Shih-Shun Kao
email: shih-shun.kao@labri.fr

Ralf Klasing
email: ralf.klasing@labri.fr

Ling-Ju Hung
email: ljhung@ntub.edu.tw

Sun-Yuan Hsieh
email: hsiehsy@mail.ncku.edu.tw

A parallel algorithm for constructing multiple independent spanning trees in bubble-sort networks

Keywords: Independent spanning trees, Bubble-sort networks, Interconnection networks

The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance and secure message distribution. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. Kao et al. [Journal of Combinatorial Optimization 38 (2019) 972-986] proposed an algorithm to construct independent spanning trees in bubble-sort networks. The algorithm is executed in a recursive function and thus is hard to parallelize. In this paper, we focus on the problem of constructing ISTs in bubble-sort networks Bn and present a non-recursive algorithm. Our approach can be fully parallelized, i.e., every vertex can determine its parent in each spanning tree in constant time. This solves the open problem from the paper by Kao et al. Furthermore, we show that the total time complexity O(n • n!) of our algorithm is asymptotically optimal, where n is the dimension of Bn and n! is the number of vertices of the network.

Introduction

The design of modern interconnected networks faces several critical demands, such as how to perform fault-tolerant transmission and secure message distribution in a reliable communication network. The practical solution to meet the This research was supported by the LaBRI under the "Projets émergents" program. This study has been carried out in the frame of the "Investments for the future" Programme IdEx Bordeaux -SysNum (ANR-10-IDEX-03-02).

above requirements is to design a multi-path routing mechanism, which requires the network to provide disjoint paths between each pair of vertices. Therefore, if the transmission fails due to a disconnection in the current transmission path, we can resume the data transmission via another disjoint backup path. This dramatically increases the performance of fault-tolerant communication [START_REF] Bao | Reliable broadcasting and secure distributing in channel networks[END_REF][START_REF] Itai | The multi-tree approach to reliability in distributed networks[END_REF]. In addition, disjoint paths could be used in secure message distribution over a faultfree network in the following way [START_REF] Bao | Reliable broadcasting and secure distributing in channel networks[END_REF][START_REF] Yang | Broadcasting secure messages via optimal independent spanning trees in folded hypercubes[END_REF]. A message can be divided into several packets where the source node sends each packet to its destination via different paths. Thus, each node in the network receives at most one of the packets except for the destination node that receives all the packets.

Usually, an interconnection network is modeled by a simple undirected graph G = (V, E), where the vertex set V (G) and the edge set E(G) represent the set of processors and the set of communication links between the processors, respectively. A spanning tree T in G is a connected acyclic subgraph of G such that V (T) = V (G). Two spanning trees rooted at a specific vertex, say r, are called independent spanning trees (ISTs for short) if, for any vertex v ∈ V (G) \ {r}, the two paths from v to r in any two trees share no common edge and no common vertex except for v and r. Accordingly, the provision of multiple ISTs suffices to meet the requirement of reliable communication in a network.

Research on ISTs has been conducted for nearly three decades. In 1989, Zehavi and Itai [START_REF] Zehavi | Three tree-paths[END_REF] conjectured that there exist k ISTs rooted at an arbitrary vertex in a k-connected graph. From then on, this conjecture has been confirmed only for k-connected graphs with k ≤ 4 (see [START_REF] Cheriyan | Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs[END_REF][START_REF] Curran | Finding four independent trees[END_REF][START_REF] Itai | The multi-tree approach to reliability in distributed networks[END_REF]). Since this conjecture is still unsolved for general k-connected graphs for k ≥ 5, the follow-up research mainly focused on the study of constructing ISTs on specific interconnection networks, e.g., the construction of ISTs on some variations of hypercubes [START_REF] Chang | A comment on independent spanning trees in crossed cubes[END_REF][START_REF] Lin | Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes[END_REF][START_REF] Wang | Independent spanning trees on twisted cubes[END_REF][START_REF] Yang | Broadcasting secure messages via optimal independent spanning trees in folded hypercubes[END_REF][START_REF] Yang | Parallel construction of optimal independent spanning trees on hypercubes[END_REF], torus networks [START_REF] Tang | Independent spanning trees on multidimensional torus networks[END_REF], recursive circulant graphs [START_REF] Yang | On the independent spanning trees of recursive circulant graphs G(cd m , d) with d > 2[END_REF][START_REF] Yang | Constructing multiple independent spanning trees on recursive circulant graphs G(2 m , 2)[END_REF], and special subclasses of Cayley networks [START_REF] Cheng | Constructing independent spanning trees on pancake networks[END_REF][START_REF] Cheng | Constructing Independent Spanning Trees on Generalized Recursive Circulant Graphs[END_REF][START_REF] Huang | Two algorithms for constructing independent spanning trees in (n, k)-star graphs[END_REF][START_REF] Huang | Top-Down construction of independent spanning trees in alternating group networks[END_REF][START_REF] Kao | Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks[END_REF][START_REF] Lin | Constructing independent spanning trees on transposition networks[END_REF][START_REF] Yang | The construction of multiple independent spanning trees on burnt pancake networks[END_REF]. In particular, special topics related to ISTs include the research on reducing the height of the ISTs [START_REF] Yang | Optimal independent spanning trees on Cartesian product of hybrid graphs[END_REF][START_REF] Yang | Reducing the height of independent spanning trees in chordal rings[END_REF][START_REF] Yang | Pruning longer branches of independent spanning trees on folded hyper-stars[END_REF] and parallel construction of ISTs [4-6, 32, 37, 38].

Note that there is a similar problem called the construction of completely independent spanning trees (CISTs for short) in a network. A set of k unrooted spanning trees are called CISTs if they are pairwise edge-disjoint and inner-nodedisjoint (i.e., for each pair of vertices u and v in any two spanning trees, there exist no common edge and vertex in the paths between u and v except for the two end vertices). In particular, if k = 2, the two CISTs are called a dual-CIST. Hasunuma [START_REF] Hasunuma | Completely independent spanning trees in maximal planar graphs[END_REF] showed that the problem of determining whether there exists a dual-CIST in a graph is NP-complete. He also conjectured that there exist k CISTs in a 2k-connected graph. Currently, this conjecture has been proved to fail by counterexamples [START_REF] Pai | Completely independent spanning trees on some interconnection networks[END_REF][START_REF] Péterfalvi | Two counterexamples on completely independent spanning trees[END_REF]. For recent research results on CISTs and their applications, the reader is referred to [START_REF] Pai | Dual-CISTs: Configuring a protection routing on some Cayley networks[END_REF][START_REF] Pai | A two-stages tree-searching algorithm for finding three completely independent spanning trees[END_REF][START_REF] Pai | Three completely independent spanning trees of crossed cubes with application to secure-protection routing[END_REF][START_REF] Pai | Constructing dual-CISTs of pancake graphs and performance assessment of protection routings on some Cayley networks[END_REF] and references quoted therein. Here, we explicitly point out that the construction of multiple ISTs and CIST are two different problems.

For the construction of ISTs on bubble-sort networks, Kao et al. [START_REF] Kao | Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks[END_REF] proposed an algorithm to construct n -1 ISTs of B n and showed that the algorithm has optimal amortized efficiency for multiple trees construction. In particular, every vertex can determine its parent in each spanning tree in constant amortized time. The algorithm is executed in a recursive function and thus is hard to parallelize. In this paper, we present a parallel algorithm to construct n -1 ISTs in bubblesort networks B n . Our approach can be fully parallelized, i.e., every vertex can determine its parent in each spanning tree in constant time. This solves the open problem from [START_REF] Kao | Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks[END_REF]. Furthermore, we show that the total time complexity O(n•n!) of our algorithm is asymptotically optimal, where n is the dimension of B n and n! is the number of vertices of the network.

The rest of this paper is organized as follows. In Section 2, we introduce the bubble-sort graphs and some notations. In Section 3, we introduce the algorithm for constructing independent spanning trees of B n . In Section 4, we show the correctness of our algorithm and give the complexity analysis. Finally, conclusions and future works are given in Section 5.

Preliminaries

Let Σ n be the set of all permutations on {1, 2, . . . , n}. For a permutation p ∈ Σ n and an integer i ∈ {1, 2, . . . , n}, we use the following notations. The symbol at the ith position of p is denoted by p i , and the position where the symbol i appears in p is denoted by p -1 (i). A symbol i is said to be at the right position of p if p i = i, and for p = 12 • • • n the position of the first symbol i from the right which is not in the right position is denoted by r(p).

For i ∈ {1, • • • , n -1}, let p i = p 1 p 2 • • • p i-1 p i+1 p i p i+2 • • • p n be
the permutation of Σ n obtained from p by swapping two consecutive symbols at positions i and i + 1. The bubblesort network, denoted by B n , is an undirected graph consisting of the vertex set

V (B n) = Σ n and the edge set E(B n) = {(x, x i) : x ∈ Σ n , 1 i n -1}
, where the edge (x, x i) is called an i-edge of B n . Thus, B n is a Cayley graph generated by the transposition set {(i, i + 1) : 1 i n -1}, which is specified by an n-path P n = (1, 2, . . . , n) as its transposition graph [START_REF] Akers | A group theoretic model for symmetric interconnection networks[END_REF][START_REF] Lakshmivarahan | Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey[END_REF]. For example, Fig. 1 depicts B 4 . Clearly, for B n , the transposition graph P n contains only two subgraphs isomorphic to an (n -1)-path: one is (1, 2, . . . , n -2) and the other is (2, 3, . . . , n -1). Thus, for n 3, there are exactly two ways to decompose B n into n disjoint subgraphs that are isomorphic to B n-1 . Let B i n denote the graph obtained from B n by removing the set of all i-edges. Then, both B 1 n and B n-1 n consist of n disjoint subgraphs isomorphic to B n-1 .

Constructing ISTs on B n

In this section, we present an algorithm for constructing n -1 ISTs of B n . Since B n is vertex-transitive, without loss of generality, we may choose the identity 1 n = 12 • • • n as the common root of all ISTs. Also, since B n has connectivity n -1, the root in every spanning tree has a unique child. For 1 t n -1, if the root of a spanning tree takes

1 n t = 12 • • • (t -1)(t + 1)t(t + 2) • •
• n as its unique child, then the spanning tree of B n is denoted by T n t . To describe such The case n = 3. Since B 3 is isomorphic to a 6-cycle, we have

Parent(v, 1, 3) =                123 if v = 213; 213 if v = 231; 231 if v = 321; 321 if v = 312; 312 if v = 132; and Parent(v, 2, 3) =                231 if v = 213; 321 if v = 231; 312 if v = 321; 132 if v = 312; 123 if v = 132.
That is, the two paths T 3 1 = (132, 312, 321, 231, 213, 123) and T 3 2 = (213, 231, 321, 312, 132, 123) are ISTs of B 3 that take 1 3 = 123 as the common root.

The case n 4. In general, for B n with n 4, the construction of the ISTs of B n can be accomplished by Algorithm 1 to determine the parent of each vertex (except the root) in every spanning tree.

The main idea of the algorithm is as follows. In T n t for t ∈ {1, 2, . . . , n -2} all paths are from the vertex x with x n ∈ {1, 2, . . . , n -1} \ {t} to the vertex y with y n = t. Then, all paths are from the vertex y with y n = t to the root r. In T n n-1 all paths are from the vertex v with v n = n to the vertex u with u n ∈ {1, 2, . . . , n-1}. Then, all paths are from the vertex u with u n ∈ {1, 2, . . . , n-1} to the root r. Note that in a pre-processing stage, each node

Input : v: the vertex v = v1 • • • vn in Bn Output: p: p = Parent(v, t, n) the parent of v in T n t 1 if vn-1 ∈ {t, n -1} then j = r(v), p = Swap(v, vj) 2 else p = Swap(v, t) 3 return p Function Swap(v, x) Input : v: the vertex v = v1 • • • vn in Bn x: the symbol in the vertex v1 • • • vn Output: p: p = Parent(v, t, n) the parent of v in T n t 1 i = v -1 (x), p = v i 2 return
v = v 1 v 2 • • • v n (v = 1 n) computes its inverse permutation, i.e., v -1 (1)v -1 (2) • • • v -1 (n),
and the position of the first symbol i from the right which is not in the right position, i.e., r(v). This can be done efficiently in O(n) time for each vertex. Algorithm 1 uses two functions FindPosition(v) and Swap(v, x). The function FindPosition(v) finds the rightmost symbol x in v which is not in the right position, and then calls the Swap(v, x) function. The function Swap(v, x) swaps the symbol x in v in its position i with the symbol in position i + 1. Since we have the pre-processing stage, the two functions FindPosition(v) and Swap(v, x) can be calculated in constant time.

Table 1 shows the parent of every vertex v ∈ V (B 4) \ {1 4 } in T 4 t for t ∈ {1, 2, 3} calculated by Algorithm 1. For example, we consider v = 3214 and t = 3. Since v 4 = 4, p = Swap(v, v 4-1) = 3241. Also, we consider v = 4321 and t = 1. Since v 4 = 1, p = Swap(v, 4) = 3421. The corresponding three ISTs rooted at vertex 1 4 for B 4 are shown in Fig. 2.

Correctness and complexity analysis

In this section, we first show the correctness of Algorithm 1. Let T be a tree and u, v ∈ V (T), we use T (u, v) to denote the unique path joining u and v in T . For two spanning trees T n t and T n t for t, t ∈ {1, 2, . . . , n -1} with t = t , we denote by T n t (v, r) and T n t (v, r) the two paths from v to the common r. Theorem 1. For n 4, T n 1 , T n 2 , . . . , T n n-1 are n -1 ISTs of B n . Proof. Suppose that n 4, let r = 1 n (= 12 • • • n), the proof is by showing that for any vertex v ∈ V (B n) \ {r}, the two paths from v to r in any two trees of T n 1 , T n 2 , . . . , T n n-1 share no common edge and no common vertex except for v and r, and thereby proving the independence. Consider the following three cases:

Case

1: v n = n.
Each vertex of the two paths T n t (v, r) and T n t (v, r) (apart from T n n-1 (v, r)) swaps symbol t (resp., t) to the position v n-1 for t, t ∈ {1, 2, . . . , n -2}. Then, the rightmost symbol i which is not in the right position swaps to the right position. Therefore, T n t (v, r) and T n t (v, r) are vertex-disjoint. Now consider T n n-1 (v, r), each vertex of the path swaps the position v n-1 to v n . Then, the vertex v with v n = n swaps the symbol n -1 to the position v n . Hence, T n t (v, r), T n t (v, r) and T n n-1 (v, r) are vertex-disjoint. See Fig. 3, the paths from the vertex v with v n = n to r are marked in red, in T n n-1 (v, r) each vertex of the path has symbol n -1 in v n . The other trees T n t (v, r) have symbol t in position v n for t ∈ {1, 2, . . . , n -2}. Case 2: v n = n -1. Each vertex of the two paths T n t (v, r) and T n t (v, r) (apart from T n n-1 (v, r)) swaps symbol t (resp., t) to the position v n for t, t ∈ {1, 2, . . . , n -2}. On the other hand each vertex of the path has symbol t (resp., t) in different position. Therefore, T n t (v, r) and T n t (v, r) are vertex-disjoint. In T n n-1 (v, r) each vertex of the path swaps symbol n to the position v n . By Case 1, the paths T n 1 (v, r) and T n n-2 (v, r) are vertex-disjoint. Hence, T n t (v, r), T n t (v, r) and T n n-1 (v, r) are vertex-disjoint. See Fig. 4, the paths from the vertex v with v n = n -1 to r are marked in red, in T n 1 (v, r) each vertex of the path has symbol n -1, 1 or n in the position v n , in T n n-2 (v, r) each vertex of the path has symbol n -1, n -2 or n in the position v n , in T n n-1 (v, r) each vertex of the path swaps symbol n to the position v n .

Case 3: v n = j for j ∈ {1, 2, . . . , n -2}. Each vertex of the two paths T n t (v, r) and T n t (v, r) (apart from T n n-1 (v, r)) swaps symbol t (resp., t) to the position v n for t, t ∈ {1, 2, . . . , n -2}. On the other hand each vertex of the path has symbol t in different position. Therefore, T n t (v, r) and T n t (v, r) are vertex-disjoint. In T n n-1 (v, r) each vertex of the path swaps symbol n -1 to v n . By Case 2, the paths T n 1 (v, r) and T n n-2 (v, r) are vertex-disjoint. Hence, T n t (v, r), T n t (v, r) and T n n-1 (v, r) are vertex-disjoint. See Fig. 5, the paths from the vertex v with v n = 1 to r are marked in red, in T n 1 (v, r) each vertex of the path swaps symbol n to v n , in T n n-2 (v, r) each vertex of the path swaps symbol n -2 or n to v n , in T n n-1 (v, r) each vertex of the path swaps symbol n -1 to v n . This completes the proof.

The height of a rooted tree T , denoted by h(T), is the number of edges from the root to a farthest leaf. We define H n = max

1 t n-1 h(T n t)
to analyze the height of our constructed ISTs for B n .

Theorem 2. For the bubble-sort graph B n , Algorithm 1 correctly constructs n -1 ISTs of B n with height at most n(n + 1)/2 -1. In particular, every vertex can determine its parent in each spanning tree in constant time.

Proof. From Algorithm 1, the path from the vertex v with v n = 2 to the vertex u with u n = 1 has at most n -1 edges, and the path from the vertex u with u n = 1 to the vertex x with x n = n has at most n -1 edges. Moreover, the path from the vertex w with w n = n to the vertex x with x n = n and x n-1 = t has at most n -1 edges, and the path from the vertex x with x n = n and x n-1 = t to the vertex y with y n = n and y n-1 = n -1 has at most n -2 edges, and the path from the vertex y with y n = n and y

n-1 = n -1 to the vertex z with z n = n, z n-1 = n -1 and z n-2 = n -2 has at most n -3 edges. Since (n -2) + (n -3) + • • • + 1 = (n -1)(n -2)/2,
the path from the vertex x with x n = n and x n-1 = t to the root r has at most (n -1)(n -2)/2 edges. The path from the vertex v with v n = 2 to the root r has at most (n -1)(n -2)/2 + (n -1) + (n -1) = (n 2 -3n + 2 + 4n -4)/2 = (n 2 + n -2)/2 = n(n + 1)/2 -1 edges. Hence, H n ≤ n(n + 1)/2 -1. Obviously, each vertex in Algorithm 1 can determine its parent in each spanning tree in constant time. This completes the proof. Proof. There are n -1 ISTs, each IST contains n! vertices, hence the lower bound Ω(n • n!) is obvious. Since each vertex in Algorithm 1 can determine its parent in each spanning tree in constant time, the total time complexity of the proposed Algorithm 1 is O(n • n!). Hence, the total time complexity O(n • n!) of Algorithm 1 is asymptotically optimal. This completes the proof.

Conclusion

In this paper, we have proposed an algorithm for constructing n -1 ISTs rooted at an arbitrary vertex of the bubble-sort network B n . Our approach can be fully parallelized, i.e., every vertex can determine its parent in each spanning tree in constant time. Furthermore, we show that the total time complexity O(n • n!) of our algorithm is asymptotically optimal, where n is the dimension of B n and n! is the number of vertices of the network.

Since B n is a regular graph with connectivity n-1, the number of constructed ISTs is the maximum possible. For future work, a problem remaining open from our work is whether our algorithm can be extended to the (n, k)-bubble-sort graph [START_REF] Shawash | Relationships among popular interconnection networks and their common generalization[END_REF][START_REF] Zhao | The generalized connectivity of (n, k)-bubble-sort graphs[END_REF][START_REF] Zhao | The fault tolerance of (n, k)-bubble-sort networks[END_REF] which is a generalization of bubble-sort networks. Moreover, the butterfly graph [START_REF] Leighton | Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes[END_REF][START_REF] Liu | An new representation for interconnection network structures[END_REF] has good structural symmetries, is regular of degree 4, and the recursive construction properties are similar to bubble-sort networks. Thus, it is of interest to study the construction of ISTs on butterfly graphs.

Fig. 1 .

 1 Fig. 1. The bubble-sort network B4

Algorithm 1 : 11 else 12 if

 11112 The new parallel algorithmInput : v: the vertex v = v1 • • • vn in Bn t: the t-th tree T n t in IST n: the dimension of Bn Output: p: p = Parent(v, t, n) the parent of v in T n t 1 if vn = n then 2 if t = 2 and Swap(v, t) = 1n then p = Swap(v, t -1) 3 else if t = n -1 then p = Swap(v, vn-1)4 else p = FindPosition(v) 5 end 6 else 7 if vn = n -1 and vn-1 = n and Swap(v, n) = 1n then 8 if t = 1 then p = Swap(v, n) 9 else p = Swap(v, t -1) 10 end vn = t then p = Swap(v, n) 13 else p = Swap(v, t)

Fig. 2 .

 2 Fig. 2. The three ISTs of B4 calculated by Algorithm 1

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. An illustration of the paths described in the proof of Case 1 of Theorem 1

Corollary 1 .

 1 The total time complexity O(n • n!) of Algorithm 1 is asymptotically optimal.

Table 1 .

 1 p The parent of every vertex v ∈ V (B4) \ {14} in T 4 t for t ∈ {1, 2, 3} calculated by Algorithm 1

	v t v4 p	v t v4 p
			1	3214
	1234 --	-	3124 2 4 1324
			3	3142
	1	2143	1	3412
	1243 2 3 1423 3142 2 2 3124
	3	1234	3	1342
	1	3124	1	2314
	1324 2 4 1234 3214 2 4 3124
	3	1342	3	3241
	1	3142	1	3214
	1342 2 2 1324 3241 2 1 3421
	3	1432	3	2341
	1	4123	1	3421
	1423 2 3 1432 3412 2 2 3142
	3	1243	3	4312
	1	4132	1	3241
	1432 2 2 1342 3421 2 1 3412
	3	1423	3	4321
	1	1234	1	4213
	2134 2 4 2314 4123 2 3 4132
	3	2143	3	1423
	1	2134	1	4312
	2143 2 3 2413 4132 2 2 1432
	3	1243	3	4123
	1	2134	1	4231
	2314 2 4 3214 4213 2 3 4123
	3	2341	3	2413
	1	2314	1	2431
	2341 2 1 3241 4231 2 1 4321
	3	2431	3	4213
	1	2431	1	4321
	2413 2 3 4213 4312 2 2 3412
	3	2143	3	4132
	1	2341	1	3421
	2431 2 1 4231 4321 2 1 4312
	3	2413	3	4231