
HAL Id: hal-03820075
https://hal.science/hal-03820075v1

Preprint submitted on 18 Oct 2022 (v1), last revised 4 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A discrete Funk transform on the Cubed Sphere
Jean-Baptiste Bellet

To cite this version:

Jean-Baptiste Bellet. A discrete Funk transform on the Cubed Sphere. 2022. �hal-03820075v1�

https://hal.science/hal-03820075v1
https://hal.archives-ouvertes.fr


A DISCRETE FUNK TRANSFORM ON THE CUBED SPHERE

JEAN-BAPTISTE BELLET

Abstract. Computing accurately Funk transforms from discrete values is crucial in some ap-
plications, such as Q-Ball Imaging in medicine. This paper deals with a new discrete Funk
transform devoted to such computation, in the case of a hemispherical grid extracted from the
Cubed Sphere with step π/(2N). The approach is based on a spectral method applied on a
least squares �tting, in the space of even spherical harmonics with degree at most 2N − 2. We
prove various properties satis�ed by the new transform, including an analogous description of
the pseudoinverse. Remarkably, the transform and the pseudoinverse are expected to be stable,
despite the least square �tting is not regularized. Numerical results attest to the accuracy and
the stability, in particular for synthetic Gaussian signals from Q-Ball Imaging.

1. Introduction

The Funk transform from [14], also called the Funk-Minkowski transform, the Funk-Radon
transform, or the spherical Radon transform, is an integral transform which averages a function
along great circles on the unit sphere S2. This transform, similar integral transforms, and asso-
ciated inverse problems, are the subject of many mathematical studies, such as [17,23,25,32,37]
and the references therein. These transforms play an important role in various applications, in-
cluding photoacoustic tomography [18,44], Synthetic Aperture Radar [43] and di�usion Magnetic
Resonance Imaging (dMRI) [20,41].

To specify one successful example from medicine, Q-Ball Imaging images the orientation of
�bers in biological tissues [41]. The key step of this method computes the Funk transform of dMRI
signals recorded on discrete grids. The original computation [41] is a trapezoidal quadrature
rule, applied on an interpolating function. The numerical scheme has been improved in [12],
using a spectral method on a regularized least squares approximation. The huge success1 of the
articles [12,41] attests that it is crucial to master the Funk transform in discrete con�gurations.

In this paper, we focus on a discretization of the Funk transform, assuming that the con-
sidered spherical grid is the equiangular Cubed Sphere. This Cubed Sphere (and other ones)
are well known in numerical climatology and meteorology [26, 28�30, 33�35, 38]. A wide va-
riety of numerical methods has been successfully adapted to Cubed Sphere grids, e.g. in
[8�10, 13, 19, 21, 22, 24, 27, 31, 36, 39, 42] and the references therein. Nevertheless, to the au-
thor's knowledge, the Funk transform has never been tested on Cubed Spheres, whereas they are
natural candidates to de�ne an accurate discrete Funk transform, due to interesting properties
such as quasi-uniformity. This is the initial motivation of this study.

This paper is also part of a series of works dealing with computing on the equiangular Cubed
Sphere using spherical harmonics; Lagrange interpolation has been considered in [4], least squares
approximation in [6], and a spherical quadrature rule in [5]. These very recent works show that
spectral computing on the Cubed Sphere is promising. Here, we continue in this direction for
approximating the Funk transform. In a word, we de�ne a new discrete Funk transform, based
on the spectral decomposition of the Funk transform, applied on a least squares �tting on the
Cubed Sphere. The precise de�nition is summarized hereafter, with notation and assumption
clari�ed later in the text.

Date: October 18, 2022.
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1The website of the journalMagnetic Resonance in Medicine mentions 1421 citations for [41], and 555 citations

for [12], on October 18, 2022.
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De�nition 1 (Discrete Funk transform). Let N ≥ 1, and D = 2N − 2. Let CHN be a half
of the Cubed Sphere with step π

2N , de�ned in (4,6). Let A = ADN be the Vandermonde matrix
on CHN of the even spherical harmonics with degree at most D, de�ned in (9). Let Λ = ΛD
be the diagonal matrix de�ned in (3), corresponding to the Funk transform of these spherical
harmonics. Assuming that A has full column rank, we de�ne the discrete Funk transform on the
grid CHN as the matrix

F = AΛ (AᵀA)−1Aᵀ ∈ R(3N2+1)×(3N2+1). (1)

This transform is based on a spectral method very similar with the one from [12]. The new
features are the following ones:

(a) the grid is extracted from a Cubed Sphere with step π
2N ;

(b) the approximation space is Yev
2N−2 = Y0 ⊕ · · · ⊕ Y2n ⊕ · · · ⊕ Y2N−2;

(c) a least squares �tting is operated without any regularization.

In particular, we claim that (c) is possible in a stable way, due to our particular choice of the
grid in (a) and our choice of the approximation space in (b).

In this paper, we explain in details and we motivate De�nition 1. This includes the de�nition
of CHN , which is a new spherical grid that is relevant for manipulating even spherical functions.
We prove some properties that are satis�ed by the new discrete Funk transform F de�ned in (1);
in particular, we show that the pseudoinverse F† represents an inverse discrete Funk transform
analogous to the direct transform F. And we propose a series of numerical tests which attest to
the stability and the accuracy of F.

The paper is organized as follows. In Section 2, we summarize some background concerning
spherical harmonics, the Funk transform, and the Cubed Sphere. In Section 3, we present least
squares approximation of even functions on the Cubed Sphere, without and with regularization.
In Section 4, we introduce and we study the discrete Funk transform F, and the pseudoinverse
F†. In Section 5, the relevance of the approach is shown by various numerical tests, such as test
of accuracy on synthetic dMRI signals.

2. Background and notation

2.1. Spherical harmonics. We consider spherical coordinates on the sphere S2, given by

x(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ) ∈ S2, θ ∈ [−π
2 ,

π
2 ], φ ∈ R.

In these coordinates, the real Legendre spherical harmonics of degree n ≥ 0 are de�ned by

Y m
n (x(θ, φ)) =

√
(n+1/2)(n−|m|)!

π(n+|m|)! P (|m|)
n (sin θ) · cos|m| θ ·


− sinmφ, −n ≤ m < 0,
1√
2
, m = 0,

cosmφ, 0 < m ≤ n,

where P
(|m|)
n (t) = d|m|

dt|m|
Pn(t) is the |m|-th derivative of the Legendre polynomial of degree n,

de�ned by
Pn(t) = 1

2nn!
dn

dtn (t2 − 1)n.

The in�nite family (Y m
n )|m|≤n, n∈N is a Hilbert basis of the space L2(S2), which is equiped with

the usual inner product and the associated norm,

〈f, g〉L2(S2) =

∫
S2
f(x)g(x)dσ, ‖f‖L2(S2) = 〈f, f〉1/2

L2(S2) .

In this basis, any f ∈ L2(S2) admits a unique spectral expansion,

f =
∑
|m|≤n

f̂mn Y
m
n , with f̂mn = 〈f, Y m

n 〉L2(S2) .

For a �xed degree D ≥ 0, the subspace of the spherical harmonics with degree less than or equal
to D is denoted by YD, so that (Y m

n )|m|≤n≤D is an orthonormal basis of YD. The subspace of
even functions in YD, denoted by Yev

D , is spanned by the even degrees, i.e.

Yev
D = Y0 ⊕ · · · ⊕ Y2n ⊕ · · · ⊕ Y2bD/2c = span{Y m

2n , 0 ≤ n ≤ bD2 c, |m| ≤ 2n}.
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Figure 1. Cubed Sphere and Cubed Hemisphere. The Cubed Sphere CSN (black
dots) de�ned in (4) is obtained by intersecting equiangular meridian circles (gray
lines). The Cubed Hemisphere CHN (gray circles) de�ned in (6) is located in the
Northern hemisphere; it contains half of the points from CSN . Left: N is odd
(N = 5). Right: N is even (N = 6).

Hence, the dimension of Yev
D is given by

dD = (2bD2 c+ 1)(bD2 c+ 1).

2.2. Funk transform. The Funk transform, denoted by F , maps a spherical function f : S2 →
R (smooth enough) to a spherical function Ff : S2 → R as follows. For any unit vector α ∈ S2,
Ff(α) is the average of f along the great circle that is orthogonal to α, i.e.

Ff(α) =
1

2π

∫
{x∈S2:x·α=0}

f ds, α ∈ S2, f : S2 → R,

where s denotes the length measure on the circle {x ∈ S2 : x ·α = 0}. The Funk transform Ff is
an even function, i.e. Ff(−α) = Ff(α), α ∈ S2. If f is odd, i.e. f(−x) = −f(x), x ∈ S2, then
Ff = 0. In any case, Ff = Ff ev, where f ev(x) = 1

2(f(x) + f(−x)) denotes the even part of f .
For these reasons, the Funk transform is often considered only between spaces of even functions,
without loss of generality. We follow this convention throughout the article.

The Funk transform F is diagonal in the Legendre basis [14], so that it de�nes an isomorphism
on Yev

D ,

F : Yev
D → Yev

D , FY m
2n = P2n(0)Y m

2n , with P2n(0) = (−1)n 1·3·5···(2n−1)
2·4·6···(2n) ,

|m| ≤ 2n, 0 ≤ n ≤ bD2 c. (2)

The associated nonsingular matrix is the block diagonal matrix

ΛD = diag
[
(−1)n 1·3·5···(2n−1)

2·4·6···(2n) I4n+1, 0 ≤ n ≤ bD2 c
]
∈ RdD×dD . (3)

This structure suggests the spectral method for the computation of Funk transforms [12].

2.3. Cubed Sphere. For a �xed parameter N ≥ 1, the equiangular Cubed Sphere CSN ⊂ S2,
with angular step π

2N , is de�ned analytically by

CSN :=
{

1
r (±1, u, v), 1

r (u,±1, v), 1
r (u, v,±1);

r = (1 + u2 + v2)1/2, u = tan(−π
4 + iπ

2N ), v = tan(−π
4 + jπ

2N ), 0 ≤ i, j ≤ N
}
. (4)

From a geometrical point of view, CSN is obtained by intersecting great circles as in Figure 1.
These great circles correspond to 2N equiangular meridian circles with polar axis (0; (0, 0, 1)),
and their counterparts for the axes (0; (0, 1, 0)) and (0; (1, 0, 0)). The cardinal number of CSN is
given by 6N2 + 2. See, for instance, [7].
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3. Least squares approximation on the Cubed Hemisphere

We present least squares �tting on the Cubed Sphere, in the spirit of [6]. An original speci�city
here is that only even functions are considered, which reduces the dimension of the problem.

3.1. Least squares �tting with central symmetry. Assume that b = [b(ξ)]ξ∈CSN ∈ R6N2+2

is a given grid function on the Cubed Sphere CSN . One looks for an even spherical harmonics
f ∈ Yev

D which �ts b. The least squares approximation minimizes a �tting error as follows,

inf
f∈Yev

D

∑
ξ∈CSN

(f(ξ)− b(ξ))2. (5)

Without loss of generality, we can assume that b is an even grid function, i.e. such that
for any ξ ∈ CSN , b(−ξ) = b(ξ) with −ξ ∈ CSN . Indeed, the Cubed Sphere CSN is invariant
under the central symmetry −I3 (x ↔ −x) [3], which permits to split b into b = bev + bodd,
where bev(ξ) = 1

2(b(ξ) + b(−ξ)) is an even grid function, and bodd(ξ) = 1
2(b(ξ) − b(−ξ)) is odd

(bodd(−ξ) = −bodd(ξ)). Therefore, for any f ∈ Yev
D ,∑

ξ∈CSN

(f(ξ)− b(ξ))2 =
∑

ξ∈CSN

(f(ξ)− bev(ξ))2 +
∑

ξ∈CSN

bodd(ξ)2 + 2
∑

ξ∈CSN

(f(ξ)− bev(ξ))bodd(ξ).

The second term in the right hand side does not depend on f , whereas the third one is null,
because [(f(ξ) − bev(ξ))bodd(ξ)]ξ∈CSN is an odd grid function. Therefore, the problem (5) is
equivalent to

inf
f∈Yev

D

∑
ξ∈CSN

(f(ξ)− bev(ξ))2,

so that one may assume in (5) that b is even (up to the change b := bev). This is assumed from
now on.

Then, we halve the number of data points based on a splitting of CSN into two opposite parts.
One of the parts, called the Cubed Hemisphere, keeps only the Northern hemisphere and a half
of the equator circle, as in Figure 1 and in the following de�nition.

De�nition 2. Let N ≥ 1. The Cubed Hemisphere CHN is de�ned by

CHN = CSN ∩ {x(θ, φ) ∈ S2, (θ > 0 and 0 ≤ φ < 2π) or (θ = 0 and 0 ≤ φ < π)}, (6)

so that CSN is the disjoint union CSN = CHN ∪ (−CHN ), and CHN has the cardinal number
3N2 + 1.

Clearly, the least squares problem (5) (with an even grid function) is equivalent to

inf
f∈Yev

D

∑
ξ∈CHN

(f(ξ)− b(ξ))2, (LS)

where the given grid function is b = [b(ξ)]ξ∈CHN ∈ R3N2+1. This problem is the main approxi-
mation problem in this paper. Introducing the Legendre basis,

f =
∑

0≤n≤bD/2c, |m|≤2n

f̂mn Y
m
2n ∈ Yev

D , with f̂ = [fm2n]0≤n≤bD/2c, |m|≤2n ∈ RdD ,

the matrix of the linear map f ∈ Yev
D 7→ [f(ξ)]ξ∈CHN ∈ R3N2+1 is the Vandermonde matrix

ADN = [Y m
2n(ξ)] ξ∈CHN

0≤n≤bD/2c, |m|≤2n
∈ R(3N2+1)×dD , (7)

so that the problem (LS) can be written in matrix form as

inf
f̂∈RdD

‖ADN f̂ − b‖2. (L̂S)
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Figure 2. Numerical evidence of Claim 3: the condition number of the Vander-
monde matrix ADN is plotted for D = 2N − 2 and 1 ≤ N ≤ 32.

3.2. Least squares aproximation without regularization. The well-posedness of the con-
sidered problem (LS) depends on the column rank and on the condition number of the matrix
ADN . We refer to [6], where a similar problem has been studied for the full grid CSN and the full
space YD (without symmetry assumption). In this case, the Vandermonde matrix is given by

BD
N = [Y m

n (ξ)] ξ∈CSN
|m|≤n≤D

∈ R(6N2+2)×(D+1)2 . (8)

For the degree D = 2N − 1, it has been observed in numerical experiments in [6] that BD
N has

full column rank, and has a condition number which is uniformly bounded with N (and close
to 1). This property is not valid anymore if D ≥ 2N , where the critical degree 2N corresponds
to oscillations at the Nyquist's frequency associated to the angular step π

2N of CSN .

One may expect that similar results apply for the matrix ADN , because[
ADN
ADN

]
can be extracted from BD

N (up to a reordering of rows). This motivates the following claim,
which is analogous to [6, Claim 2], but deals with even functions only.

Claim 3. Let N ≥ 1, and �x the degree D = 2N − 2 in (7). Then, the Vandermonde matrix

A2N−2
N = [Y m

2n(ξ)] ξ∈CHN
0≤n≤N−1, |m|≤2n

∈ R(3N2+1)×(2N−1)N , (9)

has full column rank and is well-conditioned, with a condition number uniformly bounded with N .

We provide a numerical evidence of this claim in Figure 2, where it is observed that

condA2N−2
N ≤ 1.2, 1 ≤ N ≤ 32.

Nevertheless, a theoretical proof of this claim is not available yet (so is the proof of [6, Claim 2]).

Assuming that Claim 3 is true, we set

D = 2N − 2, A = A2N−2
N . (10)

Then, the problem (LS) admits a unique solution. This solution, denoted by

`[b] ∈ Yev
2N−2, `[b] = arg inf

f∈Yev
2N−2

∑
ξ∈CHN

(f(ξ)− b(ξ))2, (11)

is given by

`[b] = [Y m
2n(·)]ᵀ0≤n≤N−1, |m|≤2n ̂̀[b], with ̂̀[b] = (AᵀA)−1Aᵀb ∈ R(2N−1)N . (12)

Here, as a consequence of Claim 3, the vector ̂̀[b] of the spectral coe�cients satis�es a linear
system, whose matrix is symmetric, positive-de�nite, and well-conditioned:

AᵀA ̂̀[b] = Aᵀb.

In this case (D = 2N − 2), regularization is not needed.
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3.3. Regularized least squares approximation. For larger values of the degree D, i.e. D ≥
2N , regularization is advised. This is due to the following result, analogous to [6, Theorem 4].

Proposition 4. Let σmin(ADN ), resp. cond(ADN ), denote the smallest singular value, resp. con-

dition number, of the Vandermonde matrix ADN in (7), N ≥ 1, D ≥ 0.

(i) There exists a sequence (εN )N≥1 with asymptotics behavior

εN ∼
N→+∞

N
2

(
2N
π

)3/2 (2
3

)2N →
N→+∞

0,

such that
∀N ≥ 1, ∀D ≥ 2N, σmin(ADN )2 ≤ εN .

(ii) There exists a sequence (MN )N≥1 with asymptotics behavior

MN ∼
N→+∞

1
4

(
π
2N

)1/2 (3
2

)2N+1 →
N→+∞

+∞,

such that, for all N ≥ 1 and D ≥ 2N such that ADN is injective,

cond(ADN )2 ≥MN .

Proof. We refer to [6, Theorem 4], where the smallest, resp. largest, singular value of BD
N are

dominated considering the examples f0 = Y −2N2N (x(θ, φ− π
4 )) ∈ Y2N , resp. f1 = Y0 ∈ Y2N . The

same strategy applies for ADN , since f0, f1 ∈ Yev
2N . So we get almost the same estimations; the

slight di�erence is a factor 1
2 , due to the restriction of CSN to CHN . This factor disappears in

the estimation of the condition number since it is a ratio. �

As a consequence of this proposition, the least squares problem (LS) is ill-posed if N is �large�
and D ≥ 2N : in this case, the matrix ADN of the problem has a large condition number, or
is not injective. That is the reason why regularization is at least advised (or even needed) if
D ≥ 2N . We refer to [16] for a general reference about ill-posed problems, including Tikhonov
regularization, and we refer to [1] for various regularization operators dealing with spherical
harmonics on the sphere.

In this paper, we consider a Tikhonov regularization of (LS), in the spirit of [12]. We add
a weighted penalty in the mis�t function based on the Laplace-Beltrami operator: we introduce
the least squares problem

inf
f∈Yev

D

∑
ξ∈CHN

(f(ξ)− b(ξ))2 + λ‖∆Sf‖2L2(S2), (RLS)

where λ ≥ 0 is a �xed weight, and ∆S is the Laplace-Beltrami operator. It is classical (see [2]
for instance) that ∆S is diagonal in the Legendre basis, with

∆S Y
m
n = −n(n+ 1)Y m

n , 0 ≤ |m| ≤ n.
So, the regularized problem (RLS) is expressed in matrix form as

inf
f̂∈RdD

‖ADN f̂ − b‖2 + λ‖∆Df̂‖2, (R̂LS)

where ∆D is the block diagonal matrix

∆D = diag
[
−n(n+ 1) I4n+1, 0 ≤ n ≤ bD2 c

]
∈ RdD×dD . (13)

The following lemma shows that the proposed regularization guarantees existence and uniqueness
of an approximating function.

Lemma 5. Assume that λ > 0, or that ADN has full column rank. Then, the regularized prob-

lem (RLS), and (R̂LS), have a unique solution, given by

`λ[b] = [Y m
2n(·)]ᵀ0≤n≤bD/2c, |m|≤2n `̂λ[b], with `̂λ[b] =

[
(ADN )ᵀADN + λ∆2

D

]−1
(ADN )ᵀb ∈ RdD , (14)

where the matrix
(ADN )ᵀADN + λ∆2

D (15)

is symmetric and positive de�nite.
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Proof. It is not di�cult to check that

Ker(ADN ) ∩Ker(λ1/2∆D) = {0},

which implies the result, as in [16, Chapter 5]. �

Introducing the regularized problem (RLS) is interesting from a theoretical point of view,
since it permits to guarantee existence and uniqueness of a �tting function on CHN , for any
approximation space Yev

D , D ≥ 0. Nevertheless, in practice, the degree D must be selected, and
the weight λ ≥ 0 must be tuned to adjust the balance between the regularizing term and the
�tting error. For the purpose of this paper, we emphasize in Section 5 that the value λ = 0 gives
very satisfactory results for the degree D = 2N − 2; in this case, `0[b] = `[b] in (12) and there is
no regularization. In other words, it is not really worth regularizing in practice; the grid CHN

and the approximation space Yev
2N−2 are competitive for approximating the Funk transform.

4. Discrete Funk transform and its pseudoinverse

We introduce and we study a new discrete Funk transform, dedicated to the Cubed Sphere.

4.1. Motivation of De�nition 1. First, we recall a spectral method for approximating the
Funk transform. It is based on least squares approximation in a space of spherical harmonics,
with Laplace-Beltrami regularization. This popular approach has been introduced in [12], for a

general grid. Here, we assume that we know a grid function b = [b(ξ)]ξ∈CHN ∈ R3N2+1 on the
Cubed Hemisphere CHN . As in Subsection 3.1, b has eventually been computed as the restriction
to CHN of the even part of a grid function known on CSN . Then, we compute the Funk transform
of a spherical function which �ts the data b on CHN . More precisely, we introduce a least squares
approximation of b in Yev

D . According to Lemma 5, we can introduce the solution `λ[b] ∈ Yev
D to

a regularized problem (RLS). In this case, we can compute the Funk transform F [`λ[b]], where
`λ[b] is de�ned in (14); using the spectral form of F , this is expressed in exact analytical form as

F [`λ[b]](α) = [Y m
2n(α)]ᵀ0≤n≤bD/2c, |m|≤2nΛD

[
(ADN )ᵀADN + λ∆2

D

]−1
(ADN )ᵀb, α ∈ S2, (16)

where ΛD is the diagonal matrix associated to F : Yev
D → Yev

D , de�ned in (13). In this way, we

map a vector b ∈ R3N2+1 of values on CHN towards the spherical harmonics F [`λ[b]] ∈ Yev
D . If

f : S2 → R is an even spherical function, we can set b = [f(ξ)]ξ∈CHN , so that `λ[b] is expected
to approximate f on S2, and F [`λ[b]] is expected to approximate Ff . In other words, (16) is
expected to estimate the integral of f along any great circle x · α = 0, from the grid values
b = [f(ξ)]ξ∈CHN only.

The new feature in our work is that the considered grid is the Cubed Hemisphere CHN

(or the Cubed Sphere CSN itself). Therefore, the result from Claim 3 is expected. As in
Subsection 3.2, this suggests to setD = 2N−2 and to solve the original least squares problem (LS)
without regularization (λ = 0). Then, computing the Funk transform of this approximation
leads to a new spectral method, which computes a Funk transform in Yev

2N−2 from grid values

b = [b(ξ)]ξ∈CHN ∈ R3N2+1,

F [`[b]](α) = [Y m
2n(α)]ᵀ0≤n≤N−1, |m|≤2nΛ (AᵀA)−1Aᵀ b, α ∈ S2, (17)

where A = A2N−2
N in (9), Λ = Λ2N−2, and `[b] is the approximation de�ned in (12).

The last step to obtain our discrete Funk transform on CHN is to sample the spherical function
F [`[b]] on CHN . In other words, we de�ne the discrete Funk transform of the grid function
b = [b(ξ)]ξ∈CHN as the grid function [F [`[b]](α)]α∈CHN , where ξ is the original spatial variable
on S2, and the �dual� variable α represents the normal vectors to the great circles. In this way,
we obtain exactly

[F [`[b]](α)]α∈CHN
= F b,

where the matrix F is de�ned in (1), and is the so-called discrete Funk transform in De�nition 1.
Lastly, we comment the full column rank condition that is formulated in De�nition 1. This

condition has been included in the text of the de�nition to guarantee that F in (1) is de�ned.
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We do not have a proof that this condition is satis�ed for any N ≥ 1, but Claim 3 indicates that
it is expected, with a nice condition number for AᵀA.

4.2. Properties of the discrete Funk transform. In this subsection, we keep the notation
from De�nition 1; we assume that N ≥ 1 is such that A = A2N−2

N has full column rank, so that
the discrete Funk transform F is de�ned. We prove of series of properties satis�ed by this new
transform.

The discrete Funk transform F has been de�ned to satisfy the following property.

Property 6. For any b = [b(ξ)]ξ∈CHN ∈ R3N2+1, the discrete Funk transform Fb ∈ R3N2+1 is
the restriction to CHN of the Funk transform of the least squares �tting `[b] ∈ Yev

2N−2,

Fb = [F [`[b]](α)]α∈CHN
, `[b] = arg inf

f∈Yev
2N−2

∑
ξ∈CHN

(f(ξ)− b(ξ))2. (18)

Proof. Since A has full column rank, there exists a unique solution `[b] to (LS), and it is given
by (12). Then, the Funk transform is a multiplication of the spectral coe�cients by Λ, so that
F [`[b]] is given by (17). Finally, the evaluation on CHN is a multiplication of the spectral
coe�cients by the Vandermonde matrix A, so that Fb coincides with [F [`[b]](α)]α∈CHN

. �

The discrete transform Fb is the restriction to CHN of the spherical function F [`[b]]; the
following result establishes that this restriction is lossly, since F [`[b]] can be recovered from Fb
by least squares �tting. In other words, the transform F is �equivalent� to F [`[·]].
Proposition 7. The least squares �tting `[Fb] of the discrete Funk transform Fb coincides with
the Funk transform of the least squares �tting `[b] of b, i.e.

`[Fb](α) = F [`[b]](α), b ∈ R3N2+1, α ∈ S2. (19)

Proof. The spectral coe�cients of `[Fb] ∈ Yev
2N−2 are given by (12) and (1),

̂̀[Fb] = (AᵀA)−1Aᵀ Fb

= (AᵀA)−1AᵀAΛ (AᵀA)−1Aᵀ b

= Λ (AᵀA)−1Aᵀ b,

so they coincide with the spectral coe�cients of F [`[b]] ∈ Yev
2N−2, given in (17). �

In practice, if f : S2 → R is spherical a function, one can use the discrete Funk transform
F[f(ξ)]ξ∈CHN , or equivalently F [`[f(ξ)]ξ∈CHN ], in order to approximate some values Ff(α) of
the Funk transform Ff . The following result shows that this method is exact if f ∈ Yev

2N−2.

Theorem 8 (Exactness on Yev
2N−2). For every f ∈ Yev

2N−2, the Funk transform F [f ] can be
computed exactly from the grid values [f(ξ)]ξ∈CHN ,

F [f ](α) = F [`[f(ξ)]ξ∈CHN ](α),

= [Y m
2n(α)]ᵀ0≤n≤N−1, |m|≤2nΛ (AᵀA)−1Aᵀ [f(ξ)]ξ∈CHN , α ∈ S2, f ∈ Yev

2N−2. (20)

In particular, on the grid CHN ,

[F [f ](α)]α∈CHN = F[f(ξ)]ξ∈CHN , f ∈ Yev
2N−2. (21)

Proof. Any function f ∈ Yev
2N−2 �ts exactly the grid values [f(ξ)]ξ∈CHN , so that the unique

solution of (LS) with b = [f(ξ)] is the initial function f itself,

`[f(ξ)]ξ∈CHN = f, f ∈ Yev
2N−2.

Injecting this equality into (17) and (18) proves the desired results. �

Now, we investigate the inversion of the Funk transform F. We do not expect the discrete
transform F to be nonsingular. Therefore, we introduce the Moore-Penrose pseudoinverse F†

(instead of an inverse). We refer to [15, pp. 257-258] for usual consideration about the Moore-

Penrose pseudoinverse. In our case, the pseudoinverse F† maps any c ∈ R3N2+1 to the minimum

norm solution b = F†c ∈ R3N2+1 of the least squares problem inf
b∈R3N2+1 ‖Fb− c‖2.
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Here, we prove that the Moore-Penrose pseudoinverse F† of F represents an inverse discrete
Funk transform that is very analogous to the direct transform F.

Theorem 9 (Pseudoinversion). The Moore-Penrose pseudoinverse of F is given by

F† = AΛ−1 (AᵀA)−1Aᵀ ∈ R(3N2+1)×(3N2+1). (22)

Therefore, for any c = [c(α)]α∈CHN ∈ R3N2+1, the pseudoinverse F†c ∈ R3N2+1 represents the
inverse Funk transform of the least squares �tting `[c] ∈ Yev

2N−2, restricted to CHN ,

F†c =
[
F−1[`[c]](ξ)

]
ξ∈CHN

, `[c] = arg inf
f∈Yev

2N−2

∑
α∈CHN

(f(α)− c(α))2. (23)

Hence, the pseudoinverse F† is also called the inverse discrete Funk transform on CHN .

Proof. The matrix F† is the Moore-Penrose pseudoinverse of F (and conversely), because (1)
and (22) imply that the four Moore-Penrose conditions [15, p. 257] are satis�ed:

FF†F = F, F†FF† = F†, (FF†)ᵀ = FF†, (F†F)ᵀ = F†F.

The property (23) is derived analogously to (18); the only di�erence is that the diagonal matrix
Λ of the isomorphic Funk transform F : Yev

2N−2 → Yev
2N−2 is replaced by the inverse diagonal

matrix Λ−1, which corresponds to the inverse transform F−1. �

The relations (1) and (22) are very similar, so are (18) and (23). More generally, as soon as
some result is established for one of the transforms F and F†, some counterpart is expected for
the other one. For instance, the counterpart of Proposition 7 is given hereafter.

Proposition 10. The least squares �tting `[F†c] of the inverse discrete Funk transform F†c
coincides with the inverse Funk transform of the least squares �tting `[c] of c, i.e.

`[F†c](ξ) = F−1[`[c]](ξ), c ∈ R3N2+1, ξ ∈ S2.

Proof. Analogous to the proof of Proposition 7. �

Now, we express mapping properties of F and F† in term of RanA. In particular, we prove
that the transform F† is the usual inverse transform of F, if the spaces are restricted to RanA.

Proposition 11. The following assertions hold.

(i) The composition of F and F† coincides with the orthogonal projection on RanA, and rep-
resents the evaluation on CHN of the least squares approximation `[·] ∈ Yev

2N−2,

FF† = F†F = A(AᵀA)−1Aᵀ = [`[·](ξ)]ξ∈CHN . (24)

In particular,

∀b ∈ RanA, F†F b = FF† b = b. (25)

(ii) The null space and the range of F satisfy

Ker F = KerAᵀ = (RanA)⊥, Ran F = RanA, R3N2+1 = Ker F
⊥
⊕ Ran F.

(iii) The null space and the range of F† satisfy Ker F† = Ker F, Ran F† = Ran F.
(iv) Restricting the discrete transforms F and F† to RanA de�nes two isomorphisms

F|RanA : b ∈ RanA 7→ Fb ∈ RanA, F†|RanA : c ∈ RanA 7→ F†c ∈ RanA,

where F†|RanA is the inverse of F|RanA.

Proof. (i) Since A has full column rank, the orthogonal projection on RanA is given by the
matrix Π = A(AᵀA)−1Aᵀ. This matrix represents the evaluation on CHN of the least squares
approximation, i.e. Πb = [`[b](ξ)]ξ∈CHN , with `[b] in (12). Then FF† = F†F = Π can be easily
checked with (1) and (22). And this implies (25) due to Πb = b, for any b ∈ RanA.

(ii) The orthogonal decomposition R3N2+1 = KerAᵀ⊕RanA is a consequence of classical linear
algebra. Secondly, KerAᵀ ⊂ Ker F is easily seen in (1), while, Ker F ⊂ Ker F†F = Ker Π, with
Ker Π = (RanA)⊥. Thirdly, RanF ⊂ RanA is easily seen in (1); furthermore, (25) proves that
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RanA ⊂ Ran FF†, while Ran FF† ⊂ Ran F.
(iii) The null space and the range of F† are obtained analogously as those of F.
(iv) is an obvious consequence of (ii), (iii) and (25). �

To �nish with, we provide estimations of stability in term of condA. They show that stability
is expected.

Theorem 12 (Stability). Let σmax(F) and σmax(F†) denote the maximum singular value of F
and F†,

σmax(F) = sup
‖b‖=1

‖Fb‖, σmax(F†) = sup
‖c‖=1

‖F†c‖. (26)

Then,

σmax(F) ≤ condA, σmax(F†) ≤ condA

|P2N−2(0)|
∼

N→∞

√
πN condA, (27)

where condA is expected to be uniformly bounded due to Claim 3.

Remark 13. The largest singular values represent stability constants, since perturbing a grid

function b ∈ R3N2+1 by ε ∈ R3N2+1 induces a perturbation on the transform Fb, resp. F†b,
which satis�es ‖F(b+ ε)− Fb‖ ≤ σmax(F)‖ε‖, ‖F†(b+ ε)− F†b‖ ≤ σmax(F†)‖ε‖.

Proof. Fix b ∈ R3N2+1. We deduce from (1) that

‖Fb‖ ≤ σmax(A) ‖ΛA† b‖,

where σmax(A) denotes the maximum singular value of A, and A† = (AᵀA)−1Aᵀ is the Moore-
Penrose pseudoinverse of the injective matrix A. Therefore,

‖Fb‖ ≤ σmax(A)σmax(Λ)‖A† b‖ ≤ σmax(A)σmax(Λ)σmax(A†) ‖b‖.

Here, σmax(Λ) denotes the maximum singular value of the Funk matrix Λ in (3), and σmax(A†)
denotes the maximum singular value of the pseudoinverse A†. These two values are given by
σmax(Λ) = P0(0) = 1, and σmax(A†) = 1

σmin(A)
, where σmin(A) denotes the minimum singular

value of A. Finally, we obtain

‖Fb‖ ≤ σmax(A)

σmin(A)
‖b‖ = cond(A) ‖b‖, b ∈ R3N2+1,

which proves that σmax(F) ≤ cond(A). For the pseudoinverse F† in (22), a very similar compu-
tation shows that

‖F†c‖ ≤ σmax(A)σmax(Λ−1)σmax(A†) ‖c‖ =
cond(A)

|P2N−2(0)|
‖c‖, c ∈ R3N2+1,

where σmax(Λ−1) = 1
|P2N−2(0)| is the maximum singular value of Λ−1, with P2N−2(0) given by (2).

Therefore, σmax(F†) ≤ condA
|P2N−2(0)| . Lastly, the asymptotics 1

|P2N−2(0)
| ∼
√
πN can checked with

the Stirling formula n! ∼
√

2πn exp(−n)nn. �

5. Numerical results

5.1. Accuracy of the discrete Funk transform. We evaluate the accuracy of the discrete
Funk transform when it is used to approximate Funk transforms from values on CHN .

For that purpose, we introduce test functions,

g(k) :=
∑

0≤n≤100
n≡0 (2)

∑
−n≤m≤n

ĝ(k)n (2 + 0.5 cos(m) + 0.25 sin(m))Y m
n ∈ Yev

100, (28)

ĝ(−∞)
n := 1

n! , ĝ(k)n := (n+ 1)k, k = −6, −4, −2, −1, 0, (29)

where the various rates of decay of the spectral coe�cients encode various �smoothness� proper-
ties. Here, g(k) ∈ Yev

100, so the values Fg(k)(α) can be exactly computed with (20) from the grid

values [g(k)(ξ)]ξ∈CH51 .
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Figure 3. Approximation of the Funk transform [Fg(α)]α∈CHN by discrete

transforms, for the test functions g = g(k) from (28-29). Left: we plot the relative
errors ηN [g] in (30), associated to the approximation by F[g(ξ)]ξ∈CHN . Right:

the ratios ηN [g(k)]/εN [g(k)] are plotted, where εN [g] in (35) represents the best
relative error among the approximations Fλ,D[g(ξ)]ξ∈CHN in (33), with D in (32),
and λ in (34).

More generally, on the grid CHN , the Funk transform Fg(k) is approximated by the discrete
Funk transform F[g(k)(ξ)] with a relative error ηN [g(k)], where

ηN [g] :=

(∑
α∈CHN

[F[g(ξ)]ξ∈CHN (α)−Fg(α)]2∑
α∈CHN

[Fg(α)]2

)1/2

. (30)

We have plotted these errors in Figure 3 (left panel), for 1 ≤ N ≤ 32. Overall, the behavior of
the observed error depends on the rate of decay of the spectral coe�cients; the error converges
fastly to zero for rapidly decaying coe�cients.

We quantify this phenomenon in Table 1, where we report numerical convergence rates rN [g]
such that

η2N [g] = ηN [g] 2−rN [g], with rN [g] = log2 ηN [g]− log2 η2N [g]. (31)

For g(−∞), with a factorial decay of the coe�cients, ĝ
(−∞)
n = 1/n!, the very fast convergence

appears as a blow up of the rate rN [g(−∞)]. For the functions g(−k), k = 6, 4, 2, with a decay

ĝ
(−k)
n = 1/(n + 1)k, the rate looks like rN [g(−k)] ≈ k − 0.5. For g(−1), with the slow decay

ĝ
(−1)
n = 1/(n + 1), and g(0) with constant values ĝ

(0)
n = 1, the convergence analysis is not so

clear.
In a word, the discrete Funk transform F permits to approximate Funk transforms. It converges

fastly for smooth functions, for which the spectral coe�cients decay rapidly to zero. The observed
rates of convergence suggests to analyze theoretically the speed of convergence in Sobolev spaces.
We defer this point to further studies.
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N rN [g(−∞)] rN [g(−6)] rN [g(−4)] rN [g(−2)] rN [g(−1)] rN [g(0)]

1 3.7 4.5 2.9 0.28 -1.4 1.8
2 11 4.9 3.1 1.3 0.3 -0.19
4 29 5.4 3.4 1.5 0.78 -0.11
8 5.3 5.4 3.4 1.8 1.2 0.093
16 0.83 5.5 3.6 2.2 1.8 1

Table 1. Convergence rates (31) of the errors (30).

Figure 4. Condition number of the matrix (15), for regularized least squares
approximation (14) in Yev

D , on the grid CHN . Five rules are chosen for the degree
D (from left to right). The abscissa is the parameter of the grid, 1 ≤ N ≤ 20.
The ordinate is the regularization parameter 10−13 ≤ λ ≤ 101 (logarithmic scale).
The color represents the condition number (logarithmic scale).

5.2. Comparison with regularized least squares problems. We compare our discrete Funk
transform F with the transform from (16), where regularized least squares are considered.

Firstly, we consider the conditioning of the least squares problem. For the transform F,
based on (LS) with D = 2N − 2, the condition number is closed to 1, as already observed in
Figure 2. For the transform F [`λ[·]] in (16), associated to the regularization (RLS), we compute
the condition number of the matrix from (15). We select various values of the parameters D, λ,
with 1 ≤ N ≤ 20. The regularization parameter λ is �xed to 10p, with −13 ≤ p ≤ 1. The degree
D browses �ve values between 2N and 3N ,

D = 2N, 2N + dN4 e, 2N + dN2 e, 2N + d3N4 e, 3N. (32)

The lowest value D = 2N is the smallest degree for which regularization is strongly advised
according to Claim 3 and Proposition 4; the highest value D = 3N guarantees in practice the
existence of an interpolating function in YD when the grid is CSN [4]. The computed condition
numbers are displayed in Figure 4. Some pattern in (N,λ) is observed; it is similar for the �ve
selected rules on the degree D. The results indicate that for (RLS) with D ≥ 2N , the weight λ
must be carefully chosen to obtain a reasonable condition number; λ ≈ 10−3, 10−4 is advised.

Secondly, we compare the accuracy of the discrete Funk transform F with similar transforms
based on (16). For any test function g = g(k) in (28-29), we approximate [Fg(α)]α∈CHN by

Fλ,D[g(ξ)]ξ∈CHN = [F [`λ[g(ξ)]ξ∈CHN ](α)]α∈CHN . (33)

The degree D browses the values (32), so that various approximation spaces are considered. The
regularization parameter λ browses the values

λ = 10−p, 1 ≤ p ≤ 8, (34)

so that the matrix of (RLS) has not a huge condition number, as displayed in Figure 4. In each
case, we compute the relative error on CHN , and we keep the minimal one,

εN [g] = min
D=2N+d iN4 e, 0≤i≤4
λ=10−p, 1≤p≤8

(∑
α∈CHN

[Fλ,D[g(ξ)]ξ∈CHN (α)−Fg(α)]2∑
α∈CHN

[Fg(α)]2

)1/2

. (35)
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Figure 5. Stability constants associated to the discrete Funk transform F, and
the pseudoinverse F†. Left: the maximum singular values σmax(F) and σmax(F†)
are plotted in term of N . Right: the same singular values are plotted, but with
�normalization� factors.

In order to compare with the error ηN [g], we plot the ratio ηN [g]/εN [g] in Figure 3 (right panel).
In most of the cases, the order of magnitude of this ratio is 1, which shows that the approximation
F[g(ξ)] is as relevant as the �best� approximation Fλ,D[g(ξ)] (with the �best� (D,λ)). The main

exception is the test function g = g(−∞), for which the coe�cients have a factorial decay. In
this case, for N = 4, the ratio is about 102, so that the �best� Fλ,D[g(ξ)] is signi�cantly better
than F[g(ξ)], but if N ≥ 7, the observed ratio is between 10−3 and 10−7 so that the result is
signi�cantly better for F[g(ξ)].

To conclude, the conditioning of (RLS) with D ≥ 2N cannot be signi�cantly better than the
conditioning of (LS) with D = 2N − 2. Furthermore, the accuracy of the Funk transform F is
competitive with the accuracy of Fλ,D from (33), even if the degree D ≥ 2N and the parameter
λ ≥ 0 are �optimized�. Therefore, it is not really worth considering regularized problems (RLS)
with D ≥ 2N to de�ne a discrete Funk transform on the Cubed Sphere. This is in line with our
de�nition of F.

5.3. Stability constants. We investigate the stability of the discrete Funk transform F and its
pseudoinverse F†.

We compute the maximum singular value of F, resp. F†, given by (26). We observe in Figure 5
that the transform F is very stable, since for every N ≥ 1,

σmax(F) ≈ 1.00218.

Concerning the pseudoinverse, Figure 5 suggests a reasonable growth such as

σmax(F†) ≈
√

2(2N − 2).

These observations are in agreement with the theoretical bounds (27), with condA ≤ 1.2 plotted
in Figure 2.

5.4. Funk transform of Gaussian models. We study the accuracy of the discrete Funk trans-
form on Gaussian models from dMRI.

We consider Gaussian models in the following form,

S(x) = exp(−b xᵀDx), x ∈ S2, (36)

where b ≥ 0, and D ∈ R3×3 is a symmetric positive de�nite matrix. Such models describe the
dMRI signal S in Di�usion Tensor Imaging. The so-called di�usion tensor D models intrinsic
di�usion properties of biological tissues. The parameter b is the so-called b-value, and is a
parameter of the acquisition. The unit vector x, represents a gradient direction, and browses
a hemispherical grid during the acquisition. Gaussian models such as (36) appear also in High
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i bi [s/mm
2] Di [mm

2/s] FA

1 1000 10−6 diag(300, 300, 300) 0
2 1000 10−6 diag(300, 600, 900) 0.46
3 1000 10−6 diag(300, 300, 1700) 0.80
4 3000 10−6 diag(300, 300, 300) 0
5 3000 10−6 diag(300, 600, 900) 0.46
6 3000 10−6 diag(300, 300, 1700) 0.80

Table 2. Parameters of the Gaussian signals (37). The anisotropy is measured
by the fractional anisotropy (FA), de�ned in (38).

Angular Resolution Di�usion Imaging [11]. In this �eld, a weighted average of several Gaussian
models can be introduced to model the signal from crossing �bers. The orientation of the �bers
can be imaged using an Orientation Distribution Function, which is computed approximately as
the Funk transform of the recorded signal S [12, 41]. Hence, it is crucial to be able to compute
accurately the Funk transform of a Gaussian model, from a discrete set of values.

In this paper, we consider Gaussian signals

Si(x) = exp(−bi xᵀDix), x ∈ S2, 1 ≤ i ≤ 6. (37)

The b-values bi and the di�usion tensors Di are de�ned in Table 2. Our values are inspired
by the values from [12]. The b-value b = 1000 [s/mm2] is an usual clinical value, whereas
b = 3000 [s/mm2] is considered as relatively high. For the di�usion tensors, we have chosen
diagonal matrices Di, de�ned by the eigenvalues µ1, µ2, µ3 > 0. The matrix D3 has been found
in the synthetic data generation in [12]. The other matrices have been de�ned as �variations�
of this matrix, in order to obtain more or less anisotropy; see the last column of Table 2, where
anisotropy is measured by means of the fractional anisotropy (FA),

FA = 1√
2

√
(µ1−µ2)2+(µ1−µ3)2+(µ2−µ3)2

µ21+µ
2
2+µ

2
3

∈ [0, 1]. (38)

Firstly, we assume that the (even) signal Si is recorded on the Cubed Hemisphere CHN , with
N ≥ 1 and 1 ≤ i ≤ 6. We compute reference values [F [Si](α)]α∈CHN using trapezoidal rules2.
Then, we compute the discrete Funk transform F[Si(ξ)]ξ∈CHN . It approximates [F [Si](α)]α∈CHN ,
with a relative error ηN [Si], where ηN is de�ned in (30). We have plotted these errors in Figure 6
(left panel) to evaluate the accuracy of the procedure. Overall, a fast convergence due to the
smoothness of the Gaussian signals is observed. For the isotropic functions S1 and S4, the error
is always zero (up to rounding errors), because S1, S4 ∈ Y0 ⊂ Yev

2N−2, so (21) applies. With
S2, S5, and S3, S6, we observe that increasing the b-value induces a loss in accuracy; this is
because a Gaussian becomes sharper with high b-values.

Secondly, we show that the orientation of the grid does not matter. For that purpose, we
consider �rotations� of the signals Si:

Si(Q
ᵀ·) : x 7→ Si(Q

ᵀx) = exp(−b xᵀQDiQ
ᵀ x),

where Q ∈ R3×3 is a random orthogonal matrix. The relative error of approximation of the Funk
transform becomes ηN [Si(Q

ᵀ·)], and can be computed as before. For each function Si, we repeat
this procedure for 30 random orthogonal matrices Q, and we plot the maximum error

max
Q

ηN [Si(Q
ᵀ·)] (39)

2Here, an integral along a great circle x ·α = 0 is an integral of a smooth 2π-periodic function over a period, so
the trapezoidal rule converges exponentially to the true integral [40]. Therefore, we apply successive trapezoidal
rules as follows. We start with an angular step π

8
. We evaluate the associated trapezoidal rule; then, we divide

the angular step by two, and we iterate. The iterations are stopped as soon as the relative increase of the value
between two successive iterations is below the tolerance 10−13.
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Figure 6. Accuracy of the discrete Funk transform for the Gaussian signals Si
de�ned in (37) and Table 6. Left: the discrete transform F[Si(ξ)]ξ∈CHN approxi-
mates [F [Si](ξ)]ξ∈CHN with relative error ηN [Si] de�ned in (30); ηN [Si] is plotted.
Right: for any orthogonal matrix Q ∈ R3×3, the same procedure applied to the
�rotated� Gaussian Si(Q

ᵀ·) results in a relative error ηN [Si(Q
ᵀ·)]; we plot the

maximum error (39), where Q scans a set of 30 random orthogonal matrices.

in Figure 6 (right panel). We obtain a similar conclusion than before, so that the conclusion
does not depend on the orientation of the grid.

Thirdly, we investigate the e�ect of noise. We corrupt the signals as follows. We �x a value
of N . For any 1 ≤ i ≤ 6, for any σ = 2−p, with 2 ≤ p ≤ 31, we corrupt Si, by a �speckle� noise
and an additive noise with level σ:

Sσi (ξ) = |Si(ξ)(1 + σu(ξ)) + σv(ξ)|, ξ ∈ CHN ,

where the u(ξ), v(ξ), are 6N2 + 2 independent realizations of the normal law N (0, 1). In this
case, the relative error on the signal is given by(∑

ξ∈CHN
[Si(ξ)− Sσi (ξ)]2∑

ξ∈CHN
Si(ξ)2

)2

. (40)

We compute the discrete Funk transform F[Sσi (ξ)], which approximates [FSi(α)] with a relative
error (∑

α∈CHN
[F[Sσi (ξ)]ξ∈CHN (α)−FSi(α)]2∑

α∈CHN
[FSi(α)]2

)1/2

. (41)

In Figure 7, we have plotted the relative error (41) on the transform against the relative error (40)
on the signal. Two values of N are considered. On the left, N = 5, so that the grid CHN contains
76 points, and the approximation space is Yev

8 . On the right, N = 10, so that the grid CHN

contains 301 points, and the approximation space is Yev
18 . Roughly speaking, we observe that the

relative error on the transform is the maximum between the relative error on the signal, and the
relative error on the transform from the noise-free case (displayed in Figure 6). This result is in
agreement with the stability constant of the transform F, σmax(F) ≈ 1 in Figure 5.
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Figure 7. Accuracy of the discrete Funk transforms for Gaussian signals Si
corrupted by noise. The relative error (41) on the transform is plotted against
the relative error (41) on the signal (logarithmic scale). Left: N = 5; right:
N = 10.

To conclude, the Funk transform of Gaussian models can be accurately evaluated by the
discrete transform F, and in a very stable way.

6. Conclusion

This paper has introduced a new discrete Funk transform F dedicated to the Cubed Sphere
grid. It is based on a spectral method, and a least squares �tting that is tuned for this problem.
It enjoys various theoretical properties. Interestingly, the same principle applied on the inverse
Funk transform provides exactly the pseudoinverse F†, so that the paper tackles simultaneously
the inversion of F. Several numerical results show that the discrete transform F is relevant for
numerical computation. Continuous Funk transforms can be accurately approximated by means
of the discrete transform F. A remarkable property is that the transforms F and F† are stable,
despite they are computed without any regularization.

This work opens new problems to be addressed in the future. There are still important theo-
retical questions. Proving that the Vandermonde matrix A from De�nition 1 has full column rank
(with a low condition number) is still open. Another point concerns the speed of convergence;
our numerical results suggest to quantify the rate of convergence in Sobolev spaces. Concerning
implementation aspects, writing a �fast� algorithm corresponding to F (or an approximation of
F) is still to be done. To �nish with, concerning the practice, comparing F with time-tested
transforms on real experiments is a goal for further studies.
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