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Abstract
We study an epidemic model for a constant population by taking into account four

compartments of the individuals characterizing their states of health. Each individual is
in one of the compartments susceptible (S); incubated – infected yet not infectious (C),
infected and infectious (I), and recovered – immune (R). An infection is ‘visible’ only
when an individual is in state I. Upon infection, an individual performs the transition
pathway S → C → I → R → S remaining in each compartments C, I, and R for certain
random waiting time tC , tI , tR, respectively. The waiting times for each compartment are
independent and drawn from specific probability density functions (PDFs) introducing
memory into the model. The first part of the paper is devoted to the macroscopic SCIRS
model. We derive memory evolution equations involving convolutions (time derivatives of
general fractional type). We consider several cases. The memoryless case is represented
by exponentially distributed waiting times. Cases of long waiting times with fat-tailed
waiting time distributions are considered as well where the SCIRS evolution equations
take the form of time-fractional ODEs. We obtain formulae for the endemic equilibrium
and a condition of its existence for cases when the waiting time PDFs have existing means.
We analyze the stability of healthy and endemic equilibria and derive conditions for which
the endemic state becomes oscillatory (Hopf) unstable. In the second part, we implement
a simple multiple random walker’s approach (microscopic model of Brownian motion of
Z independent walkers) with random SCIRS waiting times into computer simulations.
Infections occur with a certain probability by collisions of walkers in compartments I and
S. We compare the endemic states predicted in the macroscopic model with the numerical
results of the simulations and find accordance of high accuracy. We conclude that a
simple random walker’s approach offers an appropriate microscopic description for the
macroscopic model. SCIRS type models open a wide field of applications allowing the
identification of pertinent parameters governing the phenomenology of epidemic dynamics
such as extinction, convergence to a stable endemic equilibrium, or persistent oscillatory
behavior.
Keywords: Epidemic spreading, SCIRS compartment model with memory, ODE’s with
random delays, waiting time distribution, simple random walks, general fractional calculus
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1 Introduction
The origin of modern epidemic modeling started with the seminal work of Kermack and Mc
Kendrick almost a century ago [1]. They introduced the so called ‘SIR model’ where SIR
stands for three compartments characterizing the states of health of an individual, namely S =
susceptible, I = infected, R = recovered. The classical SIR model and various generalizations are
able to capture some of the features of epidemic spreading of infectious diseases as observed in
influenza, measles, mumps, and rubella. In the meantime a huge burst of compartment models
and generalizations of the SIR model have been introduced [2, 3].

While the interest in mathematical modeling of epidemic spreading was growing continuously,
it is unsurprising that the emergence of the Covid pandemics has launched an enhanced interest
and urgent need in advanced epidemic modeling [4]. Many models consider a set of nonlinear
ordinary differential equations (ODEs) for the time evolution of the compartment populations
where a new direction is about to emerge by combining these models with approaches inspired
by network science [6, 7, 5, 8, 9, 10, 11] and fractional dynamics [12, 13, 14, 15, 16].

It has turned out that in many cases epidemics including Covid exhibit quasi-periodic patterns
and spontaneous new outbreaks even after longer times of inactivity. Persistent oscillatory
characteristics in epidemic dynamics was already pointed out a long time ago in the work of
Soper [17]. Indeed, a major drawback of classical SIR type models without memory effects lies
in their incapacity to capture (persistent) oscillatory behavior.

The present paper aims to tackle this issue and is a generalization of recent works [10, 11].
In [11] is introduced a SIRS compartment model which takes into account a random duration
of immunity R allowing a delayed transition R → S. What is found that this model is able
to capture persistent oscillatory behavior in the number of infected individuals. This feature
comes along as oscillatory Hopf instability of the endemic state. In the first part of our paper
we extend this model to four compartments as relevant states of health in order to capture a
larger variety of epidemics. We consider the four compartments S – susceptible; C – infected
but not yet infectious (in the incubation phase); I– infected and infectious (ill); R– recovered
and immune. We assume random sojourn times (waiting times) tC , tI , tR an individual once
infected spends in each of the compartments C, I, R. The sojourn time tC in compartment C is
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interpreted as incubation time, i.e. the delay between infection and the outbreak of the disease.
The sojourn times tI is the duration of the disease (infected and infectious state) and tR indicates
the immunity period after recovery. It appears natural to assume that these variables are not
fixed constants, but individually fluctuating random variables drawn by specific distributions.
With these assumptions we derive the SCIRS evolution equations where we focus on several
pertinent situations of waiting times with existing and non-existing mean. For waiting time
probability density functions (PDFs) with existing mean we derive explicit formulae for the
endemic equilibrium and analyze its stability.

In the second part of the paper we combine our SCIRS model with a multiple random
walker’s approach which is implemented into computer simulations. We present a case study
and give numerical evidence that a simple random walk approach (‘Brownian motion’) offers an
appropriate description of the SCIRS dynamics with memory.

2 Four compartment model

2.1 Basic notions
We consider a constant population of Z = ZS + ZC + ZI + ZR individuals (‘random walkers’)
where ZS(t), ZC(t), ZI(t), ZR(t) indicate their numbers in the compartments S C I R at time
t. We consider here first a continuous time model for Z ≫ 1 walkers with the compartment
population fractions s(t) = ZS(t)

Z
, c(t) = ZC(t)

Z
, j(t) = ZI(t)

Z
, r(t) = ZR(t)

Z
. We allow for each

walker the following transition pathway:

S → C → I → R → S
Intuitively we infer that allowing for persistent oscillatory and (quasi-) periodic behavior it
is necessary to have a closed (cyclic) pathway S → . . . → S of transitions. We assume that
tC , tI , tR ≥ 0 are mutually independent random waiting times an individual spends (after
infection) in the compartments C, I, R drawn from specific probability density functions (PDFs)
which we prescribe by the kernels KC(t), KI(t), KR(t), respectively. These kernels have to be
causal functions1 with (read P as ‘probability’), for instance

P(tC ∈ [τ, τ + dτ ]) = KC(τ)dτ, tC > 0

indicates the probability that the incubation time tC ∈ [τ, τ + dτ ] which is clearly non-zero
only for τ ≥ 0 as tC ≥ 0. In other words: Given a walker has entered compartment C at
τ = 0, then KC(τ)dτ indicates the probability that this walker leaves compartment C during
the infinitesimal interval [τ, τ + dτ ] (by a transition C → I). We introduce the infection rate
A(t) = A(j(t), s(t), t) ≥ 0 (number of infections per walker and unit time or entry rate to the
incubated compartment C at time t having of units sec−1). We point out that A(t) is not a
known given function of time t but rather an implicit non-linear function of s(t), j(t), namely

A(t) = A[s(t), j(t)].

This quantity contains macroscopic information on the instantaneous number of collisions
of individuals in the ‘reactive compartments’ S and I and needs to be specified by model
assumptions. It is important to point out that A(t) does not depend on the fractions c(t), r(t)
of the ‘invisible’ compartments C and R.

We assume here the most simple nonlinear form A(t) = βj(t)s(t) where β > 0 is a constant
independent of time where β−1 introduces a characteristic time scale. β is also a macroscopic
measure for the infection probability in a collision of an S and an I walker. The microscopic
picture which we will invoke subsequently and implement into computer simulations indeed

1A function g(t) is called ‘causal’ if g(t) = 0 for t < 0, i.e. non-zero only for t ≥ 0.
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is that the infection rate is driven by random collisions between infected and susceptible
independent random walkers.

With these simple assumptions we can establish model equations governing the time evolution
of the fractions s(t), c(t), j(t), r(t). We consider the dynamics starting at time t = 0 with an
initial condition s(0) = 1 − j0, and j(0) = j0 (many healthy and a few infected walkers) and no
incubated or recovered walkers c(0) = r(0) = 0. Our (SCIRS)- model evolution equations have
the following general structure

d

dt
s(t) = −A(t) + (A ⋆ KC ⋆ KI ⋆ KR)(t)

d

dt
c(t) = A(t) − (A ⋆ KC)(t)

d

dt
j(t) = (A ⋆ KC)(t) − (A ⋆ KC ⋆ KI)(t)

d

dt
r(t) = (A ⋆ KC ⋆ KI)(t) − (A ⋆ KC ⋆ KI ⋆ KR)(t)

(1)

The sum of these rates is vanishing due to s(t)+c(t)+j(t)+r(t) = 1. In order that an epidemics
starts, it is necessary that the globally healthy state becomes unstable when the initial state is
close to the healthy state with j0 ∼ 1

Z
→ 0+, i.e. where for instance only one infected walker is

present at t = 0 (among a large population Z). We analyze the stability of the healthy state
subsequently in detail. In (1) we have employed the notation

(K ⋆ f)(t) =
∫ t

0
K(t − τ)f(τ)dτ, t ≥ 0 (2)

for convolutions of causal functions K(t), f(t). Be aware that convolutions commute and are
associative which can be seen by the representation (t ≥ 0) of the multiple convolution

(K1 ⋆ K2 ⋆ . . . ⋆ Kn)(t) =:
∫ ∞

−∞
. . .
∫ ∞

−∞
dτ1 . . . dτnδ(t − τ1 − . . . − τn)K1(τ1) . . . Kn(τn) (3)

where δ(. . .) indicates the Dirac δ-function and (3) is non-zero only for t ≥ 0 (causality of the
Ki(τ)). Introducing the Laplace transform of our kernels which we define as

K̂(λ) =
∫ ∞

0
e−λtK(t)dt

where λ indicates the Laplace variable. K(λ)
∣∣∣
λ=0

= 1 indicates that the kernels are normalized
PDFs. A further observation is worthy of mention. Any (multiple) convolution of PDFs gives
again a PDF. This can be easily seen by integrating (3) over time to yield one. Therefore the
kernels KC(t), (KC ⋆ KI)(t), (KC ⋆ KI ⋆ KR)(t) which appear in (1) all are (normalized and
causal) PDFs representing, respectively the densities of the random variables tC , tC + tI , and
tC + tI + tR. We can see in (1) that for each compartment where an individual remains for a
random duration an additional convolution occurs describing the delayed transition out of the
compartment. These delayed transitions introduce memory into the rates of individuals leaving
the compartments. We will give a careful account for this issue later (subsequent representation
(11)).

The interpretation of (1) is as follows. In the first line A(t) is the rate of infections (transitions
S → C) at time t. The second term (A ⋆ KC ⋆ KI ⋆ KR)(t) is the rate of individuals losing their
immunity (R → S) having undergone the full pathway of SCIRS transitions. In the second Eq.
of (1) A(t) re-appears as the entry rate to state C. The convolution (A ⋆ KC)(t) is the rate of
delayed transition C → I of individuals that fall ill at time t. This rate reappears in the third
line of (1) as entry rate into compartment I. Then (A ⋆ KC ⋆ KI)(t) is the rate of recovery I →
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R reoccurring in third equation as entry rate into compartment R. Finally (A ⋆ KC ⋆ KI ⋆ KR)(t)
is the rate of individuals losing their immunity (transition I → S) and re-appears in the first
equation as entry rate into S. Let us consider for a moment the second equation in (1) more
closely

d

dt
c(t) = A(t) −

∫ t

0
KC(t − τ)A(τ)dτ (4)

For our convenience we introduce the ‘survival probability’ ΦC,I,R(t) for individuals in compart-
ments C, I, R (also called ‘persistence probability’ or ‘survival function’), e.g. [14] (and many
others)

ΦC,I,R(t) = P(tC,I,R > t) =
∫ ∞

t
KC,I,R(τ)dτ = 1 −

∫ t

0
KC,I,R(τ)dτ (5)

indicating the probability that an individual which is entering compartment C, I, R, respectively
at t′ = 0 at time t′ = t still is (‘survives’) in this compartment. (5) is capturing all realizations
with tC,I,R > t where d

dt
ΦC,I,R(t) = −KC,I,R(t). We observe in this relation the initial condition

ΦC,I,R(0) = 1 as a consequence of the normalization of the waiting time PDFs and is telling
us that an individual is, with probability one, in a compartment at the instant when entering
it. Further we have ΦC,I,R(t → ∞) → 0+, i.e. an individual ‘survives’ only a finite time in
compartments C, I, R to enter eventually the susceptible state S. We hence can integrate (4)
and rewrite as

c(t) =
∫ t

0
ΦC(t − τ)A(τ)dτ = (ΦC ⋆ A)(t) (6)

where initial condition c(0) = 0 is assumed. We can also verify this relation by its Laplace
transform (subsequent second equation of (9)) and directly by differentiating this expression
with respect to t and using the initial condition ΦC(0) = 1. We interpret (6) as follows: A(τ)dτ
is the fraction of walkers entering C during [τ, τ + dτ ] and ΦC(t− τ) is the (survival-) probability
that this fraction still is in C after a delay of tC = t − τ , i.e. at time instant t where this
expression sums up over the complete history of entries into C from 0 to time t. With these
considerations we can rewrite our SCIRS Eqs. (1) in the equivalent integral form

s(t) = 1 − c(t) − j(t) − r(t)

c(t) = (ΦC ⋆ A)(t)

j(t) = j0 + (A ⋆ KC ⋆ ΦI)(t)

r(t) = (A ⋆ KC ⋆ KI ⋆ ΦR)(t)

, (t ≥ 0) (7)

where the initial conditions s(0) = 1 − j0, c(0) = 0, j(0) = j0 r(0) = 0 are assumed.

2.2 Memoryless case – exponentially distributed waiting times
It is worthy to consider exponential waiting time kernels KC,I,R(t) = ξC,I,Re−tξC,I,R (ξ−1

C,I,R =
⟨tC,I,R⟩) where the survival functions are also exponentials ΦC,I,R(t) = e−tξC,I,R thus KC,I,R(t) =
ξC,I,RΦC,I,R(t). Substituting this into (1) and accounting for (7) takes us to the particular simple
form without memory

d

dt
s(t) = −A(t) + ξR r(t)

d

dt
c(t) = A(t) − ξC c(t)

d

dt
j(t) = ξCc(t) − ξI [j(t) − j0]

d

dt
r(t) = ξI [j(t) − j0] − ξR r(t)

(t ≥ 0). (8)
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Indeed exponential densities stand out by the memoryless feature and the Markov property (see
textbooks, e.g. [18] and many others for details), thus the transition rates in (8) depend only on
the instantaneous state s(t), c(t), j(t), r(t) but not on the history of the evolution. Setting the
transition rates on the left hand side to zero yields straight-forwardly the endemic state which
we derive subsequently (Eqs. (21), (22)) for arbitrary waiting time kernels with existing means.

2.3 Arbitrary waiting time distributions with memory
To explore the general cases with memory consider now the equivalent representations (7) and
(1) in the Laplace space

ŝ(λ) = 1 − j0

λ
− Â(λ) [1 − K̂C(λ)K̂I(λ)K̂R(λ)]

λ

ĉ(λ) = Â(λ)(1 − K̂C(λ)
λ

ĵ(λ) = j0

λ
+ Â(λ)K̂C(λ)(1 − K̂I(λ)

λ

r̂(λ) = Â(λ)K̂C(λ)K̂I(λ)(1 − K̂R(λ)
λ

(9)

where all Laplace transforms (LTs) depend on Â(λ) of the (unknown) infection rate and
Φ̂C,I,R(λ) = (1−K̂C,I,R(λ)

λ
are the LTs of the survival probabilities. We further have that

ŝ(λ) + ĉ(λ) + ĵ(λ) + r̂(λ) = 1
λ

=
∫ ∞

0
e−λtdt

as we deal with a constant population. We observe that in the first Eq. of (9) the term
[1−K̂C(λ)K̂I(λ)K̂R(λ)]

λ
is the LT of the survival probability P[tC + tR + tI > t] (due to the PDF

(Kc ⋆ KI ⋆ kR)(t) of the random variable tC + tI + tR), corresponding to individuals ‘surviving’ in
one of the compartments C, I, R at time t. To shed more light on how the memory comes into
play we introduce a ‘memory operator’ (For our convenience we employ here a slightly modified
definition as in [14, 26].)2

M̂(λ) = K̂(λ)
Φ̂(λ)

= λ
K̂(λ)

1 − K̂(λ)
= λL̂(λ). (10)

Then reading K̂(λ) = M(λ)Φ̂(λ) as convolutions in the time domain we can rewrite our SCIRS
Eqs. (1) (in the Caputo sense) of general (fractional) derivatives (see [29, 15, 16] and Appendix)
as

d

dt
s(t) = −A(t) +

∫ t

0
LR(t − τ) d

dτ
r(τ)dτ

d

dt
c(t) = A(t) −

∫ t

0
LC(t − τ) d

dτ
c(τ)dτ

d

dt
j(t) =

∫ t

0
LC(t − τ) d

dτ
c(τ)dτ −

∫ t

0
LI(t − τ) d

dτ
j(τ)dτ

d

dt
r(t) =

∫ t

0
LI(t − τ) d

dτ
j(τ)dτ −

∫ t

0
LR(t − τ) d

dτ
r(τ)dτ.

(11)

These equations show that the transition rates at time t have a complete memory of their
previous values. Alternatively we can write (11) in the Riemann-Liouville manner of general

2We suppress here subscripts C, I, R.
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fractional derivatives (see Appendix). For exponential waiting time PDFs Kexp(t) = ξe−ξt we
have M̂exp(λ) = ξ thus Mexp(t) = ξδ(t) (i.e. is null for t > 0 indicating lack of memory) and
we easily recover above memoryless SCIRS Eqs. (8).

2.4 Long waiting times – the time fractional case
Representation (11) is especially useful when we deal with fat-tailed waiting time PDFs without
existing means such as the Mittag-Leffler waiting-time PDF (ML-PDF) which (see [28] and
references therein for explicit formulas). The ML-PDF is a fractional generalization of the
exponential PDF and has the LT [14, 26] (and many others)

K̃β(λ) = ξ

ξ + λβ
, β ∈ (0, 1), ξ > 0 (12)

where due to the fat tail the mean waiting time − d
dλ

K̃β(λ)
∣∣∣
λ=0

→ ∞ does not exist as β ∈ (0, 1)
(occurrence of extremely long waiting times). For β = 1 (12) retrieves the LT of the exponential
density. Expanding the LT for λ small K̃β(λ) ∼ 1 − λβ

ξ
, Laplace inversion shows that ML-PDF

has a fat power law tail Kβ(t) ∼ β
Γ(1−β)

t−β−1

ξ
(t → ∞) corresponding to a long memory. For the

ML-case we have for (10)
L̂β(λ) = ξλ−β (13)

where λ−β corresponds to the Riemann-Liouville fractional integral of degree β and M̂β(λ) =
ξλ1−β the Riemann -Liouville (R-L) fractional derivative of order 1 − β. Denoting Dν

t the R-L
fractional derivative where it is sufficient here to consider the range µ ∈ (0, 1) defined by [28]

Dµ
t · f(t) = d

dt

∫ t

0

(t − τ)−µ

Γ(1 − µ) f(τ)dτ, µ ∈ (0, 1) (14)

having LT λµf̂(λ) and with the definition of the Caputo fractional derivative

dµ

dtµ
f(t) =

∫ t

0

(t − τ)−µ

Γ(1 − µ)
d

dτ
f(τ)dτ = Dµ

t · f(t) − f(0) t−µ

Γ(1 − µ) , µ ∈ (0, 1) (15)

with LT λµf̂(λ) − f(0)λµ−1. Consult the Appendix and [29] for the connections with general
(fractional) derivatives. In the limit µ → 1− both Caputo and RL-fractional derivatives converge
to the first order standard derivative where t−µ

Γ(1−µ) → δ(t). Using the feature

dµ

dtµ
[f(t) − f(0)] = dµ

dtµ
f(t) = Dµ

t · [f(t) − f(0)] (16)

we can then write (11) when all waiting times tC,I,R are drawn from ML PDFs in terms of
Caputo fractional derivatives as

d

dt
s(t) = −A(t) + ξR

d1−β

dt1−β
r(t)

d

dt
c(t) = A(t) − ξC

d1−β

dt1−β
c(t)

d

dt
j(t) = ξC

d1−β

dt1−β
c(t) − ξI

d1−β

dt1−β
j(t)

d

dt
r(t) = ξI

d1−β

dt1−β
j(t) − ξR

d1−β

dt1−β
r(t)

(17)

retrieving for β = 1 the Eqs. (8) of exponential waiting time PDFs (see (15), (16)). Indeed the
time-fractional case with fat-tailed waiting time distributions is of utmost importance deserving
further thorough investigation, see Appendix B for a brief account.
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2.5 Endemic equilibrium for waiting time PDFs with existing mean
Here we confine ourselves to waiting time PDFs with existing means. The endemic state is
defined as the long-time limit of the evolution. That is we seek a stationary (constant solution)
[s(t), c(t), j(t), r(t)] → [Se, Ce, Je, Re] and A(t) → Ae = βJeSe which also is the asymptotic
solution for t → ∞ if the endemic state is stable. This solution can be obtained from Eqs. (9)
in the limit of small λ, where these equations then take (with ŝ(λ) → Se/λ,..) the form

Se = 1 − j0 − lim
λ→0

Â(λ)[1 − KC(λ)KI(λ)K̂R(λ)]

Ce = lim
λ→0

Â(λ)[1 − K̂C(λ)]

Je = j0 + lim
λ→0

Â(λ)K̂C(λ)[1 − K̂I(λ)]

Re = lim
λ→0

Â(λ)K̂C(λ)K̂I(λ)[1 − K̂R(λ)]

(18)

with
Â(λ) ≈ Ae

λ
+ A0 + A1λ + . . .

which has to be considered for λ → 0 where the lowest order in λ determines the endemic
equilibrium. Now with

K̂(λ) =
∫ ∞

0
e−λτ K(τ)dτ ≈

∫ ∞

0
[1 − λτ ]K(τ)dτ + o(λ) = 1 − λ⟨τ⟩ + o(λ) (19)

where with ⟨..⟩ we denote mean values and o(λ) stands for the Landau symbol. Thus we have

K̂C,I,R(λ) = 1 − λ⟨tC,I,R⟩ + o(λ) (20)

and K̂C(λ)K̂I(λ)K̂R(λ) = 1 − λ⟨tC + tI + tR⟩ + o(λ) = 1 − λ⟨T ⟩ + o(λ) and as said we assume
that the means exist. Therefore,

lim
λ→0

Φ̂C,I,R(λ) = lim
λ→0

(1 − K̂C,I,R(λ)
λ

= − d

dλ
K̂C,I,R(λ)

∣∣∣
λ=0

= ⟨tC,I,R⟩

Then we get straight-forwardly for the lowest orders in λ the endemic equilibrium as follows

Se = 1 − j0 − Ae ⟨T ⟩

Ce = Ae ⟨tC⟩

Je = j0 + Ae⟨tI⟩

Re = Ae ⟨tR⟩

(21)

and with our assumption Ae = βJeSe we arrive at

Se(Je) = 1 − j0

1 + β⟨ T ⟩Je

Ce(Je) = (1 − j0)β⟨tC⟩Je

1 + β⟨ T ⟩Je

Je = j0 + β⟨tI⟩Je
1 − j0

1 + β⟨T ⟩Je

Re(Je) = (1 − j0)β⟨tR⟩Je

1 + β⟨ T ⟩Je

.

(22)
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Consider now the third relation in (22) which is an implicit equation for Je leading to

J2
e − 2aJe − b = 0 (23)

where we have introduced

a = j0

2 + β⟨tI⟩(1 − j0) − 1
2β⟨T ⟩

= ⟨tR + tC⟩)j0

2⟨T ⟩
+ R0 − 1

2β⟨T ⟩
, R0 = β⟨tI⟩

b = j0

β⟨T ⟩
.

(24)

The quantity R0 = β⟨tI⟩ can be interpreted as the ‘basic reproduction number’ and is a crucial
(control-) parameter. (23) has the roots

(Je)1,2 = a ±
√

a2 + b. (25)

Clearly the endemic equilibrium exists only for those roots with Je ∈ [0, 1] where the full endemic
state then is determined by (22). For b = 0 (j0 = 0) one root is zero corresponding to the healthy
state Se = 1. The second root is Je(j0 = 0) = 2a = R0−1

β⟨T ⟩ ∈ [0, 1) for R0 = β⟨tI⟩ > 1 which
therefore is the condition of the existence of an endemic state for j0 = 0. In Appendix B we show
for waiting time PDFs with existing means that R0 > 1 also is the condition that the healthy
state is unstable thus an epidemic can start to spread. We also show there that the healthy
state is always unstable if KI(t) has a fat tail (i.e. infinite mean). Indeed for ⟨tI⟩ → ∞ (β, tC , tR

kept finite) we have R0 → ∞ thus Je(j0 = 0) ∼ ⟨tI⟩/⟨T ⟩ → 1 and for β → ∞ (⟨tI⟩, ⟨tC⟩, ⟨tR⟩
finite) we get Je(j0 = 0) → ⟨tI⟩/⟨T ⟩.

0.0 0.2 0.4 0.6 0.8 1.0
j0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

J e

Endemic values Je for different R0 > 1

R0 = 2
R0 = 5
R0 = 15
R0 = 100

Figure 1: Endemic value Je(j0, R0) vs j0 from Eq. (26) with (24) for different values of R0 > 1
where in all curves we have put ⟨tC⟩ = ⟨tR⟩ = 5, ⟨tI⟩ = 20.

Consider now j0 > 0 and R0 > 1. Then we have a < 1 as ⟨tR+tC⟩j0
2T

< 1
2 and R0−1

2β⟨T ⟩ < 1
2 and

b < 1 thus only the positive root is

(Je)1 = a +
√

a2 + b (26)
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whereas the other (Je)2 = a −
√

a2 + b < 0. The endemic state exists if (Je)1 ≤ 1. As a, b are
monotonously increasing functions of j0 let us check the root for the maximum value j0 = 1
where a(j0 = 1) = 1

2 − 1
2βT

= 1
2(1 − ϵ) and b(j0 = 1) = 1

β⟨T ⟩ = ϵ. Then we get

Je(j0)
∣∣∣
j0=1

= 1
2(1 − ϵ +

√
(1 − ϵ)2 + 4ϵ =

1 − ϵ +
√

(1 + ϵ)2

2 = 1 (27)

i.e. the initial and endemic state coincide j0 = Je(1) = 1 where we infer that j = 1 (for R0 > 1)
should be a stable endemic state. From the monotony of Je(j0) (see (24)) we can see that

R0 − 1
β⟨T ⟩

≤ Je(j0) ≤ Je(j0)
∣∣∣
j0=1

= 1

i.e. in the entire range j0 ∈ [0, 1] the endemic value is given by the positive root (26) together
with (24). This behavior is shown in the plot of Figure 1 where we draw Je versus j0 for different
values of R0 > 1. One can see that Je is monotonously increasing with R0 when ⟨tR⟩, ⟨tC⟩, j0
are kept constant.

We focus now on initial conditions s0 = 1− and j0 = 0+ (healthy state). The endemic
equilibrium (22) then writes

Se = 1
R0

Ce = R0 − 1
R0

⟨tC⟩
⟨T ⟩

Je = R0 − 1
R0

⟨tI⟩
⟨T ⟩

Re = R0 − 1
R0

⟨tR⟩
⟨T ⟩

(⟨T ⟩ = ⟨tC + tI + tR⟩, R0 = β⟨tI⟩) (28)

and exists solely for R0 > 1 depending only from R0 and the mean waiting times ⟨tC,I,R⟩. We
may consider the following limiting cases.
1) ⟨tR⟩ → ∞ (infinitely long immunity), ⟨tC⟩, ⟨tI⟩, β are kept constant:
Then we have ⟨tR⟩

⟨T ⟩ → 1 and ⟨tC⟩
⟨T ⟩ , ⟨tI⟩

⟨T ⟩ → 0 and hence Se = 1
R0

remains unchanged thus Ce, Je → 0
and Re → R0−1

R0
with Se + Re = 1 which corresponds to a fully healthy population (susceptible

or immune) with Ce + Je → 0, i.e. the disease in the long time limit dies out.
2) In the same way the limits ⟨tI⟩ → ∞ (long illness time) and and long incubation time ⟨tC⟩ →
∞, respectively, are straightforward, where the endemic values of respective compartments with
infinite waiting times tend to R0−1

R0
with unchanged Se = 1

R0
. This corresponds to the fact that

the individuals remain eventually trapped in the respective compartments (C or I) with infinite
waiting times thus the cyclic transition pathway S → . . . → S is suppressed. We infer that in
the limiting cases 1), 2) the endemic states are stable similar to the class of classical SIR models
and do not exhibit oscillatory instabilities.

3 δ-distributed waiting times
An instructive case consists in the deterministic limit when the sojourn times in the compartments
for all walkers are constant. Then the waiting time PDFs are Dirac δ-functions

KC,I,R(t) = δ(t − tC,I,R) (29)

with LTs K̂C,I,R(λ) = e−λtC,I,R . Recall now the convolution of two δ-kernels

δ(t − t1) ⋆ δ(t − t1) = δ(t − t1 − t2)
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which yields a new δ-kernel with a shifted peak at t1 + t2. With this observation we have
(KC ⋆ KI)(t) = δ(t − tC − tI) and (KC ⋆ KI ⋆ KR)(t) = δ(t − tC − tI − tR). Then the SCIRS
equations (1) read

d
dt

s(t) = −A(t) + A(t − tC − tI − tR)

d
dt

c(t) = A(t) − A(t − tC)

d
dt

j(t) = A(t − tC) − A(t − tC − tI)

d
dt

r(t) = A(t − tC − tI) − A(t − tC − tI − tR).

(30)

Note that A(t) = A[j(t), s(t)] is causal, i.e. all functions with negative time arguments are
vanishing. For t < tC the infected individuals accumulate in the compartment C and for
t ≥ tC some start to leave compartment C to enter I with the delayed rate A(t − tC). Then for
t ≥ tC + tI the first individuals are healed starting transitions I → R with rate A(t − tC − tI).
Finally for t ≥ tC − tI − tR the transitions R → S due to individuals losing their immunity
occur. From these observations we can infer that

c(t) =
∫ t

0
A(τ) dτ − Θ(t − tC)

∫ t−tC

0
A(τ) dτ

j(t) = j0 + Θ(t − tC)
∫ t−tC

0
A(τ) dτ − Θ(t − tC − tI)

∫ t−tC−tI

0
A(τ) dτ

r(t) = Θ(t − tC − tI)
∫ t−tC−tI

0
A(τ) dτ − Θ(t − tC − tI − tR)

∫ t−tC−tI−tR

0
A(τ) dτ

(31)

where Θ(τ) denotes the Heaviside unit step function defined as Θ(τ) = 1 for τ ≥ 0 and Θ(τ) = 0
for τ < 0. We can see for sharp waiting times the Heaviside functions ‘switch on and off’ the
respective transitions between compartments. It is worthy of mention that (31) is consistent
with (7) when we take into account the survival probabilities

ΦC,I,R(t) =
∫ ∞

t
δ(τ − tC,I,R)dτ = Θ(tC,I,R − t) = 1 − Θ(t − tC,I,R) (32)

i.e. ΦC,I,R(t) = 1 for t < tC,I,R (‘survival’ in C, I, R, respectively) and ΦC,I,R(t) = 0 for
t > tC,I,R (‘death’, having left C, I, R, respectively). From Eqs. (31) we find the endemic
equilibrium Se, Ce, Je, Re representing a stationary solution of (30). Plugging the stationary value
Ae = βJeSe into (31) we re-arrive at Eqs. (22) with tC,I,R = ⟨tC,I,R⟩ for Dirac δ-distributions.

3.1 Stability analysis of endemic and healthy states
Here we investigate the stability of the endemic equilibrium for healthy initial conditions s0 = 1
(j0 = 0) for δ-distributed waiting times. To this end we set

s(t) = Se + ueµt

c(t) = Ce + veµt

j(t) = Je + weµt

r(t) = Re + xeµt

(33)

where u, v, w, x are ‘small’ time independent constants. Clearly at least one of these equations is
redundant as s + c + j + r = 1. Then it follows that A(t) ≈ Ae + A0(u, w)eµt where we take into
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account only the linear orders in u, v, w, x. Therefore, Ae = βJeSe and A0(u, w) = β(uJe + wSe).
Plugging this into (30) leads to the following system of equations

A0(u, w)(1 − e−µT ) + µu = 0

A0(u, w)(1 − e−µtC ) − µv = 0

A0(u, w)e−µtC (1 − e−µtI ) − µw = 0

A0(u, w)e−µ(tC+tI)(1 − e−µtR) − xµ = 0.

(34)

We can eliminate v = A0(u, w)1−e−µtC

µ
and x = A0(u, w)e−µ(tC+tI) 1−e−µtR

µ
which are uniquely

determined by u and w. Therefore the solvability condition is determined uniquely by the
first and third equation for s and j containing only the coefficients u and w. The complete
determinant of the system (34) leads to∥∥∥∥∥∥∥

βJe(1 − e−µT ) + µ; βSe(1 − e−µT )

βJee
−µtC (1 − e−µtI ); βSee

−µtC (1 − e−µtI ) − µ

∥∥∥∥∥∥∥µ2 = 0. (35)

We have µ = 0 as a threefold eigenvalue and with one non-zero eigenvalue µ1 determined by

µ = βSee
−µtC (1 − e−µtI ) − βJe(1 − e−µT ) (36)

and hence µ1 = µ1(β, j0, tC , tI , tR). However, we will see that we can reduce the set of pertinent
parameters. For the outbreak of an epidemic, it is necessary that the healthy (initial) state
s0 = 1 becomes unstable. To explore this issue we consider s(t) = s0 + ueµt and j(t) = j0 + weµt

with s0 = 1, j0 = 0. Then we get the solvability condition by replacing in (35) Je → j0 = 0 and
Se → s0 = 1 in the form

µ̃ = R0e
−µ̃t1 [1 − e−µ̃) = g(µ̃, R0) (37)

where we introduce
µ̃ = tIµ, t1 = tC

tI

, t2 = T

tI

= 1 + t1 + tR

tI

. (38)

The healthy state becomes unstable if there is a positive solution µ̃0 > 0 of this equation. Clearly
there is a positive root only if d

dµ̃
g(µ̃, R0)|µ̃=0 = R0 > 1, otherwise the healthy state is stable.

This justifies our interpretation of R0 as the basic reproduction number where the healthy state
is unstable for R0 > 1 thus the epidemic starts to spread. In Appendix B we show that the
condition for an outbreak R0 = β⟨tI⟩ > 1 holds true for waiting time PDFs with existing means.
This can be seen more closely as the right-hand side g(µ̃, R0) of (37) is a concave function of µ̃
(see Figure 2). We have for µ̃ small the expansion g(µ̃, R0) = R0µ̃ + O(µ̃2) > µ̃ only if R0 > 1
and always g(µ̃, R0) → 0 < µ̃ as µ → ∞. Therefore exists a positive root µ0(R0) > 0 only
for R0 > 1. This behavior is sown in Figure 2 where µ0(R0) increases monotonically with R0
enhancing the (non-persistent) exponential growth of j(t) at the outbreak of the epidemic.
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Figure 2: We depict g(µ̃, R0) = R0e
−µ̃t1(1 − e−µ̃) for different values of R0. For R0 = 0.9 (lower

curve) the healthy state is stable. In the other curves R0 > 1 the healthy state is unstable. In
all plots we chose t1 = tC/tI = 0.5.

Returning to the stability analysis of the endemic state we re-scale (36) with (38) as

µ̃ = R0See
−µ̃t1(1 − e−µ̃) − R0Je(1 − e−µ̃t2). (39)

At threshold of an oscillatory instability, the eigenvalue is purely imaginary. Plugging µ̃ = iω
into (39) and separating real and imaginary parts yields the two conditions

f1(r0, ω) = cos ωt1 − cos ω(t1 + 1) − r0(1 − cos ωt2) = 0

f2(r0, ω) = ω + sin ωt1 − sin ω(t1 + 1) + r0 sin ωt2 = 0
(40)

which need to be both simultaneously fulfilled for an oscillatory (Hopf) instability where we
introduced the reduced control parameter r0 = JeR0 = (R0 − 1)/t2.
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Figure 3: Left: the intersection of the contour lines of f1, f2 = 0 of (40) yield (ω, r0) ≈ (0.5, 0.063).
Right: numerical solutions of the fully nonlinear delay system (30) for R0 = 1.5 (top left) to
R0 = 2.0 in the (j, s)-plane. A limit cycle is born at R0 ≈ 1.63.

In Figure 3 (left frame) we plot the zero lines of fi in the r0, ω plane for t1 = 1/2, t2 = 10.
They intersect at r0 ≈ 0.063, ω = 0.35, corresponding to a critical R0 ≈ 1.63. The right frame
of Figure 3 shows numerical solutions of the full delay system (30) with the same parameters
t1, t2. The system is solved using an Euler forward scheme with fixed time step δt = 10−4. The
initial conditions are j0 = 10−4, s0 = 1 − j0, r0 = c0 = 0 close to the healthy state. We varied
R0 from 1.5 (subcritical, upper left) to 2.0 (lower right frame). Clearly for R0 = 1.7 the stable
focus turns into a limit cycle that becomes wider with increasing R0.

4 Microscopic model and computer simulations

4.1 Simple random walk model
To explore the SCIRS phenomenology we combine this model with a multiple random walker’s
approach which we implemented into a Python code [30]. In this random walk Z walkers
navigate independently on a periodic two dimensional lattice. Each walker performs at integer
times t = 0, 1, 2, . . . instantaneous independent random steps to a closest neighbour lattice point
(simple walk). The position of walker j (j = 1, . . . Z) can be described by the random variables

xj(t) = xj(t − 1) + η(j)
x (t)

yj(t) = yj(t − 1) + η(j)
y (t)

, t = 1, 2, . . . (41)

with the random steps(
η(j)

x (t), η(j)
y (t)

)
= (1, 0); (−1, 0); (0, 1); (0, −1) occurring with probability 1

4 .

This simple multi-walkers motion is a microscopic model with scaling limits to (standard)
Brownian motion [27]. We assume a Nx = Ny = N -periodic lattice with x(j)(t) = x(j)(t) mod N ,
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y(j)(t) = y(j)(t) mod N for the position of each walker j. In order to connect the random walk
with the epidemic dynamics we apply the following infection rule [11]: If a walker j ∈ I meets a
walker k ∈ S on the same lattice point (‘collision’ of an infected–infectious and a susceptible
walker), i.e.

j ∈ I ∧ k ∈ S

∧ xj(t) = xk(t)

∧ yj(t) = yk(t)

(42)

then the susceptible walker k gets infected with probability Pinf and undergoes an instantaneous
transition S → C followed by the transition pathway as described previously. The infection
probability Pinf is constant for all walkers and time independent. The random paths of the
walkers are not affected by transitions between the compartments or ’collisions’ of walkers.
In the simulations at each integer time instant t we count the populations ZS,C,I,R(t) in the
compartments where the total population Z = ZS(t) + ZC(t) + ZI(t) + ZR(t) remains constant
over time. As in the macroscopic model we focus on the fractions s(t) = ZS(t)/Z, c(t) =
ZC(t)/Z, j(t) = ZI(t)/Z, r(t) = ZR(t)/Z.

We implement the mutually independent waiting times tC,I,R as random numbers drawn
from specific Gamma PDFs KC,I,R(t). The Gamma-distribution provides sufficient flexibility to
generate a wide range of possible behaviors such as sharp δ-peaks, broadly scattered waiting
times with a maximum or a monotonically decreasing PDF. The Gamma (also called Erlang-)
PDF writes

Kξ,α(τ) = ξατα−1

Γ(α) e−ξτ , α, ξ > 0 (43)

where α is the so-called shape parameter and 1/ξ the time scale parameter. The Gamma PDF
has a maximum for α > 1 at tm = α−1

ξ
and is monotonically decreasing for α ≤ 1 and weakly

singular at t = 0 for α < 1. For α = 1 we get the exponential PDF Kξ,1(τ) = ξe−ξτ . Some cases
of Gamma PDFs are drawn in histograms of Figure 4. Useful is its Laplace transform

K̂ξ,α(λ) =
∫ ∞

0
e−λτ Kξ,α(τ)dτ = ξα

(λ + ξ)α
(44)

from which we can easily retrieve
K̂ξ,α(λ)

∣∣∣
λ=0

= 1 (normalization), ⟨t⟩ = − d
dλ

K̂ξ,α(λ)
∣∣∣
λ=0

= α
ξ

(mean waiting time), and
V = ⟨t2⟩ − ⟨t⟩2 = α

ξ2 (variance). We use in the simulations to generate constant (sharp) waiting
times the feature, e.g. [11]

lim
ξ→∞

Kξ,α=ξτ0(τ) = δ(t − τ0) (45)

where the mean τ0 = ⟨τ⟩ is kept constant in this limit and the variance is vanishing. This limit
is easily seen in the Laplace space

lim
ξ→∞

K̂ξ,ξτ0(τ) = lim
ξ→∞

(
1 + λ

ξ

)−ξτ0

= e−τ0λ =
∫ ∞

0
e−λtδ(t − τ0)dt. (46)

4.2 Validation of the macroscopic SCIRS model and case study
In the simulations we remove unimportant fluctuations by recording the ensemble averaged3

compartment populations ⟨s(t)⟩, ⟨c(t)⟩, ⟨r(t)⟩, ⟨j(t)⟩. We average numerically over a number
of equivalent random walk realizations with identical parameters, waiting time distributions
and observation times. Each realization employs different random numbers (‘python seeds’)
for the waiting times and random walk. We perform a case study to validate the macroscopic

3We denote here ensemble averages of random functions B(t) with ⟨B(t)⟩.
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Eqs. (28) for the endemic equilibrium which exists for R0 = βtI > 1. We realize ‘natural’ initial
conditions close to the healthy state with one infected walker (in compartment I) and Z − 1
susceptible walkers at t = 0 (start of the experiment). In all computer experiments the walkers
have random initial positions on the lattice. We determine the endemic equilibrium values
numerically by using the asymptotic relation

[Se, Ce, Je, Re]num(t) ≈ 1
t

t∑
r=1

⟨[s(r), c(t), j(t), r(t)]⟩ (47)

converging for t → ∞ to the endemic state Se, Ce, Je, Re if it exists. We measure the accordance
of our macroscopic endemic equations (28) with the random walk approach by computing the
ratios of the numerically determined endemic values and the values computed with (28)

rC = (Se)num

[1−(Se)num]⟨tC⟩/⟨T ⟩
rI = (Je)num

[1−(Se)num]⟨tI⟩/⟨T ⟩
rR = (Re)num

[1−(Se)num]⟨tR⟩/⟨T ⟩

(48)

by employing the numerically determined Se. In all simulations with existing endemic equilibria
and sufficiently large observation time the ratios rC,I,R ≈ 1 + O(10−2) are up to a few percent
close to one, confirming impressively the prediction Ce : Je : Re = ⟨tC⟩ : ⟨tI⟩ : ⟨tI⟩ of the
macroscopic model Eqs. (28). In the following discussion we give numerical evidence that our
macroscopic SCIRS model well suits with the microscopic random walk approach.
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Figure 4: Average population fractions over 10 random walk realizations with Z = 100, N = 11
(density Z/N2 ≈ 0.83), Pinf = 0.9 and Gamma distributed waiting times having the means
⟨tC⟩ = 5, ⟨tI⟩ = 10, ⟨tR⟩ = 35, ξC = 0.1, ξI = 0.2, ξR = 0.3. By using Eq. (47) for the numerical
evaluation we get (dashed lines) Se ≈ 0.31, Ce ≈ 0.075, Je ≈ 0.14, Re ≈ 0.48 and with Eq. (48)
we have rC ≈ 1.08, rI ≈ 1.03, rR ≈ 0.98. We depict the corresponding Gamma distributed
waiting times tC,I,R in three histograms with the parameters used in this simulation.

In the experiment of Figure 4 the waiting times are broadly scattered and distributed by
Gamma distributions of different parameters. For the chosen parameters the epidemic dynamics
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converges rapidly to the endemic states where the ratio Ce : Je : Re = ⟨tC⟩ : ⟨tI⟩ : ⟨tI⟩ predicted
by Eqs. (28).
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Figure 5: (a) Average over 5 random walk realizations and (δ-distributed) waiting times
tC = tI = tR = 10 (T = 30) with Z = 500, N = 11 (density Z/N2 ≈ 4.13), Pinf = 0.9. We have
small Se ≈ 0.04 (R0 ≈ 24, 39) and Ce = Je = Re ≈ 0.32 ≈ 1

3 (dashed lines).

In Figure 5 we have equal δ-distributed waiting times and very large R0. The measures (48) are
rC,I,R ≈ (1, 01, 1, 0.99) close to one and indicate excellent accordance with Eqs. (28) although
the observation time is not very large. In this plot (blue dashed line) Se is slightly overestimated
as (47) is an asymptotic relation holding for large t.
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Figure 6: δ-distributed (frame on the left) and exponentially distributed waiting times (frame
on the right) with Z = 150, N = 21 (density Z/N2 ≈ 0.34), Pinf = 0.9, mean incubation time
⟨tC⟩ = 10, ⟨tI⟩ = 100, ⟨tR⟩ = 50.
Endemic state (δ-distributed waiting times, dashed lines figure on the left): Se ≈ 0.10 (R0 ≈
9.68), Ce ≈ 0.06, Je ≈ 0.56, Re ≈ 0.27,
rC ≈ 0.07, rI ≈ 1.00, rR = 0.98.
Endemic state (exponential waiting times, dashed lines figure on the right): Se ≈ 0.16 (R0 ≈
6.01), Ce ≈ 0.06, Je ≈ 0.52, Re ≈ 0.26
rC ≈ 1.07, rI ≈ 1.00, rR ≈ 0.98

The depicted time evolutions of Figures 6 exhibit for δ-distributed waiting times slightly
attenuated oscillations. This indicates that this case is close to an oscillatory (Hopf-) instability.
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We approach this instability by slightly reducing the walkers density (reducing R0). The
corresponding persistent oscillatory behavior is shown in the left frame of Figure 7.
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Figure 7: Left frame: δ-distributed waiting times, all parameters as in the left frame of Figure 6
but with Z = 140 to have a slightly lower density to approach the oscillatory (Hopf) instability
(density Z/N2 ≈ 0.32). Endemic values: Se ≈ 0.11 (R0 ≈ 9.09), Ce ≈ 0.06, Je ≈ 0.56, Re ≈ 0.26
rC ≈ 1.07, rI ≈ 1.01, rR ≈ 0.96.
Right frame: Identical parameters (including density) as for the left frame but with exponentially
distributed tC (with ⟨tC⟩ = 10), Gamma-distributed tR with ξR = 0.1 and ⟨tR⟩ = 50 and tI is
δ-distributed (tI = 100). The different types of distributions decrease slightly Se ≈ 0.09 with
increasing R0 ≈ 10.95 compared to the left frame leading to attenuated oscillations. Other
endemic values Ce ≈ 0.06, Je ≈ 0.57, Re ≈ 0.28,
rC ≈ 1.08, rI ≈ 1.00, rR ≈ 0.97

Both plots in Figure 7 differ by changing to exponentially distributed tC , and Gamma distributed
tR. All other parameters including the density are identical in both frames. The left frame
exhibits an Hopf unstable persistent oscillatory behavior. The resulting Se of the right frame is
slightly lower increasing R0 and leading to attenuation of the Hopf oscillations. This demonstrates
as both plots employ identical parameters but different waiting time PDFs that R0 also depends
on further characteristics such as for instance the variance.

Figure 8: Numerical solution of the ODE model (30) with the parameters of Figure 7 (left
frame) and R0 = 9.1, j0 = 0.01, s0 = 0.99, c0 = r0 = 0. The color code is the same as in Figure
7.

The plot in Figure 8 shows a numerical solution of the macroscopic system (30) for the same
parameters as in (frames on the left) of Figures 6 and 7. The at least qualitative similarity to
the microscopic result is impressive (see especially left frame of Figure 6 exhibiting attenuated
oscillations). In both models the number of infectious dominates due to the relatively long
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infection time. In the long time limit the oscillations are damped and the endemic equilibrium
is asymptotically reached.

0 500 1000 1500 2000 2500 3000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pa
rtm

en
t f

ra
ct

io
ns

Means over 10 realisations
S, Se
C, Ce
J, Je
R, Re

Figure 9: Gamma distributed waiting times. Same parameters as in Figure 6 except ξC = 0.5,
ξI = 0.2, ξR = 0.01,
Endemic state (dashed lines): Se ≈ 0.07 (R0 ≈ 14.09), Ce ≈ 0.06, Je ≈ 0.58, Re ≈ 0.28
rC ≈ 1.06, rI ≈ 1.00, RR ≈ 0.97.
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Figure 10: Left frame: δ-distributed waiting times all parameters are identical as in the right
frame, except ξC,I,R = 104 (generating the δ-distribution, see (45)). Endemic values (dashed
lines): Se ≈ 0.15(R0 = 1/Se ≈ 6.59), Ce ≈ 0.6, Je ≈ 0.53, Re ≈ 0.25.
rC ≈ 1.15, rI ≈ 1.00, rR ≈ 0.96.
Right frame: All waiting times are Gamma distributed where their means are identical with
those of the left frame with ⟨tC⟩ = 10, ξC = 0.1, ⟨tI⟩ = 100, ξI = 0.1 (αI = 10), ⟨tR⟩ = 50,
ξR = 0.05, Z = 150, N = 21 (density Z/N2 ≈ 0.34), Pinf = 0.9,
Se ≈ 0.06(R0 = 1/Se ≈ 15.91), Ce ≈ 0.06, Je ≈ 0.58, Re ≈ 0.29,
rC ≈ 1.06, rI ≈ 0.99, rR ≈ 0.99.

In the simulations of Figures 9 and 10 we consider various combinations of waiting time
distributions. In Figure 10 we compare δ-distributed waiting times and Gamma distributed
waiting times with the same means. In the left frame rC has with 15% a relative large deviation
from Eq. (28). This can be explained as as (47) is an asymptotic relation converging for large
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t to the endemic values where in the left frame the time is not very large. In the right frame
the time is increased thus all rC,I,R are very close to one indicating excellent accordance with
Eq. (28). The slightly different absolute values are due to slightly different R0 = 1/Se despite
all parameters Pinf , Z, N are identical. This confirms our observation in Figures 7 that R0
depends on further characteristics of the waiting time PDFs such as for instance their variances.

Figure 11: Numerical solution of the ODE model (30) with the parameters of Figure 10 (left)
and R0 = 6.6, j0 = 0.01, s0 = 0.99, c0 = r0 = 0.

Figure 11 shows again the numerical solution of the macroscopic system (30) which are here for
the smaller R0 again in good agreement with the averaged microscopic behavior.

5 Conclusions
We studied a macroscopic four compartment SCIRS model with memory effects introduced by
random compartmental waiting times. We derived evolution equations for different arbitrary
waiting time distributions and considered pertinent cases such as exponential (memoryless),
Mittag Leffler (fat-tailed with long memory), and sharp (δ-distributed) waiting times. We
highlighted connections with general fractional calculus and showed that the evolution equations
are of general (fractional) type (Eqs. (11), (49)). For waiting time PDFs with existing mean
we obtained exact formulas for the endemic equilibrium and conditions of its existence and
identified the ‘basic reproduction factor’ R0 = β⟨tI⟩ as crucial parameter controlling whether or
not a SCIRS epidemic starts to spread.

We also found (Appendix B) that the healthy state always is unstable if tI has a fat-tailed
PDF regardless of the distributions of tC,R. In this case R0 and ⟨tI⟩ do not exist. We interpret
this instability by the occurrence of very long infectious periods tI strongly boosting the epidemic
spreading. Due to their general importance, the time-fractional cases call for further thorough
investigations.

We compared the macroscopic SCIRS model with a random walk approach. Our computer
experiments have given numerical evidence that Eqs. (28) are fulfilled for any of the implemented
waiting time distributions (with initial conditions very close to the healthy state) whenever the
endemic equilibrium exists. This is further confirmed by comparison of results produced by
the random walk simulations and by direct numerical integration of Eqs. (30) for two cases
of δ-distributed waiting times, see Figures 6 (left), 8 and 10 (left), 11, respectively. All these
results give strong evidence that random walks offer an appropriate microscopic picture of the
SCIRS dynamics. It is also found in the simulations that waiting time PDFs with different
variances but otherwise identical parameters may influence R0.

For future research it would be desirable to relate the endemic value Se (i.e. R0) (here
determined numerically) with characteristics of the waiting time PDFs (such as their variances
and others), infection probabilities in a collision of I and S walkers and of the random walk. A
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further challenge is the development of a microscopic random walk model for the oscillatory
(Hopf) instabilities (condition for persistent oscillatory behavior).

Generally SCIRS type models with memory as introduced in the present paper may open a
wide research field to better understand the phenomenology of real world epidemic dynamics.
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A General derivatives
We can alternatively represent Eqs. (11) in the Riemann-Liouville sense of general derivatives as

d

dt
s(t) = −A(t) + d

dt

∫ t

0
LR(t − τ)r(τ)dτ

d

dt
c(t) = A(t) − d

dt

∫ t

0
LC(t − τ)c(τ)dτ

d

dt
j(t) = d

dt

∫ t

0
LC(t − τ)c(τ)dτ − d

dt

∫ t

0
LI(t − τ)[j(τ) − j0]dτ

d

dt
r(t) = d

dt

∫ t

0
LI(t − τ)[j(τ) − j0]dτ − d

dt

∫ t

0
LR(t − τ)r(τ)dτ

(49)

which also is obtained straight-forwardly from the Laplace transformed representation (9) and
employing definition (10). On the right-hand sides general derivatives come into play. The
notion of ‘general’ (fractional) derivative was introduced by Kochubei [29] generalizing d

dt
y(t) as

(in the Caputo sense)

D∗
t · y(t) =

∫ t

0
k(t − τ) d

dτ
y(τ)dτ = d

dt

∫ t

0
k(t − τ)y(τ)dτ − y0k(t) = Dt · y(t) − y0k(t) (50)

with y0 = y(t)
∣∣∣
t=0

. The part Dt · y(t) =
∫ t

0 k(t − τ)y(τ)dτ is a general derivative in the Riemann-
Liouville sense for some admissible kernels k(τ) (see [29] for an outline of this theory). The
general derivative (50) has the LT∫ ∞

0
e−λtDty(t)dt = λk̂(λ)ŷ(λ) − y0k̂(λ) (51)

The general derivatives contain the class of standard fractional derivatives of Caputo and
Riemann-Liouville type and for a k(t) = δ(t) the standard first order derivative.

B Stability analysis for arbitrary waiting time densities
In Section 3 we have derived that the healthy state is unstable if R0 = βtI > 1 for δ-distributed
kernels. Here we consider arbitrary waiting time kernels first with finite means to generalize
this result and at the end of this appendix we briefly look at the time fractional case. To this
end we take into account that the PDFs KC,I,R(t) can be seen as a superposition (average over
tC,I,R) of the δ(t − tC,I,R)-kernel as follows

KC,I,R(t) = ⟨δ(t − tC,I,R)⟩ =
∫ ∞

0
δ(t − τ)KC,I,R(τ)dτ = (δ ⋆ KC,I,R)(t) (52)
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and in this way we can average

⟨f(tC,I,R)⟩ =
∫ ∞

0
KC,I,R(τ)f(τ)dτ (53)

for sufficiently good functions f thus

⟨e−µtC,I,R⟩ = K̂C,I,R(µ) (54)

yielding the Laplace transform of the PDF. Therefore, averaging Eqs. (30) for δ-kernels over
the waiting times tC,I,R brings us back to the general SCIRS Eqs. (1) which can be seen from

⟨A(t − tC)⟩ =
∫ t

0
A(t − τ)Kc(τ)dτ = (KC ⋆ A)(t) (55)

where we used causality of A and KC . Hence we can generalize the case of δ-kernels (34) to any
kernels by accounting for

⟨e−µ(tI+tR+tC)⟩ = K̂C(µ)K̂I(µ)K̂R(µ)

where we always use the mutually independence of the waiting times. Hence by averaging Eq.
(34) we get

A0(u, w)[1 − K̂C(µ)K̂I(µ)K̂R(µ))] + µu = 0

A0(u, w)[1 − K̂C(µ)] − µv = 0

A0(u, w)K̂C(µ)[1 − K̂I(µ)] − µw = 0

A0(u, w)K̂C(µ)K̂I(µ)[1 − K̂R(µ)] − xµ = 0

(56)

leading to the solvability condition∥∥∥∥∥∥∥
βJe[1 − K̂C(µ)K̂I(µ)K̂R(µ)] + µ; βSe[1 − K̂C(µ)K̂I(µ)K̂R(µ)]

βJeK̂C(µ)[1 − K̂I(µ)]; βSeK̂C(µ)[1 − K̂I(µ)] − µ

∥∥∥∥∥∥∥µ2 = 0. (57)

We have again (as in (35)) µ = 0 as a threefold eigenvalue. The remaining non-zero eigenvalue
is determined by

µ = βSeK̂C(µ)[1 − K̂I(µ)] − βJe[1 − K̂C(µ)K̂I(µ)K̂R(µ)] (58)

We have to point out that in order to obtain these results we have relaxed causality in the
exponential ansatz (33) and assumed that it is defined for all t ∈ R. The difference of causal
and non-causal averaging can be seen by comparing〈

eµ(t−tC)
〉

= eµt
∫ ∞

0
e−µτ KC(τ)dτ = K̂C(µ)

̸=
〈
Θ(t − tC)eµ(t−tC)

〉
= eµt

∫ t

0
e−µτ KC(τ)dτ

(59)

where Θ(τ) indicates the Heaviside unit step function and corresponds to causality. To obtain
the condition (57) we have averaged as in the first line of (59) where the exponential is non-causal
allowing exponentials with arguments t−tC < 0 to contribute. Both sides become asymptotically
equal in the limit t → ∞. Hence above relation (57) can also be interpreted as the large time
asymptotics of causal averaging.

Let us focus now on the stability of the healthy state s0 = 1. Then (58) yields (Se → s0 = 1,
Je → j0 = 0)

µ = βK̂C(µ)[1 − K̂I(µ)] = G(µ). (60)
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As in the case of δ-distributed waiting times G(µ) is a concave function with G(µ) → 0 as
µ → ∞ thus we can argue in the same way (see Eq. (37) and Figure 2). Hence there is an
intersection µ0 > 0 only if d

dµ
G(µ)

∣∣∣
µ=0

> 1. Expanding G(µ) (assuming existing mean ⟨tI⟩) gives

G(µ) = β[1 − ⟨tC⟩µ + o(µ)]⟨tI⟩µ = β⟨tI⟩µ + o(µ). (61)

Therefore,
d

dµ
G(µ)

∣∣∣
µ=0

=: R0 = β⟨tI⟩ > 1 (62)

is the condition for this instability of the healthy state and hence the interpretation as ‘basic
reproduction factor’ R0 makes sense. This holds for waiting time PDFs with existing means.
On the other hand relation (60) holds for any waiting time PDF including fat-tailed ones which
we briefly consider in the following.

Time fractional case

Assuming KI(t) is a fat-tailed PDF such as Mittag-Leffler with K̂I(µ) = ξI

ξI+µν , ν ∈ (0, 1) and
no matter whether or not the other kernels have existing means we get for G(µ)

G(µ) = β

ξI

µν + o(µν) > µ (µ → 0) (63)

where o(µν) indicates orders higher than ν. Thus (60) (independent of β
ξI

) always has a positive
intersection since ν ∈ (0, 1). We conclude that for fat-tailed KI(t) the healthy state always is
unstable regardless of the distributions of tC and tR. Physically this instability can be understood
by the occurrence of very long infectious times tI strongly boosting the epidemic spreading
(corresponding to the limit R0, ⟨tI⟩ → ∞).
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