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Introduction

The Funk transform from [13], also called the Funk-Minkowski transform, the Funk-Radon transform, or the spherical Radon transform, is an integral transform which averages a function along great circles on the unit sphere S 2 . This transform, similar integral transforms, and associated inverse problems, are the subject of many mathematical studies, such as [19,25,29,34,37] and the references therein. These transforms play an important role in various applications, including photoacoustic tomography [20,44], Synthetic Aperture Radar [43] and diusion Magnetic Resonance Imaging (dMRI) [22,41]. To specify one successful example from medicine, Q-Ball Imaging images the orientation of bers in biological tissues [41]. The key step of this method computes the Funk transform of dMRI signals recorded on discrete spherical grids. The original computation [41] is a trapezoidal quadrature rule, applied on an interpolating function. The numerical scheme has been improved in [12,17], using a spectral method on a regularized least squares approximation. The success 1 of the articles [12,17,41] attests that it is crucial to master the Funk transform in discrete congurations.

So, this paper is devoted to a mathematical study of a discrete Funk transform, in order to provide new theoretical and numerical guarantees. The studied transform is a particular case of the approaches introduced in [12,17]; it is based on a spectral method combined with a least squares tting. The main feature of this work is that we restrict our attention to least squares tting without any regularization, so as to get a mathematical framework which is as clear as possible. The least squares functional comprises a tting term, but it does not contain any articial penalty. In particular, no regularization functional nor regularization weight have to be tuned in our approach.

The least squares problem ts values given on a spherical grid by a spherical harmonics with prescribed degree. The grid and the degree must be carefully chosen to insure that the problem is well-conditioned, which means that the corresponding matrix must have full column rank and a suitable condition number. This matrix, called a Vandermonde matrix as in [6,26,27], or an alternant matrix as in [1, p. 112], contains spherical harmonics restricted to the grid. In general, nding theoretically the rank and the condition number of such a matrix enters into the framework of harmonic analysis and is not an easy task. Geometrical and metric properties of the grid, as dened in [16,18], come into play. For example, [26,Theorem 2.4] [27,Lemma 3.13] DateX perury PD PHPQF PHPH Mathematics Subject Classication. TSIHD RReIPD WPgSSF Key words and phrases. gued phereD lest squresD spheril hrmonisD punk trnsformD don trnsformF 1 he wesite of the journl Magnetic Resonance in Medicine mentions IRQH ittions for RID PVQ ittions for IUD nd SSW ittions for IPD on tnury HSD PHPQF give a lower bound on the degree to insure a full row rank property; this bound is inversely proportional to the separation distance. Another example is [2, Theorem 3.5], which proves a full column rank property, assuming that the mesh norm is smaller than the inverse of the degree.

Choosing or dening a spherical grid with suitable properties is itself an important subject.

We refer to [42] for a historical presentation of several grids, and to [16] for a comparison of many popular grids, such as spiral grids, polyhedral grids, random grids, and so on. Some approaches compute an optimal grid as the numerical solution to an optimization problem; see for instance [9] for various optimization criteria, including the conditioning of a least squares problem. Some other approaches dene grids in an elementary explicit way. Among these simple grids, the equiangular Cubed Sphere [36,38] is obtained by radial projection of a circumscribed cube, from cartesian lines on the faces of the cube towards great circles on the sphere. This Cubed Sphere (and some variants) is very popular and is widely studied in numerical climatology and meteorology; see for instance [10,21,23,24,28,3033,35,39]. We have recently studied various approximation schemes on this grid using spherical harmonics. Lagrange interpolation has been considered in [6], a spherical quadrature rule in [5], and least squares approximation in [7]. Among the results, [7] gives the largest degree which numerically guarantees a condition number that is uniformly bounded. In this paper, we propose a further study concerning spectral computing on the Cubed Sphere. We investigate for the rst time the use of this grid for computing Funk transforms.

Our methodology contains two steps. In a rst step, we dene a family of discrete Funk transforms which act between spaces of grid functions, for a general grid. They are obtained as in [12,17], but without any regularization, and with an evaluation of the (continuous) transform on the initial grid. We prove new properties satised by these transforms, in order to give some mathematical background. In particular, we show that the pseudoinverse of such a transform represents an inverse discrete Funk transform very analogous to the direct one. We also provide a theoretical estimation of stability, which mainly depends on the conditioning of the least squares problem. It implies that stability is guaranteed as soon as the least squares problem is wellconditioned.

Therefore, in a second step, we focus on a framework which guarantees this condition of stability. We select the equiangular Cubed Sphere for the grid and we introduce a rule on the degree such that the conditioning is kept under control. The study is similar with [7], but the dimensions of the least squares problem have been reduced due to our specic problem. Indeed, the null space of the Funk transform contains any odd function, so we assume from the beginning that the approximation space contains only even spherical harmonics. Also, symmetry consideration allows to halve the grid, so we restrict the Cubed Sphere to an hemisphere.

The paper is organized as follows. In Section 2, we summarize some notation and background concerning spherical computation. In Section 3, we study a discrete Funk transform, based on a spectral method applied on a least squares tting. In Section 4, we focus on the case where the grid is the equiangular Cubed Sphere. In Section 5, the relevance of the approach is shown by various numerical tests, such as test of accuracy and stability on synthetic dMRI signals.

Background and notation

2.1. Spherical harmonics. On the unit sphere

S 2 = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 + x 2 3 = 1}, the spherical coordinates are given by x(θ, φ) = (cos θ cos φ, cos θ sin φ, sin θ) ∈ S 2 , θ ∈ [-π 2 , π 2 ], φ ∈ R.
In these coordinates, the real Legendre spherical harmonics of degree n ≥ 0 are dened by 

Y m n (x(θ, φ)) = (n+1/2)(n-|m|)! π(n+|m|)! P (|m|) n (sin θ) • cos |m| θ •      -sin mφ, -n ≤ m < 0, 1 √ 2 , m = 0, cos mφ, 0 < m ≤ n,
P n (t) = 1 2 n n! d n dt n (t 2 -1) n . The innite family (Y m n ) |m|≤n,
n∈N is a Hilbert basis of the space L 2 (S 2 ), which is equipped with the usual inner product and the associated norm,

f, g L 2 (S 2 ) = S 2 f (x)g(x)dσ, f L 2 (S 2 ) = f, f 1/2 L 2 (S 2 ) .
In this basis, any f ∈ L 2 (S 2 ) admits a unique spectral expansion,

f = |m|≤n f m n Y m n , with f m n = f, Y m n L 2 (S 2 ) .
(1)

For a xed degree D ≥ 0, the subspace of the spherical harmonics with degree less than or equal to D is denoted by Y D , so that (Y m n ) |m|≤n≤D is an orthonormal basis of Y D . The subspace of even functions in Y D , denoted by Y ev D , is spanned by the even degrees, i.e.

Y ev D = span{Y m 2n , 0 ≤ n ≤ D 2 , |m| ≤ 2n}.
In the sequel, we always assume that the degree D is even when considering Y ev D (because

Y ev D = Y ev D-1 otherwise); under this assumption, the dimension of Y ev D is given by d D = 1 2 (D + 1)(D + 2).
2.2. Funk transform. The Funk transform, denoted by F, maps a spherical function f : S 2 → R to a spherical function Ff : S 2 → R as follows. For any unit vector α ∈ S 2 , Ff (α) is dened as the average of f along the great circle that is orthogonal to α, i.e.

Ff (α) = 1 2π {x∈S 2 :x•α=0} f ds, α ∈ S 2 , f : S 2 → R, (2) 
where s denotes the length measure on the circle {x ∈ S 2 : x • α = 0}; in this denition, the function f is required to be integrable along any great circle (with respect to the length measure), so that the integrals are dened.

The Funk transform Ff is an even function, i.e. Ff (-α) = Ff (α), α ∈ S 2 . If f is odd, i.e.

f (-x) = -f (x), x ∈ S 2 , then Ff = 0. In any case, Ff = Ff ev , where f ev (x) = 1 2 (f (x)+f (-x)) denotes the even part of f . For these reasons, the Funk transform can be considered between spaces of even functions, without loss of generality. We follow this convention throughout the article. Hence, in the sequel, we consider even functions only.

Spherical harmonics are eigenfunctions of the Funk transform F [13], so that it denes an isomorphism on Y ev

D , F : Y ev D → Y ev D , FY m 2n = P 2n (0) Y m 2n , with P 2n (0) = (-1) n 1•3•5•••(2n-1) 2•4•6•••(2n) , |m| ≤ 2n, 0 ≤ n ≤ D 2 . ( 3 
)
The associated nonsingular matrix is the block diagonal matrix

Λ = diag (-1) n 1•3•5•••(2n-1) 2•4•6•••(2n) I 4n+1 , 0 ≤ n ≤ D 2 ∈ R d D ×d D .
(4) Numbering the elements of G by ξ 1 , . . . , ξ M , where M denotes the cardinal number, the canonical basis (δ ξ i ) 1≤i≤M of R G is dened by

R G = {b : G → R}.
δ ξ i (ξ j ) = 1, if i = j, 0, otherwise, 1 ≤ i, j ≤ M. In this basis, any b ∈ R G is represented by the column vector b = [b(ξ i )] 1≤i≤M ∈ R M , due to b = M i=1 b(ξ i )δ ξ i .
For any real function dened on the sphere, f : S 2 → R, the restriction of f on the grid G is the

grid function f | G ∈ R G dened by f | G := M i=1 f (ξ i )δ ξ i , f | G (ξ i ) = f (ξ i ), 1 ≤ i ≤ M.
2.4. Cubed Sphere. For a xed parameter N ≥ 1, the equiangular Cubed Sphere CS N ⊂ S 2 with angular step π 2N , is depicted in Figure 1; it is dened analytically by

CS N := ξ ∈ S 2 : ∃(i, j, k) ∈ N 3 ∩ ∂([0, N ] 3 ), ξ = Ψ(-π 4 + iπ 2N , -π 4 + jπ 2N , -π 4 + kπ 2N ) , (5) 
with Ψ(α, β, γ) :=

(tan α,tan β,tan γ) (tan 2 α+tan 2 β+tan 2 γ) 1/2 , (α, β, γ) ∈ ∂([-π 4 , π 4 ] 3 ).
In this denition, CS N is browsed as follows. The triplet (α, β, γ) browses a uniform grid of angles, on the faces of the cube [-π 4 , π 4 ] 3 ; the angular step is π 2N . This triplet is mapped to the point (tan α, tan β, tan γ), which browses a cartesian grid on the faces of the cube [-1, 1] 3 . Lastly, the radial projection of this point to the sphere is ξ = Ψ(α, β, γ), which browses CS N . From a geometrical point of view, CS N can be obtained by intersecting great circles as in Figure 1. These great circles correspond to 2N equiangular meridian circles with polar axis (0; (0, 0, 1)), and their counterparts for the axes (0; (0, 1, 0)) and (0; (1, 0, 0)). The cardinal number of CS N is given by 6N 2 + 2 (see, for instance, [8]).

Discrete Funk transform on a spherical grid

In this section, we study a discrete Funk transform on a general grid. We assume that

• G = {ξ 1 , . . . , ξ M } ⊂ S 2 is a spherical grid with cardinal number M , • b ∈ R G is a given grid function on G,
• D ≥ 0 is a xed even degree.

3.1. Least squares tting. One looks for an even spherical harmonics f ∈ Y ev D which ts the grid function b. The least squares problem minimizes a tting error as follows,

inf f ∈Y ev D M i=1 (f (ξ i ) -b(ξ i )) 2 . (LS) We introduce the basis (Y m 2n ) of Y ev D . Then any f ∈ Y ev D admits a spectral expansion (1), f = 0≤n≤D/2, |m|≤2n f m 2n Y m 2n ∈ Y ev D , with f = [ f m 2n ] 0≤n≤D/2, |m|≤2n ∈ R d D ; the matrix of the linear map f ∈ Y ev D → [f (ξ i )] 1≤i≤M ∈ R M is given by the Vandermonde matrix A = [Y m 2n (ξ i )] 1≤i≤M 0≤n≤D/2, |m|≤2n ∈ R M ×d D . (6)
Here, the row index is i, and the column index is the couple (n, m). Assuming a lexicographic ordering for (n, m), an expanded form of A is given by

A =         Y 0 0 (ξ 1 ) • • • Y -2n 2n (ξ 1 ) • • • Y m 2n (ξ 1 ) • • • Y 2n 2n (ξ 1 ) • • • Y D D (ξ 1 ) . . . . . . . . . . . . . . . Y 0 0 (ξ i ) • • • Y -2n 2n (ξ i ) • • • Y m 2n (ξ i ) • • • Y 2n 2n (ξ i ) • • • Y D D (ξ i ) . . . . . . . . . . . . . . . Y 0 0 (ξ M ) • • • Y -2n 2n (ξ M ) • • • Y m 2n (ξ M ) • • • Y 2n 2n (ξ M ) • • • Y D D (ξ M )        
.

Then, the problem (LS) can be written in matrix form as

inf f ∈R d D A f -b 2 ,
where

• denotes the euclidean norm in R M . In this paper, we assume that the grid G and the degree D are such that the Vandermonde matrix A has full column rank. Then the problem (LS) admits a unique solution. This solution, denoted

2 by

[b] ∈ Y ev D , [b] = arg inf f ∈Y ev D M i=1 (f (ξ i ) -b(ξ i )) 2 , (7) 
is given by

[b] = [Y m 2n (•)] 0≤n≤D/2, |m|≤2n [b], with [b] = (A A) -1 A b ∈ R d D . (8) 
Here, the vector [b] of the spectral coecients satises a linear system, whose matrix is symmetric and positive-denite:

A A [b] = A b.
For the matrix norm induced by the euclidean norm, the condition number of this linear system is given by

cond(A A) = cond(A) 2 , with cond(A) = σ max (A) σ min (A) ,
where σ max , resp. σ min , denote the maximum, resp. minimum, singular value. In Section 4, we propose a choice of G and D which guarantees (at least numerically) that the condition number of the Vandermonde matrix is close to 1 (cond A ≈ 1).

Remark 1. If the condition number is large (cond A > > 1), or if A has not full column rank, then regularization is needed. This is outside the scope of this paper, so we refer in this case to [15] for a general reference about ill-posed problems, [3] for various regularization operators dealing with spherical harmonics on the sphere, and [12,17] for regularization in a framework of Funk transforms.

We conclude this subsection by a simple result which permits to halve the grid in the case of a central symmetry, provided that the grid function is replaced by its even part.

Proposition 2. Assume that G in invariant with respect to the central symmetry, so that M is even, and ξ M/2+i = -ξ i , 1 ≤ i ≤ M/2 (up to a reordering). Then the problem (LS) is equivalent to

inf f ∈Y ev D M/2 i=1 (f (ξ i ) -b ev (ξ i )) 2 , with b ev (ξ i ) = 1 2 (b(ξ i ) + b(-ξ i )), 1 ≤ i ≤ M/2.
Proof. The grid is invariant under the central symmetry -I 3 (ξ ↔ -ξ), so we split the grid

function b into b = b ev + b odd , where b ev (ξ) = 1 2 (b(ξ) + b(-ξ)) is an even grid function (b ev (-ξ) = b ev (ξ)), and b odd (ξ) = 1 2 (b(ξ) -b(-ξ)) is odd (b odd (-ξ) = -b odd (ξ)). Therefore, for any f ∈ Y ev D , M i=1 (f (ξ i ) -b(ξ i )) 2 = M i=1 (f (ξ i ) -b ev (ξ i )) 2 + M i=1 b odd (ξ i ) 2 -2 M i=1 (f (ξ i ) -b ev (ξ i ))b odd (ξ i ).
In the right hand side, the rst term is twice the sum indexed by

1 ≤ i ≤ M/2, because (f -b ev ) 2
is an even grid function. The second term is a constant C which does not depend on f . The third term is null, because (f -b ev )b odd is an odd grid function. Therefore,

M i=1 (f (ξ i ) -b(ξ i )) 2 = 2 M/2 i=1 (f (ξ i ) -b ev (ξ i )) 2 + C,
which proves the result.

3.2. Discrete Funk transform. We study various mathematical properties of a discrete Funk transform dened as follows.

Denition 3 (Discrete Funk transform). Let G = {ξ 1 , . . . , ξ M } ⊂ S 2 be a spherical grid and D ≥ 0 be an even degree, such that the Vandermonde matrix A in (6) has full column rank. The discrete Funk transform F is dened as a linear mapping between spaces of grid functions, by

F : R G -→ R G b -→ F[b] = F( [b]) G , (9) 
where [b] is the least squares tting in (7), and F is the Funk transform in (2). In other words, the discrete Funk transform of a grid function is the Funk transform applied on the least squares tting, then restricted to the initial grid.

Property 4. In the basis (δ ξ i ) 1≤i≤M of R G , the matrix of the discrete Funk transform F is given by

F = A Λ (A A) -1 A ∈ R M ×M . ( 10 
)
Proof. The matrix of the least squares operator, : R G → Y ev D , in the bases (δ ξ i ) and (Y m 2n ), is given by (A A) -1 A , due to (8). The matrix of the Funk transform F :

Y ev D → Y ev D , in the basis (Y m 2n ), is the matrix Λ in (4). And the matrix of f ∈ Y ev D → f | G ∈ R G , in the bases (Y m 2n
) and (δ ξ i ), is given by the Vandermonde matrix A. The discrete Funk transform F is the composition of these linear maps, so its matrix F is given by the product of the matrices.

The following result establishes that the spherical function F( [b]) can be exactly recovered from its restriction Fb on G (so that the restriction is here lossly).

Proposition 5. The discrete Funk transform F : R G → R G and the Funk transform

F : Y ev D → Y ev D are related by • F = F • .
In other words, the least squares tting of the discrete Funk transform coincides with the Funk transform of the least squares tting,

[Fb](α) = F( [b])(α), b ∈ R G , α ∈ S 2 .
Proof. Similarly as the proof of Property 4, the matrix of • F is given by

(A A) -1 A • AΛ (A A) -1 A = Λ (A A) -1 A ,
where we recognize the matrix of F • on the right hand side.

In practice, f : S 2 → R is a spherical function that is sampled on the grid G, so that the given

data is b = f | G . One uses the discrete Funk transform F[f | G ], or equivalently F( [f | G ])
, in order to approximate some values Ff (α) of the Funk transform Ff . The following result shows that this method is exact if f ∈ Y ev D .

Theorem 6 (Exactness on Y ev D ). The discrete Funk transform is exact on Y ev D , which means that

F[f | G ] = (Ff )| G , f ∈ Y ev D . (11) 
More generally, for every f ∈ Y ev D , the Funk transform Ff can be computed exactly from the grid function f | G , with

Ff (α) = [Y m 2n (α)] 0≤n≤D/2, |m|≤2n Λ (A A) -1 A [f (ξ i )] 1≤i≤M , α ∈ S 2 , f ∈ Y ev D . (12) Proof. Any function f ∈ Y ev D ts exactly the grid values [f (ξ i )] 1≤i≤M , so that the unique solution of (LS) with b = f | G is the initial function f itself, [f | G ] = f, f ∈ Y ev D . Injecting this equality into the denition of F[f | G ] proves (11). Also, we obtain Ff = F( [f | G ]);
hence, we have ( 12) due to the matrix of F • (see the proof of Proposition 5). Now, we investigate the inversion of the discrete Funk transform F. We introduce the Moore-Penrose pseudoinverse F † of the matrix F, since it is not expected to be nonsingular. We refer to [14, pp. 257-258] for usual consideration about such a pseudoinverse. In our case, the pseudoinverse F † maps any c ∈ R M to the minimum norm solution b = F † c ∈ R M of the least squares problem inf b∈R M Fbc 2 . We prove that the pseudoinverse F † represents an inverse discrete Funk transform that is analogous to the direct transform F. Theorem 7 (Pseudoinversion). The Moore-Penrose pseudoinverse of F is given by

F † = A Λ -1 (A A) -1 A ∈ R M ×M . (13)
Therefore, the pseudoinverse F † represents the inverse discrete Funk transform F † , dened by

F † : R G -→ R G c -→ F † [c] = F -1 ( [c]) G . ( 14 
)
Proof. The matrix F † is the Moore-Penrose pseudoinverse of F (and conversely), because (10) and ( 13) imply that the four Moore-Penrose conditions [14, p. 257] are satised:

FF † F = F, F † FF † = F † , (FF † ) = FF † , (F † F) = F † F.
Furthermore, the matrix of the transform F † dened in ( 14) is given by F † . This result and its proof are analogous to Property 4. The dierence is that the diagonal matrix Λ of the isomorphic Funk transform F : Y ev D → Y ev D is replaced by the inverse diagonal matrix Λ -1 , since it represents the inverse transform F -1 . The relations (9) and ( 14) are very similar, so are (10) and ( 13). More generally, as soon as some result is established for one of the transforms F and F † , some counterpart is expected for the other one. For instance, the counterpart of Proposition 5 is given hereafter.

Proposition 8. The inverse discrete Funk transform F † : R G → R G and the inverse Funk transform

F -1 : Y ev D → Y ev D satisfy • F † = F -1 • .
In other words, the least squares tting of the inverse discrete Funk transform coincides with the inverse Funk transform of the least squares tting,

[F † c](ξ) = F -1 ( [c])(ξ), c ∈ R G , ξ ∈ S 2 .
Proof. Analogous to the proof of Proposition 5. Now, we express mapping properties of F and F † in term of the Vandermonde matrix A.

Proposition 9. The following assertions hold.

(i) The composition of F and F † coincides with the orthogonal projection on Ran A,

FF † = F † F = A(A A) -1 A . (15) 
In particular,

∀b ∈ Ran A, F † F b = FF † b = b. (16) 
(ii) The null space and the range of F satisfy

Ker F = Ker A = (Ran A) ⊥ , Ran F = Ran A, R M = Ker F ⊥ ⊕ Ran F.
(iii) The null space and the range of

F † satisfy Ker F † = Ker F, Ran F † = Ran F.
Proof. (i) Since A has full column rank, the orthogonal projection on Ran A is given by the matrix Π = A(A A) -1 A . Then FF † = F † F = Π can be easily checked with ( 10) and ( 13). And this implies ( 16) due to Πb = b, for any b ∈ Ran A.

(ii) The orthogonal decomposition R M = Ker A ⊕ Ran A is a consequence of classical linear algebra. Secondly, Ker A ⊂ Ker F is easily seen in ( 10), and Ker F ⊂ Ker F † F = Ker Π, with Ker Π = (Ran A) ⊥ = Ker A . Thirdly, Ran F ⊂ Ran A is easily seen in ( 10); furthermore, ( 16) proves that Ran A ⊂ Ran FF † , with Ran FF † ⊂ Ran F. The last equality is a consequence of the rst two ones.

(iii) The null space and the range of F † are obtained analogously as those of F.

Translating this proposition to grid functions results in the following corollary.

Corollary 10. The following asssertions hold.

(i) The composition of F and F † coincides with the restriction of the least squares tting,

F • F † = F † • F : R G -→ R G b -→ [b]| G . (17) 
(ii) The transform F † is the usual inverse transform of F, if the spaces are restricted to the subspace Y ev

D | G := {f | G , f ∈ Y ev D }, i.e., the linear mappings b ∈ Y ev D | G → Fb ∈ Y ev D | G , c ∈ Y ev D | G → F † c ∈ Y ev D | G ,
are two isomorphisms which are inverses of each other.

Proof. (i) The relation ( 17) is the translation of (15), from matrices to their linear maps.

(ii) The subspace Y ev D | G ⊂ R G is the translation to grid functions of the space Ran A. Translat- ing (16) shows that ∀b ∈ Y ev D | G , (F • F † )(b) = (F † • F)(b) = b.
The combination of this result with Proposition 9.(ii-iii) shows the result.

To nish with, we provide estimations of stability. They show that stability is expected if the condition number of the Vandermonde matrix A is suitable.

Theorem 11 (Stability). The maximum singular value of F, resp. F † , satises

σ max (F) ≤ cond A, σ max (F † ) ≤ cond A |P 2N -2 (0)| ∼ N →∞ √ πN cond A. ( 18 
)
Remark 12. The largest singular values represent stability constants, since perturbing a vector b ∈ R M by ∈ R M induces a perturbation on the transform Fb, resp. F † b, which satises

F(b + ) -Fb ≤ σ max (F) , F † (b + ) -F † b ≤ σ max (F † ) .
Proof. The maximum singular value σ max coincides with the matrix norm induced by the euclidean norm and is therefore sub-multiplicative. Hence, we deduce from (10) that

σ max (F) ≤ σ max (A) σ max (Λ) σ max (A † ),
where A † = (A A) -1 A is the Moore-Penrose pseudoinverse of the injective matrix A. On the right hand-side, σ max (Λ) = P 0 (0) = 1, and σ max (A † ) = 1 σ min (A) is the inverse of the minimum singular value of A. Therefore,

σ max (F) ≤ σ max (A) σ min (A) = cond(A).
For similar reasons, we see with (13) that

σ max (F † ) ≤ σ max (A) σ max (Λ -1 ) σ max (A † ) = cond(A) |P 2N -2 (0)| .
Here, σ max (Λ -1 ) = 1 |P 2N -2 (0)| , with P 2N -2 (0) given by (3); the asymptotics

1 |P 2N -2 (0)| ∼ √ πN can checked with the Stirling formula n! ∼ √ 2πn exp(-n)n n .

Discrete Funk transform on the Cubed Hemisphere

In this section, we investigate the discrete Funk transform in the case of the equiangular Cubed Sphere CS N .

4.1. Cubed Hemisphere. To begin with, for every N ≥ 1, the grid CS N is invariant under the central symmetry [4]. Hence, Proposition 2 shows that any least squares problem (LS) on this grid can be reduced to a problem on a half-grid, without changing the solution. Therefore, we restrict the grid CS N to the Northern hemisphere and a half of the equator circle, without loss of generality. The resulting grid is displayed in Figure 1 and is dened below.

Denition 13. Let N ≥ 1. The Cubed Hemisphere CH N is dened by

CH N = CS N ∩ {x(θ, φ) ∈ S 2 , (θ > 0 and 0 ≤ φ < 2π) or (θ = 0 and 0 ≤ φ < π)}, (19) 
so that CS N splits into CS N = CH N ∪ (-CH N ), and CH N has the cardinal number 3N 2 + 1.

In the remainder of this section, we consider the grid

G = CH N = {ξ i , 1 ≤ i ≤ M }, M = 3N 2 + 1,
where N ≥ 1 is xed.

4.2. Degree. We tune the degree D in term of the parameter N , so that the problem (LS) is well-conditioned. We argue that the value D = 2N -2 is a suitable choice.

The main motivation is the following claim.

Claim 14. Let N ≥ 1, G = CH N , and D = 2N -2. Then, the corresponding Vandermonde matrix A ∈ R (3N 2 +1)×(2N -1)N dened in (6) has full column rank and is well-conditioned, with a condition number uniformly bounded with N .

Unfortunately, a complete proof of Claim 14 is not available yet. The most convincing argument that we have at disposal is the numerical evidence displayed in Figure 2. These numerical

results indicate that cond A ≤ 2 1/4 ≤ 1.2, 1 ≤ N ≤ 64,
and they suggest that cond A grows to 2 1/4 when N → ∞. We also have a partial proof, concerning the full column rank property in the case N ≤ 4.

Theorem 15. Assume that 1 ≤ N ≤ 4, G = CH N , and consider the degree D = 2N -2. Then, the Vandermonde matrix A in (6) has full column rank. Proof. Equivalently, we prove the injectivity of the linear map f ∈ Y ev

D → [f (ξ i )] 1≤i≤M ∈ R M , where CH N = {ξ i , 1 ≤ i ≤ M }. Assume that f ∈ Y ev D is such that f (ξ i ) = 0, ∀1 ≤ i ≤ M . We prove that f = 0.
The key property is that f vanishes on every great circle C that contains at least 2D + 1 = 4N -3 zeros of f . Indeed, the restriction of f ∈ Y D to C , denoted by f | C , can be identied with a trigonometric polynomial with degree at most D. Such a trigonometric polynomial is null if it has at least 2D + 1 zeros. In the sequel, we especially apply this property to circles which permit to cover the sphere.

First, f vanishes on CS N because the symmetry of f implies that f (-ξ i ) = f (ξ i ) = 0, for every 1 ≤ i ≤ M . Second, the function f vanishes on the 2N meridian circles dened by

C (φ) = {x(θ, φ), θ ∈ [-π 2 , π 2 ]} ∪ {x(θ, φ + π), θ ∈ [-π 2 , π 2 ]}, φ ≡ π 4 ( π 2N ).
Indeed, for a given φ ≡ π 4 ( π 2N ), the assumption N ≤ 4 implies that C (φ) contains 4N points of CS N . These points give 4N zeros for f | C (φ) , so f | C (φ) = 0. Third, the function f vanishes on every great circle C that does not contain the pole (0, 0, 1), because such a circle contains 4N points on the set ∪ φ≡ π 4 ( π 2N ) C (φ) and f vanishes on this set.

Remark 16. In the proof, the key ingredient is that any meridian circle with longitude φ ≡ π 4 ( π 2N ) contains 4N points on CS N if N ≤ 4. For larger values of N , this property is not valid anymore. Also, the following theorem proves that degrees larger than 2N -2 must be proscribed in general; hence, the degree D = 2N -2 in Claim 14 is the largest recommended one. (ii) There exists a sequence

( N ) N ≥1 with asymptotics N ∼ N →+∞ N 2 2N π 3/2 2 3 2N → N →+∞ 0, such that ∀N ≥ 1, ∀D ≥ 2N, σ min (A D N ) 2 ≤ N .
(iii) There is a sequence

(K N ) N ≥1 with asymptotics K N ∼ N →+∞ 1 4 π 2N 1/2 3 2 2N +1 → N →+∞ +∞,
such that, for all N ≥ 1 and D ≥ 2N such that A D N has full column rank, Proof. We refer to [7, Theorems 34], which establish similar results for the matrix

cond(A D N ) 2 ≥ K N .
[Y m n (ξ)] ξ∈CS N |m|≤n≤D ∈ R (6N 2 +2)×(D+1) 2 .
The proofs are based on the examples

f 0 = Y -2N 2N (x(θ, φ -π 4 )) ∈ Y 2N , f 1 = Y 0 ∈ Y 2N . The same strategy applies for A D N , since f 0 , f 1 ∈ Y ev
2N , so we get almost the same estimations. The slight dierence is a factor 1 2 in (ii), due to the restriction of CS N to CH N . This factor disappears in the estimation of the condition number in (iii), since it is a ratio.

To put it in a nutshell, the function f 0 is the key of the proof. There is some trigonometric polynomial p such that

f 0 (x(θ, φ)) = p(θ) sin(2N (φ -π 4 )), θ ∈ [-π 2 , π 2 ], φ ∈ R,
where p(θ) becomes small when θ moves away from 0. Therefore, f 0 vanishes on CS N intersected with the meridian circles φ ≡ π 4 ( π 2N ). Hence, if N ≤ 4, f 0 vanishes on CH N , which implies (i). Otherwise, the remaining non-zero values of f 0 | CH N are bounded from above considering some estimation of p. We refer to the proof of [7, Theorems 34] for additional details.

Remark 18. The critical degree 2N corresponds usually to oscillations at the Nyquist's frequency for a uniform one-dimensional grid with step π 2N . Here, our critical example f 0 oscillates at this frequency along the (equatorial) grid φ ≡ π 4 ( π 2N ), so that f 0 is undersampled along the equator.

In the sequel, if the grid is G = CH N , then we select the degree D = 2N -2, as a consequence of Claim 14 and Theorem 17. 

σ max (F) ≈ 1.00218, σ max (F † ) ≈ 2(2N -2), 1 ≤ N ≤ 32;
this is in agreement with the theoretical bounds (18).

Numerical results

We perform various numerical experiments, in order to assess the quality and the eciency of the discrete Funk transform on the Cubed Hemisphere.

5.1. Accuracy and convergence of the discrete Funk transform. We evaluate the accuracy of the discrete Funk transform when it is used to approximate Funk transforms from values on CH N .

For that purpose, we introduce test functions,

g (k) := 0≤n≤100 n≡0 (2) 
-n≤m≤n

ĝ(k) n (2 + 0.5 cos(m) + 0.25 sin(m)) Y m n ∈ Y ev 100 , (20) 
ĝ(-∞)

n := 1 n! , ĝ(k) n := (n + 1) k , k = -6, -4, -2, -1, 0, (21) 
where the various rates of decay of the spectral coecients encode various smoothness properties. Here, g (k) ∈ Y ev 100 , so we compute the Funk transform Fg (k) by Theorem 6, with G = CH N , N = 51 and D = 2N -2. For any α ∈ S 2 , we use the relation ( 12) to compute Fg (k) (α) from the values of g (k) on the grid CH 51 . This computation is exact, up to rounding errors.

Consider now the discrete Funk transform F, associated to the grid G = CH N = {ξ i , 1 ≤ i ≤ M } and the degree D = 2N -2. For any function g, we approximate the vector [(Fg)

(ξ i )] 1≤i≤M by F[g(ξ i )] 1≤i≤M with a relative error η N [g] dened by η N [g] := F[g(ξ i )] 1≤i≤M -[(Fg)(ξ i )] 1≤i≤M [(Fg)(ξ i )] 1≤i≤M ; (22) 
here, • denotes the euclidean norm in R M . For g = g (k) , the reference vector [(Fg (k) )(ξ i )] 1≤i≤M is computed as mentioned in the previous paragraph (relation (12) with CH 51 for the data grid, and α ∈ CH N for the evaluation). In particular, η 51 [g (k) ] is zero (up to rounding errors).

We have plotted the errors η N [g (k) ] in Figure 4 (left panel), for 1 ≤ N ≤ 32. Overall, the behavior of the observed error depends on the rate of decay of the spectral coecients; the error converges fastly to zero for rapidly decaying coecients. We quantify this phenomenon in Table 1, where we report numerical convergence rates r N [g] such that For g (-∞) , with a factorial decay of the coecients, ĝ(-∞) n = 1/n!, the very fast convergence appears as a blow up of the rate r N [g (-∞) ]. For the functions g (-k) , k = 6, 4, 2, with a decay ĝ(-k) n = 1/(n + 1) k , the rate looks like r N [g (-k) ] ≈ k -0.5. For g (-1) , with the slow decay ĝ(-1) n = 1/(n + 1), and g (0) with constant values ĝ(0) n = 1, the convergence analysis is not so clear.

η 2N [g] = η N [g] 2 -r N [g] , with r N [g] = log 2 η N [g] -log 2 η 2N [g]. ( 23 
) N r N [g (-∞) ] r N [g (-6) ] r N [g (-4) ] r N [g (-2) ] r N [g (-1) ] r N [g (0) ] 1 3.7 4.
In a word, the discrete Funk transform F (or its matrix F) approximates the Funk transform from values on a Cubed Hemisphere. It converges fastly for smooth functions, for which the spectral coecients decay rapidly to zero. The observed rates of convergence suggests to analyze theoretically the speed of convergence in Sobolev spaces. We defer this point to further studies. 5.2. Funk transform of Gaussian models. We study the accuracy of the discrete Funk transform on Gaussian models from dMRI, for the grid G = CH N and the degree D = 2N -2.

We consider Gaussian models in the following form,

S(x) = exp(-b x Dx), x ∈ S 2 , ( 24 
)
where b ≥ 0, and D ∈ R 3×3 is a symmetric positive denite matrix. Such models describe the dMRI signal S in Diusion Tensor Imaging. The so-called diusion tensor D models intrinsic diusion properties of biological tissues. The parameter b is the so-called b-value, and is a parameter of the acquisition. The unit vector x, represents a gradient direction, and browses a hemispherical grid during the acquisition. Gaussian models such as (24) appear also in High Angular Resolution Diusion Imaging [11]. In this eld, a weighted average of several Gaussian models can be introduced to model the signal from crossing bers. The orientation of the bers can be imaged using an Orientation Distribution Function, which is computed approximately as the Funk transform of the recorded signal S [12,41]. Hence, it is crucial to be able to compute accurately the Funk transform of a Gaussian model, from a discrete set of values.

In this paper, we consider Gaussian signals

S j (x) = exp(-b j x D j x), x ∈ S 2 , 1 ≤ j ≤ 6. ( 25 
)
The b-values b j and the diusion tensors D j are dened in Table 2. Our values are inspired by the values from [12]. The b-value b = 1000 [s/mm 2 ] is an usual clinical value, whereas b = 3000 [s/mm 2 ] is considered as relatively high. For the diusion tensors, we have chosen diagonal matrices D i , dened by the eigenvalues µ 1 , µ 2 , µ 3 > 0. The matrix D 3 has been found in the synthetic data generation in [12]. The other matrices have been dened as variations of this matrix, in order to obtain more or less anisotropy; see the last column of Table 2, where anisotropy is measured by means of the fractional anisotropy (FA),

FA = 1 √ 2 (µ 1 -µ 2 ) 2 +(µ 1 -µ 3 ) 2 +(µ 2 -µ 3 ) 2 µ 2 1 +µ 2 2 +µ 2 3 ∈ [0, 1]. ( 26 
)
relative error on the transform is the maximum between the relative error on the signal, and the relative error on the transform from the noise-free case (displayed in Figure 5). This result is in agreement with the stability constant of the transform F, σ max (F) ≈ 1 in Figure 3.

To conclude, the Funk transform of Gaussian models can be accurately evaluated by the discrete transform on the Cubed Hemisphere, and in a very stable way.

5.3. Comparison of the Cubed Sphere and the icosahedral grid. We compare discrete Funk transforms on Cubed Hemispheres with discrete Funk transforms on icosahedral grids.

For the Cubed Sphere, we consider the Cubed Hemisphere CH N with cardinal number M = 3N 2 + 1. As an alternative grid, we consider an icosahedral grid. It is based on a regular triangular lattice onto each face of an icosahedron inscribed in S 2 . The icosahedral grid is dened as the projection of the vertices of this lattice onto S 2 . We further halve the grid by symmetry consideration (Proposition 2), in the same way as CS N has been halved. Assuming that each edge of the original icosahedron has been divided into N parts, the resulting half-grid contains M = 5N 2 + 1 points; we still call this grid an icosahedral grid, and we denote it by Ico N . Such grids have already been used for computing Funk transforms in [12] with M = 81, 321 (which corresponds to the parameters N = 2, 8).

Firstly, in order to obtain a stable discrete Funk transform, the degree D must be carefully tuned. For CH N , we use the rule D = 2N -2, as it has been introduced in Section 4. For the icosahedral grid Ico N , we do not know such a rule on the degree. To overcome this disadvantage, we compute numerically D as the largest degree D such that cond A ≤ 2, where A denotes the Vandermonde matrix ( 6) with G = Ico N . In Figure 7, we plot the obtained degree D against the number of points of the grid, for the grid CH N with 1 ≤ N ≤ 32, and the grid Ico N with 1 ≤ N ≤ 25. We observe that for equivalent number of grid points, the degree associated to the icosahedral grid is larger than the degree associated to the Cubed Hemisphere. Therefore, the icosahedral grid permits to work in a larger approximation space Y ev D , while keeping a very small condition number (cond A ≤ 2).

Secondly, we consider successively the discrete Funk transform associated to the grids

G = CH N , 1 ≤ N ≤ 32, G = Ico N , 1 ≤ N ≤ 25,
with the degree D discussed above. We evaluate the accuracy on the test function g = g (k) dened in (20-21), for k = -∞, -6, -4, -2, by means of the relative error

η[g] = max Q F[g(Q ξ i )] 1≤i≤M -[(Fg)(Q ξ i )] 1≤i≤M [(Fg)(Q ξ i )] 1≤i≤M , (G = {ξ i , 1 ≤ i ≤ M }); (30) 
here the orientation Q browses a set of 30 random orthogonal matrices. The computed errors are displayed in Figure 8. Overall, the two grids dene transforms with similar accuracy, and similar properties of convergence. This test reveals also that for very smooth functions and very small grids, the isosahedral grid denes a more accurate transform.

Lastly, we repeat the same procedure, but we corrupt the data with a level of noise σ = 10 -6 .

We compute the relative error

η noise [g] = max (Q,u,v) F[g(Q ξ i )(1 + σu i ) + σv i ] 1≤i≤M -[(Fg)(Q ξ i )] 1≤i≤M [(Fg)(Q ξ i )] 1≤i≤M , σ = 10 -6 , ( 31 
)
where the maximum is taken over 30 experiments; each experiment xes Q as a random orthogonal matrix, and the u i , v i as 2M independent realizations of the normal law N (0, 1). The obtained errors are depicted in Figure 9. The observations of the noise-free case still apply. We further observe that the errors are almost the same as soon as the noise becomes dominant.

To conclude, considering the Cubed Sphere is simpler than considering an icosahedral grid, for which further studies (or computation) are needed to keep the conditioning under control.

Moreover, the resulting accuracy is almost the same, except for very smooth functions on very small grids; in this case, the icosahedral grid is more advantageous if the noise is small enough. These preliminary results show that our transform is computed relatively fastly for small grids, despite our brute force implementation has not been optimized. Further studies are required to decrease these times. Combining symmetry consideration and an iterative solver such as Conjugate Gradient Least Squares (CGLS) is an option to consider in the future.

Conclusion

This paper deals with mathematical and numerical properties of some discrete Funk transforms, including their (pseudo)inversion. As a special case, the study includes a simple framework based on the Cubed Sphere. Our theoretical and numerical results indicate that stability and suitable convergence properties are expected in this context, despite regularization has not been applied. This mathematical background about discrete Funk transforms could potentially have applications in any eld where integrals along great circles on a sphere are considered.

This work opens problems to be addressed in the future. Finding the best spherical grid and the best degree is an open question. For the case of the Cubed Hemisphere CH N , proving that our rule on the degree (D = 2N -2) results in a small condition number is still open.

Another point concerns the speed of convergence, which should be quantied, for instance in Sobolev spaces. Concerning implementation aspects, writing a fast algorithm has still to be done. A rst step in this direction could be an ecient solver for the least squares problem, Email addressX jean-baptiste.bellet@univ-lorraine.fr

Figure 1 .

 1 Figure 1. Cubed Sphere and Cubed Hemisphere. The Cubed Sphere CS N (black dots) dened in (5) is obtained by intersecting equiangular meridian circles (gray lines). The Cubed Hemisphere CH N (gray circles) dened in (19) is located in the Northern hemisphere; it contains half of the points from CS N . Left: N is odd (N = 5). Right: N is even (N = 6).

Figure 2 .

 2 Figure 2. Numerical evidence of Claim 14: the condition number of the Vandermonde matrix A is plotted for G = CH N , D = 2N -2, and 1 ≤ N ≤ 64. Left: cond A is bounded from above by 1.2. Right: 2 1/4 -cond A decays to zero (plot in log-scale).

Theorem 17 .

 17 For the grid G = CH N , and an even degree D ≥ 2N , let A D N be the Vandermonde matrix (6). Let σ min (A D N ), cond(A D N ), denote its smallest singular value, resp. condition number. (i) For all N ≤ 4 and D ≥ 2N , the matrix A D N has not full column rank (hence, σ min (

Figure 3 .

 3 Figure 3. Stability constants associated to the discrete transforms F and F † , in the case G = CH N , D = 2N -2. Left: the maximum singular values σ max (F) and σ max (F † ) are plotted in term of N . Right: the same singular values are plotted, but with normalization factors.

4. 3 .

 3 Discrete Funk transform. Assuming that Claim 14 is true, we consider the discrete Funk transform F, in the case G = CH N , D = 2N -2, where N ≥ 1 is xed. Of course, any result of Subsection 3.2 applies. In particular, Theorem 11 guarantees estimations of stability based on the condition number plotted in Figure2. We check this point in Figure3, where we observe that the maximum singular values satisfy

Figure 4 .

 4 Figure 4. Approximation of the Funk transform [(Fg)(ξ i )] 1≤i≤M by the discrete transform F[g(ξ i )] 1≤i≤M , for the grid CH N , and the degree 2N -2. The relative error η N [g] in (22) is plotted, for each test function g = g (k) from (20-21).

Figure 5 .

 5 Figure 5. Accuracy of the discrete Funk transform on CH N with degree 2N -2, for the Gaussian signals S j in (25) and Table 5. Left: F[S j (ξ i )] 1≤i≤M approximates [(FS j )(ξ i )] 1≤i≤M with relative error η N [S j ] in (22); we plot η N [S j ] with 1 ≤ N ≤ 32. Right: for any orthogonal matrix Q ∈ R 3×3 , the same procedure applied to the rotated Gaussian S j (Q •) results in a relative error η N [S j (Q •)]; we plot the maximum error (27), where Q scans a set of 30 random orthogonal matrices.

Figure 6 .

 6 Figure 6. Accuracy of the discrete Funk transform on CH N (degree 2N -2), for Gaussian signals S j corrupted by noise. The relative error (29) on the transform is plotted against the relative error (29) on the signal (logarithmic scale). Left: N = 5; right: N = 10.

Figure 7 .

 7 Figure 7. Degree D for least squares tting on the Cubed Hemisphere CH N , resp. the Icosahedral grid Ico N . For CH N , the number of grid points is M = 3N 2 + 1, the degree is D = 2N -2, and 1 ≤ N ≤ 32. For Ico N , M = 5N 2 + 1, D is the largest degree such that cond A ≤ 2, and 1 ≤ N ≤ 25.

Figure 8 .

 8 Figure 8. Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the Icosahedral grid (Ico). The relative error η[g] in (30) is plotted against √ M , with M the number of grid points. The degree D is plotted inFigure 7.

Figure 9 .

 9 Figure 9. Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the Icosahedral grid (Ico), with a level of noise σ = 10 -6 . The relative error η noise [g] in (31) is plotted against √ M , with M the number of grid points. The degree D is plotted in Figure 7.

  (t) = d |m| dt |m| P n (t) is the |m|-th derivative of the Legendre polynomial of degree n,

	(|m|)
	n
	dened by

where P

  Grid functions. A spherical grid is a nite subset of the unit sphere, G ⊂ S 2 . A grid function on G is a function b : G → R dened on G. The space of such functions is denoted by

	This structure suggests the spectral method for computing Funk transforms, as it has been
	introduced in [12, 17].
	2.3.

Table 1 .

 1 Convergence rates (23) of the errors (22), for the test functions from (20-21).

			5	2.9	0.28	-1.4	1.8
	2	11	4.9	3.1	1.3	0.3	-0.19
	4	29	5.4	3.4	1.5	0.78	-0.11
	8	5.3	5.4	3.4	1.8	1.2	0.093
	16	0.83	5.5	3.6	2.2	1.8	1

  The program is executed on a laptop Dell Precision 7540; the processor is an Intel i9-9880H@2.30 GHz. The experiment is repeated six times, and we report the average values of the running times in Table3.

	Parameter N	1	2	4	8	16	32	64
	Number of grid points M	4	13	49	193	769	3073	12289
	Degree D	0	2	6	14	30	62	126
	CPU time (s)	1.8e-04 1.2e-04 3.7e-04 2.3e-03 2.2e-02 5.0e-01 1.5e+01

Table 3 .

 3 Running time dedicated to the computation of a discrete Funk trans-

form Fb, for the grid G = CH N , and the degree D = 2N -2.
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10 -6 diag(300, 300, 300) 0 2 1000 10 -6 diag(300, 600, 900) 0.46 3 1000 10 -6 diag(300, 300, 1700) 0.80 4 3000 10 -6 diag(300, 300, 300) 0 5 3000 10 -6 diag(300, 600, 900) 0.46 6 3000 10 -6 diag(300, 300, 1700) 0.80

Table 2. Parameters of the Gaussian signals ( 25). The anisotropy is measured by the fractional anisotropy (FA), dened in (26).

Firstly, we assume that the (even) signal S j is recorded on G = CH N , with N ≥ 1 and 1 ≤ j ≤ 6. We compute reference values [(FS j )(ξ i )] 1≤i≤M using trapezoidal rules 3 . Then, we compute the discrete Funk transform F[S j (ξ i )] 1≤i≤M . It approximates [(FS j )(ξ i )] 1≤i≤M , with a relative error η N [S j ], where η N is dened in (22). We have plotted these errors in Figure 5 (left panel) to evaluate the accuracy of the procedure. Overall, a fast convergence due to the smoothness of the Gaussian signals is observed. For the isotropic functions S 1 and S 4 , the error is always zero (up to rounding errors), because S 1 , S 4 ∈ Y 0 ⊂ Y ev 2N -2 , so (11) applies. With S 2 , S 5 , and S 3 , S 6 , we observe that increasing the b-value induces a loss in accuracy; this is because a Gaussian becomes sharper with high b-values.

Secondly, we show that the orientation of the grid does not matter. For that purpose, we consider rotations of the signals S j :

where Q ∈ R 3×3 is a random orthogonal matrix. The relative error of approximation of the Funk transform becomes η N [S j (Q •)], and can be computed as before. For each function S j , we repeat this procedure for 30 random orthogonal matrices Q, and we plot the maximum error max

in Figure 5 (right panel). We obtain a similar conclusion than before, so that the conclusion does not depend on the orientation of the grid.

Thirdly, we investigate the eect of noise. We corrupt the signals as follows. We x a value of N . For any 1 ≤ j ≤ 6, for any σ = 2 -p , with 2 ≤ p ≤ 31, we corrupt S j , by a speckle noise and an additive noise with level σ:

, where the u i , v i , are 2M = 6N 2 + 2 independent realizations of the normal law N (0, 1). In this case, the relative error on the signal is given by

We compute the discrete Funk transform

with a relative error

In Figure 6, we have plotted the relative error (29) on the transform against the relative error (28) on the signal. Two values of N are considered. On the left, N = 5, so that the grid CH N contains 76 points, and the approximation space is Y ev 8 . On the right, N = 10, so that the grid CH N contains 301 points, and the approximation space is Y ev 18 . Roughly speaking, we observe that the 3 rereD n integrl long gret irle x • α = 0 is n integrl of smooth 2πEperiodi funtion over periodD so the trpezoidl rule onverges exponentilly to the true integrl RHF hereforeD we pply suessive trpezoidl rules s followsF e strt with n ngulr step π 8 F e evlute the ssoited trpezoidl ruleY thenD we divide the ngulr step y twoD nd we iterteF he itertions re stopped s soon s the reltive inrese of the vlue etween two suessive itertions is elow the tolerne 10 -13 F