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DIFFUSIVE LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK MODEL:

QUANTITATIVE AND STRONG CONVERGENCE RESULTS

Alain Blaustein
Université Paul Sabatier, Institut de Mathématiques de Toulouse,
118 route de Narbonne - F-31062 TOULOUSE Cedex 9, France;

email : alain.blaustein@math.univ-toulouse.fr

Abstract. This work tackles the diffusive limit for the Vlasov-Poisson-Fokker-Planck model. We
derive a priori estimates which hold without restriction on the phase-space dimension and propose
a strong convergence result in a low regularity setting. Furthermore, we strengthen previous results
by obtaining an explicit convergence rate arbitrarily close to the (formal) optimal rate, provided
that the initial data lies in some Lp space with p large enough. Our result holds on bounded time
intervals whose size grow to infinity in the asymptotic limit with explicit lower bound. The approach
is valid when the spatial domain has no boundary: we treat the cases where it is either the torus or
the whole space. The analysis relies on identifying the right set of phase-space coordinates to study
the regime of interest. In this set of coordinates the limiting model arises explicitly.
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1. Introduction

1.1. Physical model and motivation. In this article, we study a plasma composed with single
species of moving electrons and stationary ionic positive charges. We denote by f(t,x,v) the
density of electron at time t ∈ R+, position x ∈ Kd with K ∈ {T,R} and velocity v ∈ Rd whereas
the density of ions is given by ρi(x) with ρi ∈ L1

(
Kd
)
. We focus on the Vlasov-Poisson-Fokker-

Planck (VPFP) model, which describes a situation where electrons interact through collisions and
electrostatic effects. Considering the regime in which the electron/ion mass ratio and the mean free
path of electrons have the same magnitude, the VPFP model reads

(1.1)



∂t f
ε +

1

ε
v · ∇x f

ε +
1

ε
Eε · ∇v f

ε =
1

ε2
∇v · [v f ε + ∇v f

ε ] ,

Eε = −∇x φ
ε , −∆x φ

ε = ρε − ρi , ρε =

∫
Rd

f ε dv ,

f ε(0,x,v) = f ε0 (x,v) ,

where the self consistent electric field Eε is induced by Coulombian interactions between charges
whereas the Fokker-Planck operator on the right-hand side of the first line in (1.1) accounts for
collisions between electrons. A detailed description of the re-scaling process in order to derive (1.1)
may be found in [7, 16]. Since mass is conserved along the trajectories of (1.1), we normalize f ε as
follows ∫

Kd×Rd
f ε0 dxdv = 1 .

When K = T, we also impose the compatibility assumption∫
Kd×Rd

f ε0 dxdv =

∫
Kd
ρi dx ,

which is then satisfied for all positive time t ≥ 0. In this article, we focus on the asymptotic analysis
of (1.1) in the diffusive regime corresponding to the limit ε� 1.

1.2. formal derivation. In this section, we carry a formal analysis of the diffusive regime. Our
purpose is twofold: on the one hand, we derive the limit of f ε as ε→ 0 and on the other hand, we
explain the key idea of this article in order to rigorously justify this limit. Considering the leading
order term in equation (1.1), we deduce that as ε vanishes, f ε converges to its associated local
equilibrium of the Fokker-Planck operator

f ε ∼
ε→0

ρε ⊗M ,

where M stands for the standard Maxwellian distribution over Rd

(1.2) M(v) = (2π)− d/2 exp

(
− 1

2
|v|2

)
.

In order to conclude on this formal derivation, we compute the limit of ρε. Unfortunately, this step
is trickier than the previous one since ρε solves the following equation, obtained after integrating
equation (1.1) with respect to v

∂t ρ
ε +

1

ε
∇x ·

∫
Rd

v f ε dv = 0 .

The difficulty stems from the transport operator in (1.1) which induces a stiff dependence with
respect to f ε in the equation on ρε. To overcome the latter difficulty, it is convenient to consider
the following re-scaled version gε of f ε

(τεv g
ε) (t,x,v) = f ε(t,x,v) ,
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where τx0 g denotes the function obtained by translating any function g in the direction x0 ∈ Rd,
that is

τx0 g(t,x,v) := g(t,x + x0,v) , ∀ (t,x,v) ∈ R+ ×Kd × Rd .
Indeed, operating the change of variable x→ x+εv in equation (1.1), we deduce that the marginal
πε of gε given by

πε (t,x) =

∫
Rd
gε (t,x,v) dv =

∫
Rd
τ−1εv f

ε (t,x,v) dv ,

solves the following equation, obtained after operating the change of variable x→ x+εv in equation
(1.1) and integrating with respect to v

(1.3) ∂t π
ε + ∇x ·

[ ∫
Rd
τ−1εv (Eε f ε) (t,x,v) dv

]
− ∆x π

ε = 0 .

According to its definition, πε satisfies: ρε ∼ πε in the limit ε → 0. Therefore, we may formally
replace πε with ρε and ε with 0 in (1.3) in the diffusive regime. By doing this, we remove the term
depending on f ε from (1.3) and deduce

ρε −→
ε→0

ρ ,

where ρ solves the following drift-diffusion-Poisson equation

(1.4)


∂t ρ + ∇x · [E ρ ] − ∆x ρ = 0 ,

−∆x φ = ρ − ρi , E = −∇x φ ,

which leads to the following formal result

f ε −→
ε→0

ρ⊗M .

As is turns out, the set of coordinates (x + εv,v) is very convenient to study the diffusive regime:
it removes from the equation on ρε the stiff dependence with respect to f ε due to the transport
operator, instead we end up with equation (1.3) which is consistent with the limiting model (1.4) as
ε vanishes. Therefore, the distribution πε will play a key role in our analysis, as for its associated
electric field Iε defined as follows

(1.5) − ∆x ψ
ε = πε − ρi , Iε = −∇x ψ

ε .

The present work consists in rigorously justifying this formal derivation. We propose a strong
convergence result in some L2 space and prove that it occurs at rate O(εβ), with β = (p−d)/(p−1)
if f ε0 lies in some Lp space: we recover the (formal) optimal convergence rate as p → +∞. Our
analysis is non-perturbative and it holds in any dimension, even though we suppose d = 3 in order to
apply results from the literature on existence and uniqueness for solutions to (1.1). Our convergence
estimate holds on bounded time intervals [0, T ε], for some explicitly given T ε (see Theorem 2.1)
which satisfies T ε → +∞ as ε → 0. We point out that it should be possible to adapt our analysis
to Newtonian interactions as long as the macroscopic model does not develop singularities but we
do not follow this path to avoid these issues.
Existence and uniqueness of solutions to (1.1) has been widely investigated. We mention [4, 14,
17, 18] for results on classical solutions and [3, 2, 5] for weak solutions. In the sequel, we consider
solutions to (1.1) introduced in [3] and thus set d = 3 and suppose for all ε > 0 that f ε0 lies in
L1 ∩ L∞

(
Kd × Rd

)
and verifies

(1.6)

∫
Kd×Rd

|v|7f ε0 (x,v)dxv < +∞ .

Under these assumptions, it is proven in [3] that (1.1) admits a unique weak solution f ε lying in
C 0
(
[0,+∞), L1

(
R2d
))

such that for all T > 0

sup
t∈[0,T ]

‖Eε(t)‖L∞x < +∞ .
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Remark 1.1. The assumption d = 3 ensures existence and uniqueness of solution to (1.1) but our
analysis is valid in any dimension.

This work is the continuation of a long process in order to justify the diffusive limit of the VPFP
model. The story starts in [16], which provides local in time and weak convergence in dimension
d = 2 and strong convergence on short time intervals without restriction on the dimension. The
present article is somehow close to [16] since it uses the same functional framework. The case d = 2
in the latter result was then adapted in [9] to Newtonian interactions. The story goes on with [6]
which achieves strong and local in time convergence without restriction on the dimension d. We
also mention [12] in which a similar method is applied to the situation of a magnetized plasma with
time dependent ion density. More recently, authors adapted hypocoercivity methods to the present
situation in order to achieve global in time convergence. This is the case of [13] which prove global
in time and strong convergence in weakly nonlinear regime (that is, under joint restrictions on the
Debye length and the size of the initial data) when d = 2. We also mention [1], which proves that
the linearized model associated (1.1) relaxes towards equilibrium at an exponential rate which is
uniform with respect to ε. Authors deduce the same result on the nonlinear model in the case d = 1.
Using similar methods, exponential relaxation as t → +∞ is proved in [11], in a weakly nonlinear
setting. In perturbative settings, very precise results are available [20], based on a spectral analysis
of (1.1), treating simultaneously the diffusion limit with explicit convergence rates in ε and the long
time behavior with optimal exponential rate in t.
The article is organized as follows: in Section 2, we give our functional setting and state our main
result, in Section 3 we derive uniform estimates for the solution to (1.1), then we conclude with
Section 4 in which we prove our main result.

2. Functional setting and main result

In the forthcoming analysis, we work with the following norm defined for all exponent p ≥ 1

|||f |||p =

(∫
Kd×Rd

∣∣∣∣ fM
∣∣∣∣pMdxdv

) 1
p

,

and denote by Lp (M) the set of all function whose latter norm is finite. Furthermore, we denote
‖·‖Lpx the usual norm over Lp

(
Kd
)
. Our main result reads as follows

Theorem 2.1. Consider some exponent p > d and set

(γ , β) =

(
1− d

p
,
p− d
p− 1

)
.

Suppose that the sequence (f ε0 )ε> 0 meets assumption (1.6) as well as

(2.1) |||f ε0 |||p + sup
|x0| ≤ 1

(
|x0|−β |||τx0f

ε
0 − f ε0 |||p

)
+ ε−β ‖ρε0 − ρ0‖Lpx ≤ mp ,

for some positive constant mp independent of ε. On top of that, suppose

(2.2) ‖ ρ0 ‖Lpx + ‖ ρi ‖Lp+1
x

+ ‖ ρ0 ‖L∞x + ‖ ρi ‖L∞x < +∞ .

Consider the unique weak global solutions (f ε)ε> 0 to (1.1) and a weak solution ρ to (1.4) with initial
data (f ε0 )ε> 0 and ρ0 respectively. For all time T > 0, there exist two positive constants CT and εT
such that for all ε ≤ εT , it holds

‖f ε − ρM‖L2([0,T ] , L2(M)) ≤ CT ε
β .

More precisely, there exists a constant C only depending on exponent p and dimension d such
that

‖f ε − ρM‖L2([0,t] , L2(M)) ≤ εβ
(
Cm2 p′

p eCρ0,ρiC t + eC
−1
ρ0,ρi

Cm2
p e
Cρ0,ρiC t

)
,
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for all time t less than T ε, with T ε is given by

T ε =
1

Cρ0,ρi C
ln

1 +
Cρ0,ρi

4

(
|||f ε0 |||

2
p + Cm2

p ε
γ
(
1+ 2

p−1

)) ε−γ

 ,

where p′ = p/(p− 1) and where the constant Cρ0,ρi is given by

Cρ0,ρi = max
(
‖ ρ0 ‖2Lpx , ‖ ρi ‖

2−2/p2

Lp+1
x

, ‖ ρ0 ‖L∞x , ‖ ρi ‖L∞x
)
.

The main difficulty consists in estimating the nonlinear term Eεf ε in (1.1). Indeed, if we follow
the same method as in [16] and take directly its |||·|||p-norm, we end up with the following differential

inequality for |||f ε|||p, which blows up in finite time

d

d t
|||f ε|||pp . |||f ε|||p+2

p .

The key point is therefore to include the re-scaled marginal πε in our computations. More precisely,
we perform the following decomposition

Eε = (Eε − Iε) + (Iε −E) + E ,

where E and Iε are given in (1.4) and (1.5) respectively. We rely on a functional inequality to
prove that (Eε − Iε) is of order εγ |||f ε|||p and estimate (Iε −E) and E thanks to the properties of

drift-diffusion equation (1.4). It enables to derive the following differential inequality

d

d t
|||f ε|||pp . εγ |||f ε|||p+2

p .

From the latter inequality, we bound |||f ε|||p on time intervals with size of order |ln ε| ; this provides
a global in time estimate in the limit ε→ 0.

3. A priori estimates

The main object of this section consists in deriving a priori estimates for (1.1) in Lp (M) (see
(1) in Proposition 3.3). Building on this key estimate, we deduce that πε given by (1.3) converges
towards the solution ρ to the macroscopic model (1.4) (see (2) in Proposition 3.3) and prove equicon-
tinuity for solutions to (1.1) (see Proposition 3.5). Let us first introduce some notations and recall a
functional inequality that will be used in the proofs of this section. For all function ρ ∈ Lp∩L1

(
Kd
)

with p > 1, which in the case K = T meets the compatibility assumption∫
Kd
ρdx = 0 ,

there exists a unique solution ∆−1x ρ in W p,2
(
Kd
)

to the Poisson equation (see [8] Section 9.6)
∆x φ = ρ ,∫
Kd
φ dx = 0 , if K = T .

Furthermore, thanks to Morrey’s inequality, we have the following estimate

(3.1)
∥∥∇x ∆−1x ρ

∥∥
C 0,γ ≤ md,p ‖ρ‖Lpx ,

for all exponent p > d, where constant md,p only depends on (d, p) and where C 0,γ stands for the set
of bounded, γ-Hölder functions, with γ = 1 − d/p. In this section, we denote by ∆p the dissipation
of Lp-norms due to the Laplace operator

∆p [ ρ ] = (p− 1)

∫
Kd
| ∇x ρ |2 | ρ |p−2 dx ,
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and by Dp the dissipation of Lp (M)-norms due to the Fokker Planck operator

Dp [ f ] = (p− 1)

∫
Kd×Rd

∣∣∣∣∇v

(
f

M

) ∣∣∣∣2 ∣∣∣∣ fM
∣∣∣∣p−2Mdxdv .

We start with the following intermediate result which will be essential in order to propagate Lp (M)-
norms.

Lemma 3.1. Consider a smooth solution f ε to equation (1.1). For all exponent p > d and all
positive ε, it holds

‖Eε − Iε ‖L∞x ≤ Cd,p ε
γ |||f ε|||p , ∀ t ∈ R+ ,

where exponent γ is given by γ = 1 − d / p, and where Cd,p is a constant only depending the
dimension d and exponent p. In the latter estimates, the electric fields Eε and Iε are given by (1.1)
and (1.5).

Proof. We consider some positive ε and some (t,x) ∈ R+ ×Kd. We have

(ρε − πε) (t,x) =

∫
Rd

(
f ε − τ−1εv f

ε
)

(t,x,v) dv .

Applying the operator ∇x ∆−1x to the latter relation and taking the supremum over all x in Kd, we
obtain

‖Eε − Iε ‖L∞x ≤
∫
Rd

∥∥∇x ∆−1x

[
f ε − τ−1εv f

ε
]

(t, ·,v)
∥∥
L∞x

dv .

To estimate
(
f ε − τ−1εv f

ε
)

(t, ·,v), we notice that for each v ∈ Rd, it holds∥∥∇x ∆−1x

[
f ε − τ−1εv f

ε
]

(t, ·,v)
∥∥
L∞x
≤ |εv|γ

∥∥∇x ∆−1x f ε(t, ·,v)
∥∥

C 0,γ ,

and therefore apply Morrey’s inequality (3.1) which yields

‖Eε − Iε ‖L∞x ≤ md,p ε
γ

∫
Rd
‖f ε(t, ·,v)‖Lpx |v|

γ dv .

Then we rewrite the latter inequality as follows

‖Eε − Iε ‖L∞x ≤ md,p ε
γ

∫
Rd

(∫
Kd

∣∣∣∣f ε(t,x,v)

M(v)

∣∣∣∣p dx

) 1
p

|v|γM(v) dv .

Applying Hölder’s inequality to the latter relation, we deduce the result

‖Eε − Iε ‖L∞x ≤ md,p ε
γ

(∫
Rd
|v|

p γ
p−1 M(v) dv

) p−1
p

|||f ε|||p .

�

We now provide estimates for the macroscopic model (1.4)

Proposition 3.2. Consider a smooth solution ρ to equation (1.4). For all exponent p, lying in
(1,+∞), it holds

‖ ρ(t) ‖Lpx ≤ max
(
‖ ρ0 ‖Lpx , ‖ ρi ‖

1−1/p2

Lp+1
x

)
, ∀ t ∈ R+ .

Furthermore, it holds

‖ ρ(t) ‖L∞x ≤ max
(
‖ ρ0 ‖L∞x , ‖ ρi ‖L∞x

)
, ∀ t ∈ R+ .

where ρi is given in (1.4).

We postpone the proof of this result to Appendix A since it is not the main point in our analysis.

We turn to the main result of this section, in which we provide estimates in Lp (M) for the solution
f ε to (1.1). As a direct consequence, we derive convergence estimates for πε and f ε respectively
towards ρ and the local equilibrium ρεM.
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Proposition 3.3. Consider some exponent p > d and set γ = 1 − d / p. Let (f ε)ε>0 be a sequence
of smooth solutions to (1.1) whose initial conditions meet assumption (2.1) and ρ be a smooth
solution to (1.4) whose initial condition meets (2.2). There exists a constant C only depending on
exponent p and dimension d such that for all ε ≤ 1, and all t less than T ε given in Theorem 2.1

(1) it holds

|||f ε|||p ≤ 2

(
|||f ε0 |||p + ε

γ
(

1
2
+ 1
p−1

)
Cd,pmp

)
eCρ0,ρiCd,p t ,

where Cρ0,ρi and mp are given Theorem 2.1;
(2) it holds

‖πε − ρ ‖L2
x

(t) ≤ εβ Cm2 p′
p eCρ0,ρi C t ,

where β = (p− d) / (p− 1) and 1/p′ + 1/p = 1;
(3) it holds

‖f ε − ρεM‖L2([0,t] , L2(M)) ≤ εCd,pm
2
p e

Cρ0,ρiCd,p t .

Proof. The core of this proof consists in deriving item (1) in Proposition 3.3. To do so, we consider
some positive ε and for t ∈ R+ define u as follows

u(t) = |||f ε(t)|||2p + ε−α ‖(πε − ρ) (t)‖2Lpx ,

for some positive α which needs to be determined. Our strategy consists in estimating each one of
the term composing u(t) separately and then to propose a combination of these two estimates which
allow us to close the estimate on u. In order to simplify notations, we omit the dependence with
respect to (t,x,v) when the context is clear. Furthermore, we denote by Cd,p a positive constant
depending only on exponent p an dimension d in this proof.

We start by estimating |||f ε(t)|||p. We multiply equation (1.1) by (f ε/M)p−1 and integrate over

Kd × Rd. After an integration by part with respect to v, it yields

1

p

d

dt
|||f ε|||pp +

1

ε2
Dp [ f ε ] =

p− 1

ε

∫
Kd×Rd

f ε

M
∇v

(
f ε

M

)
Eε
∣∣∣∣ f εM

∣∣∣∣p−2Mdxdv .

Therefore, applying Young’s inequality, we deduce

(3.2)
1

p

d

dt
|||f ε|||pp +

1 − η

ε2
Dp [ f ε ] ≤ p− 1

4 η
‖Eε‖2L∞x |||f

ε|||pp ,

for all positive η. Then we replace ‖Eε‖2L∞x as follows in the latter estimate

‖Eε‖2L∞x ≤ 3
(
‖Eε − Iε ‖2L∞x + ‖ Iε − E ‖2L∞x + ‖E ‖2L∞x

)
,

and estimate the norm ‖Eε − Iε ‖L∞x applying Lemma 3.1, the quantities ‖ Iε − E ‖L∞x , ‖E ‖L∞x
applying Morrey’s inequality (3.1). It yields for all η > 0

(3.3)
1

p

d

dt
|||f ε|||pp +

1− η
ε2
Dp [ f ε ] ≤

Cd,p
η

(
ε2 γ |||f ε|||2p + ‖πε − ρ ‖2Lpx + ‖ ρ ‖2Lpx

)
|||f ε|||pp .

We now estimate ‖(πε − ρ) (t)‖Lpx . To do so, we consider the difference between equations (1.3)

and (1.4) multiplied by (πε − ρ ) |πε − ρ |p−2 and integrated over Kd. After an integration by part,
it yields

1

p

d

dt
‖πε − ρ ‖p

Lpx
+ ∆p [πε − ρ ] = A1 + A2 + A3 ,

7



where A1, A2 and A3 are given by

A1 = (p− 1)

∫
Kd
∇x (πε − ρ)

∫
Rd

(
τ−1εv Eε − Eε

)
gε dv |πε − ρ|p−2 dx ,

A2 = (p− 1)

∫
Kd
∇x (πε − ρ) (Eε − Iε) πε |πε − ρ|p−2 dx ,

A3 = (p− 1)

∫
Kd
∇x (πε − ρ) (Iε πε − E ρ) |πε − ρ|p−2 dx .

A1 and A2 are error terms which we estimate using Sobolev inequalities whereas we estimate A3

using the properties of the limiting macroscopic equation (1.4).

Let us start with A1, which we estimate using Young inequality

A1 ≤ η∆p [πε − ρ ] +
p− 1

4 η
A11 ,

for all positive η and where A11 is given by

A11 =

∫
Kd

∣∣∣∣∫
Rd

(
τ−1εv Eε − Eε

)
gε dv

∣∣∣∣2 |πε − ρ|p−2 dx .

Thanks to Morrey inequality (3.1), we have for all v ∈ Rd∥∥τ−1εv Eε − Eε
∥∥
L∞x
≤ Cd,p |εv|γ ‖ρε‖Lpx .

After applying Jensen inequality to estimate ‖ρε‖Lpx , this yields∥∥τ−1εv Eε − Eε
∥∥
L∞x
≤ Cd,p |εv|γ |||f ε|||p .

We substitute τ−1εv Eε − Eε with the latter estimate in the definition of A11 and deduce

A11 = Cd,p ε
2γ |||f ε|||2p

∫
Kd

∣∣∣∣∫
Rd
|v|γ gε dv

∣∣∣∣2 |πε − ρ|p−2 dx .

Applying Hölder’s inequality, we obtain

A11 ≤ Cd,p ε
2γ |||f ε|||2p ‖π

ε − ρ ‖p−2
Lpx

(∫
Kd

∣∣∣∣∫
Rd
|v|γ gε dv

∣∣∣∣p dx

) 2
p

.

To estimate the integral in the latter inequality, we apply Hölder inequality(∫
Kd

∣∣∣∣∫
Rd
|v|γ gε dv

∣∣∣∣p dx

) 2
p

≤
(∫

Rd
|v|p′γMdv

) 2
p′

|||gε|||2p .

Then we notice that |||gε|||p = |||f ε|||p and deduce

A11 ≤ Cd,p ε
2γ |||f ε|||4p ‖π

ε − ρ ‖p−2
Lpx

,

In the end, we deduce the following bound for A1

A1 ≤ η∆p [πε − ρ ] +
Cd,p
η

ε2γ |||f ε|||4p ‖π
ε − ρ ‖p−2

Lpx
.

To estimate A2, we follow the same method as before excepted that we apply Lemma 3.1 to
bound Eε − Iε, it yields

A2 ≤ η∆p [πε − ρ ] +
Cd,p
η

ε2γ |||f ε|||4p ‖π
ε − ρ ‖p−2

Lpx
.

We turn to the last term A3, which decomposes as follows

A3 = A31 + A32 + A33 ,
8



where the latter terms are given by

A31 = (p− 1)

∫
Kd
∇x (πε − ρ) (Iε − E) (πε − ρ) |πε − ρ|p−2 dx ,

A32 = (p− 1)

∫
Kd
∇x (πε − ρ) (Iε − E) ρ |πε − ρ|p−2 dx ,

A33 = (p− 1)

∫
Kd
∇x (πε − ρ) E (πε − ρ) |πε − ρ|p−2 dx .

We start with A31, which rewrites as follows after an integration by part

A31 = − p− 1

p

∫
Kd
|πε − ρ|p ∇x · (Iε − E) dx .

Therefore, replacing Iε and E according to equations (1.5) and (1.4), we deduce the following relation

A31 = − p− 1

p

∫
Kd
|πε − ρ|p (πε − ρ) dx .

Since πε has positive values and taking the absolute value of ρ, we obtain

A31 ≤
p− 1

p
‖ρ‖L∞x ‖π

ε − ρ ‖p
Lpx

.

Remark 3.4. It is the only time we use the L∞-norm of ρ in our analysis.

To estimate A32 and A33, we use the same techniques as the ones already used to estimate A1

and A2. Therefore, we do not detail the computations. In the end it yields

A32 + A33 ≤ η∆p [πε − ρ ] +
Cd,p
η
‖ρ‖2Lpx ‖π

ε − ρ ‖p
Lpx

,

for all positive η. Gathering latter computations and taking η small enough, we obtain the following
estimate

1

p

d

dt
‖πε − ρ ‖p

Lpx
≤ Cd,p

(
ε2γ |||f ε|||4p ‖π

ε − ρ ‖p−2
Lpx

+
(
‖ρ‖2Lpx + ‖ρ‖L∞x

)
‖πε − ρ ‖p

Lpx

)
,

for some constant Cd,p only depending on d and p. Dividing by ‖πε − ρ ‖p−2
Lpx

the latter estimate,

this yields

(3.4)
1

2

d

dt
‖πε − ρ ‖2Lpx ≤ Cd,p

(
ε2γ |||f ε|||4p +

(
‖ρ‖2Lpx + ‖ρ‖L∞x

)
‖πε − ρ ‖2Lpx

)
.

It is now possible to obtain item (1) in Proposition 3.3: we set η to 1 in (3.3) and take the

sum between estimate (3.3) divided by ‖f ε‖p−2p and estimate (3.4), we deduce that u verifies the
following differential inequality

1

2

d

dt
u(t) ≤ Cd,p

((
ε2γ−α + ε2γ

)
|||f ε|||4p + ‖πε − ρ‖2Lpx |||f

ε|||2p + Cρ

(
ε−α ‖πε − ρ‖2Lpx + |||f ε|||2p

))
,

where Cρ is given by

Cρ = ‖ρ‖2Lpx + ‖ρ‖L∞x .

Hence, taking α = γ and applying Lemma 3.2 to estimate Cρ, we deduce

d

dt
u(t) ≤ Cd,p

(
εγ u(t)2 + Cρ0,ρi u(t)

)
,

where Cρ0,ρi is given by

Cρ0,ρi = max
(
‖ ρ0 ‖2Lpx , ‖ ρi ‖

2−2/p2

Lp+1
x

, ‖ ρ0 ‖L∞x , ‖ ρi ‖L∞x
)
.
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We divide the latter estimate by
(
εγ u2 + Cρ0,ρi u

)
and notice that

1

εγ u2 + Cρ0,ρi u
=

1

Cρ0,ρi

(
1

u
− εγ

εγ u+ Cρ0,ρi

)
,

therefore, we obtain
d

dt
ln

(
u(t)

εγ u(t) + Cρ0,ρi

)
≤ Cρ0,ρi Cd,p .

Integrating between 0 and t and taking the exponential in the latter estimate, it yields

(3.5) u(t) ≤ u0

(
1 − εγ

u0
Cρ0,ρi

(
eCρ0,ρi Cd,p t − 1

))−1
eCρ0,ρiCd,p t ,

for all time t verifying

t <
1

Cρ0,ρi Cd,p
ln

(
1 +

Cρ0,ρi
u0

ε−γ
)
.

To conclude this step, we estimate u0 by applying the triangular inequality

(3.6) u0 ≤ |||f ε0 |||
2
p + 2 ε−γ

(
‖πε0 − ρε0‖

2
Lpx

+ ‖ρε0 − ρ0‖2Lpx
)
.

To estimate ‖πε0 − ρε0‖Lpx , we apply Hölder’s inequality to the right hand side of the following
relation

‖πε0 − ρε0‖Lpx =

(∫
Kd

∣∣∣∣∣
∫
Rd

(
τ−1εv f

ε
0 − f ε0

)
(x,v)

M(v) |εv|β
|εv|βM(v)dv

∣∣∣∣∣
p

dx

) 1
p

,

which yields

‖πε0 − ρε0‖Lpx ≤ Cd,p ε
β

(∫
Kd×Rd

∣∣∣∣∣
(
τ−1εv f

ε
0 − f ε0

)
(x,v)

M(v) |εv|β

∣∣∣∣∣
p

M(v)dvdx

) 1
p

.

Then we split the integral in the right hand side of the latter inequality by distinguishing the case
where |εv| ≤ 1 from the case where |εv| > 1, this yields

‖πε0 − ρε0‖Lpx ≤ Cd,p ε
β

(
|||f ε0 |||p + sup

|x0|≤1
|x0|−β |||τx0f

ε
0 − f ε0 |||p

)
.

We substitute ‖πε0 − ρε0‖Lpx according to the latter estimate in (3.6) and apply assumption (2.1), it
yields

u0 ≤ |||f ε0 |||
2
p + Cd,pm

2
p ε

γ
(
1+ 2

p−1

)
,

where mp is the constant in (2.1). Replacing u0 in (3.5) thanks to the latter inequality, we deduce
item (1) of Proposition 3.3, that is

|||f ε|||p ≤ 2

(
|||f ε0 |||p + ε

γ
(

1
2
+ 1
p−1

)
Cd,pmp

)
eCρ0,ρiCd,p t ,

for all time t less than T ε, where T ε is given by

T ε =
1

Cρ0,ρi Cd,p
ln

1 +
Cρ0,ρi

4

(
|||f ε0 |||

2
p + ε

γ
(
1+ 2

p−1

)
Cd,pm2

p

) ε−γ

 .

In order to prove item (2), we consider relation (3.4), replace |||f ε(t)|||p with the estimate given

by item (1) in Proposition 3.3 and apply Lemma 3.2 to bound ρ, this yields

d

dt
‖πε − ρ ‖2Lpx ≤ Cd,p

(
ε2γm4

p e
Cρ0,ρiCd,p t + Cρ0,ρi ‖πε − ρ ‖2Lpx

)
,

10



for all time t less than T ε, where mp and Cρ0,ρi are given in Theorem 2.1. Multiplying the latter

estimate by e−Cρ0,ρiCd,p t, integrating between 0 and t and taking the square root on both sides of
the inequality, we obtain

‖πε − ρ ‖Lpx ≤ eCρ0,ρi Cd,p t
(
‖πε0 − ρ0 ‖Lpx + εγ Cd,pm

2
p t
)
.

Since we already proved in the first step that ‖πε0 − ρ0 ‖Lpx ≤ Cd,pmp ε
γ
(
1+ 2

p−1

)
, and since 1 ≤ mp,

we deduce

‖πε − ρ ‖Lpx ≤ εγ Cd,pm
2
p e

Cρ0,ρi Cd,p t .

Item (2) in Proposition 3.3 is obtained applying the following interpolation inequality in the latter
estimate

‖πε − ρ ‖L2
x
≤ ‖πε − ρ ‖

p−2
p−1

L1
x
‖πε − ρ ‖p

′

Lpx
,

where p′ is given by 1/p′ + 1/p = 1 and noticing that p′ γ = β.

To prove item (3) in Proposition 3.3, we set p = 2 in (3.2), apply Morrey’s inequality (3.1) to
estimate Eε and Jensen’s inequality, which ensures |||f ε|||2 ≤ |||f ε|||p. This yields

1

2

d

dt
|||f ε|||22 +

1− η
ε2
D2 [ f ε ] ≤

Cd,p
η
|||f ε|||4p .

Therefore, taking η = 1/2, integrating the latter estimate between 0 and t and replacing |||f ε|||p by

the estimate given in item (1) in Proposition 3.3 we obtain∫ t

0
D2 [ f ε ] ds ≤ ε2

(
|||f ε0 |||

2
p + Cd,p

∫ t

0
m4
p e

Cρ0,ρiCd,p s ds

)
,

for all time t between 0 and T ε. Hence, applying the Gaussian-Poincaré inequality which ensures
|||f ε − ρεM|||22 ≤ D2 [ f ε ], we deduce∫ t

0
|||f ε − ρεM|||22 ds ≤ Cd,p ε

2m4
p e

Cρ0,ρiCd,p t ,

which yields the result by taking the square root of the latter estimate. �

Building on Proposition 3.3, we are able to prove equicontinuity estimates for f ε in Lp (M).

Proposition 3.5. Consider some exponent p greater than the dimension d and set β = (p−d) / (p−
1). Under assumptions (2.2) on (ρ0, ρi) and (2.1) on the sequence of initial conditions (f ε0 )ε> 0,
consider a sequence of solutions (f ε)ε> 0 to (1.1). There exists a constant C only depending on
exponent p and dimension d such that for all positive ε less than 1, it holds

sup
|x0|≤1

|x0|−β|||f ε − τx0 f
ε|||2(t) ≤ eC

−1
ρ0,ρi

Cm2
p e
Cρ0,ρiC t sup

|x0|≤1
|x0|−β|||f ε0 − τx0 f

ε
0 |||p .

for all time t less than T ε, where T ε, mp and Cρ0,ρi are given in Theorem 2.1.

Proof. We consider ε > 0 and (t,x0) ∈ R+×Kd such that |x0| ≤ 1. We first compute the equation
solved by hε := f ε − τx0 f

ε. It is given by the difference between equation (1.1) and equation (1.1)
translated by x0 with respect to the spatial variable, that is

∂t h
ε +

1

ε
v · ∇x h

ε +
1

ε
(Eε − τx0E

ε) · ∇v f
ε +

1

ε
τx0E

ε · ∇v h
ε =

1

ε2
∇v · [v hε + ∇v h

ε ] .

Then we compute the norm of hε by multiplying the latter equation by (hε/M) |hε/M|p−2 and
integrating over Kd × Rd. After integrating by part with respect to v, this yields

1

p

d

dt
|||hε|||pp +

1

ε2
Dp [hε ] =

p− 1

ε

∫
Kd×Rd

∣∣∣∣ hεM
∣∣∣∣p−2∇v

(
hε

M

)
· (f ε (Eε − τx0E

ε) + hετx0E
ε) dxdv .
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We apply Young’s inequality to estimate the right hand side in the latter inequality and deduce

1

p

d

dt
|||hε|||pp ≤

p− 1

2

∫
Kd×Rd

∣∣∣∣ hεM
∣∣∣∣p−2

(∣∣∣∣ f εM
∣∣∣∣2 |Eε − τx0E

ε|2 +

∣∣∣∣ hεM
∣∣∣∣2 |τx0E

ε|2
)
M dxdv .

After taking the uniform norms of Eε− τx0E
ε and Eε and applying Hödler’s inequality to estimate

the cross product between f ε and hε, it yields

1

p

d

dt
|||hε|||pp ≤

p− 1

2

(
‖Eε − τx0E

ε‖2L∞x |||h
ε|||p−2p |||f ε|||2p + ‖Eε‖2L∞x |||h

ε|||pp
)
.

We apply Morrey’s inequality (3.1) to estimate the uniform norms of Eε − τx0E
ε and Eε, it yields

1

p

d

dt
|||hε|||pp ≤ Cd,p|||hε|||pp|||f

ε|||2p .

To conclude, we divide the latter estimate by |||hε|||p−1p , multiply it by e−Cd,p
∫ t
0 |||f

ε|||2p ds, integrate

between 0 and t and replace |||f ε|||p with the estimate in item (1) of Proposition 3.3, it yields

|||hε|||p ≤ exp

(
C−1ρ0,ρi

(
|||f ε0 |||p + Cd,pmpε

γ
2

)2
eCd,pCρ0,ρi t

)
|||hε0|||p ,

for all time t less than T ε, where T ε is given in Theorem 2.1. We obtain the result dividing the
latter estimate by |x0|β, taking the supremum over all x0 with norm less than 1 and since according
to Jensen’s inequality it holds |||hε|||2 ≤ |||h

ε|||p. �

4. Proof of Theorem 2.1

We consider the following decomposition of the quantity that we need to estimate

‖f ε − ρM‖L2([0,t] , L2(M)) ≤ (E1 + E2 + E3) (t) ,

where E1, E2 and E3 are given by

E1(t) = ‖f ε0 − ρεM‖L2([0,t] , L2(M)) ,

E2(t) = ‖ρε − πε‖L2([0,t] , L2
x(Rd)) ,

E3(t) = ‖πε − ρ‖L2([0,t] , L2
x(Rd)) .

We estimate E1 and E3 thanks to Proposition 3.3. Indeed, according to item (3), it holds

E1(t) = C εm2
p e

Cρ0,ρiC t ,

and according to item (2), it holds

E3(t) ≤ C εβm2 p′
p eCρ0,ρi C t ,

for all time t less than T ε, where T ε is given in Theorem 2.1. We turn to the last term E2. To
estimate ‖ρε − πε‖L2

x
, we apply Cauchy-Schwarz inequality to the right hand side of the following

relation

‖ρε − πε‖L2
x

=

∫
Kd

∣∣∣∣∣
∫
Rd

(
f ε − τ−1εv f ε

)
M(v) |εv|β

(t,x,v) |εv|βM(v)dv

∣∣∣∣∣
2

dx

 1
2

.

It yields

‖πε − ρε‖L2
x
≤ εβ

∫
Kd×Rd

∣∣∣∣∣
(
f ε − τ−1εv f ε

)
M(v) |εv|β

(t,x,v)

∣∣∣∣∣
2

M(v)dvdx

 1
2

,
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where we used that
∫
Rd |v|

2βMdv ≤ 1. Then we split the integral in the right hand side of the
latter inequality by distinguishing the case where |εv| ≤ 1 from the case where |εv| > 1, this
yields

‖πε − ρε‖L2
x
≤ εβ

(
2 |||f ε|||2 + sup

|x0|≤1
|x0|−β |||τx0f

ε − f ε|||2

)
.

Then we apply item (1) in Proposition 3.3 to estimate the norm of f ε and Proposition 3.5 to estimate
the norm of τx0f

ε − f ε. It yields

‖πε − ρε‖L2
x
≤ εβ

(
Cmp e

Cρ0,ρiC t + exp
(
C−1ρ0,ρiCm

2
p e

Cρ0,ρiC t
))
,

for all time t less than T ε, where T ε is given in Theorem 2.1. Taking the L2 norm of the latter
inequality over the time interval [0, t], it yields

‖πε − ρε‖L2([0,t] , L2
x(Rd)) ≤ εβ

(
C−1/2ρ0,ρi mp e

Cρ0,ρiC t + exp
(
C−1ρ0,ρiCm

2
p e

Cρ0,ρiC t
))

,

where we used the following inequality to estimate the time integral of the double exponential term

exp
(
C−1ρ0,ρiCm

2
p e

Cρ0,ρiC t
)
≤ 1

C2m2
p

d

dt
exp

(
C−1ρ0,ρiCm

2
p e

Cρ0,ρiC t
)
.

Gathering the estimate on E1, E2 and E3, we obtain the estimate in Theorem 2.1, that is

‖f ε − ρM‖L2([0,t] , L2(M)) ≤ εβ
(
Cm2 p′

p eCρ0,ρiC t + exp
(
C−1ρ0,ρiCm

2
p e

Cρ0,ρiC t
))

,

for all time t less than T ε, where T ε is given in Proposition 3.3.

5. Conclusion

We have proposed a method in order to treat the diffusive scaling for the VPFP model which
provides non-perturbative strong convergence results with explicit rates. Our approach may be
regarded as an alternative to compactness methods relying on averaging lemmas widely used in this
context [6, 12, 15, 19] with the advantage that it provides explicit convergence rates. An interest-
ing and challenging improvement would consist in conciliating this approach with hypocoercivity
methods [13, 1, 11] which present the advantage of providing global in time convergence estimates
but which fail, for now, to provide non-perturbative results in the physical case. To be noted that
up to our knowledge, non-perturbative results [5, 2] treating the long time behavior of (1.1) rely
on compactness arguments and are thus non quantitative. Therefore, associating hypocoercivity
methods with the one presented in this article might be a way to treat simultaneously the diffusive
regime ε → 0 and the long time behavior t → +∞ in a non-perturbative setting and with explicit
rates. Other natural questions arise from this work such as adapting this method in order to an-
alyze other asymptotic regimes [10] or to check its robustness on other collision operators such as
linearized Boltzmann operators.
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Appendix A. Proof of Proposition 3.2

Let us start with the case where exponent p is strictly less than +∞. We compute the time
derivative of ‖ρ‖p

Lpx
by multiplying equation (1.4) by ρp−1 and integrating with respect to x. After

an integration by part, we obtain

1

p

d

dt
‖ ρ ‖p

Lpx
+ ∆p [ ρ ] =

p− 1

p
D ,
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where D is given by

D =

∫
Kd

E · ∇xρ
p dx .

Integrating by part and according to equation (1.4), we rewrite D as follows

D =

∫
Kd

(ρi − ρ) ρ p dx =

∫
Kd
ρi ρ

p dx − ‖ρ‖p+1

Lp+1
x

.

To estimate the D, we apply Hölder’s inequality

D ≤ ‖ρi‖Lp+1
x
‖ρ‖p

Lp+1
x
− ‖ρ‖p+1

Lp+1
x

,

and therefore deduce
D ≤ ‖ρi‖p+1

Lp+1
x

1‖ρ‖
L
p+1
x
≤‖ρi‖

L
p+1
x

.

Furthermore, we use that ρ is a probability measure to apply Jensen inequality and we deduce

‖ρ‖Lpx ≤ ‖ρ‖
(p2−1)/p2

Lp+1
x

.

Injecting this inequality in the latter estimate on D, we obtain

D ≤ ‖ρi‖p+1

Lp+1
x

1
‖ρ‖

L
p
x
≤‖ρi‖

(p2−1)/p2

L
p+1
x

.

Therefore, we obtain

d

dt
‖ ρ ‖p

Lpx
≤ (p− 1) ‖ρi‖p+1

Lp+1
x

1
‖ρ‖p

L
p
x
≤‖ρi‖

(p2−1)/p

L
p+1
x

.

One can check that for any positive η, the constant

Cη = max
(
‖ρ0‖pLpx , ‖ρi‖

(p2−1)/p
Lp+1
x

)
+ η

is a super solution to the latter differential inequality. Therefore, it holds for all η > 0

‖ ρ ‖p
Lpx
≤ Cη .

Hence, taking η → 0, we obtain the expected result

‖ ρ ‖Lpx ≤ max
(
‖ρ0‖Lpx , ‖ρi‖

1−1/p2

Lp+1
x

)
,

for all time t ≥ 0. The case p = +∞ is obtained taking the limit p → +∞ in the latter estimate.
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