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Introduction

The thermal structure of subduction zones [START_REF] Schubert | Mantle Convection in the Earth and Planets[END_REF] is an interesting problem that plays a central role in the definition of friction zones between continental and ocean crust. In particular, the relation between the temperature distribution at the interior of the crust and the generation of phenomena such as earthquaks or volcano eruptions are still open problems. This relation explains the interest, over the last decade, of the geophysicists, geologists, and practitioners to apply different numerical techniques to compute the distribution of the temperature field [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF][START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF][START_REF] Vynnytska | Benchmarking FEniCS for mantle convection simulations[END_REF].

The mantle dynamics can be described as the thermal convection of an incompressible Boussinesq fluid with an infinite Prandtl number. In that respect, we can mention, for example, the works [START_REF] Allendes | A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem[END_REF][START_REF] Aytekin | A projection-based stabilized finite element method for steady-state natural convection problem[END_REF][START_REF] Bernardi | Couplage des équations de Navier-Stokes et de la chaleur : le modèle et son approximation par éléments finis[END_REF][START_REF] Farhloul | A mixed formulation of boussinesq equations: Analysis of nonsingular solutions[END_REF][START_REF] Pérez | The steady Navier-Stokes/energy system with temperaturedependent viscosity-part 2: The discrete problem and numerical experiments[END_REF], and the references therein, concerning the numerical computation of an approximated solution. A different approach, to study the dynamics of subduction zones, is to consider the flow of a fluid modeled by the Stokes equation whose viscosity depends on temperature, which is given by a transport equation with a convective term defined by the fluid velocity (for details, see [START_REF] Furukawa | Depth of the decoupling plate interface and thermal structure under arcs[END_REF][START_REF] Van Keken | High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle[END_REF]). In a different context, this type of coupling also appears in sedimentation-consolidation of particles processes, where the variable of interest is the local solids concentration instead of temperature (see [START_REF] Alvarez | A posteriori error analysis for a viscous flow-transport problem[END_REF][START_REF] Alvarez | An augmented mixed-primal finite element method for a coupled flow-transport problem[END_REF][START_REF] Caucao | Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations[END_REF] and the references therein).

For the coupling of Stokes-Temperature problems, we can consider finite element approximations based on stable spaces, as in [START_REF] Cox | Finite element approximation of the non-isothermal Stokes-Oldroyd equations[END_REF], where a discrete scheme based on continuous and discontinuous piecewise polynomial spaces was analyzed. Also, we mention the works [START_REF] Alvarez | An augmented mixed-primal finite element method for a coupled flow-transport problem[END_REF][START_REF] Caucao | Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations[END_REF] where the authors introduce an augmented mixedprimal dual formulation, and where the numerical analysis is carried out using stable finite element spaces of the Raviart-Thomas type. When the spaces of approximations are not stable, it is known that new terms should be added to Galerkin's formulation to get stability, these kind of methods are known in the literature as stabilized methods. A small list of classical stabilized schemes can be SUPG (streamlineupwind-Petrov-Galerkin), SDFEM (streamline diffusion), or GLS (Galerkin-least-squares) methods (see, for instance, [START_REF] Bochev | Least-squares finite element methods[END_REF][START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF][START_REF] Tobiska | Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations[END_REF]). When projection terms of the residual type are added to the stabilized formulation we have, for example, [START_REF] Barrenechea | Consistent local projection stabilized finite element methods[END_REF] for the Stokes equations, [START_REF] Franca | On a residual local projection method for the Darcy equation[END_REF] for the Darcy equations, and [START_REF] Araya | Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations[END_REF] for the Navier-Stokes equations. In the case of not residual-based stabilization, we can mention [START_REF] Araya | A low-order local projection method for the incompressible Navier-Stokes equations in two-and three-dimensions[END_REF][START_REF] Barrenechea | Beyond pressure stabilization: a low-order local projection method for the Oseen equation[END_REF][START_REF] Becker | A finite element pressure gradient stabilization for the Stokes equations based on local projections[END_REF][START_REF] Burman | Continuous interior penalty finite element method for Oseen's equations[END_REF][START_REF] Codina | Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[END_REF], which is clearly an incomplete list. Finally, when the viscosity of the fluid is not constant, as in viscoelastic fluids, we can mention [START_REF] Barrenechea | Time-dependent semidiscrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation[END_REF][START_REF] Castillo | Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem[END_REF][START_REF] Castillo | Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation[END_REF][START_REF] Moreno | Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation[END_REF][START_REF] Varchanis | PEGAFEM-V: a new Petrov-Galerkin finite element method for free surface viscoelastic flows[END_REF][START_REF] Venkatesan | Finite element computations of viscoelastic two-phase flows using local projection stabilization[END_REF] and the references therein.

The purpose of this paper is to present and analyze a new stabilized finite element method to approximate the Stokes equation coupled with the convection-diffusion equation allowing the use of equal order of interpolation for each variable. Our work is based on similar arguments as in [START_REF] Alvarez | An augmented mixed-primal finite element method for a coupled flow-transport problem[END_REF][START_REF] Caucao | Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations[END_REF] for the existence of a solution of the continuous formulation, in the sense of proposing a nonlinear variational formulation that is well posed using, a decoupled problem, and Banach's and Schauder's fixed point theorems with a compactness results from Rellich-Kondrashov. The uniqueness of the continuous solution is stated under the standard assumption of sufficiently small data and an additional regularity hypothesis of the continuous solution.

In our approach, the discrete formulation is based on a stabilized scheme for the Stokes, inspired by the scheme proposed and analyzed in [START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF], and for the transport equation, we consider a variation of the scheme proposed in [START_REF] Hughes | A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations[END_REF]. In both methodologies, residual mesh-dependent terms of the momentum equations are added, which allows the stabilized method proposed to be consistent. Again, based on the assumption of small data, the existence of the discrete solution can be stated using Brouwer's fixed point theorem. Optimal convergence of the proposed scheme is proved using standard nonlinear finite element results (for a similar result of a stabilized scheme applied to a nonlinear Darcy equation, see [START_REF] Araya | An adaptive stabilized finite element method for the Darcy's equations with pressure dependent viscosities[END_REF]).

This work is organized as follows: in Section 2 we introduce the model problem and some preliminary results that we will use in the sequel. In Section 3 we present the continuous variational problem and show that it is well-possed. The stabilized numerical scheme is presented in Section 4 where results concerning the existence of the solution are introduced. In Section 5 the convergence of the discrete stabilized scheme is introduced jointly with an a priori error analysis. Finally, in Section 6 we present some numerical experiments to assess the quality of our new scheme, using both analytical solutions and a solution coming from the benchmark experiment introduced in [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF].

Model problem and preliminary results

Let Ω ⊂ R d , d ∈ {2, 3}, be an open, bounded domain with Lipschitz continuous boundary ∂Ω. We will use standard notation for Lebesgue spaces L q (Ω), with norm ∥ • ∥ 0,q,Ω , for q > 2, and ∥ • ∥ 0,Ω for q = 2 and inner product (•, •), and Sobolev spaces H m (Ω), with norm ∥ • ∥ m,Ω and semi-norm

| • | m,Ω .
Inspired by a model for the dynamics of the thermal structure of subduction zones [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF], we consider the Stokes-Temperature coupled problem given by: Find the velocity u, pressure p, stress σ and temperature ϕ such that

(P)                σ = 2µ(ϕ) ε(u) in Ω, -∇ • σ + ∇p = αϕf in Ω, ∇ • u = 0 in Ω, u = 0 on ∂Ω, -k ∆ϕ + ∇ϕ • u = g in Ω, ϕ = 0 on ∂Ω,
where ε(u) := 1 2 (∇u + ∇u t ) is the strain rate tensor, µ is the effective dynamic viscosity and k ∈ R + is the thermal conductivity. Additionally, we suppose that there exist positive constants µ min , µ max and C Lips , such that

0 < µ min ≤ µ(s) ≤ µ max ∀s ∈ R, |µ(r) -µ(s)| ≤ C Lips |r -s| ∀r, s ∈ R. (2.1)
Finally, we assume that f ∈ L ∞ (Ω) d , g ∈ L 2 (Ω) and α, the thermal Rayleigh number, is a positive constant.

To introduce a variational formulation of problem (P), we need the following Hilbert spaces:

H := H 1 0 (Ω) d , Q := L 2 0 (Ω), R := {τ ∈ L 2
(Ω) d×d : τ T = τ }, and V := H 1 0 (Ω). Thus, a variational formulation associated to (P) is given by:

Find (u, p, σ, ϕ) ∈ H × Q × R × V such that B((u, p, σ, ϕ), (v, q, τ , ψ)) = F (v, q, τ , ψ), (2.2) 
for all (v, q, τ , ψ)

∈ H × Q × R × V , where B((u, p, σ, ϕ), (v, q, τ , ψ)) := σ 2µ(ϕ) , τ -(ε(u), τ ) + (q, ∇ • u) -(σ, ε(v)) + (p, ∇ • v) + k (∇ϕ, ∇ψ) + (∇ϕ • u, ψ), for all (u, p, σ, ϕ), (v, q, τ , ψ) ∈ H × Q × R × V and F (v, q, τ , ψ) := -(αϕf , v) + (g, ψ), for all (v, q, τ , ψ) ∈ H × Q × R × V . Remark 1. If u is part of the solution of problem (2.2), then ∇ • u = 0. In fact, if we take v = 0, τ = 0 and ψ = 0 in (2.
2), we obtain that (q, ∇ • u) = 0 for all q ∈ L 2 0 (Ω). Now, using that u = 0 on ∂Ω we get that ∇ • u = 0.

In the sequel we will need the following results: Lemma 2.1 (Korn). There exist a positive constant C K , depending on Ω, such that

∥v∥ 1,Ω ≤ C K ∥ε(v)∥ 0,Ω , for all v ∈ H.

Lemma 2.2 (Poincaré).

There exists a positive constant C P , depending on Ω, such that

∥ψ∥ 1,Ω ≤ C P |ψ| 1,Ω , for all ψ ∈ V . Lemma 2.3 (Rellich-Kondrashov). For q ≥ 1, if d = 2, or 1 ≤ q < 6, if d = 3, we have the compact inclusion H 1 (Ω) c - → L q (Ω
), thus there exists a positive constant C q such that ∥v∥ 0,q,Ω ≤ C q ∥v∥ 1,Ω ∀v ∈ H 1 (Ω).

Proof. See, for instance, [START_REF] Quarteroni | Numerical Approximation of Partial Differential Equations[END_REF]Theorem 1.3.5].

Theorem 2.4 (Banach). Let (X, d) be a complete metric space and f : X → X be a contractive operator, i.e. there exists λ ∈ (0, 1) such that d(f (x), f (y)) ≤ λ d(x, y) for any x, y ∈ X. Then f has a unique fixed point.

Proof. See [START_REF] Banach | Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales[END_REF].

Theorem 2.5 (Schauder). Let W be a closed and convex subset of a Banach space X and let f : W → W be a continuous function such that f (W ) is compact. Then f has at least one fixed point.

Proof. See [START_REF] Schauder | Der fixpunktsatz in funktionalraümen[END_REF].

Theorem 2.6 (Brouwer). Let W be a compact and convex subset of a finite-dimensional Banach space V , and let f : W → W a continuous function. Then f has at least one fixed point.

Proof. See [START_REF] Brouwer | Über abbildung von mannigfaltigkeiten[END_REF].

Over the space H × Q × R we will use the following norm

|||(v, q, τ )||| := ∥v∥ 2 1,Ω + ∥q∥ 2 0,Ω + ∥τ ∥ 2 0,Ω 1/2 ∀(v, q, τ ) ∈ H × Q × R.
From now on, C and C k will denote positive constants independent of the mesh size h, but possibly depending on physical parameters.

Equivalent variational formulation

In this section we will introduce and analyze a variational formulation equivalent to (2.2). To this end, we need to define the following variational problems: Given ψ ∈ V :

Find (ũ, p, σ) ∈ H × Q × R such that B ψ ((ũ, p, σ), (v, q, τ )) = F ψ (v, q, τ ) ∀(v, q, τ ) ∈ H × Q × R, (3.1) 
where

B ψ : (H × Q × R) × (H × Q × R) -→ R is the bilinear form defined by B ψ ((u, p, σ), (v, q, τ )) := σ 2µ(ψ) , τ -(ε(u), τ ) + (q, ∇ • u) -(σ, ε(v)) + (p, ∇ • v), for all (u, p, σ), (v, q, τ ) ∈ H × Q × R, and F ψ : H × Q × R -→ R is the linear functional defined by F ψ (v, q, τ ) := -(αψf , v), for all (v, q, τ ) ∈ H × Q × R.
On the other hand, given w ∈ H, with ∇ • w = 0, we define the problem: Find φ ∈ V such that

A w (φ, ψ) = G(ψ) ∀ψ ∈ V, (3.2) 
where A w : V × V -→ R is the bilinear form defined by

A w (ϕ, ψ) := k (∇ϕ, ∇ψ) + (∇ϕ • w, ψ),
for all ϕ, ψ ∈ V , and G : V -→ R is the linear functional defined by

G(ψ) := (g, ψ),
for all ψ ∈ V . Note that the nonlinear scheme (2.2) can be rewritten as:

Find (u, p, σ, ϕ) ∈ H × Q × R × V such that B ϕ ((u, p, σ), (v, q, τ )) = F ϕ (v, q, τ ) ∀(v, q, τ ) ∈ H × Q × R, (3.3) 
A u (ϕ, ψ) = G(ψ) ∀ψ ∈ V. (3.4)

Well possedness of the variational formulation

In this section, based on the arguments introduced in [3], we prove the existence and uniqueness of the solution of variational problem (3.1), using Schauder's and Banach's fixed point theorems (see theorems 2.5 and 2.4). To this end we need to define the following operators:

S : V -→ H × Q × R, such that ψ -→ S(ψ) = (S 1 (ψ), S 2 (ψ), S 3 (ψ)) := (ũ, p, σ), where (ũ, p, σ) ∈ H × Q × R is the solution of (3.1). Let H := {w ∈ H : ∇ • w = 0}, we define the operator M : H -→ V , by w -→ M(w) = φ,
where φ ∈ V is the solution of (3.2). Finally, we define the operator T : V -→ V by

T(φ) := M(S 1 (φ)), (3.5) 
for all φ ∈ V . In this way, problem (3.3)-(3.4) can be written as the following fixed point problem: 

Find ϕ ∈ V such that T(ϕ) = ϕ. ( 3 
∈ H × Q × R. Moreover, there is a positive constant C S such that |||S(ψ)||| = |||(ũ, p, σ)||| ≤ C S ∥f ∥ ∞,Ω ∥ψ∥ 1,Ω ∀ψ ∈ V. (3.7)
Proof. Defining the following bounded linear operators:

A 1 : R → R ′ , ⟨A 1 σ, τ ⟩ := σ 2µ(ϕ)
, τ ,

B 1 : R → H ′ , ⟨B 1 τ , v⟩ := -(ε(v), τ ), B : H → Q ′ , ⟨Bv, q⟩ := (∇ • v, q), H ψ : H → R, ⟨H ψ , v⟩ := -(αψf , v), problem (3.1 
) can be expressed as the following system:

  A 1 B T 1 0 B 1 0 B T 0 B 0     σ ũ p   =   0 H ψ 0   . (3.8) 
Note that it is clear that

⟨A 1 τ , τ ⟩ ≥ 1 2µ max ∥τ ∥ 2 0,Ω ∀τ ∈ R, (3.9) 
and sup

τ ∈R τ ̸ =0 ⟨B 1 τ , v⟩ ∥τ ∥ 0,Ω ≥ 1 C K ∥v∥ 1,Ω ∀v ∈ H. (3.10)
Finally, it is well known (see [START_REF] Girault | Finite element methods for Navier-Stokes equations: Theory and algorithms[END_REF]) that there exists β > 0, such that sup (v,q,τ )∈H×Q×R (v,q,τ )̸ =(0,0,0)

v∈H v̸ =0 ⟨Bv, q⟩ ∥v∥ 1,Ω ≥ β ∥q∥ 0,Ω ∀q ∈ Q. ( 3 
B ψ ((ũ, p, σ), (v, q, τ )) |||(v, q, τ )||| , (3.13) 
for all (ũ, p, σ) ∈ H × Q × R. 

W := {φ ∈ V : ∥φ∥ 1,Ω ≤ r},
where r := C M ∥g∥ 0,Ω , then T(W ) ⊆ W .

Proof. The proof is a direct consequence of the definition of operator T, given in (3.5), and (3.14).

Lemma 3.4. There exists a positive constant C 1 , such that for all ϕ, ψ ∈ V , we have

|||S(ϕ) -S(ψ)||| ≤ C 1 ∥f ∥ ∞,Ω ∥ϕ -ψ∥ 0,Ω + ∥S 3 (ψ)∥ 0,4,Ω ∥ϕ -ψ∥ 0,4,Ω .
Proof. Let ϕ, ψ ∈ V given, we define (u, p, σ) := S(ϕ) and (ũ, p, σ) := S(ψ) by

B ϕ ((u, p, σ), (v, q, τ )) = F ϕ (v, q, τ ), B ψ ((ũ, p, σ), (v, q, τ )) = F ψ (v, q, τ ), for all (v, q, τ ) ∈ H × Q × R.
Then, we have B ϕ ((u, p, σ) -(ũ, p, σ), (v, q, τ )) = B ϕ ((u, p, σ), (v, q, τ )) -B ϕ ((ũ, p, σ), (v, q, τ ))

= (F ϕ -F ψ )(v, q, τ ) + (B ψ -B ϕ )((ũ, p, σ), (v, q, τ )). Now, using the definition of F ϕ and F ψ , we obtain

(F ϕ -F ψ )(v, q, τ ) = (α(ϕ -ψ)f , v) ≤ α ∥f ∥ ∞,Ω ∥ϕ -ψ∥ 0,Ω ∥v∥ 0,Ω . (3.16) 
On the other hand, using Hölder's inequality and (2.1), we have that

(B ψ -B ϕ )((ũ, p, σ), (v, q, τ )) = 1 2µ(ψ) - 1 2µ(ϕ) σ, τ = µ(ϕ) -µ(ψ) 2µ(ψ)µ(ϕ) σ, τ ≤ C Lips 2µ 2 max ∥ϕ -ψ∥ 0,4,Ω ∥ σ∥ 0,4,Ω ∥τ ∥ 0,Ω . (3.17) 
Thus, using (3.16) and (3.17), we obtain that

B ϕ ((u, p, σ) -(ũ, p, σ), (v, q, τ )) |||(v, q, τ )||| ≤ α ∥f ∥ ∞,Ω ∥ϕ -ψ∥ 0,Ω + C Lips 2µ 2 max ∥S 3 (ψ)∥ 0,4,Ω ∥ϕ -ψ∥ 0,4,Ω . (3.18) 
The result follows from (3.13), (3.18) and Lemma 3.1.

Lemma 3.5. There exists a positive constant C 2 , such that for all u, ũ ∈ H, we have

∥M(u) -M(ũ)∥ 1,Ω ≤ C 2 ∥g∥ 0,Ω ∥u -ũ∥ 1,Ω .
Proof. Defining ϕ := M(u) and φ := M(ũ), we have that for all ψ ∈ V

A u (ϕ, ψ) = G(ψ), A ũ( φ, ψ) = G(ψ).
Then, from (3.15), Lemma 3.2, and Lemma 2.3, with q = 4, we get

κ C 2 P ∥ϕ -φ∥ 2 1,Ω ≤ A u (ϕ -φ, ϕ -φ) = A u (ϕ, ϕ -φ) -A u ( φ, ϕ -φ) = G(ϕ -φ) -G(ϕ -φ) + A ũ( φ, ϕ -φ) -A u ( φ, ϕ -φ) = (∇ φ • (ũ -u), ϕ -φ) ≤ | φ| 1,Ω ∥u -ũ∥ 0,4,Ω ∥ϕ -φ∥ 0,4,Ω ≤ C 2 q | φ| 1,Ω ∥u -ũ∥ 1,Ω ∥ϕ -φ∥ 1,Ω ≤ C 2 q C M ∥g∥ 0,Ω ∥u -ũ∥ 1,Ω ∥ϕ -φ∥ 1,Ω ,
and the result follows.

Lemma 3.6. There exists a positive constant C 3 , such that for all ϕ, φ ∈ V there holds

∥T(ϕ) -T( φ)∥ 1,Ω ≤ C 3 ∥g∥ 0,Ω ∥f ∥ ∞,Ω ∥ϕ -φ∥ 0,Ω + ∥S 3 ( φ)∥ 0,4,Ω ∥ϕ -φ∥ 0,4,Ω . (3.19)
Proof. The result is evident from the definition of T and lemmas 3.4 and 3.5.

In the sequel we will assume that problem (3.1), used to define operator S, has an extra regularity in the sense that

S(ψ) = (u, p, σ) ∈ (H ∩ H 2 (Ω) d ) × (Q ∩ L 4 (Ω)) × (R ∩ L 4 (Ω) d×d ), and ∥u∥ 2,Ω + ∥p∥ 0,4,Ω + ∥σ∥ 0,4,Ω ≤ C S ∥f ∥ ∞,Ω ∥ψ∥ 1,Ω . (3.20) 
The next result stated the existence of the solution of problem (2.2), or equivalently (3.3)-(3.4).

Theorem 3.7. Let W and r > 0 as in Lemma 3.3. Under the regularity assumption (3.20), the variational problem (2.2) has at least one solution (u, p, σ, ϕ) ∈ H × Q × R × V , with ϕ ∈ W , and there holds

∥ϕ∥ 1,Ω ≤ C M ∥g∥ 0,Ω , (3.21) 
and

|||(u, p, σ)||| ≤ C S ∥f ∥ ∞,Ω ∥g∥ 0,Ω . (3.22) 
Proof. From lemmas 3.3 and 3.6, and using the fact that H 1 (Ω) c -→ L q (Ω) with q = 6, we have that T : W -→ W is continuous. On the other hand, let {φ n } n∈N be a sequence in W , which is clearly a bounded sequence in H 1 0 (Ω), then there exists a subsequence

{φ n k } k∈N of {φ n } n∈N and an element φ ∈ H 1 0 (Ω) such φ n k w -→ φ. Now, using again that H 1 (Ω) c - → L q (Ω
) for q = 2 and q = 4, we have that φ n k -→ φ in L 2 (Ω) and L 4 (Ω), respectively. Thus, using Lemma 3.6 we have that T (φ n k ) -→ T (φ), which prove that T (W ) is compact. Now, using Schauder's fixed point Theorem (see Theorem 2.5) we get that there exists 

(u, p, σ, ϕ) ∈ H × Q × R × V solution of (2.
C 3 ∥g∥ 0,Ω ∥f ∥ ∞,Ω {1 + C S C q r} < 1. (3.23) Then the variational problem (2.2) has a unique solution (u, p, σ, ϕ) ∈ H × Q × R × V .
Proof. Using lemmas 2.3, with q = 4, and 3.6, together with the regularity assumption (3.20), we have, for all ϕ, φ ∈ W ⊆ V , that

∥T(ϕ) -T( φ)∥ 1,Ω ≤ C 3 ∥g∥ 0,Ω ∥f ∥ ∞,Ω ∥ϕ -φ∥ 0,Ω + ∥S 3 ( φ)∥ 0,4,Ω ∥ϕ -φ∥ 0,4,Ω ≤ C 3 ∥g∥ 0,Ω ∥f ∥ ∞,Ω + C q ∥S 3 ( φ)∥ 0,4,Ω ∥ϕ -φ∥ 1,Ω ≤ C 3 ∥g∥ 0,Ω ∥f ∥ ∞,Ω {1 + C q C S r } ∥ϕ -φ∥ 1,Ω .
This last inequality together with condition (3.23) prove that T : W → W is a contraction, thus, using Banach's point fixed theorem (see Theorem 2.4), the result follows.

A stabilized finite element method

From now on, we denote by {T h } h>0 a regular family of triangulations of Ω composed by simplexes. For a T h we will denote by K the elements of the triangulation. As usual h K means the diameter of K and h := max K∈T h h K . Also we introduce the following finite element subspaces of H, Q, R, and V , respectively:

H h := v ∈ C(Ω) d : v| K ∈ P l (K) d , ∀K ∈ T h ∩ H, Q h := q ∈ C(Ω) : q| K ∈ P l (K), ∀K ∈ T h ∩ Q, R h := τ ∈ C(Ω) d×d : τ | K ∈ P l (K) d×d , ∀K ∈ T h ∩ R, V h := v ∈ C(Ω) : v| K ∈ P l (K), ∀K ∈ T h ∩ V,
with l ≥ 1, where P l stands for the space of polynomials of total degree less or equal to l.

The discrete stabilized scheme analyzed in this work is given by: 

Find (u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × V h such that B stab ((u h , p h , σ h , ϕ h ), (v h , q h , τ h , ψ h )) = F stab (v h , q h , τ h , ψ h ), (4.1) for all (v h , q h , τ h , ψ h ) ∈ H h × Q h × R h × V h , where B stab ((u h , p h , σ h , ϕ h ), (v h , q h , τ h , ψ h )) := σ h 2µ(ϕ h ) , τ h -(ε(u h ), τ h ) + (q h , ∇ • u h ) -(σ h , ε(v h )) + (p h , ∇ • v h ) -β 2µ(ϕ h ) σ h 2µ(ϕ h ) -ε(u h ) , τ h 2µ(ϕ h ) -ε(v h ) + K∈T h m l h 2 K ∇p h -∇ • σ h , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + k (∇ϕ h , ∇ψ h ) + (∇ϕ h • u h , ψ h ) + γ K∈T h h 2 K k (-k ∆ϕ h + ∇ϕ h • u h , k ∆ψ h + ∇ψ h • u h ) K , for all (u h , p h , σ h , ϕ h ), (v h , q h , τ h , ψ h ) ∈ H h × Q h × R h × V h and F stab (v h , q h , τ h , ψ h ) := -(αϕ h f , v h ) + K∈T h m l h 2 K αϕ h f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + (g, ψ h ) + γ K∈T h h 2 K k (g, k ∆ψ h + ∇ψ h • u h ) K , for all (v h , q h , τ h , ψ h ) ∈ H h × Q h × V h ,
C l K∈T h h 2 K ∥∇ • σ h ∥ 2 0,K ≤ ∥σ h ∥ 2 0,Ω , (4.2) 
for all σ h ∈ R h .

Remark 4. The nonlinear discrete scheme (4.1) is inspired by the stabilized method proposed and analyzed in [START_REF] Franca | Stabilized finite element methods. I. Application to the advective-diffusive model[END_REF], for the Stokes equation, and in [START_REF] Hughes | A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations[END_REF], for the transport equation. The analysis in these works is based on the fact that the viscosity is constant and in the case of the transport equation it is considered that the convective term also is constant. For this reason, the arguments that will be used in the next sections to prove the existence of a discrete solution, and the convergence of the discrete scheme, are different from the ones found in these references.

Equivalent discrete formulation

In the sequel we will use the following standard results:

Lemma 4.1. There are positive constants C, C inf and C inv , independent of h, such that

∥v h ∥ l,p,K ≤ C h m-l+d(1/p-1/q) K ∥v h ∥ m,q,K , (4.3 
)

∥v h ∥ ∞,K ≤ C inf h -1/2 K |v h | 1,Ω , (4.4) 
h K |v h | 1,K ≤ C inv ∥v h ∥ 0,K , (4.5) 
for all v h ∈ H h , where 0 ≤ m ≤ l and 1 ≤ p, q ≤ ∞.

Proof. See [START_REF] Ern | Theory and practice of finite elements[END_REF]Lemma 1.138].

In some places we will use the Lagrange interpolation (see [START_REF] Ern | Theory and practice of finite elements[END_REF] for details) operator in its vectorial, tensorial and scalar versions which we denote in the same way. For instance, in the vectorial case we have

I h : H ∩ H l+1 (Ω) d -→ H h .
In all cases we have an equivalent result to the following vectorial result Lemma 4.2. There exist a positive constant C, independent of h, such that

∥u -I h u∥ 0,Ω + h|u -I h u| 1,Ω ≤ Ch k+1 |u| k+1,Ω , (4.6 
)

for all u ∈ H ∩ H l+1 (Ω) d , with 1 ≤ k ≤ l.
Proof. See [START_REF] Ern | Theory and practice of finite elements[END_REF]Lemma 1.111].

Note that the discrete scheme (4.1) can be written as follows:

Find (u h , p h , σ h , ϕ h ) ∈ H h ×Q h ×R h ×V h such that B ϕ h ((u h , p h , σ h ), (v h , q h , τ h )) = F ϕ h (v h , q h , τ h ) ∀(v h , q h , τ h ) ∈ H h × Q h × R h , (4.7) 
A u h (ϕ h , ψ h ) = G u h (ψ h ) ∀ψ h ∈ V h , (4.8) 
where, given

ϕ h ∈ V h , B ϕ h : (H h × Q h × R h ) × (H h × Q h × R h ) -→ R is the bilinear form defined by B ϕ h ((u h , p h , σ h ), (v h , q h , τ h )) := σ h 2µ(ϕ h ) , τ h -(ε(u h ), τ h ) + (q h , ∇ • u h ) -(σ h , ε(v h )) + (p h , ∇ • v h ) -β 2µ(ϕ h ) σ h 2µ(ϕ h ) -ε(u h ) , τ h 2µ(ϕ h ) -ε(v h ) + K∈T h m l h 2 K ∇p h -∇ • σ h , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K , for all (u h , p h , σ h ), (v h , q h , τ h ) ∈ H h × Q h × R h , and F ϕ h : H h × Q h × R h -→ R is the linear functional defined by F ϕ h (v h , q h , τ h ) := -(αϕ h f , v h ) + K∈T h m l h 2 K αϕ h f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K , for all (v h , q h , τ h ) ∈ H h × Q h × R h . Moreover, given w h ∈ H h , A w h : V × V -→ R is the bilinear form defined by A w h (ϕ h , ψ h ) := k (∇ϕ h , ∇ψ h ) + (∇ϕ h • w h , ψ h ) + γ K∈T h h 2 K k (-k ∆ϕ h + ∇ϕ h • w h , k ∆ψ h + ∇ψ h • w h ) K ,
for all ϕ h , ψ h ∈ V h , and G w h : V -→ R is the linear functional defined by

G w h (ψ h ) := (g, ψ h ) + γ K∈T h h 2 K k (g, k ∆ψ h + ∇ψ h • w h ) K , for all ψ h ∈ V h .
As we did in the continuous case, we need to define the following two variational problems: Given

ϕ h ∈ V h : Find (u h , p h , σ h ) ∈ H h × Q h × R h such that B ϕ h ((u h , p h , σ h ), (v h , q h , τ h )) = F ϕ h (v h , q h , τ h ), (4.9) for all (v h , q h , τ h ) ∈ H h × Q h × R h . Also, given w h ∈ H h , we define the problem: Find ϕ h ∈ V h such that A w h (ϕ h , ψ h ) = G w h (ψ h ), (4.10) 
for all ψ H ∈ V h .

To use similar arguments than those developed in Section 3, we will define the following discrete operators:

S h : V h -→ H h × Q h × R h , such that ϕ h -→ S h (ϕ h ) = (S 1 h (ϕ h ), S 2 h (ϕ h ), S 3 h (ϕ h )) = (u h , p h , σ h ), where (u h , p h , σ h ) ∈ H h × Q h × R h is solution of (4.9) and M h : H h -→ V h , such that w h -→ M h (w h ) = ϕ h ,
where ϕ h ∈ V h is solution of (4.10). Thus, we define the operator

T h : V h -→ V h by T h (ϕ h ) := M h (S 1 h (ϕ h ))
, for all ϕ h ∈ V h . In this way, the discrete scheme (4.7)-(4.8) can be written as follows:

Find ϕ h ∈ V h such that T h (ϕ h ) = ϕ h . (4.11)

Well-posedness of the uncoupled problems

We define the following mesh-dependent norm over Then, given ϕ h ∈ V h , problem (4.9) has a unique solution

H h × Q h × R h |||(v h , q h , τ h )||| h := ∥ε(v h )∥ 2 0,Ω + K∈T h h 2 K |q h | 2 1,K + ∥τ h ∥ 2 0,Ω 1/2 , for all (v h , q h , τ h ) ∈ H h × Q h × R h .
(u h , p h , σ h ) ∈ H h × Q h × R h .
Moreover, there exists a positive constant C S h , independent of h, such that

|||S h (ϕ h )||| h = |||(u h , p h , σ h )||| h ≤ C S h ∥f ∥ ∞,Ω ∥ϕ h ∥ 1,Ω .
Proof. By definition of B ϕ h , we have

B ϕ h ((v h , q h , τ h ), (-v h , q h , τ h )) = τ h 2µ(ϕ h ) , τ h -β 2µ(ϕ h ) τ h 2µ(ϕ h ) -ε(v h ) , τ h 2µ(ϕ h ) + ε(v h ) + K∈T h m l h 2 K ∇q h -∇ • τ h , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K ≥ 1 2µ max ∥τ h ∥ 2 0,Ω -2β µ max τ h 2µ(ϕ h ) 2 0,Ω -∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max ∥∇q h -∇ • τ h ∥ 2 0,K ≥ 1 2µ max ∥τ h ∥ 2 0,Ω - β µ max 2µ 2 min ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max ∥∇q h -∇ • τ h ∥ 2 0,K ≥ 1 2 1 µ max - β µ max µ 2 min ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max |q h | 2 1,K + ∥∇ • τ h ∥ 2 0,K - K∈T h m l h 2 K 8µ max 2 |q h | 1,K ∥∇ • τ h ∥ 0,K . (4.13) 
Using Young inequality with δ = 3, inverse inequality (4.2) and the condition (4.12), we obtain

B ϕ h ((v h , q h , τ h ), (-v h , q h , τ h )) ≥ 1 2 1 µ max - β µ max µ 2 min ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max 1 - 1 δ |q h | 2 1,K + K∈T h m l h 2 K 8µ max (1 -δ) ∥∇ • τ h ∥ 2 0,K ≥ 1 2 1 µ max - β µ max µ 2 min ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max 1 - 1 δ |q h | 2 1,K + 1 8µ max (1 -δ) ∥τ h ∥ 2 0,Ω ≥ 1 2 1 µ max - β µ max µ 2 min + 1 4µ max (1 -δ) ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 8µ max 1 - 1 δ |q h | 2 1,K = µ 2 min -2β µ 2 max 4µ 2 min µ max ∥τ h ∥ 2 0,Ω + 2β µ max ∥ε(v h )∥ 2 0,Ω + K∈T h m l h 2 K 12µ max |q h | 2 1,K ≥ C B |||(v h , q h , τ h )||| 2 h , (4.14) 
where C B is a positive constant independent of h, thus problem (4.9) has a unique solution (u

h , p h , σ h ) ∈ H h × Q h × R h . Moreover, from (4.
2) (4.9), (4.14), Cauchy-Schwarz inequality, and Lemma 2.1, we get 

C B |||(u h , p h , σ h )||| 2 h ≤ B ϕ h ((u h , p h , σ h ), (-u h , p h , σ h )) = F ϕ h (-u h , p h , σ h ) = (αϕ h f , u h ) + K∈T h m l h 2 K αϕ h f , 1 8µ(ϕ h ) (∇p h -∇ • σ h ) K ≤ α ∥ϕ h ∥ 0,Ω ∥f ∥ ∞,Ω ∥u h ∥ 0,Ω + α ∥ϕ h ∥ 0,Ω ∥f ∥ ∞,Ω K∈T h m l h 2 K 8µ min {|p h | 1,K + ∥∇ • σ h ∥ 0,K } ≤ α ∥ϕ h ∥ 0,Ω ∥f ∥ ∞,Ω ∥u h ∥ 0,Ω + m l 8µ min K∈T h h 2 K |p h | 1,K + K∈T h m l h 2 K 8µ min ∥∇ • σ h ∥ 0,K ≤ α ∥ϕ h ∥ 0,Ω ∥f ∥ ∞,Ω C K ∥ε(u h )∥ 0,Ω + m l 8µ min |Ω| K∈T h h K |p h | 1,K + m l 8 √ C l µ min |Ω| K∈T h C l h K ∥∇ • σ h ∥ 0,K ≤ α max{C K , m l 8µ min |Ω|, m l 8 √ C l µ min |Ω|} ∥ϕ h ∥ 0,Ω ∥f ∥ ∞,Ω |||(u h , p h , σ h )||| h ,
|w h | 1,Ω < k 2C 2 q C P 1 -γ C2 , (4.15) 
then problem (4.10) has a unique solution ϕ h ∈ V h . Additionally, there exists a positive constant

C M h , independent of h, such that ∥M h (w h )∥ 1,Ω ≤ C M h ∥g∥ 0,Ω . (4.16) 
Proof. From definition of the bilinear form A w h (•, •), Cauchy-Schwarz and inverse inequalities, we have

A w h (ψ h , ψ h ) = k |ψ h | 2 1,Ω + (∇ψ h • w h , ψ h ) + γ K∈T h h 2 K k -k 2 ∥∆ψ h ∥ 2 0,K + ∥∇ψ h • w h ∥ 2 0,K ≥ k |ψ h | 2 1,Ω -γ K∈T h k C2 ∥ψ h ∥ 2 1,K + (∇ψ h • w h , ψ h ) + γ K∈T h h 2 K k ∥∇ψ h • w h ∥ 2 0,K ≥ k 1 -γ C2 ∥ψ h ∥ 2 1,Ω + (∇ψ h • w h , ψ h ). (4.17)
Now, using Lemma 2.3, with q = 4, we get

(∇ψ h • w h , ψ h ) ≥ -|ψ h | 1,Ω ∥w h ∥ 0,4,Ω ∥ψ h ∥ 0,4,Ω ≥ -C 2 q C P ∥ψ h ∥ 2 1,Ω |w h | 1,Ω .
Inserting this into (4.17), and using (4.15) and Hölder inequality, we can conclude that

A w h (ψ h , ψ h ) ≥ k 1 -γ C2 - C 2 q C P k |w h | 1,Ω ∥ψ h ∥ 2 1,Ω > k 2 1 -γ C2 ∥ψ h ∥ 2 1,Ω =: C A ∥ψ h ∥ 2 1,Ω , (4.18) 
which proves the solvability of problem (4.10). For the continuous dependence result (4.16), we use the last inequality, (4.10) and (4.15), to get

C A ∥ϕ h ∥ 2 1,Ω ≤ A w h (ϕ h , ϕ h ) ≤ ∥g∥ 0,Ω ∥ϕ h ∥ 0,Ω + γ K∈T h h 2 K k ∥g∥ 0,K ∥k ∆ϕ h + ∇ϕ h • w h ∥ 0,K ≤ ∥g∥ 0,Ω ∥ϕ h ∥ 0,Ω + γ K∈T h h 2 K k ∥g∥ 0,K ∥k ∆ϕ h ∥ 0,K + γ K∈T h h 2 K k ∥g∥ 0,K ∥∇ϕ h • w h ∥ 0,K ≤ ∥g∥ 0,Ω ∥ϕ h ∥ 0,Ω + γ C K∈T h h K ∥g∥ 0,K ∥ϕ h ∥ 1,K + γ K∈T h h 2 K k ∥g∥ 0,K |ϕ h | 1,K ∥w h ∥ ∞,K ≤ ∥g∥ 0,Ω ∥ϕ h ∥ 0,Ω + γ C K∈T h h K ∥g∥ 0,K ∥ϕ h ∥ 1,K + γ C inf K∈T h h 3/2 K k ∥g∥ 0,K |ϕ h | 1,K |w h | 1,Ω ≤ ∥g∥ 0,Ω ∥ϕ h ∥ 0,Ω + γ C |Ω| ∥g∥ 0,Ω ∥ϕ h ∥ 1,Ω + γ C inf |Ω| 3/2 k 3/2 ∥g∥ 0,Ω ∥ϕ h ∥ 1,Ω |w h | 1,Ω ,
and the result follows.

Existence of solution of equivalent discrete problem

The objective of this section is to prove the existence of a fixed point for the problem (4.11). To this end, we need the following results which will allow us to satisfy the hypotheses of Brouwer's fixed point theorem.

Lemma 4.5. Let W h the subset of V h defined by

W h := {ϕ h ∈ V h : ∥ϕ h ∥ 1,Ω ≤ r},
where r is a positive constant, such that

C K C S h r ∥f ∥ ∞,Ω < k 2C 2 q C P 1 -γ C2 . (4.19)
If we assume that the datum g ∈ L 2 (Ω) satisfies the following condition:

C M h ∥g∥ 0,Ω ≤ r, (4.20) 
and the stabilization parameter β satisfies (4.12), then T h (W h ) ⊆ W h .

Proof. Let ϕ h ∈ W h . By Lemma 4.3, we get

|||S h (ϕ h )||| h ≤ C S h ∥f ∥ ∞,Ω ∥ϕ h ∥ 1,Ω ,
and thus, by Korn inequality and (4.19) we can conclude that

S 1 h (ϕ h ) 1,Ω ≤ C K ε S 1 h (ϕ h ) 0,Ω ≤ C K |||S h (ϕ h )||| h < k 2C 2 q C P 1 -γ C2 ,
and we have the hypothesis of Lemma 4.4. Next, from definition of T h , (4.16) and (4.20), we have

∥T h (ϕ h )∥ = ∥M h (S 1 h (ϕ h ))∥ ≤ C M h ∥g∥ 0,Ω ≤ r,
and therefore T h (ϕ h ) ∈ W h .

Lemma 4.6. Assume the hypothesis of Lemma 4.3. Then, there exists a positive constant C 4 , independent of h, such that

|||S h (ϕ h ) -S h (ψ h )||| h ≤ C 4 ∥f ∥ ∞,Ω (1 + ∥ψ h ∥ 1,Ω ) + S 3 h (ψ h ) 0,4,Ω ∥ϕ h -ψ h ∥ 1,Ω , for all ϕ h , ψ h ∈ V h .
Proof. Let ϕ h , ψ h be two arbitrary elements of V h , and define (u h , p h , σ h ) := S h (ϕ h ) and (ũ, p, σ) := S h (ψ h ) by

B ϕ h ((u h , p h , σ h ), (v h , q h , τ h )) = F ϕ h (v h , q h , τ h ), B ψ h ((ũ h , ph , σh ), (v h , q h , τ h )) = F ψ h (v h , q h , τ h ), for all (v h , q h , τ h ) ∈ H h × Q h × R h . It is evident that, F ψ h (-u h , p h , σ h ) -(-ũ h , ph , σh ) = B ψ h (ũ h , ph , σh ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) .
Then from this and (4.14), we have

C B |||(u h , p h , σ h ) -(ũ h , ph , σh )||| 2 h ≤ B ϕ h (u h , p h , σ h ) -(ũ h , ph , σh ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) = B ϕ h (u h , p h , σ h ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) -B ϕ h (ũ h , ph , σh ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) = (F ϕ h -F ψ h ) (-u h , p h , σ h ) -(-ũ h , ph , σh ) + (B ψ h -B ϕ h ) (ũ h , ph , σh ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) . (4.21)
Now, using the definition of F ϕ h and F ψ h , we get

(F ϕ h -F ψ h ) (-u h , p h , σ h ) -(-ũ h , ph , σh ) = (α(ϕ h -ψ h )f , u h -ũh ) + 1 8 K∈T h m l h 2 K α ϕ h µ(ϕ h ) - ψ h µ(ψ h ) f , ∇(p h -ph ) -∇ • (σ h -σh ) K . (4.22)
We can notice by the hypothesis on µ (cf. (2.1)) that

ϕ h µ(ϕ h ) - ψ h µ(ψ h ) = µ(ψ h )ϕ h -µ(ϕ h )ψ h µ(ϕ h )µ(ψ h ) = µ(ψ h )(ϕ h -ψ h ) -(µ(ϕ h ) -µ(ψ h ))ψ h µ(ϕ h )µ(ψ h ) ≤ ϕ h -ψ h µ(ϕ h ) + (µ(ϕ h ) -µ(ψ h ))ψ h µ(ϕ h )µ(ψ h ) ≤ |ϕ h -ψ h | µ min + C Lips |ϕ h -ψ h | |ψ h | µ 2 min ≤ |ϕ h -ψ h | µ min 1 + C Lips |ψ h | µ min . (4.23)
Next, using Hölder's inequality, (4.22) and (4.23), we have

(F ϕ h -F ψ h ) (-u h , p h , σ h ) -(-ũ h , ph , σh ) ≤ ∥α(ϕ h -ψ h )f ∥ 0,Ω ∥u h -ũh ∥ 0,Ω + 1 8 K∈T h αm l h 2 K ϕ h µ(ϕ h ) - ψ h µ(ψ h ) f 0,K ∥∇(p h -ph ) -∇ • (σ h -σh )∥ 0,K ≤ C P C K α |ϕ h -ψ h | 1,Ω ∥f ∥ ∞,Ω ∥ε(u h -ũh )∥ 0,Ω + 1 8 K∈T h αm l h 2 K (ϕ h -ψ h ) µ min 1 + C Lips |ψ h | µ min f 0,K ∥∇(p h -ph ) -∇ • (σ h -σh )∥ 0,K ≤ C P C K α|ϕ h -ψ h | 1,Ω ∥f ∥ ∞,Ω ∥ε(u h -ũh )∥ 0,Ω + α 8 ∥ϕ h -ψ h ∥ 0,Ω µ min ∥f ∥ ∞,Ω + C Lips ∥ϕ h -ψ h ∥ 0,Ω ∥ψ h ∥ 0,Ω µ 2 min ∥f ∥ ∞,Ω K∈T h m l h 2 K ∥∇(p h -ph ) -∇ • (σ h -σh )∥ 0,K ≤ C |ϕ h -ψ h | 1,Ω ∥f ∥ ∞,Ω + |ϕ h -ψ h | 1,Ω |ψ h | 1,Ω ∥f ∥ ∞,Ω |||(u h , p h , σ h ) -(ũ h , ph , σh )||| h ≤ C |ϕ h -ψ h | 1,Ω ∥f ∥ ∞,Ω (1 + |ψ h | 1,Ω ) |||(u h , p h , σ h ) -(ũ h , ph , σh )||| h . (4.24)
On the other hand, using Lemma 2.3, with q = 4, and Lemma 4.1, we obtain 

(B ψ h -B ϕ h ) (ũ h , ph , σh ), (-u h , p h , σ h ) -(-ũ h , ph , σh ) = 1 + α 2 σh 1 µ(ψ h ) - 1 µ(ϕ h ) , σ h -σh + K∈T h m l h 2 K 8 1 µ(ψ h ) - 1 µ(ϕ h ) (∇p h -∇ • σh ), ∇(p -p h ) -∇ • (σ h -σh ) K = 1 + α 2 σh µ(ϕ h ) -µ(ψ h ) µ(ϕ h )µ(ψ h ) , σ h -σh + K∈T h m l h 2 K 8 µ(ϕ h ) -µ(ψ h ) µ(ϕ h )µ(ψ h ) (∇p h -∇ • σh ), ∇(p h -p h ) -∇ • (σ h -σh ) K ≤ C Lips 1 + α 2 µ 2 min ∥ σh ∥ 0,4,Ω ∥ϕ h -ψ h ∥ 0,4,Ω ∥σ h -σh ∥ 0,Ω + K∈T h C Lips m l h 2 K 8µ 2 min ∥ϕ h -ψ h ∥ ∞,K ∥∇p h -∇ • σh ∥ 0,K ∥∇(p h -p h ) -∇ • (σ h -σh )∥ 0,K ≤ C ∥ σh ∥ 0,4,Ω |ϕ h -ψ h | 1,Ω ∥σ h -σh ∥ 0,Ω + K∈T h h 2 K ∥ϕ h -ψ h ∥ ∞,K ∥∇p h -∇ • σh ∥ 0,K ∥∇(p h -p h ) -∇ • (σ h -σh )∥ 0,K ≤ C ∥ σh ∥ 0,4,Ω |ϕ h -ψ h | 1,Ω ∥σ h -σh ∥ 0,Ω + h 1/2 |ϕ h -ψ h | 1,Ω K∈T h h K (∥∇p h ∥ 0,K + ∥∇ • σh ∥ 0,K ) ∥∇(p h -p h ) -∇ • (σ h -σh )∥ 0,K ≤ C ∥ σh ∥ 0,4,Ω |ϕ h -ψ h | 1,Ω ∥σ h -σh ∥ 0,Ω + h 1/2 |ϕ h -ψ h | 1,Ω |||S h (ψ h )||| h K∈T h h K |∇(p h -p h ) -∇ • (σ h -σh )| 0,K ≤ C |Ω| 1/2 |||S h (ψ h )||| h + ∥ σh ∥ 0,4,Ω |ϕ h -ψ h | 1,Ω |||(u h , p h , σ h ) -(ũ h , ph , σh )||| h . ( 4 
∥M h (u h ) -M h (ũ h )∥ 1,Ω ≤ C 5 ∥g∥ 0,Ω + |M h (ũ h )| 1,Ω |u h -ũh | 1,Ω . (4.26)
Proof. Defining ϕ h := M h (u h ) and φh := M h (ũ h ), we get, for all ψ h ∈ V h , that

A u h (ϕ h , ψ h ) = G u h (ψ h ), A ũh ( φh , ψ h ) = G ũh (ψ h ).
Then, from (4.18), we have that

C A ∥ϕ h -φh ∥ 2 ≤ A u h (ϕ h -φh , ϕ h -φh ) = A u h (ϕ h , ϕ h -φh ) -A u h ( φh , ϕ h -φh ) = G u h (ϕ h -φh ) -G ũh (ϕ h -φh ) + A ũh ( φh , ϕ h -φh ) -A u h ( φh , ϕ h -φh ). (4.27)
Using the inverse inequality (4.4), we get

G u h (ϕ h -φh ) -G ũh (ϕ h -φh ) ≤ γ K∈T h h 2 K k g, k ∆(ϕ h -φh ) + ∇(ϕ h -φh ) • u h K -γ K∈T h h 2 K k g, k ∆(ϕ h -φh ) + ∇(ϕ h -φh ) • ũh K ≤ γ K∈T h h 2 K k ∥g∥ 0,K |ϕ h -φh | 1,K ∥u h -ũh ∥ ∞,K ≤ γ C inf K∈T h h 3/2 K k ∥g∥ 0,K |ϕ h -φh | 1,K |u h -ũh | 1,K ≤ C inf γ |Ω| 3/2 k ∥g∥ 0,Ω |u h -ũh | 1,Ω ∥ϕ h -φh ∥ 1,Ω . (4.28)
On the other hand, as u h , ũh ∈ H h satisfy the condition (4.15), and using Hölder's inequality, Lemma 2.3, with q = 4, and Lemma 4.4, we get 

A ũh ( φh , ϕ h -φh ) -A u h ( φh , ϕ h -φh ) = (∇ φh • (ũ h -u h ), ϕ h -φh ) + γ K∈T h h 2 K k -k ∆ φh , ∇(ϕ h -φh ) • (ũ h -u h ) K + ∇ φh • (ũ h -u h ), k ∆(ϕ h -φh ) K + ∇ φh • ũh , ∇(ϕ h -φh ) • ũh K -∇ φh • u h , ∇(ϕ h -φh ) • u h K ≤ | φh | 1,Ω ∥ũ h -u h ∥ 0,4,Ω ∥ϕ h -φh ∥ 0,4,Ω + γ K∈T h h 2 K k k ∥∆ φh ∥ 0,K |ϕ h -φh | 1,K ∥ũ h -u h ∥ ∞,K + k | φh | 1,K ∥ũ h -u h ∥ ∞,K ∥∆(ϕ h -φh )∥ 0,K + | φh | 1,K ∥ũ h -u h ∥ ∞,K |ϕ h -φh | 1,K ∥ũ h ∥ ∞,K + | φh | 1,K ∥u h ∥ ∞,K |ϕ h -φh | 1,K ∥u h -ũh ∥ ∞,K ≤ C | φh | 1,Ω |ũ h -u h | 1,Ω |ϕ h -φh | 1,Ω + γ K∈T h h 2 K k h -3/2 K k | φh | 1,K |ϕ h -φh | 1,K |ũ h -u h | 1,Ω +h -3/2 K k | φh | 1,K |ũ h -u h | 1,Ω |ϕ h -φh | 1,K + h -1 K | φh | 1,K |ũ h -u h | 1,Ω |ϕ h -φh | 1,K |ũ h | 1,Ω +h -1 K | φh | 1,K |u h | 1,Ω |ϕ h -φh | 1,K |u h -ũh | 1,Ω ≤ C 1 + 1 k |u h | 1,Ω + |ũ h | 1,Ω | φh | 1,Ω |ũ h -u h | 1,Ω |ϕ h -φh | 1,Ω ≤ C 1 + 1 k |u h | 1,Ω + |ũ h | 1,Ω | φh | 1,Ω |ũ h -u h | 1,Ω ∥ϕ h -φh ∥ 1,Ω ≤ C 1 + 1 C 2 q C P 1 -γ C2 | φh | 1,Ω |ũ h -u h | 1,Ω ∥ϕ h -φh ∥ 1,Ω . ( 4 
∥T h (ϕ h ) -T h ( φh )∥ 1,Ω ≤ C 6 ∥g∥ 0,Ω ∥f ∥ ∞,Ω + ∥S 3 h ( φh )∥ 0,4,Ω ∥ϕ h -φh ∥ 1,Ω . (4.30)
Proof. The result is a consequence of the definition of T h and lemmas 4.4, 4.6 and 4.7.

Theorem 4.9. Let W h := {ϕ h ∈ V h : ∥ϕ h ∥ 1,Ω ≤ r}, where r > 0 and the data g ∈ L 2 (Ω) satisfy the conditions of Lemma 4.5. If the stabilization parameters satisfy the conditions of lemmas 4.3 and 4.4, respectively, then the stabilized scheme (4.1) has at least one solution

(u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × V h , with ϕ h ∈ W h ,

and there holds

∥ϕ h ∥ ≤ C M h ∥g∥ 0,Ω , and 
|||(u h , p h , σ h )||| h ≤ C S h ∥f ∥ ∞,Ω ∥ϕ h ∥.
Proof. From Lemma 4.8, T h : W h -→ W h is continuous, and, by the Brouwer fixed point Theorem (see Theorem 2.6), it has at least one fixed point.

Remark 5. Usually, to prove the uniqueness of the solution of (4.1) Banach's fixed point theorem is used.

In our case, due to the presence of the term ∥S 3 h ( φh )∥ 0,4,Ω in (4.30), it is not possible to state that T h is a contraction on W h . Thus we only have the existence of the solution of problem (4.1).

Convergence of the stabilized scheme

In this section, we present an a priori error analysis for the stabilized finite element scheme (4.1). We consider (u, p, σ, ϕ)

∈ H × Q × R × V , with ϕ ∈ W , and (u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × V h , with ϕ h ∈ W h , such that B ϕ ((u, p, σ), (v, q, τ )) = F ϕ (v, q, τ ) ∀(v, q, τ ) ∈ H × Q, (5.1) 
B ϕ h ((u h , p h , σ h ), (v h , q h , τ h )) = F ϕ h (v h , q h , τ h ) ∀(v h , q h , τ h ) ∈ H h × Q h , (5.2) 
and

A u (ϕ, ψ) = G(ψ) ∀ψ ∈ V, (5.3) 
A u h (ϕ h , ψ h ) = G u h (ψ h ) ∀ψ h ∈ V h . (5.4) 
Lemma 5.1. Assume that r > 0 and g ∈ L 2 (Ω) satisfy conditions (4. [START_REF] Castillo | Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation[END_REF]) and (4.20), respectively. Let

(u, ϕ) ∈ (H l+1 (Ω) d ∩ H) × (H l+1 (Ω) d ∩ V )
, and (u h , ϕ h ) ∈ H h × V h be solutions of (5.1), (5.3) and (5.2), (5.4), respectively, with ϕ ∈ W and ϕ h ∈ W h . Then there exist a positive constant C 7 , independent of h, such that for all ψ h ∈ V h , we have

A u h (ϕ h -ϕ, ψ h ) ≤ C 7 h ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω ∥ψ h ∥ 1,Ω . (5.5) 
Proof. Let u h ∈ H h be the solution of (5.2). Then, from (5.3)-(5.4), Cauchy-Schwarz and Hölder inequalities, we get

A u h (ϕ h -ϕ, ψ h ) = A u h (ϕ h , ψ h ) -A u h (ϕ, ψ h ) = G u h (ψ h ) -G(ψ h ) -γ K∈T h h 2 K k (-k ∆ϕ + ∇ϕ • u h , k ∆ψ h + ∇ψ h • u h ) K = γ K∈T h h 2 K k (g + k ∆ϕ -∇ϕ • u h , k ∆ψ h + ∇ψ h • u h ) K = γ K∈T h h 2 K k (g + k ∆ϕ -∇ϕ • u, k ∆ψ h + ∇ψ h • u h ) K + γ K∈T h h 2 K k (∇ϕ • u -∇ϕ • u h , k ∆ψ h + ∇ψ h • u h ) K = γ K∈T h h 2 K k (∇ϕ • (u -u h ), k ∆ψ h + ∇ψ h • u h ) K ≤ γ K∈T h h 2 K k ∥∇ϕ∥ 0,4,K ∥u -u h ∥ 0,4,K ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ γ C 2 q ∥ϕ∥ 2,Ω |u -u h | 1,Ω K∈T h h 2 K k ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ γ C K C 2 q ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω K∈T h h 2 K k ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K . (5.6) 
Next, using Lemma 4.1, we get that

K∈T h h 2 K k ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ K∈T h h 2 K k {k ∥∆ψ h ∥ 0,K + ∥∇ψ h • u h ∥ 0,K } ≤ K∈T h h 2 K k C k h -1 K |ψ h | 1,K + C inf h -1/2 K |ψ h | 1,K |u h | 1,Ω ≤ K∈T h C h K |ψ h | 1,K + h 3/2 K k C inf |ψ h | 1,K |u h | 1,Ω ≤ C h|ψ h | 1,Ω + h 3/2 k C inf |ψ h | 1,Ω |u h | 1,Ω = h C + h 1/2 k C inf |u h | 1,Ω ∥ψ h ∥ 1,Ω (5.7) 
≤ h C + h 1/2 2C 2 q C P C inf 1 -γ C2 ∥ψ h ∥ 1,Ω . (5.8) 
Finally, from (5.6) and (5.8), we conclude (5.5).

Lemma 5.2. Assume that r > 0 and g ∈ L 2 (Ω) satisfy conditions (4.19) and (4.20), respectively. Let

(u, ϕ) ∈ (H l+1 (Ω) d ∩ H) × (H l+1 (Ω) d ∩ V )
, and (u h , ϕ h ) ∈ H h × V h be solutions of (5.1), (5.3) and (5.2), (5.4), respectively, with ϕ ∈ W and ϕ h ∈ W h . Then, there exist two positive constants C 8 and C 9 , independent of h, such that

∥ϕ -ϕ h ∥ 1,Ω ≤ C 8 h ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω + C 9 h l |ϕ| l+1,Ω . (5.9) 
Proof. We use the standard notation for the interpolation error η ϕ := ϕ -I h ϕ. Then, using Cauchy-Schwarz and Hölder inequalities and (5.7), we get, for all

ψ h ∈ V h A u h (η ϕ , ψ h ) = k (∇η ϕ , ∇ψ h ) + (∇η ϕ • u h , ψ h ) + γ K∈T h h 2 K k -k ∆η ϕ + ∇η ϕ • u h , k ∆ψ h + ∇ψ h • u h K ≤ k |η ϕ | 1,Ω |ψ h | 1,Ω + |η ϕ | 1,Ω ∥u h ∥ 0,4,Ω ∥ψ h ∥ 0,4,Ω + γ K∈T h h 2 K k ∥ -k ∆η ϕ + ∇η ϕ • u h ∥ 0,K ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ k |η ϕ | 1,Ω |ψ h | 1,Ω + C 2 q |η ϕ | 1,Ω |u h | 1,Ω |ψ h | 1,Ω + γ K∈T h h 2 K k ∥ -k ∆η ϕ + ∇η ϕ • u h ∥ 0,K ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ k |η ϕ | 1,Ω |ψ h | 1,Ω + C 2 q |η ϕ | 1,Ω |u h | 1,Ω |ψ h | 1,Ω + γ K∈T h h 2 K k k ∥η ϕ ∥ 2,K + |η ϕ | 1,K ∥u h ∥ ∞,K ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ (k + C 2 q |u h | 1,Ω ) |η ϕ | 1,Ω |ψ h | 1,Ω + γ kh ∥η ϕ ∥ 2,Ω + C inf h 1/2 |η ϕ | 1,Ω |u h | 1,Ω K∈T h h K k ∥k ∆ψ h + ∇ψ h • u h ∥ 0,K ≤ k + C 2 q |u h | 1,Ω |η ϕ | 1,Ω ∥ψ h ∥ 1,Ω + γ kh ∥η ϕ ∥ 2,Ω + C inf h 1/2 |η ϕ | 1,Ω |u h | 1,Ω C + h 1/2 k C inf |u h | 1,Ω ∥ψ h ∥ 1,Ω ≤ k + C 2 q |u h | 1,Ω + γ C inf h 1/2 |u h | 1,Ω C + h 1/2 k C inf |u h | 1,Ω |η ϕ | 1,Ω ∥ψ h ∥ 1,Ω + γ k h ∥η ϕ ∥ 2,Ω C + h 1/2 k C inf |u h | 1,Ω ∥ψ h ∥ 1,Ω ≤ C h l |ϕ| l+1,Ω ∥ψ h ∥ 1,Ω . (5.10) 
Now, let e ϕ h := ϕ h -I h ϕ , then by Lemma 5.1, (4.18) and (5.10), we have

C A ∥e ϕ h ∥ 2 1,Ω ≤ A u h (e ϕ h , e ϕ h ) = A u h (ϕ h -ϕ, e ϕ h ) + A u h (η ϕ , e ϕ h ) ≤ C 7 h ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω ∥e ϕ h ∥ 1,Ω + C h l |ϕ| l+1,Ω ∥e ϕ h ∥ 1,Ω ,
and dividing by C A ∥e ϕ h ∥ 1,Ω , we arrive at

∥e ϕ h ∥ 1,Ω ≤ C 7 C A h ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω + C C A h l |ϕ| l+1,Ω . (5.11) 
Finally, using triangle inequality, interpolation properties and (5.11), the result follows.

Lemma 5.3. Let (u, p, σ, ϕ) ∈ (H l+1 (Ω) d ∩ H) × (H l (Ω) ∩ Q) × (H l (Ω) d×d ∩ R) × (H l+1 (Ω) d ∩ V ), and 
(u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × V h
be the solutions of (5.1), (5.3) and (5.2),(5.4), respectively, with ϕ ∈ W and ϕ h ∈ W h . Then, for all (v h , q h , τ h ) ∈ H h × Q h × R h , there exists a positive constant C 10 , independent of h, such that

B ϕ h ((u h -u, p h -p, σ h -σ), (-v h , q h , τ h )) |||(v h , q h , τ h )||| h ≤ C 10 ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω ∥ϕ -ϕ h ∥ 1,Ω .
Proof. Let (u h , p h , σ h ) ∈ H h × Q h × R h be the solution of (5.2). Then from (5.3)-(5.4), Cauchy-Schwarz and Hölder inequalities, we get

B ϕ h ((u h -u, p h -p, σ h -σ), (-v h , q h , τ h )) = B ϕ h ((u h , p h , σ h ), (-v h , q h , τ h )) -B ϕ h ((u, p, σ), (-v h , q h , τ h )) = F ϕ h (-v h , q h , τ h ) -B ϕ h ((u, p, σ), (-v h , q h , τ h )) = K∈T h m l h 2 K αϕ h f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + β 2µ(ϕ h ) σ 2µ(ϕ h ) -ε(u) , τ h 2µ(ϕ h ) -ε(v h ) - K∈T h m l h 2 K ∇p -∇ • σ, 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K = K∈T h m l h 2 K αϕ h f + ∇ • σ -∇p, 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + β 2µ(ϕ h ) σ 2µ(ϕ h ) -ε(u) , τ h 2µ(ϕ h ) -ε(v h ) = K∈T h m l h 2 K α(ϕ h -ϕ)f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + β 2µ(ϕ h ) σ 2µ(ϕ h ) - σ 2µ(ϕ) , τ h 2µ(ϕ h ) -ε(v h ) = K∈T h m l h 2 K α(ϕ h -ϕ)f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + β µ(ϕ h ) σ µ(ϕ) -µ(ϕ h ) µ(ϕ h )µ(ϕ) , τ h 2µ(ϕ h ) -ε(v h ) = K∈T h m l h 2 K α(ϕ h -ϕ)f , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K + β σ µ(ϕ) -µ(ϕ h ) µ(ϕ) , τ h 2µ(ϕ h ) -ε(v h ) ≤ K∈T h m l h 2 K 8µ min α∥ϕ h -ϕ∥ 0,K ∥f ∥ ∞,K ∥∇q h -∇ • τ h ∥ 0,K + βC Lips µ min ∥σ∥ 0,4,Ω ∥ϕ -ϕ h ∥ 0,4,Ω τ h 2µ(ϕ h ) -ε(v h ) 0,Ω ≤ αC 2 q C P |ϕ h -ϕ| 1,Ω ∥f ∥ ∞,Ω K∈T h m l h 2 K 8µ min ∥∇q h -∇ • τ h ∥ 0,K + βC Lips µ min C 2 q ∥σ∥ 1,Ω |ϕ -ϕ h | 1,Ω τ h 2µ(ϕ h ) -ε(v h ) 0,Ω ≤ C 2 q ∥ϕ h -ϕ∥ 1,Ω C P α∥f ∥ ∞,Ω K∈T h m l h 2 K 8µ min ∥∇q h -∇ • τ h ∥ 0,K + βC Lips µ min ∥σ∥ 1,Ω τ h 2µ(ϕ h ) -ε(v h ) 0,Ω ≤ C 2 q ∥ϕ h -ϕ∥ 1,Ω C P α∥f ∥ ∞,Ω K∈T h m l h K 8µ min h K |q h | 1,K + 1 C 1/2 l ∥τ h ∥ 0,K + βC Lips µ min ∥σ∥ 1,Ω ∥τ h ∥ 0,Ω 2µ min + ∥ε(v h )∥ 0,Ω ≤ C C 2 q ∥ϕ h -ϕ∥ 1,Ω C P α∥f ∥ ∞,Ω m l h 8µ min + βC Lips µ min ∥σ∥ 1,Ω |||(v h , q h , τ h )||| h ,
which concludes the proof.

Lemma 5.4. Let (u, p, σ, ϕ) ∈ (H l+1 (Ω) d ∩ H) × (H l (Ω) ∩ Q) × (H l (Ω) d×d ∩ R) × (H l+1 (Ω) d ∩ V ), and 
(u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × W h be
the solutions of (5.1), (5.3) and (5.2),(5.4), respectively, with ϕ ∈ W and ϕ h ∈ W h . Then there exist two positive constants C 11 and C 12 , independent of h, such that

|||(u h -u, p h -p, σ h -σ)||| h ≤ C 11 ∥f ∥ ∞,Ω +∥σ∥ 1,Ω ∥ϕ h -ϕ∥ 1,Ω +C 12 h l |u| l+1,Ω +|p| l,Ω +∥σ∥ l,Ω . (5.12)
Proof. We use again a standard notation for the interpolations error η u := u -I h u, η p := p -I h p, and

η σ := σ -I h σ, to obtain B ϕ h ((η u , η p , η σ ), (-v h , q h , τ h )) = η σ 2µ(ϕ h ) , τ h -(ε(η u ), τ h ) + (q h , ∇ • η u ) + (η σ , ε(v h )) -(η p , ∇ • v h ) -β 2µ(ϕ h ) η σ 2µ(ϕ h ) -ε(η u ) , τ h 2µ(ϕ h ) + ε(v h ) + K∈T h m l h 2 K ∇η p -∇ • η σ , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K = η σ 2µ(ϕ h ) , τ h -(ε(η u ), τ h ) -(∇q h , η u ) + (η σ , ε(v h )) -(η p , ∇ • v h ) -β 2µ(ϕ h ) η σ 2µ(ϕ h ) -ε(η u ) , τ h 2µ(ϕ h ) + ε(v h ) + K∈T h m l h 2 K ∇η p -∇ • η σ , 1 8µ(ϕ h ) (∇q h -∇ • τ h ) K ≤ 1 2µ min ∥η σ ∥ 0,Ω ∥τ h ∥ 0,Ω + ∥ε(η u )∥ 0,Ω ∥τ h ∥ 0,Ω + |q h | 1,Ω ∥η u ∥ 0,Ω + ∥η σ ∥ 0,Ω ∥ε(v h )∥ 0,Ω + ∥η p ∥ 0,Ω |v h | 1,Ω + 2β µ max η σ 2µ(ϕ h ) -ε(η u ) 0,Ω τ h 2µ(ϕ h ) + ε(v h ) 0,Ω + K∈T h m l h 2 K 8µ min ∥∇η p -∇ • η σ ∥ 0,K ∥∇q h -∇ • τ h ∥ 0,K ≤C h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω |||(v h , q h , τ h )||| h , (5.13) 
for all (v h , q h , τ 

h ) ∈ H h × Q h × R h . Let e u h := u h -I h u,
≤ C 10 C B ∥ϕ h -ϕ∥ 1,Ω ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω + C 7 C B h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω . (5.14) 
Finally, using (5.14), triangle inequality, and the inequality

|||(η u , η p , η σ )||| h ≤ C 8 h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω ,
the result follows.

Theorem 5.5.

Let (u, p, σ, ϕ) ∈ (H l+1 (Ω) d ∩ H) × (H l (Ω) ∩ Q) × (H l (Ω) d×d ∩ R) × (H l+1 (Ω) d ∩ V ), and 
(u h , p h , σ h , ϕ h ) ∈ H h × Q h × R h × V h
be the solutions of (5.1), (5.3) and (5.2), (5.4), respectively, with ϕ ∈ W and ϕ h ∈ W h . Then, there exists a positive constant C 13 , independent of h, and a positive number h 0 such that for all h < h 0 we have that

|||(u -u h , p -p h , σ -σ h )||| h + ∥ϕ -ϕ h ∥ 1,Ω ≤ C 13 h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω + ∥ϕ∥ l+1,Ω .
Proof. Using lemmas 5.2 and 5.4 we get

|||(u h -u, p h -p, σ h -σ)||| h ≤ C 11 ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω ∥ϕ h -ϕ∥ 1,Ω + C 12 h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω ≤ C 11 ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω C 8 h ∥ϕ∥ 2,Ω ∥ε(u -u h )∥ 0,Ω + C 9 h l |ϕ| l+1,Ω + C 12 h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω , now, taking h such that C 8 C 11 h ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω ∥ϕ∥ 2,Ω < 1 
, the result follows.

Numerical examples

In this section, we focus on showing convergence rates for the proposed scheme with different analytical solutions and assess the performance of the stabilized method for a benchmark coming from the geosciences. All calculations have been obtained using the open source finite element library FEniCS [START_REF] Logg | Automated solution of differential equations by the finite element method[END_REF] . Furthermore, the stabilization parameters employed to implement the proposed method are β = 1/2, γ = 1/24 and m l = 1/3.

Example 1: Analytical solution in two dimensions

In the first example, inspired by a test case introduced in [3], we choose Ω = (0, 1) 2 , and the source terms such that the exact solution of problem (P) is given by u(x, y) = sin(2πx) cos(2πy) -cos(2πx) sin(2πy) , p(x, y) = sin(2πx) sin(2πy), ϕ(x, y) = 15 -15 exp(-x(x -1)y(y -1)), while the physical parameters are µ(r) = 1 (1 -0.5r) 2 , κ = 1, and α = 1. Note that 0 ≤ ϕ ≤ 1 in Ω, and that |µ ′ (r)| ≤ 8 for 0 < r < 1, thus µ is a Lipschitz function.

In Figure 1, we present the exact and approximated solutions in a mesh with 32, 768 elements. Note that there is a remarkable agreement between both solutions. Next, in Figure 2 we show the convergence orders which are obtained using a sequence of uniform refined meshes. Note the agreement between the convergence results with those predicted by the theory in Theorem 5.5. 

Convergence rates

Figure 2: Convergence plots obtained using P 1 (left) and P 2 (right) polynomial spaces.

Example 2: A benchmark for a subduction zone

The second example has been taken from [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF] and the geometry consists of a kinematic slab driving flow in the viscous mantle wedge below a rigid overriding plate. Spite of this test case do not fulfilled all the conditions of our framework, we emphasize that our goal is to check a good working of our stabilized method on a realistic problem. In this case Ω = (0, 660) × (0, 600) which represents a subduction zone in two dimensions. The physical parameters to define this problem are given in Table 1 The boundary conditions are represented in Figure 3 where the plate is 50 km deep, the interface between the slab and wedge has a 45 • tilt and the right-middle boundary, where ϕ M is prescribed as boundary condition, is 200 km deep. is the second invariant of the strain-rate tensor. Finally, the source terms are given by f := (0, 0) and g := 0, respectively.

Such as is explained in [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF], to avoid some numerical artifacts it is convenient to truncate the viscosity μ at a fixed value μmax . Hence, we will use the following modified viscosity

µ := 1 μ + 1 μmax -1
.

In Figure 4 we present the results obtained with our scheme using P 1 finite element spaces for each variable in a mesh with 59, 442 elements. A qualitative comparison between our results and those of [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF] is presented in Figure 5. Note that both results are quite similar. In addition, following [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF], we compared the computed values of the temperature field ϕ h , as discrete values ϕ ij , on an equidistant grid with 6 km spacing, which generate a 111 × 101 matrix stored row-wise starting in the top left corner of the domain Ω. The results of interest are: ϕ 11,11 , the temperature at the coordinates (60, -60); ϕ slab which is the l 2 -norm of the slab-wedge interface temperature between 0 and 210 km depth and ϕ wedge , the l 2 -norm of the temperature at the triangular part of the wedge's tip, between 54 and 120 km depth .

The results obtained using our scheme are presented in Table 2, and compared with those introduced in [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF]. There, we can observe that our results are in the range of accepted results if we compare them with those presented in Table 2 of [START_REF] Van Keken | A community benchmark for subduction zone modeling[END_REF]. 

Example 3: Analytical solution in three dimensions

In this example the computational domain is Ω = (0, 1) 3 , and the source terms f and g are chosen such that the exact solution of problem (P) is given by u(x, y, z) = 1 2 (-y 2 , z 2 , x 2 ), p(x, y, z) = -0.125 + xyz, and ϕ(x, y, z) = 0.1 -0.3e -xyz , where the velocity as well the pressure have been taken from [START_REF] Araya | An adaptive stabilized finite element method for the Darcy's equations with pressure dependent viscosities[END_REF]. The viscosity is given by µ(r) = 0.5e 0.1/r and the thermal conductivity used is k = 1. Analogously to Example 1, it is possible to observe that -0.2 ≤ ϕ ≤ -0.1, and thus |µ ′ (r)| ≤ 1.83 for r ∈ (-0.2 , -0.1), and therefore µ is a Lipschitz continuous function.

The obtained solutions are collected in Figure 6. The numerical results reported here confirm the good performance of the stabilized finite element scheme (4.1). Convergence rates 

Conclusions

A new stabilized mixed method for the coupling of Stokes and temperature equations, with a fluid viscosity depending on the temperature, is proposed, analyzed, and tested numerically. This new scheme, which adds stress as a new unknown, allows equal order of interpolation for all the unknowns defining the stabilized method, which is a characteristic of interest of the practitioners. Using fixed point theorems we prove the existence of a solution, both in the continuous as in the discrete cases. The scheme has been assessed numerically with 2D and 3D tests, corroborating the theoretical a priori results and showing effectiveness in solving realistic problems.

  2). Finally, estimates (3.21) and (3.22) are a direct consequence of lemmas 3.1 and 3.2. Theorem 3.8. Let W and r > 0 as in Lemma 3.3. Assume that the regularity assumption (3.20) holds and that the data satisfy
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 32 where β and γ are positive constants, and m l := min 1 C l with C l the constant appearing in the following inverse inequality

Lemma 4 . 3 .

 43 Assume that the stabilized parameter β satisfies the condition
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 1 Figure 1: Isolines of exact solutions (top) and computed solutions (bottom) using P 1 finite element spaces for each variable, in a mesh with 32, 768 elements; velocity magnitude (left), pressure (medium) and temperature (right).
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 3250 Figure 3: Domain and boundary conditions.
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 4 Figure 4: Mesh (left), temperature (middle) and magnitude of the velocity field (right).
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 5 Figure 5: Close up of the model with dislocation creep. Benchmark results introduced in [38] (left) and results using the proposed stabilized scheme (right).

Figure 6 :

 6 Figure6: Isovalues of the exact solutions (top) and computed solutions (bottom) using P 1 finite element spaces for each variable, in a mesh with 24, 576 elements; velocity (left), pressure (medium) and temperature (right).
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 7 Figure 7 displays convergence curves for the problem. These results confirm the theoretical results, where the error decays with the expected order.
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 7 Figure 7: Convergence plots obtained using P 1 (left) and P 2 (right) polynomial spaces.

  Lemma 3.2. Given w ∈ H, problem (3.2) has a unique solution φ ∈ V . Additionally, there exists a positive constant C M , such that ∥M(w)∥ 1,Ω = ∥φ∥ 1,Ω ≤ C M ∥g∥ 0,Ω .

					(3.14)
	Proof. The proof is a direct application of the Lax-Milgram's lemma using the fact that A w is a coercive
	bilinear form, i.e.	κ P C 2	∥φ∥ 2 1,Ω ≤ A w (φ, φ)	∀φ ∈ V.	(3.15)
	Lemma 3.3. Let W the subset of V defined by		

  which implies estimate(3.7). Assume that the stabilization parameter γ satisfies γ < 1/ C2 , with C the constant appearing in (4.3). If w h ∈ H h is such that

	Lemma 4.4.

  Lemma 4.7. Let u h , ũh be two elements in H h satisfying the condition (4.15) of Lemma 4.4. Then, there exists a positive constant C 5 , independent of h, such that

	.25)
	Now, using Lemma 4.3 and replacing (4.24) and (4.25) in (4.21), the result follows.

  Lemma 4.8. Let W h := {ϕ h ∈ V h : ∥ϕ h ∥ 1,Ω ≤ r}, where r > 0 and the data g ∈ L 2 (Ω) satisfy the hypothesis of Lemma 4.5. If the stabilization parameters satisfy the conditions of lemmas 4.3 and 4.4, respectively, then there exists a positive constant C 6 , independent of h, such that, for all ϕ h , φh ∈ W h there holds

.29) Finally, from (4.27), (4.28) and (4.29), we conclude (4.26).

  ≤ C 10 ∥ϕ h -ϕ∥ 1,Ω ∥f ∥ ∞,Ω + ∥σ∥ 1,Ω + C 7 h l |u| l+1,Ω + |p| l,Ω + ∥σ∥ l,Ω

	e p h := p h -I h p, e σ h := σ h -I h σ. Next, from (4.14),
	(5.12) and Lemma 5.3, we can see that
	C B |||(e u h , e p h , e σ h )||| 2 h ≤ B ϕ h ((e u h , e p h , e σ h ), (-e u h , e p h , e σ h ))
	= B ϕ h ((u h -u, p h -p, σ h -σ), (-e u h , e p h , e σ h )) -B ϕ h ((η u , η p , η σ ), (-e u h , e p h , e σ h ))
	|||(e u h , e p h , e σ h )||| h ,
	thus
	|||(e u h , e p h , e σ h )||| h

Table 1 :

 1 Physical parameters and nomenclature.

	Quantity	Symbol Reference value
	Velocity of the slab	u D	5 cm/yr
	Temperature on right-middle boundary	ϕ M	1573 K
	Temperature on surface	ϕ S	273 K
	Density	ρ	3300 kg/m 3
	Heat capacity	c p	1250 J/kg K
	Thermal conductivity	k	3 W/mK
	Powerlaw for dislocation creep	n	3.5
	Activation energy (dislocation creep)	E	540 kJ/mol
	Pre-exponential constant (dislocation creep) A	28968.6 Pa s 1/n
	Maximum viscosity	μmax	10 26 Pa s
	Gas constant	R	8.3145 J/mol K
	Age in seconds	t 50	50 Myr

Table 2 :

 2 Comparative benchmarks results.

	Code	T 11,11	∥T slab ∥ ∥T wedge ∥
	LDEO	550.17 593.48	994.11
	NTU	551.60 608.85	984.08
	PGC UM	582.65 604.51 583.36 605.11	998.71 1000.01	6.3.
	VT	574.84 603.80	995.24
	WHOI	583.11 604.96	1000.05
	Present Method 546.75 598.71	988.03
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