
HAL Id: hal-03820049
https://hal.science/hal-03820049

Submitted on 18 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Path Constraints for UAV Autonomous
Navigation under Uncertain GNSS Availability

Marion Zaninotti, Charles Lesire, Yoko Watanabe, Caroline P C Chanel

To cite this version:
Marion Zaninotti, Charles Lesire, Yoko Watanabe, Caroline P C Chanel. Learning Path Constraints
for UAV Autonomous Navigation under Uncertain GNSS Availability. 17es Journées Francophone
Planification, Décision et Apprentissage, Jun 2022, Saint-Etienne, France. �hal-03820049�

https://hal.science/hal-03820049
https://hal.archives-ouvertes.fr

Learning Path Constraints for UAV Autonomous Navigation
under Uncertain GNSS Availability

Marion Zaninotti1,2 Charles Lesire2 Yoko Watanabe2 Caroline P. C. Chanel1

1 ISAE-SUPAERO, University of Toulouse, France
2 ONERA, University of Toulouse, France

marion.zaninotti@isae-supaero.fr, charles.lesire@onera.fr
yoko.watanabe@onera.fr, caroline.chanel@isae-supaero.fr

Résumé
Cet article adresse un problème de planification de chemin
sûr pour la navigation de drone en environnement urbain,
sous une disponibilité du GNSS incertaine. Le problème
peut être modélisé comme un POMDP et résolu en utilisant
des algorithmes à base d’échantillonnage. Cependant, un
domaine aussi complexe souffre d’un coût de calcul impor-
tant et atteint des résultats médiocres sous des contraintes
temps-réel. Des recherches récentes visent à intégrer un
apprentissage hors ligne afin de guider de manière effi-
cace la planification en ligne. Inspiré par la formalisation
de l’état de l’art CAMP (Context-specific Abstract Markov
decision Process), cet article propose de réaliser une étape
d’apprentissage hors ligne de contrainte sur le chemin et
d’appliquer le résultat pour réduire l’espace de recherche
de politique pendant la résolution en ligne du POMDP.
Plus précisément, le sélecteur de la meilleure contrainte
est appris de manière hors ligne et il est utilisé pour sélec-
tionner la contrainte à imposer, pendant la planification en
ligne, en fonction des caractéristiques de la tâche, i.e. la
probabilité de disponibilité du GNSS dans notre cas d’ap-
plication. Les conclusions des expériences menées pour
différents environnements montrent qu’utiliser l’approche
proposée permet d’améliorer la qualité d’une solution at-
teinte par un planificateur en ligne, en particulier lorsque
la probabilité de disponibilité du GNSS est faible.

Mots Clef
Planification de chemin en ligne, Apprentissage pour la
planification, POMDP.

Abstract
This paper addresses a safe path planning problem for
UAV urban navigation, under uncertain GNSS availabi-
lity. The problem can be modeled as a POMDP and sol-
ved with sampling-based algorithms. However, such a com-
plex domain suffers from high computational cost and
achieves poor results under real-time constraints. Recent
research seeks to integrate offline learning in order to ef-
ficiently guide online planning. Inspired by the state-of-

the-art CAMP (Context-specific Abstract Markov decision
Process) formalization, this paper proposes to perform
an offline path constraint learning process and to apply
its result to reduce the policy search space during online
POMDP solving. More precisely, the best constraint selec-
tor is learnt offline and it is used to select the constraint
to impose, during online planning, according to features
of the task, i.e. GNSS availability probability in our ap-
plication case. Conclusions of experiments carried out for
different environments show that using the proposed ap-
proach allows to improve the quality of a solution reached
by an online planner, particularly when GNSS availability
probability is low.

Keywords
Online path planning, Learning for planning, POMDP.

1 Introduction
Solving autonomous navigation problems consists in fin-
ding a path from an initial position to a goal with a maxi-
mum efficiency, while avoiding the obstacles. These pro-
blems become challenging when the state of the vehicle is
uncertain. Particularly, most of Unmanned Aerial Vehicles
(UAVs) are equipped with a Global Navigation Satellite
System (GNSS) receiver as navigation system. In an urban
environment, the visibility of the GNSS satellite constella-
tion can be reduced by the buildings surrounding the UAV,
the accuracy or even the availability of the measured po-
sition can then be significantly altered, what can lead to a
fatal collision.
[Delamer et al.2021] formalize the UAV urban naviga-
tion problem under uncertain GNSS availability as a Par-
tially Observable Markov Decision Process (POMDP)
[Kaelbling et al.1998]. The latter is a principled approach
to solve planning problems under uncertainty. However,
POMDP planning faces two notorious problems. The first
one is the curse of dimensionality : the size of the belief
state space grows up exponentially with that of the state
space. The second problem is the curse of history : the
number of action/observation sequences to evaluate during

JFPDA

171 ©AFIA2022

research grows up exponentially with the planning hori-
zon [Pineau et al.2006]. The use of a Partially Observable
Monte-Carlo Planning (POMCP) [Silver and Veness2010]
algorithm makes it possible to overcome these difficulties.
Nevertheless, the performance remains dependent on the
search depth reached within the planning horizon, which is
itself dependent on the branching factor of the search tree
[Hostetler et al.2014]. The branching factor includes both
the action factor, i.e. the number of actions available in
each belief state, and the stochastic factor, i.e. the number
of possible observations for each action. The stake is then
to reduce the branching factor in order to scale up plan-
ning. This is all the more important for online planning :
the planner has to make a decision quickly whereas the
long-planning horizon of such a real-world task incurs pro-
hibitive computational cost. For that, incorporating domain
abstraction is a promising approach. [Chitnis et al.2021]
introduce Context-specific Abstract Markov Decision Pro-
cess (CAMP), an abstraction of the original MDP model,
obtained by imposing the best constraint on the states and
actions considered by the agent. This best constraint is cho-
sen by an offline learnt context selector according to the
features of a task.

Inspired by this way of domain abstraction of CAMP, this
paper proposes to learn offline the best constraint to im-
pose in order to reduce the policy search space during on-
line POMDP solving. In our application case, the context
selector returns the constraint which reduces the UAV po-
sition state space while preserving the solution optimality,
in function of the GNSS availability probability map of a
task. Unlike the original CAMP, we address a partially ob-
servable domain. In our case, applying action space abs-
traction is not straightforward as states are not fully obser-
vable. Nevertheless, a state space abstraction can be achie-
ved through modification of the cost function for penali-
zing the constraint violation, which will modify the action
outcomes. Additionally, as our objective is to perform on-
line planning for the UAV safe navigation problem, whe-
reas an offline POMCP variant is used in the offline pro-
cess, an online version is applied for planning. As result,
we investigate the use of different algorithms for learning
and planning, which has not been done in the original work
of CAMP. Thus, regarding the UAV navigation problem
with uncertain GNSS availability, our contribution is two-
fold : (i) we investigate if domain abstraction, by adapting
the CAMP framework for a partially observable domain,
gives better results when compared to a full POMDP mo-
del, and (ii) we evaluate if such a CAMP-inspired approach
is robust if we use a different algorithm for learning and
planning.

After providing the theoretical background and the related
work in the next section, we present the CAMP method
adapted to our problem in Section 3. Experimental results
are reported in Section 4, demonstrating the planning per-
formance improvement. Section 5 includes concluding re-
marks and future works.

2 Background and Related Work
2.1 POMDP Preliminaries
A POMDP [Kaelbling et al.1998] is defined as a tuple
(S,A,Ω, T ,O, C, b0, γ), where S,A, and Ω denote respec-
tively spaces of states, actions, and observations. The tran-
sition function T (s, a, s′) = p(s′|s, a) represents the dyna-
mics of the agent as the probability of transiting from s to s′

by taking action a. The observation function O(a, s′, o) =
p(o|s′, a) specifies the probability of observing o after ta-
king action a to reach s′. The cost function C(s, a) defines
the cost of taking action a in s. b0 denotes the initial belief
state. γ ∈ [0, 1] is a discount factor expressing a preference
for minimizing immediate over future cost.
POMDPs capture partial observability of the system using
the belief state b, i.e. a probability distribution over S,
which is updated after each action a and observation o
using the Bayes’ rule. A POMDP policy π : B → A pres-
cribes an action for each belief state in the belief space B.
Solving a POMDP requires finding the optimal policy π∗

minimizing the expected future cost, called the value, for
all b ∈ B. The value of the policy π∗ in belief b is defined
as :

V π
∗
(b) = min

π
E

[∞∑

t=0

γtC(bt, π(bt))
∣∣ b0 = b

]
(1)

Additionally, the Q-value of an action a in a belief state b
can be defined as :

Qπ(b, a) = E

[
C(b, a) +

∞∑

t=1

γtC(bt, π(bt))
]

(2)

2.2 UAV Urban Navigation POMDP-based
Problem

The original planning model proposed by
[Delamer et al.2021] is formalized as a Mixed-
Observability Markov Decision Process (MOMDP)
[Ong et al.2010], a special class of the POMDP frame-
work. The state space is factorized into fully and partially
observable state variables, respectively denoted by sv
and sh, what reduces the belief state space dimension,
and in turn, reduces policy computation time. The state
tuple s = (sh, sv) ∈ S is defined with sh = (X ,V, βa)
where X and V are the vehicle position and velocity,
and βa is the IMU acceleration measurement bias, and
sv = (Fcol, FGNSS , P, tflight) with Fcol and FGNSS
the collision and GNSS availability Boolean flags, P the
estimation error covariance matrix over sh, and tflight
the flight time elapsed. An action a ∈ A corresponds to
the desired velocity direction. The action space A is a
finite set of 10 actions, following 8 radial directions in the
2D horizontal plane, plus up and down. An observation
o ∈ Ω is defined as the sub-tuple o = sv of the state
tuple, given a full observability of (Fcol, FGNSS) and a
deterministic transition of (P, tflight). This partial state

JFPDA

©AFIA2022 172

observability limits the branching factor of the search
tree. The transition function follows a GNC (Guidance,
Navigation and Control) model, composed of the vehicle
motion model, a guidance law, a state estimator, and the
IMU and GNSS sensor models. The GNSS availability
FGNSS affects how the state estimator propagates the
error covariance P , which affects the belief state b′ after
transition. In brief, P grows when GNSS is unavailable,
resulting in more collision risk. Finally, the cost function
is defined as :

C(s, a) =

0 if goal reached
Kcol − tflight if collision
∆Ta otherwise

(3)

with ∆Ta > 0 the action execution time, and Kcol > 0
the cost penalty in case of collision. When a collision oc-
curs, the cost of any action is this penalty subtracted with
the flight time elapsed. It avoids penalizing more if the col-
lision occurs after a long flight time or near the goal.

2.3 MinPOMCP-GO Algorithm
[Delamer et al.2021] propose the POMCP - Goal-Oriented
(POMCP-GO) algorithm, an offline goal-oriented variant
of POMCP [Silver and Veness2010]. It samples a state
s from the initial belief state b0 corresponding to the
root node, and simulates action/observation sequences,
through trials, in order to evaluate actions while buil-
ding a tree of nodes. To perform a trial, POMCP-GO
follows a given action selection strategy and a heuris-
tic node value initialization. For the action selection, it
relies on the Upper Confidence Bounds (UCB1) stra-
tegy [Kocsis and Szepesvári2006] to deal with the explo-
ration–exploitation dilemma. A trial is stopped when a ter-
minal state is reached (a goal or collision state), and this
procedure is repeated during a fixed timeframe.
Each tree node h represents a history of action/observation
sequences from the initial belief state. The Q-value (Eq.
2) of an action a in a belief state is approximated by
Q(h, a), which is the mean cost returned from all trials
started from h when action a was selected. This ap-
proximation incurs a well-known bias, which decreases as
the number of trials increases [Keller and Helmert2013].
To accelerate the policy value convergence by redu-
cing the Q-value bias, [Carmo et al.2020] propose the
MinPOMCP-GO algorithm which uses a Min-Monte-
Carlo backup [Keller and Helmert2013].
The present paper approach is based on this MinPOMCP-
GO algorithm. During tree building, MinPOMCP-GO ini-
tializes the Q-value of a newly created node to a pre-
computed heuristic value, corresponding to the flight
time left to the goal estimated by the Dijkstra algorithm
[Dijkstra1959]. Even if this heuristic function is more in-
formative than the traditional rollout used in POMCP, it
does not consider GNSS availability probability, hence
sampling trajectories that may lead to collisions due
to the uncertain UAV position estimate. The impact of

GNSS unavailability is only considered indirectly, by back-
propagating the cost penalty when a collision occurs.

2.4 Domain Abstraction
Sampling-based algorithms, such as POMCP and variants,
suffer from exponential complexity with respect to the
branching factor of the search tree. In our UAV navigation
problem under uncertain GNSS availability, the solver can-
not explore enough, within a short decision-making time-
frame, to prevent collisions. In difficult environments, with
obstacles reducing GNSS probability availability, naviga-
tion mission safety may be compromised. So, we focus on
incorporating domain abstraction to reduce the branching
factor and to improve online planning solutions.

State Aggregation. One well-known technique of do-
main abstraction is state aggregation : the state space
is reduced by clustering equivalent states, i.e. states that
share some fully-identical properties - exact aggregation -
or nearly-identical properties - approximate aggregation -
and treating each of these resulting state clusters as one.
In [Li et al.2006], the authors list the existing methods
of exact state aggregation and unify them to deduce five
generic functions. However, since two states rarely share
some fully-identical properties, exact abstraction is often
useless, while approximate abstraction can achieve greater
degrees of compression. In [Abel et al.2016], the authors
present four types of approximate aggregation and demons-
trate that they lead to a bounded loss of optimality of
behavior. In [Hostetler et al.2014], the authors generalize
the formulation of two of these four types of aggregation
and apply them to Monte-Carlo Tree Search (MCTS). AS-
UCT [Jiang et al.2014], ASAP-UCT [Anand et al.2015],
and OGA-UCT [Anand et al.2016] are other implementa-
tions of state or state-action pair aggregation to UCT, a
MCTS algorithm variant. All of these methods have not
been applied in the partially observable framework.

Hierarchical Planning. Another approach to domain
abstraction is hierarchical planning. It consists in de-
composing the planning problem into a network of in-
dependent subgoals. Hierarchical Dynamic Programming
(HDP) [Bakker et al.2005] is an example of hierarchical
planning for navigation problems. A hierarchy of MDPs is
constructed and solved using a hierarchical variation of va-
lue iteration. Abstract Markov Decision Process (AMDP)
[Gopalan et al.2017] is a more general method, which al-
lows any MDP planner to be used. Both HDP and AMDP
are top-down approaches : they select the subgoal before
performing planning to reach it. Contrary to bottom-up ap-
proaches, they present the advantage that planning is ne-
cessary only for subgoals used for task completion. Never-
theless, the way to define appropriate subgoals remains an
open question.

Integrating Learning for Planning. A third method
is to integrate an offline learning phase as a first step,
to guide the search during online planning. The CAMP
approach [Chitnis et al.2021], that has inspired this paper,

JFPDA

173 ©AFIA2022

is part of it. It searches the best reduced state and action
spaces of a MDP by imposing a constraint learnt according
to the features of a task. Another example is Macro-Action
Generator-Critic (MAGIC) [Lee et al.2021], which learns
the more efficient set of candidate macro-actions to cut
down the effective planning horizon for online POMDP
planning, being a kind of temporal abstraction.

As previously discussed in Section 2.3, one of the
weaknesses of MinPOMCP-GO is that the heuristic func-
tion does not consider the GNSS availability probability,
what can misguide the search. The planning efficiency
can hence be improved if we could use this information
to further focus the search on more relevant areas, i.e.
where GNSS is more likely available. For this purpose,
the CAMP method seems a good candidate to leverage.
Implementing a similar approach for our problem allows
to reduce the UAV position state space in function of a
probability map of GNSS availability, considering the
latter as a task feature.

3 Learning Path Constraints based
on GNSS Availability

3.1 Approach Overview
The objective of the CAMP method [Chitnis et al.2021] is
to learn a context selector f : Θ → C. Each training task
corresponds to a feature vector θ ∈ Θ. For each feature
vector, the best constraint C∗ ∈ C is identified. The pairs
(θi, C

∗
i) are given to a neural network to learn f . Once the

context selector f is learnt, the best constraint C∗ returned
from the feature vector θ is then imposed to guide online
planning.
In our navigation problem under uncertain GNSS availabi-
lity, we assume a given environment, i.e. known obstacles
on a map, and a given navigation mission, i.e. fixed initial
position and goal. Figure 1 describes our application of the
context selector learning process to our problem. The pro-
bability maps of GNSS availability are used as feature vec-
tors. For each training map of GNSS availability probabi-
lity, the best constraint is identified. We define a constraint
as a corridor of the environment in which the UAV must
stay, and we evaluate it by performing planning within a
training timeout. Then, these probability maps of GNSS
availability and the associated best constraints are used to
learn the context selector. Finally, the test tasks are sol-
ved online, imposing the best constraints returned by the
context selector from the test maps of GNSS availability
probability. Each step of this process is detailed in the fol-
lowing sub-sections.

3.2 Feature Vectors
As previously discussed, the GNSS availability is crucial to
determine safe paths for our UAV. As the GNSS satellites
are orbiting around the Earth, the GNSS availability proba-
bility varies with the time-of-the-day even for a fixed obs-

tacle environment. We then propose to leverage the context
selector learning approach to reduce the UAV position state
space by computing navigation constraints based on proba-
bility maps of GNSS availability.
A quality of the GNSS position estimate is given as
a metric called Position Dilution Of Precision (PDOP)
[Kleijer et al.2009]. Given the satellite geometry, user lo-
cation and surrounding environment, a PDOP map is ge-
nerated by using a GNSS simulator. We consider PDOP
value as a standard deviation of the GNSS positioning er-
ror, assumed to follow a zero-mean Gaussian distribution
[Delamer et al.2021]. Then, the PDOP map is transformed
to a probability map of GNSS availability by using erf , the
Gauss error function, and by setting a maximum position
error threshold ϵ :

Pr(FGNSS = 1) = erf

(
ϵ√

2PDOP

)
. (4)

First, we generated test task features by setting different ϵ
values to cover the easy and difficult cases where GNSS
is most-like available/unavailable. Then, the training task
features were generated by linear combination of these test
task features with randomly selected coefficients, for more
feature variety.

3.3 Constraint Definition and Evaluation
Constraint Definition. We divide the environment map
into nL×nl×nh areas in an uniform way. nL denotes the
number of areas over the length, nl over the width, and nh
over the height. For each of these areas, we define a corri-
dor of areas leading from the initial position to the goal
one, passing through this area, called passage area. For
that, we concatenate the paths resulting from the A* algo-
rithm [Hart et al.1968] from the area including the initial
position to this passage area, and from the latter to the area
including the goal position. We use the number of areas
constituting the path as cost function in the A* algorithm.
We obtain thus at most nL× nl × nh different corridors of
areas, corresponding to candidate constraints, in which the
UAV is allowed to navigate. The sub-figure in the middle of
Figure 2 shows a candidate constraint defined by dividing
the environment map into (nL = 5)×(nl = 5)×(nh = 1)
areas, and using the top left area as passage area, highligh-
ted in blue.

Planning with Constraint. For each training map of
GNSS availability probability, all the candidate constraints
are evaluated. For that, offline planning imposing the can-
didate constraint is executed. We use the MinPOMCP-GO
planning algorithm [Carmo et al.2020], adapting its heu-
ristic function, which estimates the flight time left to the
goal, so that the navigation constraint is respected. Figure 2
illustrates an example of the heuristic map obtained from
a given environment, navigation mission, and candidate
constraint. On the environment map on the left, as on the
following maps, the initial position and the goal are respec-
tively represented by a point and a star, and the obstacles

JFPDA

©AFIA2022 174

FIGURE 1 – Learning the context selector f by identifying the best constraint C∗
i , for each training task i associated to a probability map

of GNSS availability θi.

are depicted in yellow. On the heuristic map on the right,
the estimated flight time left to the goal is represented in-
side the constraint. To impose a constraint, the cost func-
tion of the planning model (Eq. 3) is also adapted so that
it considers a violation of the constraint as a terminal state
which leads to a cost penalty Kconstr. In addition, the col-
lision cost is saturated by a minimal threshold Kcolthr

, as
some imposed constraints incur long flight times. The cost
function then becomes :

C(s, a) =

0 if goal reached
max(Kcol − tflight,Kcolthr

) if collision
Kconstr if constraint violation
∆Ta otherwise

(5)

Best Constraint Identification. In [Chitnis et al.2021],
a candidate constraint is evaluated using a score formu-
lation, which expresses the trade-off between how much
planning is sped up and how much optimality is preserved
imposing this constraint. Reaching the convergence on the
policy value is required to estimate the planning time and
the policy value. However, it is difficult to judge and can
take too long to achieve this convergence in our problem.
Therefore, to evaluate a candidate constraint, we stop plan-
ning when a training timeout is reached, and we express
the score as the opposite of the resulting initial belief state
value V π(b0). For a probability map of GNSS availability
θi, the candidate constraint that achieves the highest score,
i.e. the lowest initial belief state value, is chosen as the best
constraint, and is noted C∗

i .

FIGURE 2 – Generation of the heuristic map (right) from an en-
vironment, a navigation mission (left), and a candidate constraint
(middle).

3.4 Context Selector Learning and Online
Planning

The feature vectors {θi} of the training tasks and the as-
sociated best constraints {C∗

i } are used to train a neural
network with cross-entropy loss, resulting in the context
selector f (Fig. 1). The generic neural network available in
the CAMP framework is applied, with the proposed Fully
Connected Network architecture [Chitnis et al.2021].
At test time, the best constraint is returned by the context
selector, given the feature vector of the test task : C∗ =
f(θ). This constraint is then integrated in the model to re-
duce the state space, by imposing to compute navigation
paths that stay within the constraint, i.e. the corridor. We
use two planning algorithms to compute these navigation
paths. The first one is MinPOMCP-GO, also used for eva-
luating the candidate constraints in the training phase. The
second algorithm is MinPOMCP-GO* : it is a variant of
MinPOMCP-GO in which trials end whenever a previously
unvisited leaf node is encountered instead of ending a trial
only when a terminal state is reached. MinPOMCP-GO* is
aimed to be used online, as it produces more trials with a
shortest depth, hence favoring short-term performance that
would help avoiding collisions, while taking into account
actual observations in an online setting.

4 Experiments
We implement the previously described method to
three navigation benchmark environments available in
[Mettler et al.2010] : Cube Baffle, containing two cubes,
Wall Baffle, containing two walls, and the real downtown
of San Diego. They are illustrated in Figure 3.
To evaluate our approach, four test tasks are solved for each
environment, numbered from 1 to 4, corresponding to the
maps presenting from the lowest to the highest GNSS avai-
lability probabilities. We compare the results obtained im-
posing the best constraint returned by the context selector
with those obtained without constraint. The performance
metrics are the number of collisions and the mean costs
obtained considering a fixed decision-making timeframe.

JFPDA

175 ©AFIA2022

(a) (b) (c)

FIGURE 3 – Cube Baffle (a), Wall Baffle (b), and San Diego (c).

The lower they are, the better performance is.

4.1 Material
To carry out the experiments, we use a supercomputer
constituted of 24 cores. For each of these cores, the fre-
quency is of 2.60 GHz, the Random Access Memory size
is of 96 Go, and the cache size is of 19.25 Mo.

4.2 Settings
In the following, we describe the settings used in
our experiments. The GNC model and the reference
velocity settings are the same as those described
in [Delamer et al.2021].

Initial Position and Goal. The mean initial position is
set to X0 = [10, 25, 5] for Cube Baffle and Wall Baffle, and
X0 = [110, 60, 5] for San Diego. The goal position is set to
XG = [85, 78, 5] for Cube Baffle, XG = [50, 80, 5] for Wall
Baffle, and XG = [200, 125, 5] for San Diego.

Map Decomposition. The map size of Cube Baffle and
Wall Baffle is [101, 101, 21]. For San Diego, it is [217, 167,
24]. The maps are uniformly divided into (nL = 5)×(nl =
5)× (nh = 1) areas.

Model and Solver. The action cost ∆Ta is set to 2.2.
The collision penalty Kcol, its threshold Kcolthr

, and the
constraint violation penalty Kconstr (Eq. 5) are respecti-
vely set to 450, 350, and 450. The exploration coefficient c
of UCB1 is set to 6.

Training Tasks. The training timeout is set to 2 minutes
and the number of training tasks, i.e. the number of proba-
bility maps of GNSS availability used for training, is 30.

Neural Network and Test Tasks. The neural network
loss threshold is set to 1.8. The decision-making timeframe
is set to 2 seconds and the number of test tasks, i.e. the
number of probability maps of GNSS availability used for
testing, is 4. These maps are generated with the error thre-
sholds : ϵ = 1, 2, 5, and 10 meters. For each test task, 50
episodes are launched.

4.3 Results
The performance metric values obtained for each environ-
ment are summarized in Table 1. The probability maps of
GNSS availability at the initial and goal altitude are dis-
played as background of the following figures, the resulting
paths are plotted in red and the collisions are represented
by black dots.

For the Cube Baffle environment, the costs obtained wi-
thout constraint and imposing the best constraint, using
MinPOMCP-GO or MinPOMCP-GO*, are similar for all
the test tasks. Indeed, the UAV does not fly close enough
to the cubes and the GNSS availability probability is suf-
ficiently high. Hence, very few collisions occur, even wi-
thout constraint. Figure 4 shows the resulting paths without
constraint and imposing the best constraint for the first test
task, corresponding to the lowest GNSS availability. The
imposed constraint makes the resulting paths deviate to
avoid the zones of possible GNSS loss to reduce the col-
lision risk.

(a) (b)

FIGURE 4 – Results obtained for Cube Baffle, for test task 1 :
paths obtained using MinPOMCP-GO*, without constraint (a),
and with the best constraint (b).

Figure 5 shows the resulting paths without constraint and
imposing the best constraint for the Wall Baffle environ-
ment. With MinPOMCP-GO or MinPOMCP-GO*, the
number of collisions and the cost obtained imposing the
best constraint are considerably lower than those without
constraint for the test tasks (1) and (2), corresponding to the
two maps presenting the lowest GNSS availability probabi-
lities. For test task (1), using MinPOMCP-GO, the number
of collisions obtained imposing the best constraint is re-
duced of almost 72%; and using MinPOMCP-GO*, it is
reduced to 0. For these test tasks, the best constraint forces
to fly over the wall, where GNSS availability probability is
greater, instead of flying between the two walls as obtai-
ned when no constraint is imposed. Even if the flight time
becomes a bit longer, the cost is much reduced because
less collisions occur. That is, the mission safety is largely
improved. For the third test task, with MinPOMCP-GO
or MinPOMCP-GO*, the cost is slightly increased when
imposing the best constraint, still favoring the safer paths
flying over the wall. Finally, for the fourth test task presen-
ting the highest GNSS availability probabilities, the best
constraint only imposes to slightly move away from the
first wall. It results in a slight decrease of the collision rate,
with MinPOMCP-GO or MinPOMCP-GO*.
The San Diego environment includes multiple buildings,
that incurs a lot of regions where GNSS availability pro-
bability is low. Without constraint, the mission leads to
a collision in most episodes, for each test task. The best
constraints returned correspond to pass to the left of the
obstacles (Fig. 6). With MinPOMCP-GO or MinPOMCP-
GO*, the number of collisions and the cost are decreased
imposing the best constraint, particularly for the two maps
presenting the highest GNSS availability probabilities, test

JFPDA

©AFIA2022 176

MinPOMCP-GO MinPOMCP-GO*
No constraint Constraint Relative Gain (%) No constraint Constraint Relative Gain (%)
Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost

1 2 115.144 0 114.296 100.00 0.74 0 91.912 0 106.072 / -15.41
Cube 2 0 96.936 0 97.808 / -0.90 0 93.592 0 95.144 / -1.66
Baffle 3 1 104.360 0 105.688 100.00 -1.27 2 108.848 0 100.720 100.00 7.47

4 1 102.648 0 98.384 100.00 4.19 0 94.824 0 99.368 / -4.79
1 21 243.848 6 162.936 71.43 33.18 12 179.696 0 116.664 100.00 35.08

Wall 2 14 191.600 3 141.616 78.57 26.09 9 152.024 0 116.720 100.00 23.22
Baffle 3 0 85.336 0 95.632 / -12.07 0 84.816 0 95.768 / -12.91

4 3 110.976 2 102.616 33.33 7.53 1 95.216 0 87.280 100.00 8.33
1 37 387.776 36 370.904 2.70 4.35 40 385.800 35 355.352 12.50 7.89

San 2 39 381.368 31 347.800 20.51 8.80 27 305.408 23 278.600 14.81 8.78
Diego 3 34 355.872 18 249.392 47.06 29.92 32 334.264 8 180.576 75.00 45.98

4 27 305.496 9 189.824 66.67 37.86 28 311.352 11 199.136 60.71 36.04

TABLE 1 – Comparison of the performance metrics obtained by imposing the best constraint with the ones without constraint. The relative
gains are computed as relative changes, taking the performance metric value obtained without constraint as reference. The considerably
performance gains are presented in bold.

(1)

(2)

(3)

(4)

(a) (b)

FIGURE 5 – Results obtained for Wall Baffle : paths obtained
using MinPOMCP-GO*, without constraint (a), and with the best
constraint (b)

tasks (3) and (4). For the third test task, the cost is decrea-
sed to almost 46% using MinPOMCP-GO*, and for the
fourth task, it is reduced to almost 38% using MinPOMCP-
GO.
In conclusion, for the three environments, imposing the
best constraint always reduces the number of collisions,
with any MinPOMCP-GO variant. This gain on the number

(3)

(4)

(a) (b)

FIGURE 6 – Results obtained for San Diego, for test tasks (3) and
(4) : paths obtained using MinPOMCP-GO*, without constraint
(a), and with the best constraint (b)

of collisions and the one on the cost are much greater for
difficult environments, comprising multiple obstacles and
presenting low GNSS availability probabilities. Moreover,
although the context selector is learnt from MinPOMCP-
GO, imposing the best constraint that it returns improves
clearly the planning performance even when using the on-
line equivalent, MinPOMCP-GO*.

5 Conclusion
In this paper, we have proposed a learning-based state abs-
traction approach to address a partially observable problem
of UAV autonomous navigation, where the GNSS avai-
lability may have a dramatic impact on the UAV path.
We have then implemented a process to learn the best
path constraint, i.e. the best corridor in which the UAV
must navigate, from a set of GNSS availability probabi-
lity maps. We have evaluated this approach on different
environments, including a realistic urban one. The presen-
ted results have shown that first, imposing these learnt path
constraints based on GNSS availability can indeed improve
the quality of the online computed paths, especially when

JFPDA

177 ©AFIA2022

uncertainty is high, and second, it has good performances
on problems where only the state space is abstracted, and
in situations where the constraint is learnt using one algo-
rithm, and then used online with another algorithm.
Future works will generalize this approach by not only
considering the GNSS availability map as feature, but also
the initial and goal positions. To do so, we will avoid to
evaluate all the possible constraints by only considering the
most suitable candidate constraints, in order not to generate
a huge number of training data. For example, in our navi-
gation problem, only three constraints may be considered
for each feature vector : the one corresponding to the shor-
test path, the one maximizing GNSS availability probabi-
lity, and the one weighting the both of them.

Références
[Abel et al.2016] David Abel, D. Ellis Hershkowitz, and

Michael L. Littman. Near optimal behavior via ap-
proximate state abstraction. In International Confe-
rence on International Conference on Machine Lear-
ning (ICML), New York City, NY, USA, 2016.

[Anand et al.2015] Ankit Anand, Aditya Grover, Mausam
Mausam, and Parag Singla. ASAP-UCT : Abstraction of
State-Action Pairs in UCT. In International Joint Confe-
rence on Artificial Intelligence (IJCAI), Buenos Aires,
Argentina, 2015.

[Anand et al.2016] Ankit Anand, Ritesh Noothigattu,
Mausam, and Parag Singla. OGA-UCT : On-the-Go
Abstractions in UCT. In International Conference on
Automated Planning and Scheduling (ICAPS), London,
UK, 2016.

[Bakker et al.2005] Bram Bakker, Zoran Zivkovic, and
Ben Kröse. Hierarchical dynamic programming for ro-
bot path planning. In International Conference on Intel-
ligent Robots and Systems (IROS), Hamburg, Germany,
2005.

[Carmo et al.2020] Ana Raquel Carmo, Jean-Alexis De-
lamer, Yoko Watanabe, Rodrigo Ventura, and Caro-
line Ponzoni Carvalho Chanel. Entropy-based adaptive
exploit-explore coefficient for Monte-Carlo path plan-
ning. In International Conference on Prestigious Ap-
plications of Intelligent Systems (PAIS), (Digital ECAI),
2020.

[Chitnis et al.2021] Rohan Chitnis, Tom Silver, Beom-
joon Kim, Leslie Kaelbling, and Tomas Lozano-Perez.
CAMPs : Learning Context-Specific Abstractions for
Efficient Planning in Factored MDPs. In Conference on
Robot Learning, London, UK, 2021.

[Delamer et al.2021] Jean-Alexis Delamer, Yoko Wata-
nabe, and Caroline Ponzoni Carvalho Chanel. Safe
path planning for UAV urban operation under GNSS si-
gnal occlusion risk. Robotics and Autonomous Systems,
142 :103800, 2021.

[Dijkstra1959] Edsger W. Dijkstra. A Note on Two Pro-
blems in Connexion with Graphs. Numerische Mathe-
matik, 1 :269–271, 1959.

[Gopalan et al.2017] Nakul Gopalan, Marie desJardins,
Michael L. Littman, James MacGlashan, Shawn Squire,
Stefanie Tellex, John Winder, and Lawson L. S. Wong.
Planning with Abstract Markov Decision Processes. In
International Conference on Automated Planning and
Scheduling (ICAPS), Pittsburgh, PA, USA, 2017.

[Hart et al.1968] Peter E. Hart, Nils J. Nilsson, and Ber-
tram Raphael. A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. IEEE Transac-
tions on Systems Science and Cybernetics, 4(2) :100–
107, 1968.

[Hostetler et al.2014] Jesse Hostetler, Alan Fern, and Tom
Dietterich. State Aggregation in Monte Carlo Tree
Search. In AAAI Conference on Artificial Intelligence
(AAAI), Québec City, QC, Canada, 2014.

[Jiang et al.2014] Nan Jiang, Satinder Singh, and Richard
Lewis. Improving UCT Planning via Approximate Ho-
momorphisms. In International Conference on Autono-
mous Agents and Multi-Agent Systems (AAMAS), Paris,
France, 2014.

[Kaelbling et al.1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and ac-
ting in partially observable stochastic domains. Artifi-
cial Intelligence, 101 :99–134, 1998.

[Keller and Helmert2013] Thomas Keller and Malte Hel-
mert. Trial-Based Heuristic Tree Search for Finite Hori-
zon MDPs. In International Conference on Automated
Planning and Scheduling (ICAPS), Rome, Italy, 2013.

[Kleijer et al.2009] Frank Kleijer, Dennis Odijk, and Ed-
ward Verbree. Prediction of GNSS Availability and
Accuracy in Urban Environments Case Study Schiphol
Airport. In Location Based Services and TeleCartogra-
phy II. Lecture Notes in Geoinformation and Cartogra-
phy. Springer, Berlin, Heidelberg, 2009.

[Kocsis and Szepesvári2006] Levente Kocsis and Csaba
Szepesvári. Bandit Based Monte-Carlo Planning. In
European Conference on Machine Learning (ECML),
Berlin, Germany, 2006.

[Lee et al.2021] Yiyuan Lee, Panpan Cai, and David Hsu.
MAGIC : Learning Macro-Actions for Online POMDP
Planning. In Robotics : Science & Systems (RSS), (Held
Virtually), 2021.

[Li et al.2006] Lihong Li, Thomas J. Walsh, and Mi-
chael L. Littman. Towards a Unified Theory of State
Abstraction for MDPs. In International Symposium on
Artificial Intelligence and Mathematics (ISAIM), Fort
Lauderdale, FL, USA, 2006.

[Mettler et al.2010] Berenice Mettler, Zhaodan Kong,
Chad Goerzen, and Matthew Whalley. Benchmarking
of obstacle field navigation algorithms for autonomous

JFPDA

©AFIA2022 178

helicopters. In Forum of the American Helicopter So-
ciety (AHS), Phoenix, AZ, USA, 2010.

[Ong et al.2010] Sylvie C. W. Ong, Shao Wei Png, David
Hsu, and Wee Sun Lee. Planning under Uncertainty for
Robotic Tasks with Mixed Observability. The Interna-
tional Journal of Robotics Research, 29(8) :1053–1068,
2010.

[Pineau et al.2006] Joelle Pineau, Geoffrey Gordon, and
Sebastian Thrun. Anytime Point-Based Approximations
for Large POMDPs. Journal of Artificial Intelligence
Research (JAIR), 27 :335–380, 2006.

[Silver and Veness2010] David Silver and Joel Veness.
Monte-Carlo Planning in Large POMDPs. In Advances
in Neural Information Processing Systems (NeurIPS),
Vancouver, BC, Canada, 2010.

JFPDA

179 ©AFIA2022

