

where A is given by

A = (p− 1)

∫
Kd

∇y (πε − ρ) ·
(∫

Rd

τ−1
εv (Eεfε) dv − E ρ

)
|πε − ρ|p−2

dy .

To estimate A, we use the following decomposition

A = A1 + A2 + A3 ,

where A1, A2 and A3 are given by

A1 = (p− 1)

∫
Kd

∇y (πε − ρ) ·
∫
Rd

(
τ−1
εv Eε − Eε

)
gε dv |πε − ρ|p−2

dy ,

A2 = (p− 1)

∫
Kd

∇y (πε − ρ) · (Eε − Iε)πε |πε − ρ|p−2
dy ,

A3 = (p− 1)

∫
Kd

∇y (πε − ρ) · (Iε πε − E ρ) |πε − ρ|p−2
dy .

A1 and A2 are error terms which we estimate using Sobolev inequalities whereas we
estimate A3 using the properties of the limiting macroscopic equation (1.5).

Let us start with A1, which we estimate using Young inequality

A1 ≤ η∆p [π
ε − ρ ] +

p− 1

4 η
A11 ,

for all positive η and where A11 is given by

A11 =

∫
Kd

∣∣∣∣∫
Rd

(
τ−1
εv Eε − Eε

)
gε dv

∣∣∣∣2 |πε − ρ|p−2
dy .
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Thanks to Morrey inequality (3.1), we have for all v ∈ Rd∥∥τ−1
εv Eε − Eε

∥∥
L∞ ≤ Cd,p |εv|γ ∥ρε∥Lp .

After applying Jensen’s inequality to estimate ∥ρε∥Lp , this yields∥∥τ−1
εv Eε − Eε

∥∥
L∞ ≤ Cd,p |εv|γ |||fε|||p .

We substitute τ−1
εv Eε− Eε with the latter estimate in the definition of A11 and deduce

A11 ≤ Cd,p ε
2γ |||fε|||2p

∫
Kd

∣∣∣∣∫
Rd

|v|γ gε dv
∣∣∣∣2 |πε − ρ|p−2

dy .

Applying Hölder’s inequality, we obtain

A11 ≤ Cd,p ε
2γ |||fε|||2p ∥πε − ρ ∥p−2

Lp

(∫
Kd

∣∣∣∣∫
Rd

|v|γ gε dv
∣∣∣∣p dy

)2/p

.

To estimate the integral in the latter inequality, we apply Hölder inequality(∫
Kd

∣∣∣∣∫
Rd

|v|γ gε dv
∣∣∣∣p dy

)2/p

≤
(∫

Rd

|v|p
′γ M dv

)2/p′

|||gε|||2p .

Then we notice that |||gε|||p = |||fε|||p and deduce

A11 ≤ Cd,p ε
2γ |||fε|||4p ∥πε − ρ ∥p−2

Lp .

In the end, it yields the following bound for A1

A1 ≤ η∆p [π
ε − ρ ] +

Cd,p

η
ε2γ |||fε|||4p ∥πε − ρ ∥p−2

Lp .

To estimate A2, we follow the same method as before excepted that we apply
Lemma 3.1 to bound Eε − Iε, it yields

A2 ≤ η∆p [π
ε − ρ ] +

Cd,p

η
ε2γ |||fε|||4p ∥πε − ρ ∥p−2

Lp .

We turn to the last term A3, which decomposes as follows

A3 = A31 + A32 + A33 ,

where the latter terms are given by

A31 = (p− 1)

∫
Kd

∇y (πε − ρ) · (Iε − E) (πε − ρ) |πε − ρ|p−2
dy ,

A32 = (p− 1)

∫
Kd

∇y (πε − ρ) · (Iε − E) ρ |πε − ρ|p−2
dy ,

A33 = (p− 1)

∫
Kd

∇y (πε − ρ) ·E (πε − ρ) |πε − ρ|p−2
dy .

We start with A31, which rewrites as follows after an integration by part

A31 = − p− 1

p

∫
Kd

|πε − ρ|p ∇x · (Iε − E) dy .
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Therefore, replacing Iε and E according to equations (1.4) and (1.5), we deduce the
following relation

A31 = − p− 1

p

∫
Kd

|πε − ρ|p (πε − ρ) dy .

Since πε has positive values and taking the absolute value of ρ, we obtain

A31 ≤ p− 1

p
∥ρ∥L∞ ∥πε − ρ ∥pLp .

Remark 3.4. It is the only time that we use the L∞-norm of ρ in our analysis.

To estimate A32 and A33, we use the same techniques as the ones already used to
estimate A1 and A2. Therefore, we do not detail the computations. In the end it
yields

A32 + A33 ≤ η∆p [π
ε − ρ ] +

Cd,p

η
∥ρ∥2Lp ∥πε − ρ ∥pLp .

Gathering latter computations and taking η small enough, we obtain the following
estimate

1

p

d

dt
∥πε − ρ ∥pLp ≤ Cd,p

(
ε2γ |||fε|||4p ∥π

ε − ρ ∥p−2
Lp +

(
∥ρ∥2Lp + ∥ρ∥L∞

)
∥πε − ρ ∥pLp

)
,

for some constant Cd,p only depending on d and p. Dividing by ∥πε − ρ ∥p−2
Lp the

latter estimate, this yields

(3.4)
1

2

d

dt
∥πε − ρ ∥2Lp ≤ Cd,p

(
ε2γ |||fε|||4p +

(
∥ρ∥2Lp + ∥ρ∥L∞

)
∥πε − ρ ∥2Lp

)
.

It is now possible to obtain item (1) in Proposition 3.3: we set η to 1 in (3.3)

and take the sum between estimate (3.3) divided by ∥fε∥p−2
p and estimate (3.4), we

deduce that u verifies the following differential inequality

1

2

d

dt
u(t) ≤

Cd,p

((
ε2γ−α + ε2γ

)
|||fε|||4p + ∥πε − ρ∥2Lp |||fε|||2p + Cρ

(
ε−α ∥πε − ρ∥2Lp + |||fε|||2p

))
,

where Cρ is given by

Cρ = ∥ρ∥2Lp + ∥ρ∥L∞ .

Hence, taking α = γ and applying Lemma 3.2 to estimate Cρ, we deduce

d

dt
u(t) ≤ Cd,p

(
εγ u(t)2 + Cρ0,ρi u(t)

)
,

where Cρ0,ρi
is given by

Cρ0,ρi
= max

(
∥ ρ0 ∥2Lp , ∥ ρi ∥2−2/p2

Lp+1 , ∥ ρ0 ∥L∞ , ∥ ρi ∥L∞

)
.
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We divide the latter estimate by
(
εγ u(t)2 + Cρ0,ρi

u(t)
)
and notice that

1

εγ u(t)2 + Cρ0,ρi
u(t)

=
1

Cρ0,ρi

(
1

u(t)
− εγ

εγ u(t) + Cρ0,ρi

)
,

therefore, we obtain

d

dt
ln

(
u(t)

εγ u(t) + Cρ0,ρi

)
≤ Cρ0,ρi Cd,p .

Integrating between 0 and t and taking the exponential of the latter estimate, it yields

(3.5) u(t) ≤ u(0)

(
1 − εγ

u(0)

Cρ0,ρi

(
eCρ0,ρi

Cd,p t − 1
))−1

eCρ0,ρi
Cd,p t ,

for all time t verifying

t <
1

Cρ0,ρi
Cd,p

ln

(
1 +

Cρ0,ρi

u(0)
ε−γ

)
.

To conclude this step, we estimate u(0) by applying the triangular inequality

(3.6) u(0) ≤ |||fε0 |||
2
p + 2 ε−γ

(
∥πε

0 − ρε0∥
2
Lp + ∥ρε0 − ρ0∥2Lp

)
.

Thanks to assumption (2.1), we obtain

u(0) ≤ |||fε0 |||
2
p + Cd,pm

2
p ε

2β−γ ,

which yields

u(0) ≤ |||fε0 |||
2
p + Cd,pm

2
p ε

γ(1+ 2
p−1 ) ,

thanks to the relation 2β − γ = γ(1 + 2/(p − 1)). Replacing u(0) in (3.5) thanks to
the latter inequality, we deduce item (1) of Proposition 3.3, that is

|||fε|||p ≤ 2
(
|||fε0 |||p + εγ(

1
2 + 1

p−1 ) Cd,pmp

)
eCρ0,ρi

Cd,p t ,

for all time t less than T ε, where T ε is given by

T ε =
1

Cρ0,ρi
Cd,p

ln

1 +
Cρ0,ρi

4
(
|||fε0 |||

2
p + εγ(1+ 2

p−1 )Cd,pm2
p

) ε−γ

 .

In order to prove item (2), we consider relation (3.4), replace |||fε(t)|||p with the
estimate given by item (1) in Proposition 3.3 and apply Lemma 3.2 to bound ρ, this
yields

d

dt
∥πε − ρ ∥2Lp ≤ Cd,p

(
ε2γ m4

p e
Cρ0,ρi

Cd,p t + Cρ0,ρi ∥πε − ρ ∥2Lp

)
,

for all time t less than T ε, where mp and Cρ0,ρi are given in Theorem 2.1. Multiplying
the latter estimate by e−Cρ0,ρi

Cd,p t, integrating between 0 and t and taking the square
root on both sides of the inequality, we obtain

∥πε − ρ ∥Lp ≤ eCρ0,ρi
Cd,p t

(
∥πε

0 − ρ0 ∥Lp + εγ Cd,pm
2
p t
)
.
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According to assumption (2.1), we have ∥πε
0 − ρ0 ∥Lp ≤ mp ε

β . Since 1 ≤ mp, we
deduce

∥πε − ρ ∥Lp ≤ εγ Cd,pm
2
p e

Cρ0,ρi
Cd,p t .

Item (2) in Proposition 3.3 is obtained applying the following interpolation inequality
in the latter estimate

∥πε − ρ ∥L2 ≤ ∥πε − ρ ∥
p−2
p−1

L1 ∥πε − ρ ∥p
′

Lp ,

where p′ is given by p′ = p/(p− 1) and noticing that p′ γ = β.

To prove item (3) in Proposition 3.3, we set p = 2 in (3.2), apply Morrey’s in-
equality (3.1) to estimate Eε and Jensen’s inequality, which ensures |||fε|||2 ≤ |||fε|||p.
This yields

1

2

d

dt
|||fε|||22 +

1− η

ε2
D2 [ f

ε ] ≤ Cd,p

η
|||fε|||4p .

Therefore, taking η = 1/2, integrating the latter estimate between 0 and t and re-
placing |||fε|||p by the estimate given in item (1) in Proposition 3.3 we obtain∫ t

0

D2 [ f
ε ] ds ≤ ε2

(
|||fε0 |||

2
p + Cd,p

∫ t

0

m4
p e

Cρ0,ρi
Cd,p s ds

)
,

for all time t between 0 and T ε. Hence, applying the Gaussian-Poincaré inequality
which ensures |||fε − ρε M|||22 ≤ D2 [ f

ε ], we deduce∫ t

0

|||fε − ρε M|||22 ds ≤ Cd,p ε
2m4

p e
Cρ0,ρi

Cd,p t ,

which yields the result by taking the square root of the latter estimate.

Building on Proposition 3.3, we are able to prove equicontinuity estimates for fε in
Lp (M).

Proposition 3.5. Consider some exponent p such that p > d and set β = (p−
d) / (p− 1). Under assumptions (2.2) on (ρ0, ρi) and (2.1) on the sequence of initial
conditions (fε0 )ε> 0, consider a sequence of solutions (fε)ε> 0 to (1.1). There exists a
constant C only depending on exponent p and dimension d such that for all positive
ε less than 1, it holds

sup
|x0|≤1

|x0|−β |||fε − τx0 f
ε|||2(t) ≤ eC

−1
ρ0,ρi

C m2
p eCρ0,ρi

C t

sup
|x0|≤1

|x0|−β |||fε0 − τx0
fε0 |||p .

for all time t less than T ε, where T ε, mp and Cρ0,ρi
are given in Theorem 2.1.

Proof. We consider ε > 0 and (t,x0) ∈ R+×Kd such that |x0| ≤ 1. Furthermore
we denote by Cd,p a generic positive constant depending only on exponent p and
dimension d in this proof.
We first compute the equation solved by hε := fε−τx0

fε. It is given by the difference
between equation (1.1) and equation (1.1) translated by x0 with respect to the spatial
variable, that is

∂t h
ε +

1

ε
v·∇x h

ε +
1

ε
(Eε − τx0E

ε)·∇v f
ε +

1

ε
τx0E

ε·∇v h
ε =

1

ε2
∇v·[v hε +∇v h

ε ] .
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To estimate the variations of |||hε|||p, we proceed as in the estimation of |||fε|||p in the

proof of Proposition 3.3. First, we multiply the latter equation by (hε/M) |hε/M|p−2

and integrate over Kd × Rd. Then, we notice that the free transport operator has a
zero contribution. Therefore, using the relation v hε + ∇v h

ε = M∇v (h
ε/M) and

integrating by part with respect to v, we obtain

1

p

d

dt
|||hε|||pp +

1

ε2
Dp [h

ε ] =

p− 1

ε

∫
Kd×Rd

∣∣∣∣ hεM
∣∣∣∣p−2

∇v

(
hε

M

)
· (fε (Eε − τx0

Eε) + hετx0
Eε) dx dv .

We apply Young’s inequality to estimate the right hand side in the latter inequality
and deduce

1

p

d

dt
|||hε|||pp ≤

p− 1

2

∫
Kd×Rd

∣∣∣∣ hεM
∣∣∣∣p−2

(∣∣∣∣ fεM
∣∣∣∣2 |Eε − τx0

Eε|2 +

∣∣∣∣ hεM
∣∣∣∣2 |τx0

Eε|2
)
M dx dv .

After taking the uniform norms of Eε−τx0
Eε and Eε and applying Hölder’s inequality

to estimate the cross product between fε and hε, it yields

1

p

d

dt
|||hε|||pp ≤ p− 1

2

(
∥Eε − τx0E

ε∥2L∞ |||hε|||p−2
p |||fε|||2p + ∥Eε∥2L∞ |||hε|||pp

)
.

We apply Morrey’s inequality (3.1) to estimate the uniform norms of Eε − τx0
Eε and

Eε, it yields
1

p

d

dt
|||hε|||pp ≤ Cd,p|||hε|||pp|||f

ε|||2p .

To conclude, we divide the latter estimate by |||hε|||p−1
p , multiply it by e−Cd,p

∫ t
0
|||fε|||2p ds,

integrate between 0 and t and replace |||fε|||p with the estimate in item (1) of Propo-
sition 3.3, it yields

|||hε|||p ≤ exp

(
C−1

ρ0,ρi

(
|||fε0 |||p + Cd,pmpε

γ
2

)2
eCd,pCρ0,ρi

t

)
|||hε0|||p ,

for all time t less than T ε, where T ε is given in Theorem 2.1. We obtain the result
dividing the latter estimate by |x0|β , taking the supremum over all x0 with norm less
than 1 and since according to Jensen’s inequality it holds |||hε|||2 ≤ |||hε|||p.

4. Proof of Theorem 2.1. We consider the following decomposition of the
quantity that we need to estimate

∥fε − ρM∥L2([0,t] , L2(M)) ≤ (E1 + E2 + E3) (t) ,

where E1, E2 and E3 are given by

E1(t) = ∥fε − ρε M∥L2([0,t] , L2(M)) ,

E2(t) = ∥ρε − πε∥L2([0,t] , L2(Kd)) ,

E3(t) = ∥πε − ρ∥L2([0,t] , L2(Kd)) .
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We estimate E1 and E3 thanks to Proposition 3.3. Indeed, according to item (3), it
holds

E1(t) ≤ C εm2
p e

Cρ0,ρi
C t ,

and according to item (2), it holds

E3(t) ≤ C εβ m2 p′

p eCρ0,ρi
C t ,

for all time t less than T ε, where T ε is given in Theorem 2.1. We turn to the last
term E2, which we estimate thanks to the following decomposition

E2(t) ≤ E21(t) + E22(t) ,

where E21 and E22 are defined as follows
E21(t) =

(∫ t

0

∫
Kd

∣∣∣∣∫
R2d

M(ṽ) (fε(s,x,v)− fε(s,x− εṽ,v)) dṽ dv

∣∣∣∣2 dx ds

) 1
2

,

E22(t) =

(∫ t

0

∫
Kd

∣∣∣∣∫
Rd

M(v)ρε(s,y − εv)− fε(s,y − εv,v) dv

∣∣∣∣2 dy ds

) 1
2

.

To estimate E22, we divide and multiply by M(v) inside the integral in v in the
definition of E22 and apply Jensen’s inequality, which yields

E22(t) ≤

(∫ t

0

∫
Kd×Rd

∣∣∣∣M(v)ρε(s,y − εv)− fε(s,y − εv,v)

M(v)

∣∣∣∣2 M(v) dy dv ds

) 1
2

,

then we operate the change of variable x = y − εv in the latter relation and deduce

E22(t) ≤ E1(t) .

Thanks to our estimate of E1(t), we obtain

E22(t) ≤ C εm2
p e

Cρ0,ρi
C t ,

Now, we estimate E21. First, we divide and multiply by M(v) inside the integral in
the definition of E21 and apply Jensen’s inequality, which yields

E21(t) ≤
(∫ t

0

∫
Rd

∣∣∣∣∣∣fε − τ−1
εṽ fε

∣∣∣∣∣∣2
2
(s)M(ṽ) dṽ ds

) 1
2

.

To bound
∣∣∣∣∣∣fε − τ−1

εṽ fε
∣∣∣∣∣∣

2
, we distinguish two cases. When, |ε ṽ| > 1 we use the

triangular inequality, which ensures∣∣∣∣∣∣fε − τ−1
εṽ fε

∣∣∣∣∣∣
2
(s) ≤ 2 |εṽ|β |||fε|||2(s) ,

whereas in the case |ε ṽ| ≤ 1, it holds∣∣∣∣∣∣fε − τ−1
εṽ fε

∣∣∣∣∣∣
2
(s) ≤ |εṽ|β sup

|x0|≤1

|x0|−β |||τx0
fε − fε|||2(s) .
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According to these estimates, we deduce

E21(t) ≤ εβ

∫ t

0

4 |||fε|||22(s) +

(
sup

|x0|≤1

|x0|−β |||τx0f
ε − fε|||2(s)

)2

ds

 1
2

,

where we used that
∫
Rd |ṽ|2βM(ṽ) dṽ ≤ 1. Then we apply item (1) in Proposition

3.3 to estimate the norm of fε and Proposition 3.5 to estimate the norm of τx0f
ε−fε.

It yields

E21(t) ≤ εβ
(∫ t

0

Cm2
p e

Cρ0,ρi
C s + m2

p exp
(
C−1

ρ0,ρi
Cm2

p e
Cρ0,ρi

C s
)
ds

) 1
2

,

for all time t less than T ε, where T ε is given in Theorem 2.1. Hence, we deduce

E21(t) ≤ εβ
(
C−1/2

ρ0,ρi
mp e

Cρ0,ρi
C t + exp

(
C−1

ρ0,ρi
Cm2

p e
Cρ0,ρi

C t
))

,

where we used the following inequality to estimate the time integral of the double
exponential term

m2
p exp

(
C−1

ρ0,ρi
Cm2

p e
Cρ0,ρi

C t
)
≤ 1

C2

d

dt
exp

(
C−1

ρ0,ρi
Cm2

p e
Cρ0,ρi

C t
)
.

Gathering the estimate on E1, E2 and E3, we obtain the estimate in Theorem 2.1, that
is

∥fε − ρM∥L2([0,t] , L2(M)) ≤ εβ
(
Cm2 p′

p eCρ0,ρi
C t + exp

(
C−1

ρ0,ρi
Cm2

p e
Cρ0,ρi

C t
))

,

for all time t less than T ε, where T ε is given in Theorem 3.3.

5. Conclusion. We have proposed a method in order to treat the diffusive scal-
ing for the VPFP model. Our approach provides non-perturbative strong convergence
results with explicit rates. It may be regarded as an alternative to compactness meth-
ods relying on averaging lemmas widely used in this context [28, 18, 17, 36, 26] with
the advantage that it provides explicit convergence rates.

An interesting and challenging continuation of this work would consist in conciliat-
ing this approach with hypocoercivity methods [25, 27, 1] which present the advantage
of providing global in time convergence estimates but which fail, for now, to provide
non-perturbative results. To be noted that up to our knowledge, non-perturbative
results [10, 5] treating the long time behavior of (1.1) rely on compactness arguments
and are thus non quantitative. Therefore, associating hypocoercivity methods with
the one presented in this article might be a way to treat simultaneously the diffusive
regime ε → 0 and the long time behavior t → +∞ in a non-perturbative framework
and with explicit rates.

Another natural question concerns the applicability of our approach to treat other
asymptotic limits of the VPFP model. For example, our method might be applicable
to ”free-field” regimes analyzed by M. Herda and M. Rodrigues in [27]. These regimes
correspond to the limit τ → 0 when ε2 is replaced with τε in the right hand of the first
line in (1.1) and under the assumption τ = o(ε) as τ → 0. Roughly speaking, these
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regimes describe situations where collisions are strong enough to cancel electrostatic
effects.
Adapting our approach to the famous high-field or hyperbolic regime also consti-
tutes a great challenge. This regime corresponds to a situation where collisions
and electrostatic effects have the same magnitude, leading to unthermalized asymp-
totic limits. This regime has drawn intense interest of the mathematics community
[33, 12, 3, 6, 29, 23, 7]. In this case, smoothing effects due to the Fokker-Planck
operator disappear in the limit. For this reason, there is no clear indication that our
method would apply. However, we also mention the article [2] in which intermediate
regimes are considered, where collisions slightly dominate electrostatic effects. If pos-
sible, applying our method to these intermediate regimes would constitute a first step
towards treating the high-field limit.

To conclude, it would be interesting to test the robustness of our method on
other collision operators such as linearized Boltzmann operators [32, 4, 28] or BGK
relaxation operators [12]. In these examples, we expect less smoothing effects than in
the Fokker-Planck case, leading to additional difficulties.

Appendix A. Proof of Proposition 3.2 . Let us start with the case where
exponent p is strictly less than +∞. We compute the time derivative of ∥ρ∥pLp by mul-
tiplying equation (1.5) by ρp−1 and integrating with respect to x. After an integration
by part, we obtain

1

p

d

dt
∥ ρ ∥pLp + ∆p [ ρ ] =

p− 1

p
D ,

where D is given by

D =

∫
Kd

E · ∇xρ
p dx .

Integrating by part and according to equation (1.5), we rewrite D as follows

D =

∫
Kd

(ρi − ρ) ρ p dx =

∫
Kd

ρi ρ
p dx − ∥ρ∥p+1

Lp+1 .

To estimate the D, we apply Hölder’s inequality

D ≤ ∥ρi∥Lp+1 ∥ρ∥pLp+1 − ∥ρ∥p+1
Lp+1 ,

and therefore deduce

D ≤ ∥ρi∥p+1
Lp+1 1∥ρ∥Lp+1 ≤∥ρi∥Lp+1

.

Furthermore, we use that ρ is a probability measure to apply Jensen’s inequality and
we deduce

∥ρ∥Lp ≤ ∥ρ∥(p
2−1)/p2

Lp+1 .

Injecting this inequality in the latter estimate on D, we obtain

D ≤ ∥ρi∥p+1
Lp+1 1∥ρ∥Lp ≤∥ρi∥(p2−1)/p2

Lp+1

.

Therefore, we obtain

d

dt
∥ ρ ∥pLp ≤ (p− 1) ∥ρi∥p+1

Lp+1 1∥ρ∥p
Lp ≤∥ρi∥(p2−1)/p

Lp+1

.
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One can check that for any positive η, the constant

Cη = max
(
∥ρ0∥pLp , ∥ρi∥(p

2−1)/p
Lp+1

)
+ η

is a super solution to the latter differential inequality. Therefore, it holds for all η > 0

∥ ρ ∥pLp ≤ Cη .

Hence, taking η → 0, we obtain the expected result

∥ ρ ∥Lp ≤ max
(
∥ρ0∥Lp , ∥ρi∥1−1/p2

Lp+1

)
,

for all time t ≥ 0. The case p = +∞ is obtained taking the limit p → +∞ in the
latter estimate.
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