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We study an epidemic model for a constant population by taking into account four compartments of the individuals characterizing their states of health. Each individual is in one of the compartments susceptible (S); incubated -infected yet not infectious (C), infected and infectious (I), and recovered -immune (R). An infection is 'visible' only when an individual is in state I. Upon infection, an individual performs the transition pathway S → C → I → R → S remaining in each compartments C, I, and R for certain random waiting time t C , t I , t R , respectively. The waiting times for each compartment are independent and drawn from specific probability density functions (PDFs) introducing memory into the model. The first part of the paper is devoted to the macroscopic SCIRS model. We derive memory evolution equations involving convolutions (time derivatives of general fractional type). We consider several cases. The memoryless case is represented by exponentially distributed waiting times. Cases of long waiting times with fat-tailed waiting time distributions are considered as well where the SCIRS evolution equations take the form of time-fractional ODEs. We obtain formulae for the endemic equilibrium and a condition of its existence for cases when the waiting time PDFs have existing means. We analyze the stability of healthy and endemic equilibria and derive conditions for which the endemic state becomes oscillatory (Hopf) unstable. In the second part, we implement a simple multiple random walker's approach (microscopic model of Brownian motion of Z independent walkers) with random SCIRS waiting times into computer simulations. Infections occur with a certain probability by collisions of walkers in compartments I and S. We compare the endemic states predicted in the macroscopic model with the numerical results of the simulations and find accordance of high accuracy. We conclude that a simple random walker's approach offers an appropriate microscopic description for the macroscopic model. SCIRS type models open a wide field of applications allowing the identification of pertinent parameters governing the phenomenology of epidemic dynamics such as extinction, convergence to a stable endemic equilibrium, or persistent oscillatory behavior.

Introduction

The origin of modern epidemic modeling started with the seminal work of Kermack and Mc Kendrick almost a century ago [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]. They introduced the so called 'SIR model' where SIR stands for three compartments characterizing the states of health of an individual, namely S = susceptible, I = infected, R = recovered. The classical SIR model and various generalizations are able to capture some of the features of epidemic spreading of infectious diseases as observed in influenza, measles, mumps, and rubella. In the meantime a huge burst of compartment models and generalizations of the SIR model have been introduced [START_REF] Anderson | Infectious Diseases in Humans[END_REF][START_REF] Martcheva | An Introduction to Mathematical Epidemiology[END_REF].

While the interest in mathematical modeling of epidemic spreading was growing continuously, it is unsurprising that the emergence of the Covid pandemics has launched an enhanced interest and urgent need in advanced epidemic modeling [START_REF] Belik | Recurrent host mobility in spatial epidemics: beyond reaction-diffusion[END_REF]. Many models consider a set of nonlinear ordinary differential equations (ODEs) for the time evolution of the compartment populations where a new direction is about to emerge by combining these models with approaches inspired by network science [START_REF] Barabási | Network science[END_REF][START_REF] Pastor-Satorras | Epidemic dynamics and endemic states in complex networks[END_REF][START_REF] Feng | Epidemic spreading in heterogeneous networks with recurrent mobility patterns[END_REF][START_REF] Riascos | Random walks on weighted networks: a survey of local and non-local dynamics[END_REF][START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Bestehorn | A Markovian random walk model of epidemic spreading[END_REF][START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] and fractional dynamics [START_REF] Metzler | The Random Walk's Guide to Anomalous Diffusion : A Fractional Dynamics Approach[END_REF][START_REF] Sandev | From Continuous Time Random Walks to the Generalized Diffusion Equation[END_REF][START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Michelitsch | Biased Continuous-Time Random Walks with Mittag-Leffler Jumps[END_REF][START_REF] Michelitsch | Generalized fractional Poisson process and related stochastic dynamics[END_REF].

It has turned out that in many cases epidemics including Covid exhibit quasi-periodic patterns and spontaneous new outbreaks even after longer times of inactivity. Persistent oscillatory characteristics in epidemic dynamics was already pointed out a long time ago in the work of Soper [START_REF] Soper | The interpretation of periodicity in disease prevalence[END_REF]. Indeed, a major drawback of classical SIR type models without memory effects lies in their incapacity to capture (persistent) oscillatory behavior.

The present paper aims to tackle this issue and is a generalization of recent works [START_REF] Bestehorn | A Markovian random walk model of epidemic spreading[END_REF][START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF]. In [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] is introduced a SIRS compartment model which takes into account a random duration of immunity R allowing a delayed transition R → S. What is found that this model is able to capture persistent oscillatory behavior in the number of infected individuals. This feature comes along as oscillatory Hopf instability of the endemic state. In the first part of our paper we extend this model to four compartments as relevant states of health in order to capture a larger variety of epidemics. We consider the four compartments S -susceptible; C -infected but not yet infectious (in the incubation phase); I-infected and infectious (ill); R-recovered and immune. We assume random sojourn times (waiting times) t C , t I , t R an individual once infected spends in each of the compartments C, I, R. The sojourn time t C in compartment C is interpreted as incubation time, i.e. the delay between infection and the outbreak of the disease. The sojourn times t I is the duration of the disease (infected and infectious state) and t R indicates the immunity period after recovery. It appears natural to assume that these variables are not fixed constants, but individually fluctuating random variables drawn by specific distributions. With these assumptions we derive the SCIRS evolution equations where we focus on several pertinent situations of waiting times with existing and non-existing mean. For waiting time probability density functions (PDFs) with existing mean we derive explicit formulae for the endemic equilibrium and analyze its stability.

In the second part of the paper we combine our SCIRS model with a multiple random walker's approach which is implemented into computer simulations. We present a case study and give numerical evidence that a simple random walk approach ('Brownian motion') offers an appropriate description of the SCIRS dynamics with memory.

Four compartment model 2.1 Basic notions

We consider a constant population of Z = Z S + Z C + Z I + Z R individuals ('random walkers') where Z S (t), Z C (t), Z I (t), Z R (t) indicate their numbers in the compartments S C I R at time t. We consider here first a continuous time model for Z ≫ 1 walkers with the compartment population fractions s(t) = Z S (t) Z , c(t) = Z C (t) Z , j(t) = Z I (t) Z , r(t) = Z R (t) Z . We allow for each walker the following transition pathway:

S → C → I → R → S
Intuitively we infer that allowing for persistent oscillatory and (quasi-) periodic behavior it is necessary to have a closed (cyclic) pathway S → . . . → S of transitions. We assume that t C , t I , t R ≥ 0 are mutually independent random waiting times an individual spends (after infection) in the compartments C, I, R drawn from specific probability density functions (PDFs) which we prescribe by the kernels K C (t), K I (t), K R (t), respectively. These kernels have to be causal functions1 with (read P as 'probability'), for instance

P(t C ∈ [τ, τ + dτ ]) = K C (τ )dτ, t C > 0
indicates the probability that the incubation time t C ∈ [τ, τ + dτ ] which is clearly non-zero only for τ ≥ 0 as t C ≥ 0. In other words: Given a walker has entered compartment C at τ = 0, then K C (τ )dτ indicates the probability that this walker leaves compartment C during the infinitesimal interval [τ, τ + dτ ] (by a transition C → I). We introduce the infection rate A(t) = A(j(t), s(t), t) ≥ 0 (number of infections per walker and unit time or entry rate to the incubated compartment C at time t having of units sec -1 ). We point out that A(t) is not a known given function of time t but rather an implicit non-linear function of s(t), j(t), namely

A(t) = A[s(t), j(t)].
This quantity contains macroscopic information on the instantaneous number of collisions of individuals in the 'reactive compartments' S and I and needs to be specified by model assumptions. It is important to point out that A(t) does not depend on the fractions c(t), r(t) of the 'invisible' compartments C and R.

We assume here the most simple nonlinear form A(t) = βj(t)s(t) where β > 0 is a constant independent of time where β -1 introduces a characteristic time scale. β is also a macroscopic measure for the infection probability in a collision of an S and an I walker. The microscopic picture which we will invoke subsequently and implement into computer simulations indeed is that the infection rate is driven by random collisions between infected and susceptible independent random walkers.

With these simple assumptions we can establish model equations governing the time evolution of the fractions s(t), c(t), j(t), r(t). We consider the dynamics starting at time t = 0 with an initial condition s(0) = 1 -j 0 , and j(0) = j 0 (many healthy and a few infected walkers) and no incubated or recovered walkers c(0) = r(0) = 0. Our (SCIRS)-model evolution equations have the following general structure

d dt s(t) = -A(t) + (A ⋆ K C ⋆ K I ⋆ K R )(t) d dt c(t) = A(t) -(A ⋆ K C )(t) d dt j(t) = (A ⋆ K C )(t) -(A ⋆ K C ⋆ K I )(t) d dt r(t) = (A ⋆ K C ⋆ K I )(t) -(A ⋆ K C ⋆ K I ⋆ K R )(t) (1) 
The sum of these rates is vanishing due to s(t) + c(t) + j(t) + r(t) = 1. In order that an epidemics starts, it is necessary that the globally healthy state becomes unstable when the initial state is close to the healthy state with j 0 ∼ 1 Z → 0+, i.e. where for instance only one infected walker is present at t = 0 (among a large population Z). We analyze the stability of the healthy state subsequently in detail. In [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] we have employed the notation

(K ⋆ f )(t) = t 0 K(t -τ )f (τ )dτ, t ≥ 0 (2) 
for convolutions of causal functions K(t), f (t). Be aware that convolutions commute and are associative which can be seen by the representation (t ≥ 0) of the multiple convolution

(K 1 ⋆ K 2 ⋆ . . . ⋆ K n )(t) =: ∞ -∞ . . . ∞ -∞ dτ 1 . . . dτ n δ(t -τ 1 -. . . -τ n )K 1 (τ 1 ) . . . K n (τ n ) (3) 
where δ(. . .) indicates the Dirac δ-function and (3) is non-zero only for t ≥ 0 (causality of the K i (τ )). Introducing the Laplace transform of our kernels which we define as

K(λ) = ∞ 0 e -λt K(t)dt
where λ indicates the Laplace variable. K(λ) λ=0 = 1 indicates that the kernels are normalized PDFs. A further observation is worthy of mention. Any (multiple) convolution of PDFs gives again a PDF. This can be easily seen by integrating (3) over time to yield one. Therefore the kernels [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] all are (normalized and causal) PDFs representing, respectively the densities of the random variables t C , t C + t I , and t C + t I + t R . We can see in (1) that for each compartment where an individual remains for a random duration an additional convolution occurs describing the delayed transition out of the compartment. These delayed transitions introduce memory into the rates of individuals leaving the compartments. We will give a careful account for this issue later (subsequent representation [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF]).

K C (t), (K C ⋆ K I )(t), (K C ⋆ K I ⋆ K R )(t) which appear in
The interpretation of (1) is as follows. In the first line A(t) is the rate of infections (transitions S → C) at time t. The second term (A ⋆ K C ⋆ K I ⋆ K R )(t) is the rate of individuals losing their immunity (R → S) having undergone the full pathway of SCIRS transitions. In the second Eq. of (1) A(t) re-appears as the entry rate to state C. The convolution (A ⋆ K C )(t) is the rate of delayed transition C → I of individuals that fall ill at time t. This rate reappears in the third line of (1) as entry rate into compartment I. Then (A ⋆ K C ⋆ K I )(t) is the rate of recovery I → R reoccurring in third equation as entry rate into compartment R.

Finally (A ⋆ K C ⋆ K I ⋆ K R )(t)
is the rate of individuals losing their immunity (transition I → S) and re-appears in the first equation as entry rate into S. Let us consider for a moment the second equation in [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] 

more closely d dt c(t) = A(t) - t 0 K C (t -τ )A(τ )dτ (4) 
For our convenience we introduce the 'survival probability' Φ C,I,R (t) for individuals in compartments C, I, R (also called 'persistence probability' or 'survival function'), e.g. [START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF] (and many others)

Φ C,I,R (t) = P(t C,I,R > t) = ∞ t K C,I,R (τ )dτ = 1 - t 0 K C,I,R (τ )dτ (5) 
indicating the probability that an individual which is entering compartment C, I, R, respectively at t ′ = 0 at time t ′ = t still is ('survives') in this compartment. ( 5) is capturing all realizations with t C,I,R > t where d dt Φ C,I,R (t) = -K C,I,R (t). We observe in this relation the initial condition Φ C,I,R (0) = 1 as a consequence of the normalization of the waiting time PDFs and is telling us that an individual is, with probability one, in a compartment at the instant when entering it. Further we have Φ C,I,R (t → ∞) → 0+, i.e. an individual 'survives' only a finite time in compartments C, I, R to enter eventually the susceptible state S. We hence can integrate (4) and rewrite as

c(t) = t 0 Φ C (t -τ )A(τ )dτ = (Φ C ⋆ A)(t) (6) 
where initial condition c(0) = 0 is assumed. We can also verify this relation by its Laplace transform (subsequent second equation of ( 9)) and directly by differentiating this expression with respect to t and using the initial condition Φ C (0) = 1. We interpret (6) as follows: A(τ )dτ is the fraction of walkers entering C during [τ, τ + dτ ] and Φ C (t -τ ) is the (survival-) probability that this fraction still is in C after a delay of t C = t -τ , i.e. at time instant t where this expression sums up over the complete history of entries into C from 0 to time t. With these considerations we can rewrite our SCIRS Eqs. (1) in the equivalent integral form

s(t) = 1 -c(t) -j(t) -r(t) c(t) = (Φ C ⋆ A)(t) j(t) = j 0 + (A ⋆ K C ⋆ Φ I )(t) r(t) = (A ⋆ K C ⋆ K I ⋆ Φ R )(t) , (t ≥ 0) (7) 
where the initial conditions s(0) = 1 -j 0 , c(0) = 0, j(0) = j 0 r(0) = 0 are assumed.

Memoryless case -exponentially distributed waiting times

It is worthy to consider exponential waiting time kernels (t). Substituting this into (1) and accounting for [START_REF] Pastor-Satorras | Epidemic dynamics and endemic states in complex networks[END_REF] takes us to the particular simple form without memory

K C,I,R (t) = ξ C,I,R e -tξ C,I,R (ξ -1 C,I,R = ⟨t C,I,R ⟩) where the survival functions are also exponentials Φ C,I,R (t) = e -tξ C,I,R thus K C,I,R (t) = ξ C,I,R Φ C,I,R
d dt s(t) = -A(t) + ξ R r(t) d dt c(t) = A(t) -ξ C c(t) d dt j(t) = ξ C c(t) -ξ I [j(t) -j 0 ] d dt r(t) = ξ I [j(t) -j 0 ] -ξ R r(t) (t ≥ 0). ( 8 
)
Indeed exponential densities stand out by the memoryless feature and the Markov property (see textbooks, e.g. [START_REF] Tijms | A First Course in Stochastic Models[END_REF] and many others for details), thus the transition rates in (8) depend only on the instantaneous state s(t), c(t), j(t), r(t) but not on the history of the evolution. Setting the transition rates on the left hand side to zero yields straight-forwardly the endemic state which we derive subsequently (Eqs. ( 21), ( 22)) for arbitrary waiting time kernels with existing means.

Arbitrary waiting time distributions with memory

To explore the general cases with memory consider now the equivalent representations ( 7) and (1) in the Laplace space

ŝ(λ) = 1 -j 0 λ -Â(λ) [1 -KC (λ) KI (λ) KR (λ)] λ ĉ(λ) = Â(λ) (1 -KC (λ) λ ĵ(λ) = j 0 λ + Â(λ) KC (λ) (1 -KI (λ) λ r(λ) = Â(λ) KC (λ) KI (λ) (1 -KR (λ) λ (9)
where all Laplace transforms (LTs) depend on Â(λ) of the (unknown) infection rate and ΦC,I,R (λ) =

(1-KC,I,R (λ) λ are the LTs of the survival probabilities. We further have that

ŝ(λ) + ĉ(λ) + ĵ(λ) + r(λ) = 1 λ = ∞ 0 e -λt dt
as we deal with a constant population. We observe that in the first Eq. of (9) the term

[1-KC (λ) KI (λ) KR (λ)] λ
is the LT of the survival probability

P[t C + t R + t I > t] (due to the PDF (K c ⋆ K I ⋆ k R )(t) of the random variable t C + t I + t R )
, corresponding to individuals 'surviving' in one of the compartments C, I, R at time t. To shed more light on how the memory comes into play we introduce a 'memory operator' (For our convenience we employ here a slightly modified definition as in [START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF].

) 2 M(λ) = K(λ) Φ(λ) = λ K(λ) 1 -K(λ) = λ L(λ). (10) 
Then reading K(λ) = M(λ) Φ(λ) as convolutions in the time domain we can rewrite our SCIRS Eqs. (1) (in the Caputo sense) of general (fractional) derivatives (see [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF][START_REF] Michelitsch | Biased Continuous-Time Random Walks with Mittag-Leffler Jumps[END_REF][START_REF] Michelitsch | Generalized fractional Poisson process and related stochastic dynamics[END_REF] and Appendix) as

d dt s(t) = -A(t) + t 0 L R (t -τ ) d dτ r(τ )dτ d dt c(t) = A(t) - t 0 L C (t -τ ) d dτ c(τ )dτ d dt j(t) = t 0 L C (t -τ ) d dτ c(τ )dτ - t 0 L I (t -τ ) d dτ j(τ )dτ d dt r(t) = t 0 L I (t -τ ) d dτ j(τ )dτ - t 0 L R (t -τ ) d dτ r(τ )dτ. ( 11 
)
These equations show that the transition rates at time t have a complete memory of their previous values. Alternatively we can write [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] in the Riemann-Liouville manner of general fractional derivatives (see Appendix). For exponential waiting time PDFs K exp (t) = ξe -ξt we have Mexp (λ) = ξ thus M exp (t) = ξδ(t) (i.e. is null for t > 0 indicating lack of memory) and we easily recover above memoryless SCIRS Eqs. (8).

Long waiting times -the time fractional case

Representation ( 11) is especially useful when we deal with fat-tailed waiting time PDFs without existing means such as the Mittag-Leffler waiting-time PDF (ML-PDF) which (see [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] and references therein for explicit formulas). The ML-PDF is a fractional generalization of the exponential PDF and has the LT [START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF] (and many others)

Kβ (λ) = ξ ξ + λ β , β ∈ (0, 1), ξ > 0 ( 12 
)
where due to the fat tail the mean waiting timed dλ Kβ (λ) λ=0 → ∞ does not exist as β ∈ (0, 1) (occurrence of extremely long waiting times). For β = 1 [START_REF] Metzler | The Random Walk's Guide to Anomalous Diffusion : A Fractional Dynamics Approach[END_REF] retrieves the LT of the exponential density. Expanding the LT for λ small Kβ (λ) ∼ 1 -λ β ξ , Laplace inversion shows that ML-PDF has a fat power law tail

K β (t) ∼ β Γ(1-β) t -β-1 ξ
(t → ∞) corresponding to a long memory. For the ML-case we have for ( 10)

Lβ (λ) = ξλ -β (13) 
where λ -β corresponds to the Riemann-Liouville fractional integral of degree β and Mβ (λ) = ξλ 1-β the Riemann -Liouville (R-L) fractional derivative of order 1 -β. Denoting D ν t the R-L fractional derivative where it is sufficient here to consider the range µ ∈ (0, 1) defined by [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] 

D µ t • f (t) = d dt t 0 (t -τ ) -µ Γ(1 -µ) f (τ )dτ, µ ∈ (0, 1) (14) 
having LT λ µ f (λ) and with the definition of the Caputo fractional derivative

d µ dt µ f (t) = t 0 (t -τ ) -µ Γ(1 -µ) d dτ f (τ )dτ = D µ t • f (t) -f (0) t -µ Γ(1 -µ) , µ ∈ (0, 1) (15) 
with LT λ µ f (λ) -f (0)λ µ-1 . Consult the Appendix and [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF] for the connections with general (fractional) derivatives. In the limit µ → 1-both Caputo and RL-fractional derivatives converge to the first order standard derivative where

t -µ Γ(1-µ) → δ(t). Using the feature d µ dt µ [f (t) -f (0)] = d µ dt µ f (t) = D µ t • [f (t) -f (0)] (16) 
we can then write [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] when all waiting times t C,I,R are drawn from ML PDFs in terms of Caputo fractional derivatives as

d dt s(t) = -A(t) + ξ R d 1-β dt 1-β r(t) d dt c(t) = A(t) -ξ C d 1-β dt 1-β c(t) d dt j(t) = ξ C d 1-β dt 1-β c(t) -ξ I d 1-β dt 1-β j(t) d dt r(t) = ξ I d 1-β dt 1-β j(t) -ξ R d 1-β dt 1-β r(t) (17) 
retrieving for β = 1 the Eqs. ( 8) of exponential waiting time PDFs (see [START_REF] Michelitsch | Biased Continuous-Time Random Walks with Mittag-Leffler Jumps[END_REF], ( 16)). Indeed the time-fractional case with fat-tailed waiting time distributions is of utmost importance deserving further thorough investigation, see Appendix B for a brief account.

Endemic equilibrium for waiting time PDFs with existing mean

Here we confine ourselves to waiting time PDFs with existing means. The endemic state is defined as the long-time limit of the evolution. That is we seek a stationary (constant solution) [s(t), c(t), j(t), r(t)] → [S e , C e , J e , R e ] and A(t) → A e = βJ e S e which also is the asymptotic solution for t → ∞ if the endemic state is stable. This solution can be obtained from Eqs. ( 9) in the limit of small λ, where these equations then take (with ŝ(λ) → S e /λ,..) the form

S e = 1 -j 0 -lim λ→0 Â(λ)[1 -K C (λ)K I (λ) KR (λ)] C e = lim λ→0 Â(λ)[1 -KC (λ)] J e = j 0 + lim λ→0 Â(λ) KC (λ)[1 -KI (λ)] R e = lim λ→0 Â(λ) KC (λ) KI (λ)[1 -KR (λ)] (18) 
with

Â(λ) ≈ A e λ + A 0 + A 1 λ + . . .
which has to be considered for λ → 0 where the lowest order in λ determines the endemic equilibrium. Now with

K(λ) = ∞ 0 e -λτ K(τ )dτ ≈ ∞ 0 [1 -λτ ]K(τ )dτ + o(λ) = 1 -λ⟨τ ⟩ + o(λ) ( 19 
)
where with ⟨..⟩ we denote mean values and o(λ) stands for the Landau symbol. Thus we have

KC,I,R (λ) = 1 -λ⟨t C,I,R ⟩ + o(λ) (20) 
and KC (λ

) KI (λ) KR (λ) = 1 -λ⟨t C + t I + t R ⟩ + o(λ) = 1 -λ⟨T ⟩ + o(λ)
and as said we assume that the means exist. Therefore,

lim λ→0 ΦC,I,R (λ) = lim λ→0 (1 -KC,I,R (λ) λ = - d dλ KC,I,R (λ) λ=0 = ⟨t C,I,R ⟩
Then we get straight-forwardly for the lowest orders in λ the endemic equilibrium as follows

S e = 1 -j 0 -A e ⟨T ⟩ C e = A e ⟨t C ⟩ J e = j 0 + A e ⟨t I ⟩ R e = A e ⟨t R ⟩ (21) 
and with our assumption A e = βJ e S e we arrive at

S e (J e ) = 1 -j 0 1 + β⟨ T ⟩J e C e (J e ) = (1 -j 0 )β⟨t C ⟩J e 1 + β⟨ T ⟩J e J e = j 0 + β⟨t I ⟩J e 1 -j 0 1 + β⟨T ⟩J e R e (J e ) = (1 -j 0 )β⟨t R ⟩J e 1 + β⟨ T ⟩J e . ( 22 
)
Consider now the third relation in [START_REF] Mackey | Oscillations and chaos in physiological control systems[END_REF] which is an implicit equation for J e leading to

J 2 e -2aJ e -b = 0 ( 23 
)
where we have introduced

a = j 0 2 + β⟨t I ⟩(1 -j 0 ) -1 2β⟨T ⟩ = ⟨t R + t C ⟩)j 0 2⟨T ⟩ + R 0 -1 2β⟨T ⟩ , R 0 = β⟨t I ⟩ b = j 0 β⟨T ⟩ . ( 24 
)
The quantity R 0 = β⟨t I ⟩ can be interpreted as the 'basic reproduction number' and is a crucial (control-) parameter. ( 23) has the roots

(J e ) 1,2 = a ± √ a 2 + b. ( 25 
)
Clearly the endemic equilibrium exists only for those roots with J e ∈ [0, 1] where the full endemic state then is determined by [START_REF] Mackey | Oscillations and chaos in physiological control systems[END_REF]. For b = 0 (j 0 = 0) one root is zero corresponding to the healthy state S e = 1. The second root is J e (j 0 = 0) = 2a = R 0 -1 β⟨T ⟩ ∈ [0, 1) for R 0 = β⟨t I ⟩ > 1 which therefore is the condition of the existence of an endemic state for j 0 = 0. In Appendix B we show for waiting time PDFs with existing means that R 0 > 1 also is the condition that the healthy state is unstable thus an epidemic can start to spread. We also show there that the healthy state is always unstable if K I (t) has a fat tail (i.e. infinite mean). Indeed for ⟨t Consider now j 0 > 0 and R 0 > 1. Then we have a < 1 as ⟨t R +t C ⟩j 0

I ⟩ → ∞ (β, t C , t R kept finite) we have R 0 → ∞ thus J e (j 0 = 0) ∼ ⟨t I ⟩/⟨T ⟩ → 1 and for β → ∞ (⟨t I ⟩, ⟨t C ⟩, ⟨t R ⟩ finite) we get J e (j 0 = 0) → ⟨t I ⟩/⟨T ⟩.

2T

< 1 2 and R 0 -1 2β⟨T ⟩ < 1 2 and b < 1 thus only the positive root is

(J e ) 1 = a + √ a 2 + b ( 26 
)
whereas the other (J e ) 2 = a -√ a 2 + b < 0. The endemic state exists if (J e ) 1 ≤ 1. As a, b are monotonously increasing functions of j 0 let us check the root for the maximum value j 0 = 1 where a(j 0 = 1) = 1 2 -1 2βT = 1 2 (1 -ϵ) and b(j 0 = 1) = 1 β⟨T ⟩ = ϵ. Then we get J e (j 0 )

j 0 =1 = 1 2 (1 -ϵ + (1 -ϵ) 2 + 4ϵ = 1 -ϵ + (1 + ϵ) 2 2 = 1 (27) 
i.e. the initial and endemic state coincide j 0 = J e (1) = 1 where we infer that j = 1 (for R 0 > 1) should be a stable endemic state. From the monotony of J e (j 0 ) (see [START_REF] Basnarkov | Non-Markovian SIR epidemic spreading model[END_REF]) we can see that

R 0 -1 β⟨T ⟩ ≤ J e (j 0 ) ≤ J e (j 0 ) j 0 =1 = 1
i.e. in the entire range j 0 ∈ [0, 1] the endemic value is given by the positive root [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF] together with [START_REF] Basnarkov | Non-Markovian SIR epidemic spreading model[END_REF]. This behavior is shown in the plot of Figure 1 where we draw J e versus j 0 for different values of R 0 > 1. One can see that J e is monotonously increasing with R 0 when ⟨t R ⟩, ⟨t C ⟩, j 0 are kept constant.

We focus now on initial conditions s 0 = 1-and j 0 = 0+ (healthy state). The endemic equilibrium [START_REF] Mackey | Oscillations and chaos in physiological control systems[END_REF] then writes

S e = 1 R 0 C e = R 0 -1 R 0 ⟨t C ⟩ ⟨T ⟩ J e = R 0 -1 R 0 ⟨t I ⟩ ⟨T ⟩ R e = R 0 -1 R 0 ⟨t R ⟩ ⟨T ⟩ (⟨T ⟩ = ⟨t C + t I + t R ⟩, R 0 = β⟨t I ⟩) (28) 
and exists solely for R 0 > 1 depending only from R 0 and the mean waiting times ⟨t C,I,R ⟩. We may consider the following limiting cases. 1) ⟨t R ⟩ → ∞ (infinitely long immunity), ⟨t C ⟩, ⟨t I ⟩, β are kept constant: Then we have ⟨t R ⟩ ⟨T ⟩ → 1 and ⟨t C ⟩ ⟨T ⟩ , ⟨t I ⟩ ⟨T ⟩ → 0 and hence S e = 1 R 0 remains unchanged thus C e , J e → 0 and R e → R 0 -1 R 0 with S e + R e = 1 which corresponds to a fully healthy population (susceptible or immune) with C e + J e → 0, i.e. the disease in the long time limit dies out.

2) In the same way the limits ⟨t I ⟩ → ∞ (long illness time) and and long incubation time ⟨t C ⟩ → ∞, respectively, are straightforward, where the endemic values of respective compartments with infinite waiting times tend to R 0 -1 R 0 with unchanged S e = 1 R 0 . This corresponds to the fact that the individuals remain eventually trapped in the respective compartments (C or I) with infinite waiting times thus the cyclic transition pathway S → . . . → S is suppressed. We infer that in the limiting cases 1), 2) the endemic states are stable similar to the class of classical SIR models and do not exhibit oscillatory instabilities.

δ-distributed waiting times

An instructive case consists in the deterministic limit when the sojourn times in the compartments for all walkers are constant. Then the waiting time PDFs are Dirac δ-functions

K C,I,R (t) = δ(t -t C,I,R ) (29) 
with LTs KC,I,R (λ) = e -λt C,I,R . Recall now the convolution of two δ-kernels

δ(t -t 1 ) ⋆ δ(t -t 1 ) = δ(t -t 1 -t 2 )
which yields a new δ-kernel with a shifted peak at t 1 + t 2 . With this observation we have 

(K C ⋆ K I )(t) = δ(t -t C -t I ) and (K C ⋆ K I ⋆ K R )(t) = δ(t -t C -t I -t R ). Then the SCIRS equations (1) read d dt s(t) = -A(t) + A(t -t C -t I -t R ) d dt c(t) = A(t) -A(t -t C ) d dt j(t) = A(t -t C ) -A(t -t C -t I ) d dt r(t) = A(t -t C -t I ) -A(t -t C -t I -t R ). (30) 
c(t) = t 0 A(τ ) dτ -Θ(t -C ) t-t C 0 A(τ ) dτ j(t) = j 0 + Θ(t -t C ) t-t C 0 A(τ ) dτ -Θ(t -t C -t I ) t-t C -t I 0 A(τ ) dτ r(t) = Θ(t -t C -t I ) t-t C -t I 0 A(τ ) dτ -Θ(t -t C -t I -t R ) t-t C -t I -t R 0 A(τ ) dτ (31) 
where Θ(τ ) denotes the Heaviside unit step function defined as Θ(τ ) = 1 for τ ≥ 0 and Θ(τ ) = 0 for τ < 0. We can see for sharp waiting times the Heaviside functions 'switch on and off' the respective transitions between compartments. It is worthy of mention that (31) is consistent with [START_REF] Pastor-Satorras | Epidemic dynamics and endemic states in complex networks[END_REF] when we take into account the survival probabilities

Φ C,I,R (t) = ∞ t δ(τ -t C,I,R )dτ = Θ(t C,I,R -t) = 1 -Θ(t -t C,I,R ) (32) 
i.e. Φ C,I,R (t) = 1 for t < t C,I,R ('survival' in C, I, R, respectively) and Φ C,I,R (t) = 0 for t > t C,I,R ('death', having left C, I, R, respectively). From Eqs. (31) we find the endemic equilibrium S e , C e , J e , R e representing a stationary solution of [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF]. Plugging the stationary value A e = βJ e S e into (31) we re-arrive at Eqs. [START_REF] Mackey | Oscillations and chaos in physiological control systems[END_REF] with t C,I,R = ⟨t C,I,R ⟩ for Dirac δ-distributions.

Stability analysis of endemic and healthy states

Here we investigate the stability of the endemic equilibrium for healthy initial conditions s 0 = 1 (j 0 = 0) for δ-distributed waiting times. To this end we set

s(t) = S e + ue µt c(t) = C e + ve µt j(t) = J e + we µt r(t) = R e + xe µt (33)
where u, v, w, x are 'small' time independent constants. Clearly at least one of these equations is redundant as s + c + j + r = 1. Then it follows that A(t) ≈ A e + A 0 (u, w)e µt where we take into account only the linear orders in u, v, w, x. Therefore, A e = βJ e S e and A 0 (u, w) = β(uJ e + wS e ). Plugging this into (30) leads to the following system of equations

A 0 (u, w)(1 -e -µT ) + µu = 0 A 0 (u, w)(1 -e -µt C ) -µv = 0 A 0 (u, w)e -µt C (1 -e -µt I ) -µw = 0 A 0 (u, w)e -µ(t C +t I ) (1 -e -µt R ) -xµ = 0. (34) 
We can eliminate v = A 0 (u, w) 1-e -µt C µ and x = A 0 (u, w)e -µ(t C +t I ) 1-e -µt R µ which are uniquely determined by u and w. Therefore the solvability condition is uniquely by the first and third equation for s and j containing only the coefficients u and w. The complete determinant of the system (34) leads to βJ e (1 -e -µT ) + µ; βS e (1 -e -µT )

βJ e e -µt C (1 -e -µt I ); βS e e -µt C (1 -e -µt I ) -µ µ 2 = 0. ( 35 
)
We have µ = 0 as a threefold eigenvalue and with one non-zero eigenvalue µ 1 determined by

µ = βS e e -µt C (1 -e -µt I ) -βJ e (1 -e -µT ) (36) 
and hence µ 1 = µ 1 (β, j 0 , t C , t I , t R ). However, we will see that we can reduce the set of pertinent parameters. For the outbreak of an epidemic, it is necessary that the healthy (initial) state s 0 = 1 becomes unstable. To explore this issue we consider s(t) = s 0 + ue µt and j(t) = j 0 + we µt with s 0 = 1, j 0 = 0. Then we get the solvability condition by replacing in (35) J e → j 0 = 0 and

S e → s 0 = 1 in the form μ = R 0 e -μt 1 [1 -e -μ ) = g(μ, R 0 ) ( 37 
)
where we introduce μ = t I µ, t

1 = t C t I , t 2 = T t I = 1 + t 1 + t R t I . ( 38 
)
The healthy state becomes unstable if there is a positive solution μ0 > 0 of this equation. Clearly there is a positive root only if d dμ g(μ, R 0 )| μ=0 = R 0 > 1, otherwise the healthy state is stable. This justifies our interpretation of R 0 as the basic reproduction number where the healthy state is unstable for R 0 > 1 thus the epidemic starts to spread. In Appendix B we show that the condition for an outbreak R 0 = β⟨t I ⟩ > 1 holds true for waiting time PDFs with existing means. This can be seen more closely as the right-hand side g(μ, R 0 ) of (37) is a concave function of μ (see Figure 2). We have for μ small the expansion g(μ, R 0

) = R 0 μ + O(μ 2 ) > μ only if R 0 > 1 and always g(μ, R 0 ) → 0 < μ as µ → ∞. Therefore exists a positive root µ 0 (R 0 ) > 0 only for R 0 > 1.
This behavior is sown in Figure 2 where µ 0 (R 0 ) increases monotonically with R 0 enhancing the (non-persistent) exponential growth of j(t) at the outbreak of the epidemic. 

Y = ∼ μ R 0 = 0.9 R 0 = 1.2 R 0 = 2 R 0 = 3 Figure 2: We depict g(μ, R 0 ) = R 0 e -μt 1 (1 -e -μ
) for values of R 0 . For R 0 = 0.9 (lower curve) the healthy state is stable. In the other curves R 0 > 1 the healthy state is unstable. In all plots we chose t 1 = t C /t I = 0.5.

Returning to the stability analysis of the endemic state we re-scale (36) with (38) as

μ = R 0 S e e -μt 1 (1 -e -μ ) -R 0 J e (1 -e -μt 2 ). ( 39 
)
At threshold of an oscillatory instability, the eigenvalue is purely imaginary. Plugging μ = iω into (39) and separating real and imaginary parts yields the two conditions

f 1 (r 0 , ω) = cos ωt 1 -cos ω(t 1 + 1) -r 0 (1 -cos ωt 2 ) = 0 f 2 (r 0 , ω) = ω + sin ωt 1 -sin ω(t 1 + 1) + r 0 sin ωt 2 = 0 (40)
which need to be both simultaneously fulfilled for an oscillatory (Hopf) instability where we introduced the reduced control parameter r 0 = J e R 0 = (R 0 -1)/t 2 .

Figure 3: Left: the intersection of the contour lines of f 1 , f 2 = 0 of (40) yield (ω, r 0 ) ≈ (0.5, 0.063). Right: numerical solutions of the fully nonlinear delay system [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF] for R 0 = 1.5 (top left) to R 0 = 2.0 in the (j, s)-plane. A limit cycle is born at R 0 ≈ 1.63.

In Figure 3 (left frame) we plot the zero lines of f i the r 0 , ω plane for t 1 = 1/2, t 2 = 10. They intersect at r 0 ≈ 0.063, ω = 0.35, corresponding to a critical R 0 ≈ 1.63. The right frame of Figure 3 shows numerical solutions of the full delay system [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF] with the same parameters t 1 , t 2 . The system is solved using an Euler forward scheme with fixed time step δt = 10 -4 . The initial conditions are j 0 = 10 -4 , s 0 = 1 -j 0 , r 0 = c 0 = 0 close to the healthy state. We varied R 0 from 1.5 (subcritical, upper left) to 2.0 (lower right frame). Clearly for R 0 = 1.7 the stable focus turns into a limit cycle that becomes wider with increasing R 0 .

Microscopic model and computer simulations 4.1 Simple random walk model

To explore the SCIRS phenomenology we combine this model with a multiple random walker's approach which we implemented into a Python code [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF]. In this random walk Z walkers navigate independently on a periodic two dimensional lattice. Each walker performs at integer times t = 0, 1, 2, . . . instantaneous independent random steps to a closest neighbour lattice point (simple walk). The position of walker j (j = 1, . . . Z) can be described by the random variables

x j (t) = x j (t -1) + η (j) x (t) y j (t) = y j (t -1) + η (j) y (t) , t = 1, 2, . . . ( 41 
)
with the random steps η (j) x (t), η (j) y (t) = (1, 0); (-1, 0); (0, 1); (0, -1) occurring with probability 1 4 .

This simple multi-walkers motion is a microscopic model with scaling limits to (standard) Brownian motion [START_REF] Feller | An Introduction to Probability and Its Applications[END_REF]. We assume a N x = N y = N -periodic lattice with x (j) (t) = x (j) (t) mod N , y (j) (t) = y (j) (t) mod N for the position of each walker j. In order to connect the random walk with the epidemic dynamics we apply the following infection rule [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF]: If a walker j ∈ I meets a walker k ∈ S on the same lattice point ('collision' of an infected-infectious and a susceptible walker), i.e.

j ∈ I ∧ k ∈ S ∧ x j (t) = x k (t) ∧ y j (t) = y k (t) (42)
then the susceptible walker k gets infected with probability P inf and undergoes an instantaneous transition S → C followed by the transition pathway as described previously. The infection probability P inf is constant for all walkers and time independent. The random paths of the walkers are not affected by transitions between the compartments or 'collisions' of walkers.

In the simulations at each integer time instant t we count the populations Z S,C,I,R (t) in the compartments where the total population Z = Z S (t) + Z C (t) + Z I (t) + Z R (t) remains constant over time. As in the macroscopic model we focus on the fractions

s(t) = Z S (t)/Z, c(t) = Z C (t)/Z, j(t) = Z I (t)/Z, r(t) = Z R (t)/Z.
We implement the mutually independent waiting times t C,I,R as random numbers drawn from specific Gamma PDFs K C,I,R (t). The Gamma-distribution provides sufficient flexibility to generate a wide range of possible behaviors such as sharp δ-peaks, broadly scattered waiting times with a maximum or a monotonically decreasing PDF. The Gamma (also called Erlang-) PDF writes

K ξ,α (τ ) = ξ α τ α-1 Γ(α) e -ξτ , α, ξ > 0 ( 43 
)
where α is the so-called shape parameter and 1/ξ the time scale parameter. The Gamma PDF has a maximum for α > 1 at t m = α-1 ξ and is monotonically decreasing for α ≤ 1 and weakly singular at t = 0 for α < 1. For α = 1 we get the exponential PDF K ξ,1 (τ ) = ξe -ξτ . Some cases of Gamma PDFs are drawn in histograms of Figure 4. Useful is its Laplace transform

Kξ,α (λ) = ∞ 0 e -λτ K ξ,α (τ )dτ = ξ α (λ + ξ) α (44)
from which we can easily retrieve Kξ,α (λ)

λ=0 = 1 (normalization), ⟨t⟩ = -d dλ Kξ,α (λ) λ=0 
= α ξ (mean waiting time), and V = ⟨t 2 ⟩ -⟨t⟩ 2 = α ξ 2 (variance). We use in the simulations to generate constant (sharp) waiting times the feature, e.g. [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] lim

ξ→∞ K ξ,α=ξτ 0 (τ ) = δ(t -τ 0 ) (45) 
where the mean τ 0 = ⟨τ ⟩ is kept constant in this limit and the variance is vanishing. This limit is easily seen in the Laplace space

lim ξ→∞ Kξ,ξτ 0 (τ ) = lim ξ→∞ 1 + λ ξ -ξτ 0 = e -τ 0 λ = ∞ 0 e -λt δ(t -τ 0 )dt. ( 46 
)

Validation of the macroscopic SCIRS model and case study

In the simulations we remove unimportant fluctuations by recording the ensemble averaged 3 compartment populations ⟨s(t)⟩, ⟨c(t)⟩, ⟨r(t)⟩, ⟨j(t)⟩. We average numerically over a number of equivalent random walk realizations with identical parameters, waiting time distributions and observation times. Each realization employs different random numbers ('python seeds') for the waiting times and random walk. We perform a case study to validate the macroscopic Eqs. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] for the endemic equilibrium which exists for R 0 = βt I > 1. We realize 'natural' initial conditions close to the healthy state with one infected walker (in compartment I) and Z -1 susceptible walkers at t = 0 (start of the experiment). In all computer experiments the walkers have random initial positions on the lattice. We determine the endemic equilibrium values numerically by using the asymptotic relation

[S e , C e , J e , R e ] num (t) ≈ 1 t t r=1 ⟨[s(r), c(t), j(t), r(t)]⟩ (47)
converging for t → ∞ to the endemic state S e , C e , J e , R e if it exists. We measure the accordance of our macroscopic endemic equations [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] with the random walk approach by computing the ratios of the numerically determined endemic values and the values computed with ( 28)

r C = (Se)num [1-(Se)num]⟨t C ⟩/⟨T ⟩ r I = (Je)num [1-(Se)num]⟨t I ⟩/⟨T ⟩ r R = (Re)num [1-(Se)num]⟨t R ⟩/⟨T ⟩ (48)
by employing the numerically determined S e . In all simulations with existing endemic equilibria and sufficiently large observation time the ratios r C,I,R ≈ 1 + O(10 -2 ) are up to a few percent close to one, confirming impressively the prediction C e : J e : R e = ⟨t C ⟩ : ⟨t I ⟩ : ⟨t I ⟩ of the macroscopic model Eqs. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF]. In the following discussion we give numerical evidence that our macroscopic SCIRS model well suits with the microscopic random walk approach. 47) for the numerical evaluation we get (dashed lines) S e ≈ 0.31, C e ≈ 0.075, J e ≈ 0.14, R e ≈ 0.48 and with Eq. ( 48) we have r C ≈ 1.08, r I ≈ 1.03, r R ≈ 0.98. We depict the corresponding Gamma distributed waiting times t C,I,R in three histograms with the parameters used in this simulation.

In the experiment of Figure 4 the waiting times are broadly scattered and distributed by Gamma distributions of different parameters. For the chosen parameters the epidemic dynamics converges rapidly to the endemic states where the ratio C e : J e : R e = ⟨t C ⟩ : ⟨t I ⟩ : ⟨t I ⟩ predicted by Eqs. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF]. ), P inf = 0.9. We have small S e ≈ 0.04 (R 0 ≈ 24, 39) and C e = J e = R e ≈ 0.32 ≈ 1 3 (dashed lines).

In Figure 5 We approach this instability by slightly reducing the walkers density (reducing R 0 ). The corresponding persistent oscillatory behavior is shown in the left frame of Figure 7. 7 differ by changing to exponentially distributed t C , and Gamma distributed t R . All other parameters including the density are identical in both frames. The left frame exhibits an Hopf unstable persistent oscillatory behavior. The resulting S e of the right frame is slightly lower increasing R 0 and leading to attenuation of the Hopf oscillations. This demonstrates as both plots employ identical parameters but different waiting time PDFs that R 0 also depends on further characteristics such as for instance the variance. The plot in Figure 8 shows a numerical solution of the macroscopic system (30) for the same parameters as in (frames on the left) of Figures 6 and7. The at least qualitative similarity to the microscopic result is impressive (see especially left frame of Figure 6 exhibiting attenuated oscillations). In both models the number of infectious dominates due to the relatively long infection time. In the long time limit the oscillations are damped and the endemic equilibrium is asymptotically reached. In the simulations of Figures 9 and 10 we consider various combinations of waiting time distributions. In Figure 10 we compare δ-distributed waiting times and Gamma distributed waiting times with the same means. In the left frame r C has with 15% a relative large deviation from Eq. ( 28). This can be explained as as ( 47) is an asymptotic relation converging for large t to the endemic values where in the left frame the time is not very large. In the right frame the time is increased thus all r C,I,R are very close to one indicating excellent accordance with Eq. ( 28). The slightly different absolute values are due to slightly different R 0 = 1/S e despite all parameters P inf , Z, N are identical. This confirms our observation in Figures 7 that R Figure 11 shows again the numerical solution of the macroscopic system (30) which are here for the smaller R 0 again in good agreement with the averaged microscopic behavior.

Conclusions

We studied a macroscopic four compartment SCIRS model with memory effects introduced by random compartmental waiting times. We derived evolution equations for different arbitrary waiting time distributions and considered pertinent cases such as exponential (memoryless), Mittag Leffler (fat-tailed with long memory), and sharp (δ-distributed) waiting times. We highlighted connections with general fractional calculus and showed that the evolution equations are of general (fractional) type (Eqs. [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF], (49)). For waiting time PDFs with existing mean we obtained exact formulas for the endemic equilibrium and conditions of its existence and identified the 'basic reproduction factor' R 0 = β⟨t I ⟩ as crucial parameter controlling whether or not a SCIRS epidemic starts to spread.

We also found (Appendix B) that the healthy state always is unstable if t I has a fat-tailed PDF regardless of the distributions of t C,R . In this case R 0 and ⟨t I ⟩ do not exist. We interpret this instability by the occurrence of very long infectious periods t I strongly boosting the epidemic spreading. Due to their general importance, the time-fractional cases call for further thorough investigations.

We compared the macroscopic SCIRS model with a random walk approach. Our computer experiments have given numerical evidence that Eqs. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] are fulfilled for any of the implemented waiting time distributions (with initial conditions very close to the healthy state) whenever the endemic equilibrium exists. This is further confirmed by comparison of results produced by the random walk simulations and by direct numerical integration of Eqs. [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF] for two cases of δ-distributed waiting times, see Figures 6 (left), 8 and 10 (left), 11, respectively. All these results give strong evidence that random walks offer an appropriate microscopic picture of the SCIRS dynamics. It is also found in the simulations that waiting time PDFs with different variances but otherwise identical parameters may influence R 0 .

For future research it would be desirable to relate the endemic value S e (i.e. R 0 ) (here determined numerically) with characteristics of the waiting time PDFs (such as their variances and others), infection probabilities in a collision of I and S walkers and of the random walk. A further challenge is the development of a microscopic random walk model for the oscillatory (Hopf) instabilities (condition for persistent oscillatory behavior).

Generally SCIRS type models with memory as introduced in the present paper may open a wide research field to better understand the phenomenology of real world epidemic dynamics.

As in the case of δ-distributed waiting times G(µ) is a concave function with G(µ) → 0 as µ → ∞ thus we can argue in the same way (see Eq. (37) and Figure 2). Hence there is an intersection µ 0 > 0 only if d dµ G(µ) is the condition for this instability of the healthy state and hence the interpretation as 'basic reproduction factor' R 0 makes sense. This holds for waiting time PDFs with existing means. On the other hand relation (60) holds for any waiting time PDF including fat-tailed ones which we briefly consider in the following.

Time fractional case

Assuming K I (t) is a fat-tailed PDF such as Mittag-Leffler with KI (µ) = ξ I ξ I +µ ν , ν ∈ (0, 1) and no matter whether or not the other kernels have existing means we get for G(µ)

G(µ) = β ξ I µ ν + o(µ ν ) > µ (µ → 0) ( 63 
)
where o(µ ν ) indicates orders higher than ν. Thus (60) (independent of β ξ I ) always has a positive intersection since ν ∈ (0, 1). We conclude that for fat-tailed K I (t) the healthy state always is unstable regardless of the distributions of t C and t R . Physically this instability can be understood by the occurrence of very long infectious times t I strongly boosting the epidemic spreading (corresponding to the limit R 0 , ⟨t I ⟩ → ∞).

Figure 1 :

 1 Figure1: Endemic value J e (j 0 , R 0 ) vs j 0 from Eq. (26) with[START_REF] Basnarkov | Non-Markovian SIR epidemic spreading model[END_REF] for different values of R 0 > 1 where in all curves we have put ⟨t C ⟩ = ⟨t R ⟩ = 5, ⟨t I ⟩ = 20.

Figure 4 :

 4 Figure 4: Average population fractions over 10 random walk realizations with Z = 100, N = 11 (density Z/N 2 ≈ 0.83), P inf = 0.9 and Gamma distributed waiting times having the means ⟨t C ⟩ = 5, ⟨t I ⟩ = 10, ⟨t R ⟩ = 35, ξ C = 0.1, ξ I = 0.2, ξ R = 0.3. By using Eq. (47) for the numerical evaluation we get (dashed lines) S e ≈ 0.31, C e ≈ 0.075, J e ≈ 0.14, R e ≈ 0.48 and with Eq. (48) we have r C ≈ 1.08, r I ≈ 1.03, r R ≈ 0.98. We depict the corresponding Gamma distributed waiting times t C,I,R in three histograms with the parameters used in this simulation.

Figure 5 :

 5 Figure 5: (a) Average over 5 random walk realizations and (δ-distributed) waiting times t C = t I = t R = 10 (T = 30) with Z = 500, N = 11 (density Z/N 2 ≈ 4.13), P inf = 0.9. We have small S e ≈ 0.04 (R 0 ≈ 24, 39) and C e = J e = R e ≈ 0.32 ≈ 1 3 (dashed lines).

  we have equal δ-distributed waiting times and very large R 0 . The measures (48) are r C,I,R ≈ (1, 01, 1, 0.99) close to one and indicate excellent accordance with Eqs.[START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] although the observation time is not very large. In this plot (blue dashed line) S e is slightly overestimated as (47) is an asymptotic relation holding for large t.

Figure 6 :

 6 Figure 6: δ-distributed (frame on the left) and exponentially distributed waiting times (frame on the right) with Z = 150, N = 21 (density Z/N 2 ≈ 0.34), P inf = 0.9, mean incubation time ⟨t C ⟩ = 10, ⟨t I ⟩ = 100, ⟨t R ⟩ = 50. Endemic state (δ-distributed waiting times, dashed lines figure on the left): S e ≈ 0.10 (R 0 ≈ 9.68), C e ≈ 0.06, J e ≈ 0.56, R e ≈ 0.27, r C ≈ 0.07, r I ≈ 1.00, r R = 0.98. Endemic state (exponential waiting times, dashed lines figure on the right): S e ≈ 0.16 (R 0 ≈ 6.01), C e ≈ 0.06, J e ≈ 0.52, R e ≈ 0.26 r C ≈ 1.07, r I ≈ 1.00, r R ≈ 0.98

Figure 7 :

 7 Figure7: Left frame: δ-distributed waiting times, all parameters as in the left frame of Figure6but with Z = 140 to have a slightly lower density to approach the oscillatory (Hopf) instability (density Z/N 2 ≈ 0.32). Endemic values: S e ≈ 0.11 (R 0 ≈ 9.09), C e ≈ 0.06, J e ≈ 0.56, R e ≈ 0.26 r C ≈ 1.07, r I ≈ 1.01, r R ≈ 0.96. Right frame: Identical parameters (including density) as for the left frame but with exponentially distributed t C (with ⟨t C ⟩ = 10), Gamma-distributed t R with ξ R = 0.1 and ⟨t R ⟩ = 50 and t I is δ-distributed (t I = 100). The different types of distributions decrease slightly S e ≈ 0.09 with increasing R 0 ≈ 10.95 compared to the left frame leading to attenuated oscillations. Other endemic values C e ≈ 0.06, J e ≈ 0.57, R e ≈ 0.28, r C ≈ 1.08, r I ≈ 1.00, r R ≈ 0.97

Figure 8 :

 8 Figure 8: Numerical solution of the ODE model[START_REF]Web link to be included) -Code Python © Téo Granger[END_REF] with the parameters of Figure7(left frame) and R 0 = 9.1, j 0 = 0.01, s 0 = 0.99, c 0 = r 0 = 0. The color code is the same as in Figure7.

Figure 9 :

 9 Figure 9: Gamma distributed waiting times. Same parameters as in Figure 6 except ξ C = 0.5, ξ I = 0.2, ξ R = 0.01, Endemic state (dashed lines): S e ≈ 0.07 (R 0 ≈ 14.09), C e ≈ 0.06, J e ≈ 0.58, R e ≈ 0.28 r C ≈ 1.06, r I ≈ 1.00, R R ≈ 0.97.

Figure 10 :

 10 Figure 10: Left frame: δ-distributed waiting times all parameters are identical as in the right frame, except ξ C,I,R = 10 4 (generating the δ-distribution, see (45)). Endemic values (dashed lines): S e ≈ 0.15(R 0 = 1/S e ≈ 6.59), C e ≈ 0.6, J e ≈ 0.53, R e ≈ 0.25. r C ≈ 1.15, r I ≈ 1.00, r R ≈ 0.96. Right frame: All waiting times are Gamma distributed where their means are identical with those of the left frame with ⟨t C ⟩ = 10, ξ C = 0.1, ⟨t I ⟩ = 100, ξ I = 0.1 (α I = 10), ⟨t R ⟩ = 50, ξ R = 0.05, Z = 150, N = 21 (density Z/N 2 ≈ 0.34), P inf = 0.9, S e ≈ 0.06(R 0 = 1/S e ≈ 15.91), C e ≈ 0.06, J e ≈ 0.58, R e ≈ 0.29, r C ≈ 1.06, r I ≈ 0.99, r R ≈ 0.99.

  0 depends on further characteristics of the waiting time PDFs such as for instance their variances.

Figure 11 :

 11 Figure 11: Numerical solution of the ODE model (30) with the parameters of Figure 10 (left) and R 0 = 6.6, j 0 = 0.01, s 0 = 0.99, c 0 = r 0 = 0.

µ=0> 1 .

 1 Expanding G(µ) (assuming existing mean ⟨t I ⟩) givesG(µ) = β[1 -⟨t C ⟩µ + o(µ)]⟨t I ⟩µ = β⟨t I ⟩µ + o(µ). 0 = β⟨t I ⟩ > 1 (62)

  

  Note that A(t) = A[j(t), s(t)] is causal, i.e. all functions with negative time arguments are vanishing. For t < t C the infected individuals accumulate in the compartment C and for t ≥ t C some start to leave compartment C to enter I with the delayed rate A(t -t C ). Then for t ≥ t C + t I the first individuals are healed starting transitions I → R with rate A(t -t C -t I ). Finally for t ≥ t C -t I -t R the transitions R → S due to individuals losing their immunity occur. From these observations we can infer that

  2 ≈ 0.32). Endemic values: S e ≈ 0.11 (R 0 ≈ 9.09), C e ≈ 0.06, J e ≈ 0.56, R e ≈ 0.26 r C ≈ 1.07, r I ≈ 1.01, r R ≈ 0.96. Right frame: Identical parameters (including density) as for the left frame but with exponentially distributed t C (with ⟨t C ⟩ = 10), Gamma-distributed t R with ξ R = 0.1 and ⟨t R ⟩ = 50 and t I is δ-distributed (t I = 100). The different types of distributions decrease slightly S e ≈ 0.09 with increasing R 0 ≈ 10.95 compared to the left frame leading to attenuated oscillations. Other endemic values C e ≈ 0.06, J e ≈ 0.57, R e ≈ 0.28, r

C ≈ 1.08, r I ≈ 1.00, r R ≈ 0.97

Both plots in Figure

A function g(t) is called 'causal' if g(t)= 0 for t < 0, i.e. non-zero only for t ≥ 0.

We suppress here subscripts C, I, R.

We denote here ensemble averages of random functions B(t) with ⟨B(t)⟩.
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A General derivatives

We can alternatively represent Eqs. [START_REF] Bestehorn | Simple model of epidemic dynamics with memory effects[END_REF] in the Riemann-Liouville sense of general derivatives as

which also is obtained straight-forwardly from the Laplace transformed representation [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF] and employing definition [START_REF] Bestehorn | A Markovian random walk model of epidemic spreading[END_REF]. On the right-hand sides general derivatives come into play. The notion of 'general' (fractional) derivative was introduced by Kochubei [29] generalizing d dt y(t) as (in the Caputo sense)

with y 0 = y(t) t=0

. The part D t • y(t) = t 0 k(t -τ )y(τ )dτ is a general derivative in the Riemann-Liouville sense for some admissible kernels k(τ ) (see [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF] for an outline of this theory). The general derivative (50) has the LT

The general derivatives contain the class of standard fractional derivatives of Caputo and Riemann-Liouville type and for a k(t) = δ(t) the standard first order derivative.

B Stability analysis for arbitrary waiting time densities

In Section 3 we have derived that the healthy state is unstable if R 0 = βt I > 1 for δ-distributed kernels. Here we consider arbitrary waiting time kernels first with finite means to generalize this result and at the end of this appendix we briefly look at the time fractional case. To this end we take into account that the PDFs K C,I,R (t) can be seen as a superposition (average over t C,I,R ) of the δ(t -t C,I,R )-kernel as follows

and in this way we can average

for sufficiently good functions f thus

yielding the Laplace transform of the PDF. Therefore, averaging Eqs. [START_REF]Web link to be included) -Code Python © Téo Granger[END_REF] for δ-kernels over the waiting times t C,I,R brings us back to the general SCIRS Eqs. (1) which can be seen from

where we used causality of A and K C . Hence we can generalize the case of δ-kernels (34) to any kernels by accounting for

where we always use the mutually independence of the waiting times. Hence by averaging Eq. (34) we get 

We have again (as in ( 35)) µ = 0 as a threefold eigenvalue. The remaining non-zero eigenvalue is determined by

We have to point out that in order to obtain these results we have relaxed causality in the exponential ansatz (33) and assumed that it is defined for all t ∈ R. The difference of causal and non-causal averaging can be seen by comparing

where Θ(τ ) indicates the Heaviside unit step function and corresponds to causality. To obtain the condition (57) we have averaged as in the first line of (59) where the exponential is non-causal allowing exponentials with arguments t-t C < 0 to contribute. Both sides become asymptotically equal in the limit t → ∞. Hence above relation (57) can also be interpreted as the large time asymptotics of causal averaging. Let us focus now on the stability of the healthy state s 0 = 1. Then (58) yields (S e → s 0 = 1, J e → j 0 = 0) µ = β KC (µ)[1 -KI (µ)] = G(µ).

(60)