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SHARP LARGE DEVIATIONS AND CONCENTRATION

INEQUALITIES FOR THE NUMBER OF DESCENTS IN A

RANDOM PERMUTATION

BERNARD BERCU, MICHEL BONNEFONT, AND ADRIEN RICHOU

Abstract. The goal of this paper is to go further in the analysis of the behavior
of the number of descents in a random permutation. Via two different approaches
relying on a suitable martingale decomposition or on the Irwin-Hall distribution,
we prove that the number of descents satisfies a sharp large deviation principle.
A very precise concentration inequality involving the rate function in the large
deviation principle is also provided.

1. Introduction

Let Sn be the symmetric group of permutations on the set of integers {1, . . . , n}
where n ≥ 1. A permutation πn ∈ Sn is said to have a descent at position k ∈
{1, . . . , n − 1} if πn(k) > πn(k + 1). Denote by Dn = Dn(πn) the random variable
counting the number of descents of a permutation πn chosen uniformly at random
from Sn. We clearly have D1 = 0 and for all n ≥ 2,

(1.1) Dn =
n−1
∑

k=1

I{πn(k)>πn(k+1)}.

A host of results are available on the asymptotic behavior of the sequence (Dn).
More precisely, we can find in Bóna [3] that for all n ≥ 2,

E[Dn] =
n− 1

2
and Var(Dn) =

n+ 1

12
.

In addition, it is possible to get a connection with generalized Pólya’s urn with two
colors also known as Friedman’s urn, see [10] and Remark 2.1 below. In particular,
for this construction, we have by Corollary 5.2 in [9] the almost sure convergence

(1.2) lim
n→∞

Dn

n
=

1

2
a.s.
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2 ON THE NUMBER OF DESCENTS IN A RANDOM PERMUTATION

Following the approach of Tanny [17], see Section 3.2 below, it is also possible to
construct a different sequence (Dn) with same marginal distribution using a sequence
of independent random variables sharing the same uniform distribution on [0, 1].
For this construction, we directly obtain the same almost sure convergence (1.2), as
noticed by Gnedin and Olshanski [12], Section 7.3. Nevertheless, the distribution of
the process (Dn) does not correspond to the one investigated in Section 2.

Four different approaches have been reported by Chatterjee and Diaconis [5] to
establish the asymptotic normality

(1.3)
√
n
(Dn

n
− 1

2

) L−→ N
(

0,
1

12

)

.

We also refer the reader to the recent contribution of Garet [11] relying on the
method of moments as well as to the recent proof by Özdemir [15] using a rather
complicated martingale approach. Furthermore, denote by Ln the number of leaves
in a random recursive tree of size n. It is well-known [19] that Ln+1 = Dn + 1.
Hence, it has been proven by Bryc, Minda and Sethuraman [4] that the sequence
(Dn/n) satisfies a large deviation principle (LDP) with good rate function given by

(1.4) I(x) = sup
t∈R

{

xt− L(t)
}

where the asymptotic cumulant generating function is such as

(1.5) L(t) = log
(exp(t)− 1

t

)

.

The purpose of this paper is to go further in the analysis of the behavior of the
number of descents by proving a sharp large deviation principle (SLDP) for the
sequence (Dn). We shall also establish a sharp concentration inequality involving
the rate function I given by (1.4).

To be more precise, we propose two different approaches that lead us to a SLDP and
a concentration inequality for the sequence (Dn). The first one relies on a martingale
approach while the second one use a miraculous link between the distribution of (Dn)
and the Irwin–Hall distribution, as pointed out by Tanny [17]. On the one hand, the
second method is more direct and simpler in order to establish our results. On the
other hand, the first approach is much more general and we are strongly convinced
that it can be extended to other statistics on random permutations that share the
same kind of iterative structure such as the number of alternating runs [3, 16] or
the length of the longest alternating subsequence in a random permutation [14, 18].
Moreover, we have intentionally kept these two strategies of proof in the manuscript
in order to highlight that the martingale approach is as efficient and powerful as the
direct method in terms of results.

The paper is organized as follows. Section 2 is devoted to our martingale approach
which allows us to find again a direct proof of (1.2) and (1.3) and to propose new
standard results for the sequence (Dn) such as a law of iterated logarithm, a qua-
dratic strong law and a functional central limit theorem. The main results of the



ON THE NUMBER OF DESCENTS IN A RANDOM PERMUTATION 3

paper are given in Section 3. We establish a SLDP for the sequence (Dn) as well
as a sharp concentration inequality involving the rate function I. Three keystone
lemmas are analyzed in Section 4. All technical proofs are postponed to Sections 5
to 8.

2. Our martingale approach

We start by describing precisely the construction of the sequence (Dn) on a unique
probability space. Let us remark that this construction can be naturally linked to
a generalized Pólya urns, see Remark 2.1 below. We consider a sequence (Vn) of
independent random variables uniformly distributed on {1, ..., n}. Then, we set
π1 = (1) and, for each n ≥ 1, we define recursively the permutation πn+1 as

(2.1) πn+1(k) =







πn(k) if k < Vn+1,
n+ 1 if k = Vn+1,

πn(k − 1) if k > Vn+1.

By a direct recursive argument, it is clear that for each n ≥ 1, πn is uniformly
distributed on Sn. Moreover, as explained in [15], it follows from (1.1) and (2.1)
that for all n ≥ 1,

P(Dn+1 = Dn + d|Fn) =















n−Dn

n + 1
if d = 1,

Dn + 1

n + 1
if d = 0,

with Fn = σ(D1, . . . , Dn). This means that

(2.2) Dn+1 = Dn + ξn+1

where the conditional distribution of ξn+1 given Fn is the Bernoulli B(pn) distribu-
tion with parameter

pn =
n−Dn

n+ 1
.

Since E[ξn+1|Fn] = pn and E[ξ2n+1|Fn] = pn, we deduce from (2.2) that

E[Dn+1|Fn] = E[Dn + ξn+1|Fn] = Dn + pn a.s.(2.3)

E[D2
n+1|Fn] = E[(Dn + ξn+1)

2|Fn] = D2
n + 2pnDn + pn a.s.(2.4)

Moreover, let (Mn) be the sequence defined for all n ≥ 1 by

(2.5) Mn = n
(

Dn −
n− 1

2

)

.

We obtain from (2.3) that

E[Mn+1|Fn] = (n+ 1)
(

Dn + pn −
n

2

)

= (n + 1)
( n

n+ 1
Dn −

n(n− 1)

2(n+ 1)

)

,

= n
(

Dn −
n− 1

2

)

= Mn a.s.
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which means that (Mn) is a locally square integrable martingale. We deduce from
(2.4) that its predictable quadratic variation is given by

(2.6) 〈M〉n =
n−1
∑

k=1

E[(Mk+1 −Mk)
2|Fk] =

n−1
∑

k=1

(k −Dk)(Dk + 1) a.s.

The martingale decomposition (2.5) allows us to find again all the asymptotic results
previously established for the sequence (Dn) such as the almost sure convergence
(1.2) and the asymptotic normality (1.3). Some improvements to these standard
results are as follows. To the best of our knowledge, the quadratic strong law and
the law of iterated logarithm are new.

Proposition 2.1. We have the quadratic strong law

(2.7) lim
n→∞

1

log n

n
∑

k=1

(Dk

k
− 1

2

)2

=
1

12
a.s.

Moreover, we also have the law of iterated logarithm

lim sup
n→∞

( n

2 log logn

)1/2(Dn

n
− 1

2

)

= − lim inf
n→∞

( n

2 log log n

)1/2(Dn

n
− 1

2

)

=
1√
12

a.s.(2.8)

In particular,

(2.9) lim sup
n→∞

( n

2 log logn

)(Dn

n
− 1

2

)2

=
1

12
a.s.

Denote by D([0,∞[) the Skorokhod space of right-continuous functions with left-
hand limits. The functional central limit theorem extends the asymptotic normality
(1.3), see a similar result in [13] using generalized Pólya’s urns.

Proposition 2.2. We have the distributional convergence in D([0,∞[),

(2.10)
(√

n
(D⌊nt⌋
⌊nt⌋ − 1

2

)

, t ≥ 0
)

=⇒
(

Wt, t ≥ 0
)

where (Wt) is a real-valued centered Gaussian process starting at the origin with

covariance given, for all 0 < s ≤ t, by

E[WsWt] =
s

12t2
.

In particular, we find again the asymptotic normality (1.3).

Proof. The proofs are postponed to Section 8 �

Remark 2.1. Relation (2.2) allows to see the sequence (Dn) as the sequence of the

number of white balls in a two colors generalized Pólya urn [10] with the following

rule: at each step, one ball is drawn at random and then replaced with an additional

ball of the opposite color.
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3. Main results

3.1. Sharp large deviations and concentration. Our first result concerns the
SLDP for the sequence (Dn) which nicely extends the LDP previously established
by Bryc, Minda and Sethuraman [4]. For any positive real number x, denote {x} =
⌈x⌉ − x.

Theorem 3.1. For any x in ]1/2, 1[, we have on the right side

(3.1) P

(Dn

n
≥ x

)

=
exp(−nI(x)− {nx}tx)

σxtx
√
2πn

[

1 + o(1)
]

where the value tx is the unique solution of L′(tx) = x and σ2
x = L′′(tx).

Our second result is devoted to an optimal concentration inequality involving the
rate function I.

Theorem 3.2. For any x ∈]1/2, 1[ and for all n ≥ 1, we have the concentration

inequality

(3.2) P

(Dn

n
≥ x

)

≤ P (x)
exp(−nI(x)− {nx}tx)

σxtx
√
2πn

where the prefactor can be taken as

P (x) =

√

t2x + π2

t2x
+

(

1 +
1

π
+

2
√

t2x + π2

π2 − 4

)
√

π2(t2x + 4)

4
.

Remark 3.1. Let us denote An = An(πn) the random variable counting the number

of ascents of a permutation πn ∈ Sn. Then, it is clear that Dn(πn)+An(πn) = n−1.
Moreover, by a symmetry argument, Dn and An share the same distribution. In

particular, Dn has the same distribution as (n − 1) − Dn. Consequently, for all

x ∈]1/2, 1[, we have

P

(Dn + 1

n
≤ 1− x

)

= P

(Dn

n
≥ x

)

which allows to extend immediately the previous results to the left side.

Remark 3.2. One can observe from (3.1) or (3.2) that for all ε > 0,

∞
∑

n=1

P

(
∣

∣

∣

Dn

n
− 1

2

∣

∣

∣
> ε
)

< +∞.

That is the complete convergence of (Dn/n) to 1/2, which directly implies the almost

sure convergence (1.2) for any construction of the sequence (Dn).

3.2. A more direct approach. An alternative approach to prove SLDP and con-
centration inequalities for the sequence (Dn) relies on a famous result of Tanny [17]
which says that the distribution of Dn is nothing else than the one of the integer part
of the sum Sn of independent and identically distributed random variables. More
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precisely, let (Un) be a sequence of independent random variables sharing the same
uniform distribution on [0, 1]. Denote

Sn =
n
∑

k=1

Uk.

Then, we have from [17] that for all k ∈ [[0, n− 1]],

(3.3) P(Dn = k) = P(⌊Sn⌋ = k) = P(k ≤ Sn < k + 1).

It simply means that the distribution of Dn is the one of the integer part of the
the Irwin-Hall distribution. Identity (3.3) is somewhat miraculous and it is really
powerful in order to carry out a sharp analysis of the sequence (Dn). Once again,
we would like to emphasize that this direct approach is only relevant for the study
of (Dn) while our martingale approach is much more general. A direct proof of
Theorem 3.1 is provided in Section 6 relying on identity (3.3). It is also possible to
use this direct approach in order to establish a sharp concentration inequality with
the same shape as (3.2), see Remark 6.1 below.

3.3. Further considerations on concentration inequalities. We wish to com-
pare our concentration inequality (3.2) with some classical ones. The first one is
given by the well-known Azuma-Hoeffding inequality [2]. It follows from (2.6) that
the predictable quadratic variation 〈M〉n of the martingale (Mn) satisfies

〈M〉n ≤ sn
4

where sn =
n
∑

k=2

k2.

In addition, its total quadratic variation reduces to

[M ]n =
n−1
∑

k=1

(Mk+1 −Mk)
2 = sn.

Consequently, we deduce from an improvement of Azuma-Hoeffding inequality given
by inequality (3.20) in [2] that for any x ∈]1/2, 1[ and for all n ≥ 1,

(3.4) P

(Dn

n
≥ x

)

≤ exp
(

− 2n4

sn

(

x− 1

2

)2)

.

One can observe that (3.2) is much sharper than (3.4) for all values of x ∈]1/2, 1[.
Furthermore, by using (3.3), we can also infer a concentration inequality by means
of Chernoff’s inequality. Indeed, for any x ∈]1/2, 1[ and for all n ≥ 1, we have

P

(Dn

n
≥ x

)

= P

(

n
∑

k=1

Uk ≥ ⌈nx⌉
)

≤ exp
(

nL(tx)− tx⌈nx⌉
)

≤ exp
(

− nI(x)− {nx}tx
)

(3.5)

which is also rougher than (3.2).
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4. Three keystone lemmas

Denote by mn the Laplace transform of Dn defined, for all t ∈ R, by

(4.1) mn(t) = E[exp(tDn)].

One can observe that mn(t) is finite for all t ∈ R and all n ≥ 1 since Dn is finite.
Let us introduce the generating function defined, for all t ∈ R and for all z ∈ C, by

F (t, z) =

∞
∑

n=0

mn(t)z
n

where the initial value is such that, for all t ∈ R, m0(t) = 1. Let us notice that
the radius of convergence, denoted RF (t), should depend on t and is positive since
|mn(t)| ≤ en|t|. Moreover, we easily have for all |z| < RF (0) = 1,

F (0, z) =
1

1− z
.

Our first lemma is devoted to the calculation of the generating function F , see also
[4] page 865, where a similar expression was given without proof. One can observe
that k0 should be replaced by 1−k0. Let us also remark that the recursive equation
(4.5) was already given in [10], Section 4.

Lemma 4.1. For all t ∈ R, we have

(4.2) RF (t) =
t

et − 1
.

Moreover, for all t ∈ R and for all z ∈ C such that |z| < RF (t),

(4.3) F (t, z) =
1− exp(−t)

1− exp((et − 1)z − t)
.

Proof. It follows from (2.2) that for all t ∈ R and for all n ≥ 1,

mn+1(t) = E
[

exp(tDn+1)
]

= E
[

exp(tDn)E[exp(tξn+1)|Fn]
]

,

= E
[

exp(tDn)pne
t + exp(tDn)(1− pn)

]

,

= mn(t) + (et − 1)E
[

pn exp(tDn)
]

.(4.4)

However, we already saw that

pn =
n−Dn

n+ 1
,

which implies that

E
[

pn exp(tDn)
]

=
n

n+ 1
mn(t)−

1

n + 1
m′

n(t).

Consequently, we obtain from (4.4) that for all t ∈ R and for all n ≥ 1,

(4.5) mn+1(t) =
(1 + net

n+ 1

)

mn(t) +
(1− et

n+ 1

)

m′
n(t).
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One can observe that (4.5) remains true for n = 0. We deduce from (4.5) that for
all |z| < RF (t),

∂F (t, z)

∂z
=

∞
∑

n=1

nmn(t)z
n−1 =

∞
∑

n=0

(n+ 1)mn+1(t)z
n,

=

∞
∑

n=0

(1 + net)mn(t)z
n +

∞
∑

n=0

(1− et)m′
n(t)z

n,

= F (t, z) + etz
∂F (t, z)

∂z
+ (1− et)

∂F (t, z)

∂t
,

where the last equality comes from the fact that |m′
n(t)| ≤ nmn(t) allows us to apply

dominated convergence theorem in order to differentiate in t the series. Hence, we
have shown that the generating function F is the solution of the following partial
differential equation

(4.6) (1− etz)
∂F (t, z)

∂z
+ (et − 1)

∂F (t, z)

∂t
= F (t, z)

with initial value

(4.7) F (t, 0) = m0(t) = 1.

We shall now proceed as in [8] in order to solve the partial differential equation (4.6)
via the classical method of characteristics, see e.g. [20]. Following this method,
one first associates to the linear first-order partial differential equation (4.6), the
ordinary differential system given by

(4.8)
dz

1− etz
=

dt

et − 1
=

dw

w

where w stands for the generating function F . We assume in the sequel that t > 0,
inasmuch as the proof for t < 0 follows exactly the same lines. The equation binding
w and t can be easily solved and we obtain that

(4.9) w = C1(1− e−t).

The equation binding z and t leads to the ordinary differential equation

dz

dt
= − et

et − 1
z +

1

et − 1
.

We find by the variation of constant method that

(4.10) (et − 1)z − t = C2.

According to the method of characteristics, the general solution of (4.6) is obtained
by coupling (4.9) and (4.10), namely

(4.11) C1 = f(C2)

where f is a function which can be explicitly calculated from the boundary value in
(4.7). We deduce from the conjunction of (4.9), (4.10) and (4.11) that for all t > 0
and for all z ∈ C such that |z| < RF (t),

(4.12) F (t, z) = (1− e−t)f
(

(et − 1)z − t
)

.
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It only remains to determine the exact value of the function f by taking into account
the initial condition (4.7). We obtain from (4.12) with z = 0 and replacing −t by t
that

(4.13) f(t) =
1

1− et
.

Finally, the explicit solution (4.3) clearly follows from (4.12) and (4.13). Moreover,
one can observe that the radius of convergence comes immediately from (4.3), which
completes the proof of Lemma 4.1. �

The global expression (4.3) of the generating function F allows us to deduce a sharp
expansion of the Laplace transform mn of Dn, as follows.

Lemma 4.2. For any t 6= 0, we have

(4.14) mn(t) =
(1− e−t

t

)(et − 1

t

)n
(

1 + rn(t)
)

where the remainder term rn(t) goes exponentially fast to zero as

(4.15) |rn(t)| ≤ |t|e
(

1 +
1

π
+

2 + n√
t2 + 4π2

)(

1 +
4π2

t2

)−n/2

.

Proof. In all the proof, we assume that t 6= 0. It follows from (4.3) that F is a
meromorphic function on C with simple poles given, for all ℓ ∈ Z, by

(4.16) zFℓ (t) =
t + 2iℓπ

et − 1
.

By a slight abuse of notation, we still denote by F this meromorphic extension.
Hereafter, for the sake of simplicity, we shall consider the function F defined, for all
z ∈ C, by

(4.17) F(t, z) =
1

1− e−t
F (t, z) = f(ξ(t, z))

where the function f was previously defined in (4.13) and the function ξ is given,
for all z ∈ C, by

(4.18) ξ(t, z) = (et − 1)z − t.

By the same token, we shall also introduce the functions G and H defined, for all
z ∈ C, by

(4.19) G(t, z) = g(ξ(t, z)) and H(t, z) = h(ξ(t, z))

where g and h are given, for all z ∈ C∗, by

(4.20) g(z) = −1

z
and h(z) =

1

1− ez
+

1

z
.

One can immediately observe from (4.20) that H = F − G which means that we
have subtracted to F its simple pole at 0 to get H. Given a function K(t, z) analytic
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in z on some set {(t, z) ∈ R × C, |z| ≤ RK(t)}, we denote by mK
n (t) the coefficient

of its Taylor series at point (t, 0), that is

K(t, z) =
∞
∑

n=0

mK
n (t)z

n.

Thanks to this notation, we clearly have mF
n (t) = mG

n(t) + mH
n (t). Moreover, we

deduce from (4.17) that

(4.21) mF
n (t) =

1

1− e−t
mF

n (t).

The first coefficient mG
n(t) can be explicitly computed by

(4.22) mG
n(t) =

1

t

(et − 1

t

)n

.

As a matter of fact, for all z ∈ C such that |z| < RG(t) = t(et− 1)−1, it follows from
(4.18) and (4.19) that

G(t, z) = − 1

ξ(t, z)
=

1

t− (et − 1)z
=

1

t

∞
∑

n=0

(et − 1

t

)n

zn.

Consequently, as mn(t) = mF
n (t), we obtain from (4.21) that

mn(t) = (1− e−t)
(

mG
n(t) +mH

n (t)
)

= (1− e−t)mG
n(t)

(

1 + rn(t)
)

which leads via (4.22) to

(4.23) mn(t) =
(1− e−t

t

)(et − 1

t

)n
(

1 + rn(t)
)

where the remainder term rn(t) is the ratio rn(t) = mH
n (t)/m

G
n(t). From now on,

we shall focus our attention on a sharp upper bound for mH
n (t). The function h is

meromorphic with simple poles at the points 2iπZ∗. Moreover, for a given t 6= 0, z
is a pole of H if and only if (et − 1)z − t is a pole of h. Hence, the poles of H are
given, for all ℓ ∈ Z∗, by

zHℓ (t) =
t+ 2iℓπ

et − 1
.

In addition, its radius of convergence RH(t) is nothing more than the shortest dis-
tance between 0 and one of these poles. Consequently, we obtain that

RH(t) = |zH1 (t)| =
t

et − 1

√

1 +
4π2

t2
.

Furthermore, it follows from Cauchy’s inequality that for any 0 < ρ(t) < RH(t),

(4.24) |mH
n (t)| ≤

‖H(t, ·)‖∞,C(0,ρ(t))
ρ(t)n

where the norm in the numerator stands for

‖H(t, .)‖∞,C(0,ρ(t)) = sup{|H(t, z)|, |z| = ρ(t)}.
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Since ξ(t, C(0, ρ(t))) coincides with the circle C(−t, |et− 1|ρ(t)), we deduce from the
identity H(t, z) = h(ξ(t, z)) that

‖H(t, ·)‖∞,C(0,ρ(t)) = ‖h‖∞,C(−t,|et−1|ρ(t)).

Hereafter, we introduce a radial parameter

(4.25) ρ(t, α) =
t

et − 1

√

1 +
4απ2

t2

where α is a real number in the interval ]− t2/4π2, 1[. We also define the distance
between the circle C(−t, |et − 1|ρ(t, α)) and the set of the poles of h,

δ(t, α) = d(C(−t, |et − 1|ρ(t, α)), 2iπZ∗).

We clearly have from the Pythagorean theorem that

δ(t, α) =
√
t2 + 4π2 −

√
t2 + 4απ2.

In addition, one can easily check that

δ(t, α) =
4π2(1− α)√

t2 + 4π2 +
√
t2 + 4απ2

which ensures that

(4.26)
2π2(1− α)√
t2 + 4π2

< δ(t, α) <
4π2(1− α)√
t2 + 4π2

It follows from the maximum principle that

‖h‖∞,C(−t,|et−1|ρ(t,α)) ≤ ‖h‖∞,∂D(L,Λ,δ(t,α))

where, for L > 0 and Λ > 0 large enough, D(L,Λ, δ(t, α)) = B(L,Λ) ∩ Ah(δ(t, α))
∁

is the domain given by the intersection of the box

B(L,Λ) = {z ∈ C, |ℜ(z)| < L, |ℑ(z)| < Λ}
and the complementary set of

Ah(δ(t, α)) = {z ∈ C, d(z, 2iπZ∗) ≤ δ(t, α) with |ℑ(z)| ≥ π}.
On the one hand, we have for all y ∈ R, |eL+iy − 1| ≥ eL − 1 and |L + iy| ≥ L,
implying that for all y ∈ R,

∣

∣

∣
h(L+ iy)

∣

∣

∣
≤ 1

eL − 1
+

1

L
.

By the same token, we also have for all y ∈ R, |e−L+iy−1| ≥ 1−e−L and |−L+iy| ≥
L, leading, for all y ∈ R, to

∣

∣

∣
h(−L+ iy)

∣

∣

∣
≤ 1

1− e−L
+

1

L
.

On the other hand, we can choose Λ of the form Λ = (2k + 1)π for a value k ∈ N∗

large enough. Then, we have for all x ∈ R, exp(x + (2k + 1)iπ) = − exp(x) and
|x+ (2k + 1)iπ| ≥ (2k + 1)π, implying that for all x ∈ R,

(4.27)
∣

∣

∣
h(x+ (2k + 1)iπ)

∣

∣

∣
≤ 1 +

1

(2k + 1)π
.
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By letting L and Λ go to infinity, we obtain that

‖h‖∞,C(−t,(et−1)ρ(t,α)) ≤ max
(

1, ‖h‖∞,∂D(δ(t,α))

)

where D(δ(t, α)) is the domain D(δ(t, α)) = Ah(δ(t, α))
∁. We clearly have from

(4.20) that for all z ∈ ∂D(δ(t, α)) with |ℑ(z)| > π,

(4.28) |h(z)| ≤ |f(z)|+ 1

|z| ≤ |f(z)|+ 1

π
.

Moreover, it follows from tedious but straightforward calculations that

inf
z∈C,|z|=δ(t,α)

∣

∣1− ez
∣

∣ = 1− e−δ(t,α),

which ensures that

(4.29) |f(z)| ≤ 1

1− e−δ(t,α)
.

In addition, we obtain from (4.27) that for all z ∈ ∂D(δ(t, α)) with |ℑ(z)| = π,

(4.30) |h(z)| ≤ 1 +
1

π
.

Hence, we find from (4.28), (4.29) and (4.30) that

‖h‖∞,∂D(δ(t,α)) ≤
1

1− e−δ(t,α)
+

1

π
.

We were not able to find an explicit maximum for the previous upper-bound. How-
ever, it is not hard to see that

1

1− e−δ(t,α)
≤ 1 +

1

δ(t, α)
,

which gives us

(4.31) ‖h‖∞,∂D(δ(t,α)) ≤ 1 +
1

π
+

1

δ(t, α)
.

Consequently, we deduce from (4.24), (4.25), (4.26) and (4.31) that for all t 6= 0
and for all n ≥ 1,

(4.32) |mH
n (t)| ≤

(et − 1

t

)n

ϕn(t, α)

where

(4.33) ϕn(t, α) =
(

1 +
1

π
+

√
t2 + 4π2

2π2(1− α)

)(

1 +
4απ2

t2

)−n/2

.

For the sake of simplicity, let Φ be the function defined, for all α ∈]− t2/4π2, 1[, by

Φ(α) =
( 1

1− α

)(

1 +
4απ2

t2

)−n/2

.

One can easily see that Φ is a convex function reaching its minimum for the value

α = 1−
(

1 +
t2

4π2

)(

1 +
n

2

)−1

.
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Some numerical experiments show that this explicit value seems to be not far from
being the optimal value that minimizes ϕn(t, α). By plugging α into (4.33), we
obtain from (4.32) that for all t 6= 0 and for all n ≥ 1,

|mH
n (t)| ≤

(et − 1

t

)n(

1 +
1

π
+

2 + n√
t2 + 4π2

)(

1 +
2

n

)n/2(

1 +
4π2

t2

)−n/2

,

≤ e
(et − 1

t

)n(

1 +
1

π
+

2 + n√
t2 + 4π2

)(

1 +
4π2

t2

)−n/2

.(4.34)

Finally, (4.15) follows from (4.22) together with (4.34), which completes the proof
of Lemma 4.2.

�

We now focus our attention on a complex estimate of the Laplace transform mn of
Dn since mn clearly extends to an analytic function on C. More precisely, our goal
is to compute an estimate of mn(t + iv) for t 6= 0 and for v ∈ R such that |v| < π.
Note that mn is 2iπ periodic.

Lemma 4.3. For any t 6= 0 and for all v ∈ R such that |v| < π, we have

(4.35) mn(t+ iv) =
(1− e−(t+iv)

t + iv

)(et+iv − 1

t + iv

)n
(

1 + rn(t + iv)
)

where the remainder term rn(t + iv) is exponentially negligible and satisfies

(4.36) |rn(t + iv)| ≤
√
t2 + v2

(

1 +
1

π
+

√
t2 + 4π2

π(π − |v|)
)( t2 + v2

t2 + π2

)n/2

.

Moreover, for any t 6= 0 and for all v ∈ R such that |v| ≤ π, we also have the

alternative upper-bound

|mn(t+ iv)| ≤ |1− e−(t+iv)|
(et − 1

t

)n
(

1√
t2 + v2

exp
(

− n
t2L′′(t)

t2 + π2

v2

2

)

+
(

1 +
1

π
+

2
√
t2 + π2

π2 − 4

)

exp
(

− n
4t2L′′(t)

π2(t2 + 4)

v2

2

)

)

(4.37)

where the second derivative of the asymptotic cumulant generating function L is the

positive funnction given by

(4.38) L′′(t) =
(et − 1)2 − t2et

(t(et − 1))2
.

Proof. We still assume in all the sequel that t 6= 0. We shall also extend F (t, z) in
the complex plane with respect of the first variable,

F (t+ iv, z) =

∞
∑

n=0

mn(t+ iv)zn

where the initial value is such that m0(t + iv) = 1. Since |mn(t+ iv)| ≤ mn(t), the
radius of convergence in z of F (t+ iv, ·) is at least the one for v = 0. Moreover, the
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poles of F (t+ iv, ·) are given, for all ℓ ∈ Z, by

(4.39) zFℓ (t+ iv) =
(t + iv) + 2iℓπ

e(t+iv) − 1
.

Consequently, for all v ∈ R such that |v| < π,

RF (t+ iv) =
|t+ iv|

|et+iv − 1| .

As in the proof of Lemma 4.2, we can split F (t+ iv, z) into two terms,

F (t+ iv, z) =
(

1− e−(t+iv)
)(

G(t + iv, z) +H(t+ iv, z)
)

where we recall from (4.19) that for all z ∈ C and for all v ∈ R such that |v| < π,

G(t+ iv, z) = g(ξ(t+ iv, z)) and H(t+ iv, z) = h(ξ(t+ iv, z))

where g and h are given, for all z ∈ C∗, by

g(z) = −1

z
and h(z) =

1

1− ez
+

1

z

and the function ξ is such that

ξ(t+ iv, z) = (et+iv − 1)z − (t+ iv).

By holomorphic extension, we deduce from (4.22) that

mG
n(t+ iv) =

1

t + iv

(et+iv − 1

t+ iv

)n

.

Moreover, the poles of H(t+ iv) are given, for all ℓ ∈ Z∗, by

zHℓ (t + iv) =
t+ i(v + 2ℓπ)

et+iv − 1
.

Hence, we obtain that for all v ∈ R such that |v| < π,

RH(t + iv) =

√

t2 + (2π − |v|)2
|et+iv − 1| >

√
t2 + v2

|et+iv − 1| = RF (t+ iv).

It follows once again from Cauchy’s inequality that for any 0 < ρ(t+iv) < RH(t+iv),

(4.40) |mH
n (t+ iv)| ≤ ‖H(t+ iv, ·)‖∞,C(0,ρ(t+iv))

ρ(t + iv)n

where the norm in the numerator stands for

‖H(t+ iv, .)‖∞,C(0,ρ(t+iv)) = sup{|H(t+ iv, z)|, |z| = ρ(t + iv)}.
Since the image of the circle C(0, ρ(t+iv)) by the application ξ(t+iv, ·) coincides with
the circle C(−(t+iv), |et+iv−1|ρ(t+iv)), we obtain fromH(t+iv, z) = h(ξ(t+iv, z))
that

‖H(t+ iv, ·)‖∞,C(−t,ρ(t+iv)) = ‖h‖∞,C(−(t+iv),|et+iv−1|ρ(t+iv)).

Hereafter, since |v| < π, one can take the radius

(4.41) ρ(t + iv) =

√
t2 + π2

|et+iv − 1| .



ON THE NUMBER OF DESCENTS IN A RANDOM PERMUTATION 15

Moreover, as in the proof of Lemma 4.2, denote by δ(t + iv) the distance between
the circle C(−(t + iv), |et+iv − 1|ρ(t+ iv))) and the set of the poles of h,

δ(t+ iv) = d(C(−(t + iv), |et+iv − 1|ρ(t+ iv)), 2iπZ∗)

It follows from (4.41) and the Pythagorean theorem that

(4.42) δ(t + iv) =
√

t2 + (2π − |v|)2 −
√
t2 + π2.

One can observe that

δ(t+ iv) =
(3π − |v|)(π − |v|)

√

t2 + (2π − |v|)2 +
√
t2 + π2

which leads to

(4.43)
π(π − |v|)√
t2 + 4π2

< δ(t+ iv) < π − |v|.

Using (4.40) together with (4.31) and (4.43), we obtain that

|mH
n (t+ iv)| ≤

(

1 +
1

π
+

1

δ(t + iv)

) 1

ρ(t + iv)n
≤
(

1 +
1

π
+

√
t2 + 4π2

π(π − |v|)
) 1

ρ(t + iv)n
.

Hence, we find that

mn(t+ iv) = (1− e−(t+iv))mG
n(t + iv)(1 + rn(t+ iv))

where the remainder term rn(t) is the ratio

rn(t+ iv) =
mH

n (t+ iv)

mG
n(t+ iv)

that satisfies

(4.44) |rn(t + iv)| ≤
√
t2 + v2

(

1 +
1

π
+

√
t2 + 4π2

π(π − |v|)
)( t2 + v2

t2 + π2

)n/2

.

Hereafter, we go further in the analyses of mn(t+ iv) by providing a different upper
bound for mH

n (t+ iv). Our motivation is that factor

1

π − |v|
in (4.44) becomes very large when |v| is close to π. Our strategy is not to obtain
the best exponent by taking the largest radius, close to the radius of convergence.
Instead, we shall consider a smaller radius in order to stay away from the poles, but
not to small in order to still have an exponential term with respect to mF

n (t). Let β
be the function defined, or all |v| < π, by

β(v) =
2(1− cos(v))

v2
.
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It is clear that β is even function, increasing on [−π, 0] and decreasing on [0, π] with
a maximum value β(0) = 1 and such that β(π) = 4/π2. We shall replace the radius,
previously given by (4.41), by the new radius

(4.45) ρ(t + iv) =

√

t2 + β(v)v2

|et+iv − 1| .

On can observe that we only replace π2 by β(v)v2 = 2(1−cos(v)). As before, denote
by δ(t+ iv) the distance between the circle C(−(t+ iv), |et+iv − 1|ρ(t+ iv))) and the
set of the poles of h,

(4.46) δ(t + iv) =
√

t2 + (2π − |v|)2 −
√

t2 + β(v)v2.

As in the proof of (4.43), we obtain that

(4.47)
π2 − 4

2
√
t2 + π2

< δ(t+ iv) < 2π −
(

1 +
2

π

)

|v|

which ensures that

|mH
n (t+ iv)| ≤

(

1 +
1

π
+

1

δ(t+ iv)

) 1

ρ(t + iv)n
,

≤
(

1 +
1

π
+

2
√
t2 + π2

π2 − 4

)( |et+iv − 1|2
t2 + β(v)v2

)n/2

.

Hereafter, it follows from straightforward calculation that

|et+iv − 1|2
t2 + β(v)v2

=
(et − 1)2 + 2et(1− cos(v))

t2 + β(v)v2
=

(et − 1)2 + etβ(v)v2

t2 + β(v)v2
,

=
(et − 1)2

t2

(

t2

t2 + β(v)v2
+

t2etβ(v)v2

(et − 1)2(t2 + β(v)v2)

)

,

=
(et − 1)2

t2

(

1−
((et − 1)2 − t2et

(et − 1)2

) β(v)v2

t2 + β(v)v2

)

.

Moreover, we also have from (1.5) that for all t 6= 0,

(4.48) L′′(t) =
(et − 1)2 − t2et

(t(et − 1))2
.

In addition, by using that for |v| ≤ π, we have

β(v)v2

t2 + β(v)v2
≥ 4v2

π2(t2 + 4)
.

Therefore, we deduce from the elementary inequality 1− x ≤ exp(−x) that

(4.49) |mH
n (t + iv)| ≤

(

1 +
1

π
+

2
√
t2 + π2

π2 − 4

)(et − 1

t

)n

exp
(

− n
4t2L′′(t)

π2(t2 + 4)

v2

2

)

.

We also recall that

mG
n(t+ iv) =

1

t + iv

(et+iv − 1

t+ iv

)n

.
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We also have from straightforward calculation that

|et+iv − 1|2
|t+ iv|2 =

(et − 1)2 + 2et(1− cos(v))

t2 + v2
=

(et − 1)2 + etβ(v)v2

t2 + v2

=
(et − 1)2

t2

(

t2

t2 + v2
+

t2etβ(v)v2

(et − 1)2(t2 + v2)

)

(4.50)

=
(et − 1)2

t2

(

1−
(

(et − 1)2 − t2etβ(v)

(et − 1)2

)

v2

t2 + v2

)

=
(et − 1)2

t2

(

1−
(

(et − 1)2 − t2et

(et − 1)2

)

v2

t2 + v2
− t2et

(et − 1)2
(1− β(v))v2

t2 + v2

)

≤ (et − 1)2

t2

(

1−
(

(et − 1)2 − t2et

(et − 1)2

)

v2

t2 + π2

)

(4.51)

since β(v) ≤ 1. Hence, we obtain from (4.48) that

(4.52) |mG
n(t + iv)| ≤ 1√

t2 + v2

(et − 1

t

)n

exp
(

− n
t2L′′(t)

t2 + π2

v2

2

)

.

Finally, we already saw that

mn(t+ iv) = (1− e−(t+iv))(mG
n(t+ iv) +mH

n (t+ iv)).

Consequently, (4.49) together with (4.52) clearly lead to (4.37), which achieves the
proof of Lemma 4.3. �

5. Proof of the sharp large deviation principle.

Let us start by an elementary lemma concerning the asymptotic cumulant gener-
ating function L defined by (1.5).

Lemma 5.1. The function L : R → R is twice differentiable and strictly convex

function and its first derivative L′ : R →]0, 1[ is a bijection. In particular, for each

x ∈]0, 1[, there exists a unique value tx ∈ R such that

(5.1) I(x) = xtx − L(tx)

where I is the Fenchel-Legendre transform of L. The value tx is also characterized

by the relation L′(tx) = x where, for all t 6= 0,

(5.2) L′(t) =
et(t− 1) + 1

t(et − 1)
.

Moreover, for all x ∈]1/2, 1[, tx > 0 while for all x ∈]0, 1/2[, tx < 0. In addition,

for all t ∈ R, L′′(t) > 0 as the second derivative of L is given, for all t 6= 0, by

(5.3) L′′(t) =
(et − 1)2 − t2et

(t(et − 1))2
.

Finally, the function L can be extended to a function L : C \ 2iπZ∗ → C satisfying

for all v ∈ R such that |v| ≤ π,

(5.4) ℜL(t + iv) ≤ L(t)− C(t)
v2

2



18 ON THE NUMBER OF DESCENTS IN A RANDOM PERMUTATION

where

C(t) =
t2

t2 + π2
L′′(t).

Proof. We already saw in the previous Section that the calculation of the first two
derivatives (5.2) and (5.3) of L follows from straightforward calculation. Let us
remark that

lim
t→0

L′(t) =
1

2
and lim

t→0
L′′(t) =

1

12
,

which means that L can be extended as a C2 function on R. The above computation
also gives that

lim
t→−∞

L′(t) = 0 and lim
t→+∞

L′(t) = 1.

We now focus our attention on the complex extension of L. We deduce from (4.51)
and (5.3) together with the elementary inequality ln(1− x) ≤ −x that for all t 6= 0
and |v| ≤ π,

ℜ(L(t+ iv)) = ln
( |et+iv − 1|

|t+ iv|
)

,

≤ L(t) +
1

2
ln
(

1− t2L′′(t)
v2

t2 + π2

)

,

≤ L(t)− C(t)
v2

2
,

which completes the proof of Lemma 5.1. �

We carry out with an elementary lemma which can be seen as a slight extension of
the usual Laplace method.

Lemma 5.2. Let us consider two real numbers a < 0 < b, and two functions

f : [a, b] → C and ϕ : [a, b] → C such that, for all λ large enough,
∫ b

a

e−λℜϕ(u)|f(u)|du < +∞.

Assume that f is a continuous function in 0, f(0) 6= 0, ϕ is a C2 function in 0,
ϕ′(0) = 0, ϕ′′(0) is a real positive number and there exists a constant C > 0 such

that ℜϕ(u) ≥ ℜϕ(0) + Cu2. Then, we have

(5.5) lim
λ→∞

√
λeλϕ(0)

∫ b

a

e−λϕ(u)f(u)du =
√
2π

f(0)
√

ϕ′′(0)
.

Proof. First of all, we can assume without loss of generality that ϕ(0) = 0. On can
observe that for all λ large enough,

(5.6)

∫ b

a

e−λϕ(u)f(0)du =
f(0)√

λ

∫ b
√
λ

a
√
λ

exp
(

− λϕ
( u√

λ

))

du.

However, it follows from the assumptions on the function ϕ that

lim
λ→+∞

λϕ
( u√

λ

)

= ϕ′′(0)
u2

2
,
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together with
∣

∣

∣
exp

(

− λϕ
( u√

λ

))
∣

∣

∣
≤ exp(−Cu2).

Consequently, according to the dominated convergence theorem, we obtain that

(5.7) lim
λ→+∞

∫ b
√
λ

a
√
λ

exp
(

− λϕ
( u√

λ

))

du =

∫ +∞

−∞
exp

(

− ϕ′′(0)
u2

2

)

du =

√
2π

√

ϕ′′(0)
.

Furthermore, by using the usual Laplace method, we find that

(5.8)
∣

∣

∣

∫ b

a

e−λϕ(u)(f(u)− f(0))du
∣

∣

∣
≤
∫ b

a

e−λℜϕ(u)|f(u)− f(0)|du = o(λ−1/2).

Finally, (5.6), (5.7) and (5.8) allow to conclude the proof of Lemma 5.2. �

Proof of Theorem 3.1. We shall now proceed to the proof of Theorem 3.1. Our goal
is to estimate, for all x ∈]1/2, 1[, the probability

P

(Dn

n
≥ x

)

=
n−1
∑

k=⌈nx⌉
P (Dn = k) .

To do so, we extend the Laplace transform mn of Dn, defined in (4.1), into an
analytic function on the complex plane. For all t, v ∈ R, we have

mn(t+ iv) = E

[

e(t+iv)Dn

]

=

n−1
∑

k=0

e(t+iv)k
P(Dn = k).

Therefore, for all t, v ∈ R and for all k ≥ 0,

(5.9) P (Dn = k) = e−tk 1

2π

∫ π

−π

mn(t+ iv)e−ikvdv.

One can observe that (5.9) is also true for k ≥ n and allows us to recover that
P(Dn = k) = 0. Consequently, since |mn(t + iv)| ≤ etn, it follows from Fubini’s
theorem that for all t > 0,

(5.10) P

(Dn

n
≥ x

)

=
1

2π

∫ π

−π

mn(t+ iv)
+∞
∑

k=⌈nx⌉
e−k(t+iv)dv.

In all the sequel, we choose t = tx. In particular, tx > 0 since x > 1/2. Then, we
deduce from (5.10) that

(5.11) P

(Dn

n
≥ x

)

=
1

2π

∫ π

−π

mn(tx + iv)
exp(−tx⌈nx⌉ − i⌈nx⌉v)

1− e−(tx+iv)
dv = In

where the integral In can be separated into two parts, In = Jn +Kn with

Jn =
1

2π

∫

|v|<π−εn

mn(tx + iv)
exp (−tx⌈nx⌉ − i⌈nx⌉v)

1− e−(tx+iv)
dv,

Kn =
1

2π

∫

π−εn<|v|<π

mn(tx + iv)
exp (−tx⌈nx⌉ − i⌈nx⌉v)

1− e−(tx+iv)
dv,
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where εn = n−3/4. On the one hand, we obtain from (4.14) that

|Kn| ≤ 1

2π

∫

π−εn<|v|<π

|mn(tx)|
exp (−tx⌈nx⌉)

|1− e−tx | dv,

≤ 2εn
2πtx

exp(−tx(⌈nx⌉ − nx)) exp(−nI(x))(1 + |rn(tx)|),

≤ εn
πtx

exp(−nI(x))(1 + |rn(tx)|)

by using (4.14), (5.1) and the fact that tx > 0. Consequently, (4.15) together with
the definition of εn ensure that

(5.12) Kn = o
(exp(−nI(x))√

n

)

.

It only remains to evaluate the integral Jn. We deduce from (4.35) and (5.1) that

(5.13) Jn =
1

2π
exp(−tx{nx} − nI(x))

∫

|v|<π−εn

exp (−nϕ(v)) gn(v)dv

where the functions ϕ and g are given, for all |v| < π, by

ϕ(v) = − (L(tx + iv)− L(tx)− ixv)

and

gn(v) =
exp(−i{nx}v)

tx + iv
(1 + rn(tx + iv)).

Thanks to Lemma 5.1, we have ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = σ2
x which is a positive

real number. In addition, there exists a constant C > 0 such that ℜϕ(v) ≥ Cv2.
Therefore, via the extended Laplace method given by Lemma 5.2, we obtain that

(5.14) lim
n→∞

√
n

∫ π

−π

exp(−nϕ(v))
1

tx + iv
dv =

√
2π

σxtx
.

Hereafter, it follows from (4.36) that there exists positive constant ax, bx, cx such
that for all |v| ≤ π − εn,

|rn(tx + iv)| ≤ ax
εn

(

1− bxεn

)n/2

≤ ax
εn

exp
(

− bxnεn
2

)

≤ cx exp
(

− bx
4
n1/4

)

,

which ensures that
∣

∣ exp(−i{nx}v)(1 + rn(tx + iv))− 1
∣

∣ ≤ cx exp
(

− bx
4
n1/4

)

+ |v|.

Then, we obtain that
∣

∣

∣

∣

∫ π

−π

exp (−nϕ(v))
(

gn(v)1l|v|<π−εn −
1

tx + iv

)

dv

∣

∣

∣

∣

≤ Λn

where

Λn =

∫ π

−π

exp(−nℜϕ(v)) 1

|tx + iv|
(

cx exp
(

− bx
4
n1/4

)

+ 2|v|
)

dv
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since 1l|v|≥π−εn ≤ |v|. By the standard Laplace method,

lim
n→∞

√
nΛn = 0.

Consequently, we deduce from (5.13) and (5.14) that

(5.15) lim
n→∞

√
n exp(tx{nx}+ nI(x))Jn =

1

σxtx
√
2π

.

Finally, (5.11) together with (5.12) and (5.15) clearly lead to (3.1). �

6. An alternative proof.

We already saw from (3.3) that the distribution Dn is nothing else than the one of
the integer part of the Irwin-Hall distribution which is the sum Sn = U1+ · · ·+Un of
independent and identically distributed random variables sharing the same uniform
distribution on [0, 1]. It follows from some direct calculation that for any x ∈]1/2, 1[,

P

(Dn

n
≥ x

)

= P(Sn ≥ ⌈nx⌉),

= En

[

exp(−txSn + nL(tx))1I{Sn

n
≥x+εn}

]

,

= exp(−nI(x))En

[

e−ntx(Sn

n
−x)1I{Sn

n
≥x+εn}

]

,(6.1)

where En is the expectation under the new probability Pn given by

(6.2)
dPn

dP
= exp

(

txSn − nL(tx)
)

and εn = {nx}/n. Let

Vn =

√
n

σx

(Sn

n
− x
)

and denote fn and Φn the probability density function and the characteristic function
of Vn under the new probability Pn, respectively. Let us remark that, under Pn, we
know that (Vn) converges in distribution to the standard Gaussian measure. Using
Parseval identity, we have

En

[

e−ntx(Sn

n
−x)1I{Sn

n
≥x+εn}

]

=

∫

R

e−σxtx
√
nv1I{v≥

√
nεn

σx
}fn(v)dv,

=
1

2π

∫

R

e−(σxtx
√
n+iv)

√
nεn

σx

σxtx
√
n+ iv

Φn(v)dv,

=
e−tx{nx}

2πσx

√
n

∫

R

e
−i

{nx}v
σx

√
n

tx + i v
σx

√
n

Φn(v)dv.(6.3)
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Recalling that L is also the logarithm of the Laplace transform of the uniform
distribution in [0, 1], we obtain from (6.2) that

Φn(v) = E

[

exp
( ivSn

σx

√
n
− i

√
nxv

σx

+ txSn − nL(tx)
)]

,

= exp
(

n
(

L
(

tx +
iv

σx

√
n

)

− L(tx)−
ixv√
nσx

))

.

Let A be a positive constant chosen later. We can split the integral in (6.3) into two
parts: we call Jn the integral on [−Aσx

√
n,+Aσx

√
n] and Kn the integral on the

complementary set. On the one hand, as (4.51) also holds replacing π2 by v2 which
is smaller than A2σ2

xn and since L′′(tx) = σ2
x, we get that for all v ∈ R,

∣

∣

∣

∣

∣

e
−i

{nx}v
σx

√
n

tx + i v
σx

√
n

Φn(v)1I{|v|≤Aσx

√
n}

∣

∣

∣

∣

∣

≤ 1

tx

(

1− t2xσ
2
x

t2x + A2

v2

σ2
xn

)n/2

,

≤ 1

tx
exp

(

− t2x
t2x + A2

v2

2

)

.(6.4)

Then, we deduce from the Lebesgue’s dominated convergence theorem that

(6.5) lim
n→+∞

Jn =

∫

R

1

tx
exp

(

−L′′(tx)

σ2
x

v2

2

)

dv =

√
2π

tx
.

On the other hand, concerning Kn, since now v is large in the integral, we use (4.50)
to get that

∣

∣

∣

∣

∣

e
−i {nx}v

σx
√

n

tx + i v
σx

√
n

Φn(v)

∣

∣

∣

∣

∣

≤ 1

tx

(

t2x + 4t2x
etx

(etx−1)2

t2x +
v2

σ2
xn

)n/2

leading to

(6.6) Kn ≤ 2

tx

(

t2x + 4t2x
etx

(etx − 1)2

)n/2

σx

√
n

∫ +∞

A

1

(t2x + v2)n/2
dv.

Moreover, for all n > 2,

(6.7)

∫ +∞

A

1

(t2x + v2)n/2
dv ≤

∫ +∞

A

v

A

1

(t2x + v2)n/2
dv =

1

(n− 2)A

1

(t2x + A2)n/2−1
.

By taking

A2 = t2x + 8t2x
etx

(etx − 1)2
,

we obtain from (6.6) and (6.7) that

(6.8) lim
n→+∞

Kn = 0

exponentially fast. Finally, (6.1) together with (6.3), (6.5) and (6.8) allow us to
conclude the alternative proof of Theorem 3.1.
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Remark 6.1. We can use previous computations to get also a new concentration

inequality. More precisely, by using the upper-bound (6.4) in order to get an upper

bound for Jn instead of a limit, we are able to prove that

(6.9) P

(Dn

n
≥ x

)

≤ Qn(x)
exp(−nI(x)− {nx}tx)

σxtx
√
2πn

where the prefactor can be taken as

Qn(x) =

√

2 +
8etx

(etx − 1)2
+

4σxtx√
2π

√

1 +
8etx

(etx − 1)2

√
n

2n/2(n− 2)
.

One can observe that (6.9) is similar to (3.2). Note that the constants in (3.2) as

well as in (6.9) are not sharp. It is in fact possible to improve them by more precise

cuttings in the integrals.

7. Proof of the concentration inequalities

We shall now proceed to the proof of the concentration inequalities. Recalling
that x ∈]1/2, 1[ which implies that tx > 0, we obtain from equality (5.10) that

P

(Dn

n
≥ x

)

=
1

2π

∫ π

−π

mn(tx + iv)

+∞
∑

k=⌈nx⌉
e−k(tx+iv)dv,

=
1

2π

∫ π

−π

mn(tx + iv)
exp (−tx⌈nx⌉ − i⌈nx⌉v)

1− e−(tx+iv)
dv,

≤ exp(−⌈nx⌉tx)
2π

∫ π

−π

|mn(tx + iv)|
|1− e−(tx+iv)|dv.

Consequently, we deduce from the alternative upper-bound (4.37) that

(7.1) P

(Dn

n
≥ x

)

≤ 1

2π
exp

(

− n(xtx − L(tx))− {nx}tx
)

(

A(x) +B(x)
)

where

A(x) =

∫ π

−π

1
√

t2x + v2
exp

(

− n
t2xL

′′(tx)

t2x + π2

v2

2

)

dv,

B(x) =

(

1 +
1

π
+

2
√

t2x + π2

π2 − 4

)

∫ π

−π

exp
(

− n
4t2xL

′′(tx)

π2(t2x + 4)

v2

2

)

dv.

Hereafter, we recall from (1.4) that I(x) = xtx − L(tx) and we denote σ2
x = L′′(tx).

It follows from standard Gaussian calculation that

A(x) ≤ 2π

σxtx
√
2πn

√

t2x + π2

t2x
,(7.2)

B(x) ≤
(

1 +
1

π
+

2
√

t2x + π2

π2 − 4

)

π2
√

t2x + 4

σxtx
√
2πn

.(7.3)
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Finally, we find from (7.1) together with (7.2) and (7.3) that

P

(Dn

n
≥ x

)

≤ P (x)
exp(−nI(x)− {nx}tx)

σxtx
√
2πn

where

P (x) =

√

t2x + π2

t2x
+

(

1 +
1

π
+

2
√

t2x + π2

π2 − 4

)
√

π2(t2x + 4)

4
,

which is exactly what we wanted to prove.

8. Proof of the standard results

We now focus our attention on the more standard results concerning the sequence
(Dn) such as the quadratic strong law, the law of iterated logarithm and the func-
tional central limit theorem.

Proof of Proposition 2.1. First of all, one can observe from (2.2) and (2.5) that the
martingale (Mn) can be rewritten in the additive form

(8.1) Mn =

n−1
∑

k=1

(k + 1)(ξk+1 − pk).

It follows from the almost sure convergence (1.2) together with (2.6) and the classical
Toeplitz lemma that the predictable quadratic variation 〈M〉n of (Mn) satisfies

(8.2) lim
n→∞

〈M〉n
n3

=
1

12
a.s.

Denote by fn the explosion coefficient associated with (Mn),

fn =
〈M〉n+1 − 〈M〉n

〈M〉n+1

=
(n−Dn)(Dn + 1)

〈M〉n+1

.

We obtain from (1.2) and (8.2) that

(8.3) lim
n→∞

nfn = 3 a.s.

which implies that fn converges to zero almost surely as n goes to infinity. In
addition, we clearly have for all n ≥ 1, |ξn+1 − pn| ≤ 1. Consequently, we deduce
from the quadratic strong law for martingales given e.g. by Theorem 3 in [1] that

lim
n→∞

1

log〈M〉n

n
∑

k=1

fk
M2

k

〈M〉k
= 1 a.s.

which ensures that

(8.4) lim
n→∞

1

log n

n
∑

k=1

M2
k

k4
=

1

12
a.s.

However, it follows from (2.5) that

(8.5)
M2

n

n4
=
(Dn

n
− 1

2

)2

+
1

n

(Dn

n
− 1

2

)

+
1

4n2
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Therefore, we obtain once again from (1.2) together with (8.4) and (8.5) that

lim
n→∞

1

log n

n
∑

k=1

(Dk

k
− 1

2

)2

=
1

12
a.s.

which is exactly the quadratic strong law (2.7). It only remains to prove the law of
iterated logarithm given by (2.8). It immediately follows from the law of iterated
logarithm for martingales given e.g. by Corollary 6.4.25 in [6] that

lim sup
n→∞

( 1

2〈M〉n log log〈M〉n

)1/2

Mn = − lim inf
n→∞

( 1

2〈M〉n log log〈M〉n

)1/2

Mn

= 1 a.s.

which leads via (8.2) to

lim sup
n→∞

( 1

2n3 log log n

)1/2

Mn = − lim inf
n→∞

( 1

2n3 log log n

)1/2

Mn

=
1√
12

a.s.(8.6)

Finally, we find from (2.5) and (8.6) that

lim sup
n→∞

( n

2 log log n

)1/2(Dn

n
− 1

2

)

= − lim inf
n→∞

( n

2 log log n

)1/2(Dn

n
− 1

2

)

=
1√
12

a.s.

which achieves the proof of Proposition 2.1. �

Proof of Proposition 2.2. We shall now proceed to the proof of the functional central
limit theorem given by the distributional convergence (2.10). On the one hand, it
follows from (8.2) that for all t ≥ 0,

(8.7) lim
n→∞

1

n3
〈M〉⌊nt⌋ =

t3

12
a.s.

On the other hand, it is quite straightforward to check that (Mn) satisfies Lindeberg’s
condition given, for all t ≥ 0 and for any ε > 0, by

(8.8)
1

n3

⌊nt⌋
∑

k=2

E
[

∆M2
k I{|∆Mk|>ε

√
n3}|Fk−1

] P−→ 0

where ∆Mn = Mn−Mn−1 = n(ξn−pn−1). As a matter of fact, we have for all t ≥ 0
and for any ε > 0,

1

n3

⌊nt⌋
∑

k=2

E
[

∆M2
k I{|∆Mk|>ε

√
n3}|Fk−1

]

≤ 1

n6ε2

⌊nt⌋
∑

k=2

E
[

∆M4
k |Fk−1

]

.
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However, we already saw that for all n ≥ 2, |∆Mn| ≤ n. Consequently, we obtain
that for all t ≥ 0 and for any ε > 0,

1

n3

⌊nt⌋
∑

k=2

E
[

∆M2
k I{|∆Mk|>ε

√
n3}|Fk−1

]

≤ 1

n6ε2

⌊nt⌋
∑

k=2

k4 ≤ t5

nε2

which immediately implies (8.8). Therefore, we deduce from (8.7) and (8.8) together
with the functional central limit theorem for martingales given e.g. in Theorem 2.5
of [7] that

(8.9)
(M⌊nt⌋√

n3
, t ≥ 0

)

=⇒
(

Bt, t ≥ 0
)

where
(

Bt, t ≥ 0
)

is a real-valued centered Gaussian process starting at the origin
with covariance given, for all 0 < s ≤ t, by E[BsBt] = s3/12. Finally, (2.5) and (8.9)
lead to (2.10) where Wt = Bt/t

2, which is exactly what we wanted to prove. �
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