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A DISCRETE FUNK TRANSFORM ON THE CUBED SPHERE

JEAN-BAPTISTE BELLET

Abstract. Computing accurately Funk transforms from discrete values is crucial in some ap-
plications, such as Q-Ball Imaging in medicine. This paper deals with a discrete Funk transform
devoted to such a computation. The studied transform is based on a spectral method applied
on a least squares �tting, with the special feature that regularization is not performed. We
investigate several mathematical and numerical aspects in this context, including stability and
pseudoinversion. As a speci�c instance, we introduce a simple framework based on the equian-
gular Cubed Sphere to guarantee the stability. Various numerical experiments attest to the
accuracy and the convergence of the approach, in particular for synthetic Gaussian signals from
Q-Ball Imaging.

1. Introduction

The Funk transform from [13], also called the Funk-Minkowski transform, the Funk-Radon
transform, or the spherical Radon transform, is an integral transform which averages a function
along great circles on the unit sphere S2. This transform, similar integral transforms, and asso-
ciated inverse problems, are the subject of many mathematical studies, such as [19,25,29,34,37]
and the references therein. These transforms play an important role in various applications, in-
cluding photoacoustic tomography [20,44], Synthetic Aperture Radar [43] and di�usion Magnetic
Resonance Imaging (dMRI) [22,41].

To specify one successful example from medicine, Q-Ball Imaging images the orientation of
�bers in biological tissues [41]. The key step of this method computes the Funk transform of
dMRI signals recorded on discrete spherical grids. The original computation [41] is a trapezoidal
quadrature rule, applied on an interpolating function. The numerical scheme has been improved
in [12, 17], using a spectral method on a regularized least squares approximation. The success1

of the articles [12, 17, 41] attests that it is crucial to master the Funk transform in discrete
con�gurations.

So, this paper is devoted to a mathematical study of a discrete Funk transform, in order to
provide new theoretical and numerical guarantees. The studied transform is a particular case
of the approaches introduced in [12, 17]; it is based on a spectral method combined with a least
squares �tting. The main feature of this work is that we restrict our attention to least squares
�tting without any regularization, so as to get a mathematical framework which is as clear as
possible. The least squares functional comprises a �tting term, but it does not contain any
arti�cial penalty. In particular, no regularization functional nor regularization weight have to be
tuned in our approach.

The least squares problem �ts values given on a spherical grid by a spherical harmonics with
prescribed degree. The grid and the degree must be carefully chosen to insure that the problem
is well-conditioned, which means that the corresponding matrix must have full column rank and
a suitable condition number. This matrix, called a Vandermonde matrix as in [6, 26, 27], or
an alternant matrix as in [1, p. 112], contains spherical harmonics restricted to the grid. In
general, �nding theoretically the rank and the condition number of such a matrix enters into the
framework of harmonic analysis and is not an easy task. Geometrical and metric properties of
the grid, as de�ned in [16,18], come into play. For example, [26, Theorem 2.4]� [27, Lemma 3.13]

Date: February 2, 2023.
2020 Mathematics Subject Classi�cation. 65R10, 44A12, 92C55.
Key words and phrases. Cubed Sphere, least squares, spherical harmonics, Funk transform, Radon transform.
1The website of the journal Magnetic Resonance in Medicine mentions 1430 citations for [41], 283 citations

for [17], and 559 citations for [12], on January 05, 2023.
1



2 JEAN-BAPTISTE BELLET

give a lower bound on the degree to insure a full row rank property; this bound is inversely
proportional to the separation distance. Another example is [2, Theorem 3.5], which proves a
full column rank property, assuming that the mesh norm is smaller than the inverse of the degree.

Choosing or de�ning a spherical grid with suitable properties is itself an important subject.
We refer to [42] for a historical presentation of several grids, and to [16] for a comparison of
many popular grids, such as spiral grids, polyhedral grids, random grids, and so on. Some
approaches compute an �optimal� grid as the numerical solution to an optimization problem; see
for instance [9] for various optimization criteria, including the conditioning of a least squares
problem. Some other approaches de�ne grids in an elementary explicit way. Among these simple
grids, the equiangular Cubed Sphere [36, 38] is obtained by radial projection of a circumscribed
cube, from cartesian lines on the faces of the cube towards great circles on the sphere.

This Cubed Sphere (and some variants) is very popular and is widely studied in numerical
climatology and meteorology; see for instance [10, 21, 23, 24, 28, 30�33, 35, 39]. We have recently
studied various approximation schemes on this grid using spherical harmonics. Lagrange in-
terpolation has been considered in [6], a spherical quadrature rule in [5], and least squares
approximation in [7]. Among the results, [7] gives the largest degree which numerically guaran-
tees a condition number that is uniformly bounded. In this paper, we propose a further study
concerning spectral computing on the Cubed Sphere. We investigate for the �rst time the use of
this grid for computing Funk transforms.

Our methodology contains two steps. In a �rst step, we de�ne a family of discrete Funk
transforms which act between spaces of grid functions, for a general grid. They are obtained as
in [12,17], but without any regularization, and with an evaluation of the (continuous) transform
on the initial grid. We prove new properties satis�ed by these transforms, in order to give some
mathematical background. In particular, we show that the pseudoinverse of such a transform
represents an inverse discrete Funk transform very analogous to the direct one. We also provide a
theoretical estimation of stability, which mainly depends on the conditioning of the least squares
problem. It implies that stability is guaranteed as soon as the least squares problem is well-
conditioned.

Therefore, in a second step, we focus on a framework which guarantees this condition of
stability. We select the equiangular Cubed Sphere for the grid and we introduce a rule on the
degree such that the conditioning is kept under control. The study is similar with [7], but
the dimensions of the least squares problem have been reduced due to our speci�c problem.
Indeed, the null space of the Funk transform contains any odd function, so we assume from the
beginning that the approximation space contains only even spherical harmonics. Also, symmetry
consideration allows to halve the grid, so we restrict the Cubed Sphere to an hemisphere.

The paper is organized as follows. In Section 2, we summarize some notation and background
concerning spherical computation. In Section 3, we study a discrete Funk transform, based on a
spectral method applied on a least squares �tting. In Section 4, we focus on the case where the
grid is the equiangular Cubed Sphere. In Section 5, the relevance of the approach is shown by
various numerical tests, such as test of accuracy and stability on synthetic dMRI signals.

2. Background and notation

2.1. Spherical harmonics. On the unit sphere S2 = {(x1, x2, x3) ∈ R3 : x21 +x22 +x23 = 1}, the
spherical coordinates are given by

x(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ) ∈ S2, θ ∈ [−π
2 ,

π
2 ], φ ∈ R.

In these coordinates, the real Legendre spherical harmonics of degree n ≥ 0 are de�ned by

Y m
n (x(θ, φ)) =

√
(n+1/2)(n−|m|)!

π(n+|m|)! P (|m|)
n (sin θ) · cos|m| θ ·


− sinmφ, −n ≤ m < 0,
1√
2
, m = 0,

cosmφ, 0 < m ≤ n,
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where P
(|m|)
n (t) = d|m|

dt|m|
Pn(t) is the |m|-th derivative of the Legendre polynomial of degree n,

de�ned by

Pn(t) = 1
2nn!

dn

dtn (t2 − 1)n.

The in�nite family (Y m
n )|m|≤n, n∈N is a Hilbert basis of the space L2(S2), which is equipped with

the usual inner product and the associated norm,

〈f, g〉L2(S2) =

∫
S2
f(x)g(x)dσ, ‖f‖L2(S2) = 〈f, f〉1/2

L2(S2) .

In this basis, any f ∈ L2(S2) admits a unique spectral expansion,

f =
∑
|m|≤n

f̂mn Y
m
n , with f̂mn = 〈f, Y m

n 〉L2(S2) . (1)

For a �xed degree D ≥ 0, the subspace of the spherical harmonics with degree less than or equal
to D is denoted by YD, so that (Y m

n )|m|≤n≤D is an orthonormal basis of YD. The subspace of
even functions in YD, denoted by Yev

D , is spanned by the even degrees, i.e.

Yev
D = span{Y m

2n , 0 ≤ n ≤ D
2 , |m| ≤ 2n}.

In the sequel, we always assume that the degree D is even when considering Yev
D (because

Yev
D = Yev

D−1 otherwise); under this assumption, the dimension of Yev
D is given by

dD = 1
2(D + 1)(D + 2).

2.2. Funk transform. The Funk transform, denoted by F , maps a spherical function f : S2 →
R to a spherical function Ff : S2 → R as follows. For any unit vector α ∈ S2, Ff(α) is de�ned
as the average of f along the great circle that is orthogonal to α, i.e.

Ff(α) =
1

2π

∫
{x∈S2:x·α=0}

f ds, α ∈ S2, f : S2 → R, (2)

where s denotes the length measure on the circle {x ∈ S2 : x · α = 0}; in this de�nition, the
function f is required to be integrable along any great circle (with respect to the length measure),
so that the integrals are de�ned.

The Funk transform Ff is an even function, i.e. Ff(−α) = Ff(α), α ∈ S2. If f is odd, i.e.
f(−x) = −f(x), x ∈ S2, then Ff = 0. In any case, Ff = Ff ev, where f ev(x) = 1

2(f(x)+f(−x))
denotes the even part of f . For these reasons, the Funk transform can be considered between
spaces of even functions, without loss of generality. We follow this convention throughout the
article. Hence, in the sequel, we consider even functions only.

Spherical harmonics are eigenfunctions of the Funk transform F [13], so that it de�nes an
isomorphism on Yev

D ,

F : Yev
D → Yev

D , FY m
2n = P2n(0)Y m

2n , with P2n(0) = (−1)n 1·3·5···(2n−1)
2·4·6···(2n) ,

|m| ≤ 2n, 0 ≤ n ≤ D
2 . (3)

The associated nonsingular matrix is the block diagonal matrix

Λ = diag
[
(−1)n 1·3·5···(2n−1)

2·4·6···(2n) I4n+1, 0 ≤ n ≤ D
2

]
∈ RdD×dD . (4)

This structure suggests the spectral method for computing Funk transforms, as it has been
introduced in [12,17].

2.3. Grid functions. A spherical grid is a �nite subset of the unit sphere, G ⊂ S2. A grid
function on G is a function b : G→ R de�ned on G. The space of such functions is denoted by

RG = {b : G→ R}.
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Figure 1. Cubed Sphere and Cubed Hemisphere. The Cubed Sphere CSN (black
dots) de�ned in (5) is obtained by intersecting equiangular meridian circles (gray
lines). The Cubed Hemisphere CHN (gray circles) de�ned in (19) is located in
the Northern hemisphere; it contains half of the points from CSN . Left: N is odd
(N = 5). Right: N is even (N = 6).

Numbering the elements of G by ξ1, . . . , ξM , whereM denotes the cardinal number, the canonical
basis (δξi)1≤i≤M of RG is de�ned by

δξi(ξj) =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤M.

In this basis, any b ∈ RG is represented by the column vector b = [b(ξi)]1≤i≤M ∈ RM , due to

b =
M∑
i=1

b(ξi)δξi .

For any real function de�ned on the sphere, f : S2 → R, the restriction of f on the grid G is the
grid function f |G ∈ RG de�ned by

f |G :=
M∑
i=1

f(ξi)δξi , f |G(ξi) = f(ξi), 1 ≤ i ≤M.

2.4. Cubed Sphere. For a �xed parameter N ≥ 1, the equiangular Cubed Sphere CSN ⊂ S2
with angular step π

2N , is depicted in Figure 1; it is de�ned analytically by

CSN :=
{
ξ ∈ S2 : ∃(i, j, k) ∈ N3 ∩ ∂([0, N ]3), ξ = Ψ(−π

4 + iπ
2N ,−

π
4 + jπ

2N ,−
π
4 + kπ

2N )
}
, (5)

with Ψ(α, β, γ) := (tanα,tanβ,tan γ)

(tan2 α+tan2 β+tan2 γ)1/2
, (α, β, γ) ∈ ∂([−π

4 ,
π
4 ]3).

In this de�nition, CSN is browsed as follows. The triplet (α, β, γ) browses a uniform grid of
angles, on the faces of the cube [−π

4 ,
π
4 ]3; the angular step is π

2N . This triplet is mapped to the

point (tanα, tanβ, tan γ), which browses a cartesian grid on the faces of the cube [−1, 1]3. Lastly,
the radial projection of this point to the sphere is ξ = Ψ(α, β, γ), which browses CSN . From
a geometrical point of view, CSN can be obtained by intersecting great circles as in Figure 1.
These great circles correspond to 2N equiangular meridian circles with polar axis (0; (0, 0, 1)),
and their counterparts for the axes (0; (0, 1, 0)) and (0; (1, 0, 0)). The cardinal number of CSN is
given by 6N2 + 2 (see, for instance, [8]).

3. Discrete Funk transform on a spherical grid

In this section, we study a discrete Funk transform on a general grid. We assume that

• G = {ξ1, . . . , ξM} ⊂ S2 is a spherical grid with cardinal number M ,
• b ∈ RG is a given grid function on G,
• D ≥ 0 is a �xed even degree.
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3.1. Least squares �tting. One looks for an even spherical harmonics f ∈ Yev
D which �ts the

grid function b. The least squares problem minimizes a �tting error as follows,

inf
f∈Yev

D

M∑
i=1

(f(ξi)− b(ξi))2. (LS)

We introduce the basis (Y m
2n) of Yev

D . Then any f ∈ Yev
D admits a spectral expansion (1),

f =
∑

0≤n≤D/2, |m|≤2n

f̂m2nY
m
2n ∈ Yev

D , with f̂ = [f̂m2n]0≤n≤D/2, |m|≤2n ∈ RdD ;

the matrix of the linear map f ∈ Yev
D 7→ [f(ξi)]1≤i≤M ∈ RM is given by the Vandermonde matrix

A = [Y m
2n(ξi)] 1≤i≤M

0≤n≤D/2, |m|≤2n
∈ RM×dD . (6)

Here, the row index is i, and the column index is the couple (n,m). Assuming a lexicographic
ordering for (n,m), an expanded form of A is given by

A =


Y 0
0 (ξ1) · · · Y −2n2n (ξ1) · · · Y m

2n(ξ1) · · · Y 2n
2n (ξ1) · · · Y D

D (ξ1)
...

...
...

...
...

Y 0
0 (ξi) · · · Y −2n2n (ξi) · · · Y m

2n(ξi) · · · Y 2n
2n (ξi) · · · Y D

D (ξi)
...

...
...

...
...

Y 0
0 (ξM ) · · · Y −2n2n (ξM ) · · · Y m

2n(ξM ) · · · Y 2n
2n (ξM ) · · · Y D

D (ξM )

 .

Then, the problem (LS) can be written in matrix form as

inf
f̂∈RdD

‖Af̂ − b‖2,

where ‖ · ‖ denotes the euclidean norm in RM .
In this paper, we assume that the grid G and the degree D are such that the Vandermonde

matrix A has full column rank. Then the problem (LS) admits a unique solution. This solution,
denoted2 by

`[b] ∈ Yev
D , `[b] = arg inf

f∈Yev
D

M∑
i=1

(f(ξi)− b(ξi))2, (7)

is given by

`[b] = [Y m
2n(·)]ᵀ0≤n≤D/2, |m|≤2n ̂̀[b], with ̂̀[b] = (AᵀA)−1Aᵀb ∈ RdD . (8)

Here, the vector ̂̀[b] of the spectral coe�cients satis�es a linear system, whose matrix is symmetric
and positive-de�nite:

AᵀA ̂̀[b] = Aᵀb.

For the matrix norm induced by the euclidean norm, the condition number of this linear system
is given by

cond(AᵀA) = cond(A)2, with cond(A) =
σmax(A)

σmin(A)
,

where σmax, resp. σmin, denote the maximum, resp. minimum, singular value. In Section 4, we
propose a choice of G and D which guarantees (at least numerically) that the condition number
of the Vandermonde matrix is close to 1 (condA ≈ 1).

Remark 1. If the condition number is large (condA >> 1), or if A has not full column rank, then
regularization is needed. This is outside the scope of this paper, so we refer in this case to [15]
for a general reference about ill-posed problems, [3] for various regularization operators dealing
with spherical harmonics on the sphere, and [12, 17] for regularization in a framework of Funk
transforms.

2` as the �rst letter of �least squares�.
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We conclude this subsection by a simple result which permits to halve the grid in the case of
a central symmetry, provided that the grid function is replaced by its even part.

Proposition 2. Assume that G in invariant with respect to the central symmetry, so that M is
even, and ξM/2+i = −ξi, 1 ≤ i ≤M/2 (up to a reordering). Then the problem (LS) is equivalent
to

inf
f∈Yev

D

M/2∑
i=1

(f(ξi)− bev(ξi))
2, with bev(ξi) = 1

2(b(ξi) + b(−ξi)), 1 ≤ i ≤M/2.

Proof. The grid is invariant under the central symmetry −I3 (ξ ↔ −ξ), so we split the grid
function b into b = bev + bodd, where bev(ξ) = 1

2(b(ξ)+ b(−ξ)) is an even grid function (bev(−ξ) =

bev(ξ)), and bodd(ξ) = 1
2(b(ξ)− b(−ξ)) is odd (bodd(−ξ) = −bodd(ξ)). Therefore, for any f ∈ Yev

D ,

M∑
i=1

(f(ξi)− b(ξi))2 =

M∑
i=1

(f(ξi)− bev(ξi))
2 +

M∑
i=1

bodd(ξi)
2 − 2

M∑
i=1

(f(ξi)− bev(ξi))b
odd(ξi).

In the right hand side, the �rst term is twice the sum indexed by 1 ≤ i ≤M/2, because (f−bev)2

is an even grid function. The second term is a constant C which does not depend on f . The
third term is null, because (f − bev)bodd is an odd grid function. Therefore,

M∑
i=1

(f(ξi)− b(ξi))2 = 2

M/2∑
i=1

(f(ξi)− bev(ξi))
2 + C,

which proves the result. �

3.2. Discrete Funk transform. We study various mathematical properties of a discrete Funk
transform de�ned as follows.

De�nition 3 (Discrete Funk transform). Let G = {ξ1, . . . , ξM} ⊂ S2 be a spherical grid and
D ≥ 0 be an even degree, such that the Vandermonde matrix A in (6) has full column rank. The
discrete Funk transform F is de�ned as a linear mapping between spaces of grid functions, by

F : RG −→ RG

b 7−→ F[b] =
(
F(`[b])

)∣∣∣
G
,

(9)

where `[b] is the least squares �tting in (7), and F is the Funk transform in (2). In other words,
the discrete Funk transform of a grid function is the Funk transform applied on the least squares
�tting, then restricted to the initial grid.

Property 4. In the basis (δξi)1≤i≤M of RG, the matrix of the discrete Funk transform F is given
by

F = AΛ (AᵀA)−1Aᵀ ∈ RM×M . (10)

Proof. The matrix of the least squares operator, ` : RG → Yev
D , in the bases (δξi) and (Y m

2n), is
given by (AᵀA)−1Aᵀ, due to (8). The matrix of the Funk transform F : Yev

D → Yev
D , in the basis

(Y m
2n), is the matrix Λ in (4). And the matrix of f ∈ Yev

D 7→ f |G ∈ RG, in the bases (Y m
2n) and

(δξi), is given by the Vandermonde matrix A. The discrete Funk transform F is the composition
of these linear maps, so its matrix F is given by the product of the matrices. �

The following result establishes that the spherical function F(`[b]) can be exactly recovered
from its restriction Fb on G (so that the restriction is here �lossly�).

Proposition 5. The discrete Funk transform F : RG → RG and the Funk transform F : Yev
D →

Yev
D are related by

` ◦ F = F ◦ `.
In other words, the least squares �tting of the discrete Funk transform coincides with the Funk
transform of the least squares �tting,

`[Fb](α) = F(`[b])(α), b ∈ RG, α ∈ S2.
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Proof. Similarly as the proof of Property 4, the matrix of ` ◦ F is given by

(AᵀA)−1Aᵀ ·AΛ (AᵀA)−1Aᵀ = Λ (AᵀA)−1Aᵀ,

where we recognize the matrix of F ◦ ` on the right hand side. �

In practice, f : S2 → R is a spherical function that is sampled on the grid G, so that the given
data is b = f |G. One uses the discrete Funk transform F[f |G], or equivalently F(`[f |G]), in order
to approximate some values Ff(α) of the Funk transform Ff . The following result shows that
this method is exact if f ∈ Yev

D .

Theorem 6 (Exactness on Yev
D ). The discrete Funk transform is exact on Yev

D , which means that

F[f |G] = (Ff)|G, f ∈ Yev
D . (11)

More generally, for every f ∈ Yev
D , the Funk transform Ff can be computed exactly from the grid

function f |G, with
Ff(α) = [Y m

2n(α)]ᵀ0≤n≤D/2, |m|≤2nΛ (AᵀA)−1Aᵀ [f(ξi)]1≤i≤M , α ∈ S2, f ∈ Yev
D . (12)

Proof. Any function f ∈ Yev
D �ts exactly the grid values [f(ξi)]1≤i≤M , so that the unique solution

of (LS) with b = f |G is the initial function f itself,

`[f |G] = f, f ∈ Yev
D .

Injecting this equality into the de�nition of F[f |G] proves (11). Also, we obtain Ff = F(`[f |G]);
hence, we have (12) due to the matrix of F ◦ ` (see the proof of Proposition 5). �

Now, we investigate the inversion of the discrete Funk transform F. We introduce the Moore-
Penrose pseudoinverse F† of the matrix F, since it is not expected to be nonsingular. We
refer to [14, pp. 257-258] for usual consideration about such a pseudoinverse. In our case, the
pseudoinverse F† maps any c ∈ RM to the minimum norm solution b = F†c ∈ RM of the least
squares problem infb∈RM ‖Fb − c‖2. We prove that the pseudoinverse F† represents an inverse
discrete Funk transform that is analogous to the direct transform F.

Theorem 7 (Pseudoinversion). The Moore-Penrose pseudoinverse of F is given by

F† = AΛ−1 (AᵀA)−1Aᵀ ∈ RM×M . (13)

Therefore, the pseudoinverse F† represents the inverse discrete Funk transform F†, de�ned by

F† : RG −→ RG

c 7−→ F†[c] =
(
F−1(`[c])

)∣∣∣
G
.

(14)

Proof. The matrix F† is the Moore-Penrose pseudoinverse of F (and conversely), because (10)
and (13) imply that the four Moore-Penrose conditions [14, p. 257] are satis�ed:

FF†F = F, F†FF† = F†, (FF†)ᵀ = FF†, (F†F)ᵀ = F†F.

Furthermore, the matrix of the transform F† de�ned in (14) is given by F†. This result and its
proof are analogous to Property 4. The di�erence is that the diagonal matrix Λ of the isomorphic
Funk transform F : Yev

D → Yev
D is replaced by the inverse diagonal matrix Λ−1, since it represents

the inverse transform F−1. �

The relations (9) and (14) are very similar, so are (10) and (13). More generally, as soon as
some result is established for one of the transforms F and F†, some counterpart is expected for
the other one. For instance, the counterpart of Proposition 5 is given hereafter.

Proposition 8. The inverse discrete Funk transform F† : RG → RG and the inverse Funk
transform F−1 : Yev

D → Yev
D satisfy

` ◦ F† = F−1 ◦ `.
In other words, the least squares �tting of the inverse discrete Funk transform coincides with the
inverse Funk transform of the least squares �tting,

`[F†c](ξ) = F−1(`[c])(ξ), c ∈ RG, ξ ∈ S2.



8 JEAN-BAPTISTE BELLET

Proof. Analogous to the proof of Proposition 5. �

Now, we express mapping properties of F and F† in term of the Vandermonde matrix A.

Proposition 9. The following assertions hold.

(i) The composition of F and F† coincides with the orthogonal projection on RanA,

FF† = F†F = A(AᵀA)−1Aᵀ. (15)

In particular,

∀b ∈ RanA, F†F b = FF† b = b. (16)

(ii) The null space and the range of F satisfy

KerF = KerAᵀ = (RanA)⊥, RanF = RanA, RM = KerF
⊥
⊕ RanF.

(iii) The null space and the range of F† satisfy KerF† = KerF, RanF† = RanF.

Proof. (i) Since A has full column rank, the orthogonal projection on RanA is given by the
matrix Π = A(AᵀA)−1Aᵀ. Then FF† = F†F = Π can be easily checked with (10) and (13). And
this implies (16) due to Πb = b, for any b ∈ RanA.
(ii) The orthogonal decomposition RM = KerAᵀ ⊕ RanA is a consequence of classical linear
algebra. Secondly, KerAᵀ ⊂ KerF is easily seen in (10), and KerF ⊂ KerF†F = Ker Π, with
Ker Π = (RanA)⊥ = KerAᵀ. Thirdly, RanF ⊂ RanA is easily seen in (10); furthermore, (16)
proves that RanA ⊂ RanFF†, with RanFF† ⊂ RanF. The last equality is a consequence of
the �rst two ones.
(iii) The null space and the range of F† are obtained analogously as those of F. �

Translating this proposition to grid functions results in the following corollary.

Corollary 10. The following asssertions hold.

(i) The composition of F and F† coincides with the restriction of the least squares �tting,

F ◦ F† = F† ◦ F : RG −→ RG
b 7−→ `[b]|G .

(17)

(ii) The transform F† is the usual inverse transform of F, if the spaces are restricted to the
subspace Yev

D |G := {f |G, f ∈ Yev
D }, i.e., the linear mappings

b ∈ Yev
D |G 7→ Fb ∈ Yev

D |G, c ∈ Yev
D |G 7→ F†c ∈ Yev

D |G,

are two isomorphisms which are inverses of each other.

Proof. (i) The relation (17) is the translation of (15), from matrices to their linear maps.
(ii) The subspace Yev

D |G ⊂ RG is the translation to grid functions of the space RanA. Translat-
ing (16) shows that

∀b ∈ Yev
D |G, (F ◦ F†)(b) = (F† ◦ F)(b) = b.

The combination of this result with Proposition 9.(ii-iii) shows the result. �

To �nish with, we provide estimations of stability. They show that stability is expected if the
condition number of the Vandermonde matrix A is suitable.

Theorem 11 (Stability). The maximum singular value of F, resp. F†, satis�es

σmax(F) ≤ condA, σmax(F†) ≤ condA

|P2N−2(0)|
∼

N→∞

√
πN condA. (18)

Remark 12. The largest singular values represent stability constants, since perturbing a vector
b ∈ RM by ε ∈ RM induces a perturbation on the transform Fb, resp. F†b, which satis�es
‖F(b+ ε)− Fb‖ ≤ σmax(F)‖ε‖, ‖F†(b+ ε)− F†b‖ ≤ σmax(F†)‖ε‖.
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Proof. The maximum singular value σmax coincides with the matrix norm induced by the eu-
clidean norm and is therefore sub-multiplicative. Hence, we deduce from (10) that

σmax(F) ≤ σmax(A)σmax(Λ)σmax(A†),

where A† = (AᵀA)−1Aᵀ is the Moore-Penrose pseudoinverse of the injective matrix A. On the
right hand-side, σmax(Λ) = P0(0) = 1, and σmax(A†) = 1

σmin(A)
is the inverse of the minimum

singular value of A. Therefore,

σmax(F) ≤ σmax(A)

σmin(A)
= cond(A).

For similar reasons, we see with (13) that

σmax(F†) ≤ σmax(A)σmax(Λ−1)σmax(A†) =
cond(A)

|P2N−2(0)|
.

Here, σmax(Λ−1) = 1
|P2N−2(0)| , with P2N−2(0) given by (3); the asymptotics 1

|P2N−2(0)| ∼
√
πN

can checked with the Stirling formula n! ∼
√

2πn exp(−n)nn. �

4. Discrete Funk transform on the Cubed Hemisphere

In this section, we investigate the discrete Funk transform in the case of the equiangular Cubed
Sphere CSN .

4.1. Cubed Hemisphere. To begin with, for every N ≥ 1, the grid CSN is invariant under the
central symmetry [4]. Hence, Proposition 2 shows that any least squares problem (LS) on this
grid can be reduced to a problem on a half-grid, without changing the solution. Therefore, we
restrict the grid CSN to the Northern hemisphere and a half of the equator circle, without loss
of generality. The resulting grid is displayed in Figure 1 and is de�ned below.

De�nition 13. Let N ≥ 1. The Cubed Hemisphere CHN is de�ned by

CHN = CSN ∩ {x(θ, φ) ∈ S2, (θ > 0 and 0 ≤ φ < 2π) or (θ = 0 and 0 ≤ φ < π)}, (19)

so that CSN splits into CSN = CHN ∪ (−CHN ), and CHN has the cardinal number 3N2 + 1.

In the remainder of this section, we consider the grid

G = CHN = {ξi, 1 ≤ i ≤M}, M = 3N2 + 1,

where N ≥ 1 is �xed.

4.2. Degree. We tune the degree D in term of the parameter N , so that the problem (LS) is
well-conditioned. We argue that the value D = 2N − 2 is a suitable choice.

The main motivation is the following claim.

Claim 14. Let N ≥ 1, G = CHN , and D = 2N − 2. Then, the corresponding Vandermonde

matrix A ∈ R(3N2+1)×(2N−1)N de�ned in (6) has full column rank and is well-conditioned, with
a condition number uniformly bounded with N .

Unfortunately, a complete proof of Claim 14 is not available yet. The most convincing argu-
ment that we have at disposal is the numerical evidence displayed in Figure 2. These numerical
results indicate that

condA ≤ 21/4 ≤ 1.2, 1 ≤ N ≤ 64,

and they suggest that condA grows to 21/4 when N → ∞. We also have a partial proof,
concerning the full column rank property in the case N ≤ 4.

Theorem 15. Assume that 1 ≤ N ≤ 4, G = CHN , and consider the degree D = 2N − 2. Then,
the Vandermonde matrix A in (6) has full column rank.
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Figure 2. Numerical evidence of Claim 14: the condition number of the Van-
dermonde matrix A is plotted for G = CHN , D = 2N −2, and 1 ≤ N ≤ 64. Left:
condA is bounded from above by 1.2. Right: 21/4 − condA decays to zero (plot
in log-scale).

Proof. Equivalently, we prove the injectivity of the linear map f ∈ Yev
D 7→ [f(ξi)]1≤i≤M ∈ RM ,

where CHN = {ξi, 1 ≤ i ≤ M}. Assume that f ∈ Yev
D is such that f(ξi) = 0, ∀1 ≤ i ≤ M .

We prove that f = 0. The key property is that f vanishes on every great circle C that contains
at least 2D + 1 = 4N − 3 zeros of f . Indeed, the restriction of f ∈ YD to C , denoted by f |C ,
can be identi�ed with a trigonometric polynomial with degree at most D. Such a trigonometric
polynomial is null if it has at least 2D+ 1 zeros. In the sequel, we especially apply this property
to circles which permit to cover the sphere.

First, f vanishes on CSN because the symmetry of f implies that f(−ξi) = f(ξi) = 0, for
every 1 ≤ i ≤M . Second, the function f vanishes on the 2N meridian circles de�ned by

C (φ) = {x(θ, φ), θ ∈ [−π
2 ,

π
2 ]} ∪ {x(θ, φ+ π), θ ∈ [−π

2 ,
π
2 ]}, φ ≡ π

4 ( π
2N ).

Indeed, for a given φ ≡ π
4 ( π

2N ), the assumption N ≤ 4 implies that C (φ) contains 4N points of
CSN . These points give 4N zeros for f |C (φ), so f |C (φ) = 0. Third, the function f vanishes on
every great circle C that does not contain the pole (0, 0, 1), because such a circle contains 4N
points on the set ∪φ≡π4 (

π
2N )C (φ) and f vanishes on this set. �

Remark 16. In the proof, the key ingredient is that any meridian circle with longitude φ ≡ π
4 ( π

2N )
contains 4N points on CSN if N ≤ 4. For larger values of N , this property is not valid anymore.

Also, the following theorem proves that degrees larger than 2N − 2 must be proscribed in
general; hence, the degree D = 2N − 2 in Claim 14 is the largest �recommended� one.

Theorem 17. For the grid G = CHN , and an even degree D ≥ 2N , let ADN be the Vandermonde

matrix (6). Let σmin(ADN ), cond(ADN ), denote its smallest singular value, resp. condition number.

(i) For all N ≤ 4 and D ≥ 2N , the matrix ADN has not full column rank (hence, σmin(ADN ) = 0,
and cond(ADN ) = +∞).

(ii) There exists a sequence (εN )N≥1 with asymptotics εN ∼
N→+∞

N
2

(
2N
π

)3/2 (2
3

)2N →
N→+∞

0,

such that

∀N ≥ 1, ∀D ≥ 2N, σmin(ADN )2 ≤ εN .

(iii) There is a sequence (KN )N≥1 with asymptotics KN ∼
N→+∞

1
4

(
π
2N

)1/2 (3
2

)2N+1 →
N→+∞

+∞,

such that, for all N ≥ 1 and D ≥ 2N such that ADN has full column rank,

cond(ADN )2 ≥ KN .
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Figure 3. Stability constants associated to the discrete transforms F and F†, in
the case G = CHN , D = 2N−2. Left: the maximum singular values σmax(F) and
σmax(F†) are plotted in term of N . Right: the same singular values are plotted,
but with �normalization� factors.

Proof. We refer to [7, Theorems 3�4], which establish similar results for the matrix

[Y m
n (ξ)] ξ∈CSN

|m|≤n≤D
∈ R(6N2+2)×(D+1)2 .

The proofs are based on the examples f0 = Y −2N2N (x(θ, φ− π
4 )) ∈ Y2N , f1 = Y0 ∈ Y2N . The same

strategy applies for ADN , since f0, f1 ∈ Yev
2N , so we get almost the same estimations. The slight

di�erence is a factor 1
2 in (ii), due to the restriction of CSN to CHN . This factor disappears in

the estimation of the condition number in (iii), since it is a ratio.
To put it in a nutshell, the function f0 is the key of the proof. There is some trigonometric

polynomial p such that

f0(x(θ, φ)) = p(θ) sin(2N(φ− π
4 )), θ ∈ [−π

2 ,
π
2 ], φ ∈ R,

where p(θ) becomes small when θ moves away from 0. Therefore, f0 vanishes on CSN intersected
with the meridian circles φ ≡ π

4 ( π
2N ). Hence, if N ≤ 4, f0 vanishes on CHN , which implies (i).

Otherwise, the remaining non-zero values of f0|CHN are bounded from above considering some
estimation of p. We refer to the proof of [7, Theorems 3�4] for additional details. �

Remark 18. The critical degree 2N corresponds usually to oscillations at the Nyquist's frequency
for a uniform one-dimensional grid with step π

2N . Here, our critical example f0 oscillates at this
frequency along the (equatorial) grid φ ≡ π

4 ( π
2N ), so that f0 is undersampled along the equator.

In the sequel, if the grid is G = CHN , then we select the degree D = 2N −2, as a consequence
of Claim 14 and Theorem 17.

4.3. Discrete Funk transform. Assuming that Claim 14 is true, we consider the discrete Funk
transform F, in the case G = CHN , D = 2N − 2, where N ≥ 1 is �xed. Of course, any result of
Subsection 3.2 applies. In particular, Theorem 11 guarantees estimations of stability based on
the condition number plotted in Figure 2. We check this point in Figure 3, where we observe
that the maximum singular values satisfy

σmax(F) ≈ 1.00218, σmax(F†) ≈
√

2(2N − 2), 1 ≤ N ≤ 32;

this is in agreement with the theoretical bounds (18).
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5. Numerical results

We perform various numerical experiments, in order to assess the quality and the e�ciency of
the discrete Funk transform on the Cubed Hemisphere.

5.1. Accuracy and convergence of the discrete Funk transform. We evaluate the accu-
racy of the discrete Funk transform when it is used to approximate Funk transforms from values
on CHN .

For that purpose, we introduce test functions,

g(k) :=
∑

0≤n≤100
n≡0 (2)

∑
−n≤m≤n

ĝ(k)n (2 + 0.5 cos(m) + 0.25 sin(m))Y m
n ∈ Yev

100, (20)

ĝ(−∞)
n := 1

n! , ĝ(k)n := (n+ 1)k, k = −6, −4, −2, −1, 0, (21)

where the various rates of decay of the spectral coe�cients encode various �smoothness� proper-
ties. Here, g(k) ∈ Yev

100, so we compute the Funk transform Fg(k) by Theorem 6, with G = CHN ,

N = 51 and D = 2N − 2. For any α ∈ S2, we use the relation (12) to compute Fg(k)(α) from

the values of g(k) on the grid CH51. This computation is exact, up to rounding errors.
Consider now the discrete Funk transform F, associated to the grid G = CHN = {ξi, 1 ≤ i ≤

M} and the degree D = 2N −2. For any function g, we approximate the vector [(Fg)(ξi)]1≤i≤M
by F[g(ξi)]1≤i≤M with a relative error ηN [g] de�ned by

ηN [g] :=
‖F[g(ξi)]1≤i≤M − [(Fg)(ξi)]1≤i≤M‖

‖[(Fg)(ξi)]1≤i≤M‖
; (22)

here, ‖·‖ denotes the euclidean norm in RM . For g = g(k), the reference vector [(Fg(k))(ξi)]1≤i≤M
is computed as mentioned in the previous paragraph (relation (12) with CH51 for the data grid,

and α ∈ CHN for the evaluation). In particular, η51[g
(k)] is zero (up to rounding errors).

We have plotted the errors ηN [g(k)] in Figure 4 (left panel), for 1 ≤ N ≤ 32. Overall, the
behavior of the observed error depends on the rate of decay of the spectral coe�cients; the
error converges fastly to zero for rapidly decaying coe�cients. We quantify this phenomenon in
Table 1, where we report numerical convergence rates rN [g] such that

η2N [g] = ηN [g] 2−rN [g], with rN [g] = log2 ηN [g]− log2 η2N [g]. (23)

N rN [g(−∞)] rN [g(−6)] rN [g(−4)] rN [g(−2)] rN [g(−1)] rN [g(0)]

1 3.7 4.5 2.9 0.28 -1.4 1.8
2 11 4.9 3.1 1.3 0.3 -0.19
4 29 5.4 3.4 1.5 0.78 -0.11
8 5.3 5.4 3.4 1.8 1.2 0.093
16 0.83 5.5 3.6 2.2 1.8 1

Table 1. Convergence rates (23) of the errors (22), for the test functions from (20-21).

For g(−∞), with a factorial decay of the coe�cients, ĝ
(−∞)
n = 1/n!, the very fast convergence

appears as a blow up of the rate rN [g(−∞)]. For the functions g(−k), k = 6, 4, 2, with a decay

ĝ
(−k)
n = 1/(n + 1)k, the rate looks like rN [g(−k)] ≈ k − 0.5. For g(−1), with the slow decay

ĝ
(−1)
n = 1/(n + 1), and g(0) with constant values ĝ

(0)
n = 1, the convergence analysis is not so

clear.
In a word, the discrete Funk transform F (or its matrix F) approximates the Funk transform

from values on a Cubed Hemisphere. It converges fastly for smooth functions, for which the
spectral coe�cients decay rapidly to zero. The observed rates of convergence suggests to analyze
theoretically the speed of convergence in Sobolev spaces. We defer this point to further studies.
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Figure 4. Approximation of the Funk transform [(Fg)(ξi)]1≤i≤M by the discrete
transform F[g(ξi)]1≤i≤M , for the grid CHN , and the degree 2N − 2. The relative

error ηN [g] in (22) is plotted, for each test function g = g(k) from (20-21).

5.2. Funk transform of Gaussian models. We study the accuracy of the discrete Funk trans-
form on Gaussian models from dMRI, for the grid G = CHN and the degree D = 2N − 2.

We consider Gaussian models in the following form,

S(x) = exp(−b xᵀDx), x ∈ S2, (24)

where b ≥ 0, and D ∈ R3×3 is a symmetric positive de�nite matrix. Such models describe the
dMRI signal S in Di�usion Tensor Imaging. The so-called di�usion tensor D models intrinsic
di�usion properties of biological tissues. The parameter b is the so-called b-value, and is a
parameter of the acquisition. The unit vector x, represents a gradient direction, and browses
a hemispherical grid during the acquisition. Gaussian models such as (24) appear also in High
Angular Resolution Di�usion Imaging [11]. In this �eld, a weighted average of several Gaussian
models can be introduced to model the signal from crossing �bers. The orientation of the �bers
can be imaged using an Orientation Distribution Function, which is computed approximately as
the Funk transform of the recorded signal S [12, 41]. Hence, it is crucial to be able to compute
accurately the Funk transform of a Gaussian model, from a discrete set of values.

In this paper, we consider Gaussian signals

Sj(x) = exp(−bj xᵀDjx), x ∈ S2, 1 ≤ j ≤ 6. (25)

The b-values bj and the di�usion tensors Dj are de�ned in Table 2. Our values are inspired
by the values from [12]. The b-value b = 1000 [s/mm2] is an usual clinical value, whereas
b = 3000 [s/mm2] is considered as relatively high. For the di�usion tensors, we have chosen
diagonal matrices Di, de�ned by the eigenvalues µ1, µ2, µ3 > 0. The matrix D3 has been found
in the synthetic data generation in [12]. The other matrices have been de�ned as �variations�
of this matrix, in order to obtain more or less anisotropy; see the last column of Table 2, where
anisotropy is measured by means of the fractional anisotropy (FA),

FA = 1√
2

√
(µ1−µ2)2+(µ1−µ3)2+(µ2−µ3)2

µ21+µ
2
2+µ

2
3

∈ [0, 1]. (26)
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j bj [s/mm
2] Dj [mm

2/s] FA

1 1000 10−6 diag(300, 300, 300) 0
2 1000 10−6 diag(300, 600, 900) 0.46
3 1000 10−6 diag(300, 300, 1700) 0.80
4 3000 10−6 diag(300, 300, 300) 0
5 3000 10−6 diag(300, 600, 900) 0.46
6 3000 10−6 diag(300, 300, 1700) 0.80

Table 2. Parameters of the Gaussian signals (25). The anisotropy is measured
by the fractional anisotropy (FA), de�ned in (26).

Firstly, we assume that the (even) signal Sj is recorded on G = CHN , with N ≥ 1 and
1 ≤ j ≤ 6. We compute reference values [(FSj)(ξi)]1≤i≤M using trapezoidal rules3. Then, we
compute the discrete Funk transform F[Sj(ξi)]1≤i≤M . It approximates [(FSj)(ξi)]1≤i≤M , with
a relative error ηN [Sj ], where ηN is de�ned in (22). We have plotted these errors in Figure 5
(left panel) to evaluate the accuracy of the procedure. Overall, a fast convergence due to the
smoothness of the Gaussian signals is observed. For the isotropic functions S1 and S4, the error
is always zero (up to rounding errors), because S1, S4 ∈ Y0 ⊂ Yev

2N−2, so (11) applies. With
S2, S5, and S3, S6, we observe that increasing the b-value induces a loss in accuracy; this is
because a Gaussian becomes sharper with high b-values.

Secondly, we show that the orientation of the grid does not matter. For that purpose, we
consider �rotations� of the signals Sj :

Sj(Q
ᵀ·) : x 7→ Sj(Q

ᵀx) = exp(−b xᵀQDjQ
ᵀ x),

where Q ∈ R3×3 is a random orthogonal matrix. The relative error of approximation of the Funk
transform becomes ηN [Sj(Q

ᵀ·)], and can be computed as before. For each function Sj , we repeat
this procedure for 30 random orthogonal matrices Q, and we plot the maximum error

max
Q

ηN [Sj(Q
ᵀ·)] (27)

in Figure 5 (right panel). We obtain a similar conclusion than before, so that the conclusion
does not depend on the orientation of the grid.

Thirdly, we investigate the e�ect of noise. We corrupt the signals as follows. We �x a value
of N . For any 1 ≤ j ≤ 6, for any σ = 2−p, with 2 ≤ p ≤ 31, we corrupt Sj , by a �speckle� noise
and an additive noise with level σ:

Sσj (ξi) = |Sj(ξi)(1 + σui) + σvi|, 1 ≤ i ≤M,

where the ui, vi, are 2M = 6N2 + 2 independent realizations of the normal law N (0, 1). In this
case, the relative error on the signal is given by

‖[Sσj (ξi)− Sj(ξi)]1≤i≤M‖
‖[Sj(ξi)]1≤i≤M‖

. (28)

We compute the discrete Funk transform F[Sσj (ξi)]1≤i≤M , which approximates [(FSj)(ξi)]1≤i≤M
with a relative error

‖F[Sσj (ξi)]1≤i≤M − [(FSj)(ξi)]1≤i≤M‖
‖[(FSj)(ξi)]1≤i≤M‖

. (29)

In Figure 6, we have plotted the relative error (29) on the transform against the relative error (28)
on the signal. Two values of N are considered. On the left, N = 5, so that the grid CHN contains
76 points, and the approximation space is Yev

8 . On the right, N = 10, so that the grid CHN

contains 301 points, and the approximation space is Yev
18 . Roughly speaking, we observe that the

3Here, an integral along a great circle x ·α = 0 is an integral of a smooth 2π-periodic function over a period, so
the trapezoidal rule converges exponentially to the true integral [40]. Therefore, we apply successive trapezoidal
rules as follows. We start with an angular step π

8
. We evaluate the associated trapezoidal rule; then, we divide

the angular step by two, and we iterate. The iterations are stopped as soon as the relative increase of the value
between two successive iterations is below the tolerance 10−13.
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relative error on the transform is the maximum between the relative error on the signal, and the
relative error on the transform from the noise-free case (displayed in Figure 5). This result is in
agreement with the stability constant of the transform F, σmax(F) ≈ 1 in Figure 3.

To conclude, the Funk transform of Gaussian models can be accurately evaluated by the
discrete transform on the Cubed Hemisphere, and in a very stable way.

5.3. Comparison of the Cubed Sphere and the icosahedral grid. We compare discrete
Funk transforms on Cubed Hemispheres with discrete Funk transforms on icosahedral grids.

For the Cubed Sphere, we consider the Cubed Hemisphere CHN with cardinal number M =
3N2 + 1. As an alternative grid, we consider an icosahedral grid. It is based on a regular
triangular lattice onto each face of an icosahedron inscribed in S2. The icosahedral grid is de�ned
as the projection of the vertices of this lattice onto S2. We further halve the grid by symmetry
consideration (Proposition 2), in the same way as CSN has been halved. Assuming that each
edge of the original icosahedron has been divided into N parts, the resulting half-grid contains
M = 5N2 + 1 points; we still call this grid an icosahedral grid, and we denote it by IcoN . Such
grids have already been used for computing Funk transforms in [12] with M = 81, 321 (which
corresponds to the parameters N = 2, 8).

Firstly, in order to obtain a stable discrete Funk transform, the degree D must be carefully
tuned. For CHN , we use the rule D = 2N − 2, as it has been introduced in Section 4. For the
icosahedral grid IcoN , we do not know such a rule on the degree. To overcome this disadvantage,
we compute numerically D as the largest degree D such that condA ≤ 2, where A denotes the
Vandermonde matrix (6) with G = IcoN . In Figure 7, we plot the obtained degree D against
the number of points of the grid, for the grid CHN with 1 ≤ N ≤ 32, and the grid IcoN with
1 ≤ N ≤ 25. We observe that for equivalent number of grid points, the degree associated to the
icosahedral grid is larger than the degree associated to the Cubed Hemisphere. Therefore, the
icosahedral grid permits to work in a larger approximation space Yev

D , while keeping a very small
condition number (condA ≤ 2).

Secondly, we consider successively the discrete Funk transform associated to the grids

G = CHN , 1 ≤ N ≤ 32, G = IcoN , 1 ≤ N ≤ 25,

with the degree D discussed above. We evaluate the accuracy on the test function g = g(k)

de�ned in (20-21), for k = −∞,−6,−4,−2, by means of the relative error

η[g] = max
Q

‖F[g(Qᵀξi)]1≤i≤M − [(Fg)(Qᵀξi)]1≤i≤M‖
‖[(Fg)(Qᵀξi)]1≤i≤M‖

, (G = {ξi, 1 ≤ i ≤M}); (30)

here the �orientation� Q browses a set of 30 random orthogonal matrices. The computed errors
are displayed in Figure 8. Overall, the two grids de�ne transforms with similar accuracy, and
similar properties of convergence. This test reveals also that for very smooth functions and very
small grids, the isosahedral grid de�nes a more accurate transform.

Lastly, we repeat the same procedure, but we corrupt the data with a level of noise σ = 10−6.
We compute the relative error

ηnoise[g] = max
(Q,u,v)

‖F[g(Qᵀξi)(1 + σui) + σvi]1≤i≤M − [(Fg)(Qᵀξi)]1≤i≤M‖
‖[(Fg)(Qᵀξi)]1≤i≤M‖

, σ = 10−6, (31)

where the maximum is taken over 30 experiments; each experiment �xes Q as a random or-
thogonal matrix, and the ui, vi as 2M independent realizations of the normal law N (0, 1). The
obtained errors are depicted in Figure 9. The observations of the noise-free case still apply. We
further observe that the errors are almost the same as soon as the noise becomes dominant.

To conclude, considering the Cubed Sphere is simpler than considering an icosahedral grid,
for which further studies (or computation) are needed to keep the conditioning under control.
Moreover, the resulting accuracy is almost the same, except for very smooth functions on very
small grids; in this case, the icosahedral grid is more advantageous if the noise is small enough.
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Figure 5. Accuracy of the discrete Funk transform on CHN with degree 2N−2,
for the Gaussian signals Sj in (25) and Table 5. Left: F[Sj(ξi)]1≤i≤M approx-
imates [(FSj)(ξi)]1≤i≤M with relative error ηN [Sj ] in (22); we plot ηN [Sj ] with
1 ≤ N ≤ 32. Right: for any orthogonal matrix Q ∈ R3×3, the same procedure
applied to the �rotated� Gaussian Sj(Q

ᵀ·) results in a relative error ηN [Sj(Q
ᵀ·)];

we plot the maximum error (27), where Q scans a set of 30 random orthogonal
matrices.

Figure 6. Accuracy of the discrete Funk transform on CHN (degree 2N−2), for
Gaussian signals Sj corrupted by noise. The relative error (29) on the transform
is plotted against the relative error (29) on the signal (logarithmic scale). Left:
N = 5; right: N = 10.
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Figure 7. Degree D for least squares �tting on the Cubed Hemisphere CHN ,
resp. the Icosahedral grid IcoN . For CHN , the number of grid points is M =
3N2 + 1, the degree is D = 2N − 2, and 1 ≤ N ≤ 32. For IcoN , M = 5N2 + 1,
D is the largest degree such that condA ≤ 2, and 1 ≤ N ≤ 25.

5.4. Computation time. As a further indicator of e�ciency, we measure the computation time
of discrete Funk transforms, for the grid G = CHN , and the degree D = 2N − 2. For each value
of N , we �x a random vector b, and we measure the time dedicated to the assembly of the matrix
A and the computation of Fb. The code is written in Matlab, and `[b] is computed with a simple
command such as (A'*A)\(A'*b). The program is executed on a laptop Dell Precision 7540; the
processor is an Intel i9-9880H@2.30 GHz. The experiment is repeated six times, and we report
the average values of the running times in Table 3.

Parameter N 1 2 4 8 16 32 64

Number of grid points M 4 13 49 193 769 3073 12289
Degree D 0 2 6 14 30 62 126

CPU time (s) 1.8e-04 1.2e-04 3.7e-04 2.3e-03 2.2e-02 5.0e-01 1.5e+01

Table 3. Running time dedicated to the computation of a discrete Funk trans-
form Fb, for the grid G = CHN , and the degree D = 2N − 2.

These preliminary results show that our transform is computed relatively fastly for small grids,
despite our �brute force� implementation has not been optimized. Further studies are required
to decrease these times. Combining symmetry consideration and an iterative solver such as
Conjugate Gradient Least Squares (CGLS) is an option to consider in the future.

6. Conclusion

This paper deals with mathematical and numerical properties of some discrete Funk trans-
forms, including their (pseudo)inversion. As a special case, the study includes a simple framework
based on the Cubed Sphere. Our theoretical and numerical results indicate that stability and
suitable convergence properties are expected in this context, despite regularization has not been
applied. This mathematical background about discrete Funk transforms could potentially have
applications in any �eld where integrals along great circles on a sphere are considered.

This work opens problems to be addressed in the future. Finding the �best� spherical grid
and the �best� degree is an open question. For the case of the Cubed Hemisphere CHN , proving
that our rule on the degree (D = 2N − 2) results in a small condition number is still open.
Another point concerns the speed of convergence, which should be quanti�ed, for instance in
Sobolev spaces. Concerning implementation aspects, writing a �fast� algorithm has still to be
done. A �rst step in this direction could be an e�cient solver for the least squares problem,
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Figure 8. Accuracy of the Funk transform associated to the Cubed Hemisphere
(CH), resp. the Icosahedral grid (Ico). The relative error η[g] in (30) is plotted

against
√
M , with M the number of grid points. The degree D is plotted in

Figure 7.

Figure 9. Accuracy of the Funk transform associated to the Cubed Hemisphere
(CH), resp. the Icosahedral grid (Ico), with a level of noise σ = 10−6. The relative

error ηnoise[g] in (31) is plotted against
√
M , with M the number of grid points.

The degree D is plotted in Figure 7.
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taking into account further symmetry consideration. To �nish with, comparing our transform
with time-tested transforms on real experiments is a goal for further studies; in particular, testing
the Cubed Hemisphere in Q-ball imaging may be instructive.
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