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Abstract An original method for the simulation of the dy-
namics of highly flexible slender structures is presented. The
flexible structures are modeled via a finite element (FE) dis-
cretization of a geometrically exact two-dimensional beam
model, which entirely preserves the geometrical nonlineari-
ties inherent in such systems where the rotation of the cross-
section can be extreme. The FE equation is solved by a com-
bination of harmonic balance (HBM) and asymptotic nu-
merical (ANM) methods. The novel solving scheme is rooted
entirely in the frequency domain and is capable of comput-
ing both the structure’s frequency response under periodic
external forces as well as its nonlinear modes. An overview
of the proposed numerical strategy is outlined and simula-
tions are shown and discussed in detail for several test cases.
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metric nonlinearity · Finite element analysis · Continuation
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1 Introduction

This paper considers the numerical simulation of the dynam-
ical behaviors of highly flexible slender beam structures sub-
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Fig. 1 The two main mechanisms of geometrical nonlinearities in slen-
der structures.

jected to geometrical nonlinearities. The geometrical nonlin-
earities are observed here due to the thinness of the structure,
which leads to a very small stiffness in the transverse direc-
tion of deformation. Large displacements are therefore pos-
sible even for moderate external forces. This is especially
true of structures with boundary conditions analogous to a
cantilever (Fig. 1(b)), for which the main source of geomet-
rical nonlinearities is not a membrane / bending coupling –
encountered for instance in clamped-clamped beams, plates
and shells (Fig. 1(a)) – but comes from the rotation of the
cross-section, which can be very large (see e.g. [1,2]). This
latter case is associated with moderate nonlinear effects, which
become significant for very large displacements of the struc-
ture (on the order of its characteristic length). Proper simu-
lation of such extreme deformations of various beam struc-
tures is precisely the purpose of this article.

This field is rich with industrial engineering applications
(see the introduction of [3]), for example where large amounts
of wiring or cable-bundling are necessary, such as in the au-
tomotive industry. Recent work has addressed this topic in
statics [4] and dynamics [5–8]. Other applications of nonlin-
ear beam models are the design of rotating blades, such as in
helicopters, turbomachinery or wind turbines [9–12], highly
flexible structures in aerospace such as high-altitude, long
endurance aircraft [13,14], vibrating wings of nano-drones
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[15,16], flexible cables for cable car systems [17–19], vibra-
tion isolation with pinched loops [20] and micro / nanosys-
tems such as mass sensors and atomic force microscopes
[21–24]. Another area of interest in this vein of research is
the exploitation of nonlinear cantilever beams for piezoelec-
tric control and energy-harvesting applications, see e.g. [25–
30].

A common model for numerical computation related to
beam structures is the so-called “inextensible beam” model
of Crespo da Silva and Glynn [31–33]. In this model the
length of the beam is supposed to be a constant, which al-
lows the axial motion to be condensed into the transverse
motion, thereby reducing the dynamics to a single degree
of freedom partial differential equation. In addition, the ge-
ometrical nonlinearities are truncated up to the third order,
retaining only cubic nonlinearities [12]. This model served
as the basis for a huge number studies, but is limited to mod-
erately large amplitudes due to the truncation of the nonlin-
ear terms.

Highly flexible structures, however, can be subjected to
deflections of extreme amplitude that necessitate richer beam
models in order to be simulated appropriately. One solution
is to turn to classical three dimensional finite element simu-
lations [34], available in most commercial FE codes, which
incorporate geometrical nonlinearities and do not impose re-
strictions on the maximum deflection that can be simulated
accurately [1,35–37]. But, in this case, an enormous num-
ber of elements (and, consequently, of degrees of freedom,
leading to sometimes prohibitive computation times) is re-
quired for accurate simulation of the slender structures con-
sidered in this article, largely due to the small thickness and
their flexibility in bending. This justified the development
of an alternative method, the so-called geometrically exact
beam model, introduced by Reissner [38,39] and Simo [40].
This model considers beam kinematics without truncation
of the nonlinear terms and, thus, does not restrict the ampli-
tude of the rotation of the cross-section [41]. The model is
therefore able to capture nonlinear behavior accurately even
at extreme displacements. To reduce the computation time,
reduced order models can also be used, see e.g. the recent
review work of Touzé et al. [1] and some applications [35,
36,42].

A known difficulty in putting geometrically exact beam
models into practice is linked to the treatment of the ro-
tations for three-dimensional – axial / bending / torsion –
deflections of the beam. Different methods for parameter-
ization of the rotations (rotation matrices, quaternions. . . )
have been proposed by Simo and Vu-Quoc [43], Cardona
and Géradin [44], Ibrahimbegović [45], Crisfield and Je-
lenić [46,47] and Zupan et al. [48], among others. These
studies aim to implement a numerical finite element-based
discretization of the model, allowing for the simulation of

structures with arbitrarily complex geometries obtained through
the assembly of beam elements.

In parallel, a series of recent works targets the dynamics
of a single cantilever beam in the frequency domain, using
the same geometrically exact model with an inextensibil-
ity constraint but without any trunctation of the geometrical
nonlinearities. This method leads to a simple formulation
in the form of partial differential equations with transverse
degrees of freedom only, which are discretized by an expan-
sion onto a normal mode basis. The strategy produces highly
accurate results when compared with reference numerical
FE simulations or experiments [49,37,50,51], although it is
restricted to the case of a single cantilever beam.

Most numerical strategies able to solve the geometri-
cally exact beam model, available either in commercial finite-
element codes or addressed in the literature, are related to
time integration due to their highly nonlinear nature. How-
ever, when studying the nonlinear dynamics of such highly
flexible structures, a lot of complex vibratory phenomena
may be observed, including bifurcations, instabilities, bista-
bility, qualitative changes in the nature of the solutions, quasi-
periodic and chaotic responses, energy transfers between vi-
bration modes, etc. [52–54,24,55]. In this case, simulations
in the frequency domain are advantageous since they di-
rectly target the periodic steady-state vibrations under har-
monic forcing and can be easily integrated into bifurcation
and stability analysis tools. Moreover, the nonlinear reso-
nance pattern of a given structure can be efficiently mapped
by the so-called nonlinear normal modes [56], equivalently
defined as families of periodic solutions of the conservative
system or invariant manifolds of the phase space [1,57,58].
The nonlinear normal modes are often depicted as backbone
curves in an amplitude / frequency (also known as a fre-
quency response) plot.

This paper proposes a novel numerical strategy to com-
pute the nonlinear dynamics of highly flexible structures in
the frequency domain. It is based on a finite element dis-
cretization of the geometrically exact beam model and com-
putes periodic solutions using a combination of the harmonic
balance method (HBM) and a numerical continuation tool
based on the asymptotic numerical method (ANM). The nu-
merical strategy is capable of calculating both the frequency
response under harmonic forcing and the nonlinear normal
modes of structures of arbitrary shape, as long as they can be
discretized into beam elements. Due to the implementation
of the continuation method for solving, both steady-state sta-
ble and unstable periodic solutions can be computed. In this
article, only plane structures with in-plane deformations are
considered; the extension to a full three-dimensional case is
postponed to a future article. The methodology is presented
in detail in Section 2, including a discussion on the numeri-
cal properties and efficiency of the strategy, with several test
cases gathered in Section 3.
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2 Geometrically exact beam model and solution

In this section, the fundamental equations governing the mo-
tion of flexible beam structures in two dimensions (2D) are
presented. Previous work derives in detail the kinematics
and the equations of motion corresponding to a geometri-
cally exact beam model [12]. For this reason, only a sum-
mary of the equations central to the argument of this article
is presented. The interested reader may refer to Sections 2
and 4 of [12] for a more detailed derivation.

2.1 Kinematics

A depiction of the system under investigation is shown in
Fig. 2. As mentioned, the geometrically exact beam model
is here restricted to two dimensions, such that the centerline
of any beam element lies in the (eX ,eY ) plane of a global
basis (eX ,eY ,eZ) and undergoes deformations in the same
plane.

Based on Timoshenko kinematics for the beam, we as-
sume that any cross-section of the beam undergoes a rigid-
body motion. We consider a differential beam element of
length dx with its centerline aligned with the ex direction,
where (ex,ey,eZ) is a local frame that may depend (in the
case of a curved structure) on x, the curvilinear coordinate
that defines the location of the cross-sections. The angle
ψ(x) = (êX ,ex) defines its orientation. As a consequence,
the displacement of any point P in the cross-section is re-
lated to the displacement field of the centerline by the fol-
lowing relation:

u(x,y, t) =[u(x, t)− ysinθ(x, t)]ex

+[w(x, t)+ y(cosθ(x, t)−1)]ey, (1)

where (x,y) are the coordinates of P in the frame (ex,ey),
t is the time, u(x, t) and w(x, t) are the axial and transverse
displacements, respectively, of the corresponding point of
the centerline C at axial position x and time t and θ(x, t) is
the rotation of the cross-section, as shown in Fig. 2.

The expression for the strains, incorporating large dis-
placements, is given by the Green-Lagrange strain tensor,
denoted here Ẽ, and expressed as (see e.g. [12]):

Ẽ =
1
2
(
∇u+∇

Tu+∇
Tu∇u

)
. (2)

For the sake of efficiency, the exact expressions of the
Green-Lagrange strain tensor as a function of u, w and θ are
not recopied here. Instead, a consistent linearization to the
Green-Lagrange strains is computed in order to simplify the
expressions without loss of accuracy. In this process, only
the part of the strain terms relating purely to the local strains
is linearized, maintaining the rigid-body rotation part fully

exact. It is relevant so long as the the local strains remain rel-
atively small, which is the case here, in spite of large rigid-
body displacements (the latter will be assumed throughout
the remainder of the paper). The resulting simplified strain
tensor, denoted E, is then given in the basis (ex,ey,eZ), by
the following [59,12,60]:

E =

e− yκ γ/2 0
γ/2 0 0
0 0 0

 , (3)

where the quantities e, γ and κ represent, respectively, the
axial strain, the shear strain and the beam curvature, defined
as:

e = (1+u′)cosθ +w′ sinθ −1,

γ = w′ cosθ − (1+u′)sinθ , (4)

κ = θ
′,

where ◦′ = ∂ ◦/∂x.
The stress tensor (energetically conjugated to the Green-

Lagrange strain tensor) is given by the second Piola-Kirchhoff
stress tensor, denoted S. In what follows, we consider that
the material is homogeneous and isotropic and that a linear
Kirchhoff-Saint-Venant constitutive relation is assumed be-
tween E and S, so that the following relation holds:

N =
∫

A
Sxx dA = EAe,

T =
∫

A
Sxy dA = kGAγ, (5)

M =
∫

A
ySxx dA = EIκ,

where N, T and M are the axial force, shear force and bend-
ing moment, respectively, E is the Young’s modulus, G the
shear modulus, A and I the area and second moment of area
of the cross-section, respectively, and k the shear correction
factor [61]. The generalized forces are grouped into a vector,
denoted Ŝ:

Ŝ =
[
N T M

]T
, (6)

where T defines the transpose of the vector or matrix.
The equations of motion are derived in the weak form

using the principle of virtual work, which is stated in [62,
12] as, for all virtual displacement δu:

δWa +δWi = δWe, (7)

with the inertial (δWa), internal (δWi) and external (δWe)
virtual work expressed as, respectively:

δWa =
∫

V
ρü ·δu dV, (8)

δWi =
∫

V
S : δE dV, (9)

δWe =
∫

∂V
f ·δu dA+

∫
V

b ·δu dV, (10)
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Fig. 2 Timoshenko beam kinematics.

where V represents the domain of the beam in the reference
configuration, ∂V its frontier, ρ the density of the material,
ü = ∂ 2u/∂ t2 the acceleration of point P, δu the virtual dis-
placement vector and δE the first variation of the strain in-
duced by δu. In addition, f and b represent, respectively, the
external surface and body forces.

2.2 Finite element model

In this section we present the discretization used to derive
the finite element equation of motion. First, the beam is dis-
cretized into Ne elements of length Le, that may depend on x
in the case of a non-uniform mesh. The element used here is
the classical two-node Timoshenko beam element with lin-
ear shape functions [60]. At each node i of an element, there
are three degrees of freedom (ui,wi,θi) corresponding to the
axial displacement, transverse displacement and rotation of
the cross-section, respectively. For a given element, we in-
troduce the vector qe containing the degrees of freedom at
the two nodes of the element (denoted node 1 and node 2):

qe =
[
u1 w1 θ1 u2 w2 θ2

]T
. (11)

We then define the interpolated displacements over the
element using linear shape functions as ∀x ∈ [0 Le]:ue(x, t)

we(x, t)
θ e(x, t)

= N(x)qe(t), (12)

where the matrix of shape functions N is defined as:

N(x) =

N1(x) 0 0 N2(x) 0 0
0 N1(x) 0 0 N2(x) 0
0 0 N1(x) 0 0 N2(x)

 , (13)

and the linear shape functions N1 and N2 given by:

N1(x) = 1− x
Le , N2(x) =

x
Le . (14)

Using this interpolation, one can compute the spatial deriva-
tives appearing in the definition of the strain measure in
Eq. (4):ue′(x, t)

we′(x, t)
θ e′(x, t)

=
1
Le

 u2(t)−u1(t)
w2(t)−w1(t)
θ2(t)−θ1(t)

 , (15)

which do not depend on x because of the linearity of the
shape functions.

Substituting the previous relations into Eq. (4) leads to
the following expressions for the discretized strains over a
given element:

ee =

(
1+

u2−u1

Le

)
cosθ

e +

(
w2−w1

Le

)
sinθ

e−1,

γ
e =

(
w2−w1

Le

)
cosθ

e−
(

1+
u2−u1

Le

)
sinθ

e, (16)

κ
e =

θ2−θ1

Le .
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Note that at this point the function θ e(x, t) is also dis-
cretized and should be considered as:

θ
e(x, t) = θ1(t)N1(x)+θ2(t)N2(x), (17)

which is not substituted into the equations here in order to
increase their readability.

The strains in Eq. (16) are grouped into the elementary
strain vector ε̂e defined by the following:

ε̂
e =

[
ee γe κe

]T
. (18)

A strain displacement matrix Be is introduced to relate
the variation of the elementary strain vector δ ε̂e to the vari-
ation of the node displacements δqe, so that the following
relation holds:

δ ε̂
e = Be(x,qe)δqe. (19)

The matrix Be depends on both the position along the
element (x) and the nodal degrees of freedom (qe) and can
be written explicitly as:

Be =



−cosθ sinθ 0
−sinθ −cosθ 0

N1(x)Leγe −N1(x)Le(1+ ee) −1
cosθ −sinθ 0
sinθ cosθ 0

N2(x)Leγe −N2(x)Le(1+ ee) 1



T

. (20)

Now that the discretization is defined, it can be substi-
tuted into the principle of virtual work of Eq. (7) in order
to obtain the finite element equations of motion. Beginning
with the inertial work component, the expression of Eq. (8)
over a single element of length Le is first rewitten as:

δW e
a =

∫
Ve

ρüe ·δuedV

=
∫ Le

0
ρ
[
ue(x) we(x) θ e(x)

]
J

 üe(x)
ẅe(x)
θ̈ e(x)

 dx,

(21)

with J defined as follows:

J =

A 0 0
0 A 0
0 0 I

 . (22)

Introducing the discretization leads to the following ex-
pression for the virtual work of the inertia forces:

δW e
a =

∫ Le

0
ρ(Nδqe)TJNq̈e dx

= (δqe)T
(∫ Le

0
ρNTJNdx

)
︸ ︷︷ ︸

Me

q̈e. (23)

From equation (23), the elementary mass matrix is de-
rived by evaluating the integral in parentheses, yielding:

Me =
ρLe

6



2A 0 0 A 0 0
0 2A 0 0 A 0
0 0 2I 0 0 I
A 0 0 2A 0 0
0 A 0 0 2A 0
0 0 I 0 0 2I

 . (24)

Following with the virtual work of the internal forces,
the expression of Eq. (9) is first rewritten as follows:

δW e
i =−

∫
Ve

S : δEdV

=−
∫ Le

0
(Nδe+T δγ +Mδκ)dx

=−
∫ Le

0
(δ ε̂

e)TŜe dx.

(25)

Introducing the discretization leads to the following ex-
pression for the virtual work of the internal forces over a
given element:

δW e
i =−

∫ Le

0
(Be(x,qe)δqe)T Ŝe dx

=−(δqe)T
∫ Le

0
(Be(x,qe))TŜe dx︸ ︷︷ ︸

fe
int

.

(26)

The elementary internal force vector is calculated by eval-
uating the following integral:

fe
int(q

e) =
∫ Le

0
(Be)TŜe dx. (27)

Equation (27) is then readily evaluated using (6) and
(20) to yield the elementary internal force vector fe

int. Note
that the integral is evaluated using a reduced Gauss integra-
tion (here with only a single point at x = Le

2 ) to avoid the
phenomenon of shear locking [63]. The elementary internal
force vector fe

int is then given by:

fe
int = EAē



−cos θ̄

−sin θ̄

γ̄
Le

2
cos θ̄

sin θ̄

γ̄
Le

2

+ kGAγ̄



sin θ̄

−cos θ̄

−Le

2 (1+ ē)
−sin θ̄

cos θ̄

−Le

2 (1+ ē)

+EIκ̄



0
0
−1
0
0
1

 ,
(28)
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where ◦̄ here denotes a quantity evaluated at x = Le/2, ex-
plicitly given by:

θ̄ =
θ1 +θ2

2
, (29)

ē = ee(Le/2) =
(

1+
u2−u1

Le

)
cos θ̄ +

(
w2−w1

Le

)
sin θ̄ −1,

(30)

γ̄ = γ
e(Le/2) =

(
w2−w1

Le

)
cos θ̄ −

(
1+

u2−u1

Le

)
sin θ̄ ,

(31)

κ̄ = κ
e(Le/2) =

θ2−θ1

Le .

Finally, we consider the virtual work of the external forces
in Eq. (10) over a given element. First, it is rewritten in the
form:

δW e
e =

∫
∂Ve

(δu)Tf dA+
∫

Ve

(δu)Tb dV

=
∫ Le

0

(
δu δw δθ

)n
p
q

 dx, (32)

where n(x, t), p(x, t) and q(x, t) respectively correspond to
the distributed axial force, transverse force and bending mo-
ment. Introducing the discretization leads to the following
expression for the virtual work of the external forces over a
given element:

δW e
e = (δqe)T

∫ Le

0
NT

n
p
q

 dx


︸ ︷︷ ︸

fe
ext

, (33)

from which the elementary external force vector fe
ext can be

derived by evaluating the above integral in parentheses.
Gathering the expression for the various virtual works

over an element in Eqs. (23), (26) and (33) and summing
them over all elements results in the assembly procedure
for the elementary matrices and force vectors. If the unde-
formed structure is curved, one must perform the assembly
in the global frame (eX ,eY ) using a local rotation matrix
Te(ψ) applied to all elementary quantities qe, Me, fe

int and
fe
ext, as explained in Appendix A. After assembly, the dis-

cretized nonlinear finite element model falls into the follow-
ing general form:

Mq̈+Dq̇+ fint(q) = fext, (34)

where q is the column vector of the degrees of freedom ex-
pressed in the global frame of the structure, containing all
variables Uxi, Uyi and θi for all the N ∈ N nodes, i ∈ [1, N],
where the displacement vector of the centerline at position
xi is U(xi, t) = Uxi eX +Uyi eY . M is the mass matrix of size
3N × 3N, fint(q) is the nonlinear internal force vector and

fext is the vector of externally-applied forces, both of size
3N×1. Note that the geometrical nonlinearities are housed
within fint(q), appearing as sine and cosine functions of the
rotation degrees of freedom θi, as shown in Eq. (28). More-
over, in some cases fext can also depend on q, as in the case
of external forces that depend on the deformed geometry of
the structure, like follower forces. This case is not explicitly
treated in the present study.

Note that a damping matrix D has been introduced a pos-
teriori after the FEM discretization. In the test cases that fol-
low, a linear Rayleigh damping model is considered, where
the damping matrix is proportional to the mass matrix:

D = αM, (35)

with α ∈ R.

2.3 Periodic solutions computation and numerical
continuation

We turn now to the determination of the solution of Eq. (34).
Since we are interested in solutions in the frequency domain,
we restrict ourselves to periodic solutions, in free oscillation
or related to a forced response under harmonic forcing.

Numerically, the harmonic balance method (HBM) is
used with the asymptotic numerical method (ANM [64,65])
to compute the nonlinear modes or the forced response of
the nonlinear finite element model. The MANLAB software
[66,53], which combines both the HBM and the ANM, is
used to carry out the computations of the applications. A key
point of the ANM is the quadratic recast [66,67], which is
needed to input the equation of motion into MANLAB and
which guarantees faster computations and implementations.
In this section, each step of the resolution method is pre-
sented briefly before moving to the presentation of the test
cases.

2.3.1 Quadratic recast for solving with MANLAB

In the remainder of the paper, the ANM is used in conjunc-
tion with the HBM to follow periodic solutions (using the
MANLAB package). In order to develop an efficient algo-
rithm for the ANM, the HBM is not applied directly onto
Eq. (34). Instead, the equation of motion is rewritten in the
form of a differential-algebraic system of equations (DAE)
with at most quadratic nonlinearities, a process known as the
so-called quadratic recast [68,65,69]. This step is necessary
in order for the resulting DAE system to be of quadratic
order, allowing efficient computation of the Fourier coef-
ficients of the nonlinear terms using convolution products.
Another advantage of this formalism is that the definition of
the Jacobian can be “hard-coded” as it only depends on the
coefficients of the linear and quadratic parts of the equation.
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Furthermore, the MANLAB formalism requires that the dy-
namical system be written in first-order form, in order to be
as generic as possible.

The transformation of the FE equation (34) into a qua-
dratic DAE involves the definition of new variables, called
auxiliary variables. This operation is not unique and several
options are possible. Here, we introduce the quadratic re-
cast that leads to the minimum computation time, although
it is not the one which introduces the minimum number of
auxiliary variables. This is a consequence of the fact that all
the auxilary variables are condensed during computation of
the series, such that the number of auxiliary variables has
little influence on the computation time. By contrast, the
number of product operations of the variables (computing
x× y for variables x and y) increases the computation time
and therefore must be minimized, by introducing more aux-
ilary variables where necessary (see [70] for details on the
condensation procedure in MANLAB). Outlined below is
the quadratic recast that leads to the minimum computation
time. Other possible recasts are given in Appendix B along
with an analysis of the computation time for each of them.

We first define the following variables:

θ̄ = (θ1 +θ2)/2, (36a)

up =
1

2Le (u2−u1), (36b)

wp =
1

2Le (w2−w1), (36c)

θp =
1

2Le (θ2−θ1). (36d)

In addition, the sine and cosine variables c and s are in-
troduced, defined as:

c = cos θ̄ , s = sin θ̄ . (37)

To render their evaluation quadratic, they are redefined
in terms of differentials, given by:

dc =−sdθ̄ , ds = cdθ̄ , (38)

which are quadratic w.r.t. the variables s, c, ds, dc and dθ̄ . In
order to have Eqs. (38) fully equivalent to Eqs. (37), initial
conditions must be added, such as:

c(0) = cos[θ̄(0)], s(0) = sin[θ̄(0)], (39)

as explained in [71,72,70] and detailed on a simple example
in Appendix D. Notice that this process is hard-coded in the
MANLAB software.

Next, the following additional auxiliary variables are in-
troduced:

e = (1+up)c+wps−1, (40a)

γ = wpc− (1+up)s, (40b)

Fx = EAec− kGAγs, (40c)

Fy = EAes+ kGAγc, (40d)

M = EIθp, (40e)

T2 = EAeγ− kGAγ(1+ e). (40f)

Note that all of the additional auxiliary variables (θ̄ , up,
wp, θp, e, γ , Fx, Fy, M and T2) are quadratic w.r.t. the vari-
ables u1, u2, w1, w2, θ1, θ2, c and s. Having defined these
additional variables, the elementary internal force vector is
then rewritten into a quadratic form as a function of the
primary and auxiliary variables, as shown below in equa-
tion (44).

To summarize, the full quadratic first order DAE is given
explicitly for a single finite element. For each element, the
following variables are present:

1. Twelve primary variables:
– Six positions:

qe =
[
u1 w1 θ1 u2 w2 θ2

]T
, (41)

– Six velocities:

Ve =
[
Vu1 Vw1 Vθ1 Vu2 Vw2 Vθ2

]T
, (42)

2. Twelve auxiliary variables:

Xe
aux =

[
θ̄ up wp θp c s e γ Fx Fy M T2

]T
, (43)
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yielding the following quadratic first order DAE:

q̇e = Ve, (44a)

MeV̇e = fe
ext−DeVe−



−Fx
−Fy

−M+T2Le/2
Fx
Fy

M+T2Le/2


︸ ︷︷ ︸

fe
int

, (44b)

0 = θ̄ − (θ1 +θ2)/2, (44c)

0 = up−
1

2Le (u2−u1), (44d)

0 = wp−
1

2Le (w2−w1), (44e)

0 = θp−
1

2Le (θ2−θ1), (44f)

0 = dc+ sdθ̄ , c = cos θ̄ , (44g)

0 = ds− cdθ̄ , s = sin θ̄ , (44h)

0 = e− (1+up)c−wps+1, (44i)

0 = γ−wpc+(1+up)s, (44j)

0 = Fx− (EAec− kGAγs), (44k)

0 = Fy− (EAes+ kGAγc), (44l)

0 = M−EIθp, (44m)

0 = T2− (EAeγ− kGAγ(1+ e)) . (44n)

In this version of the quadratic recast, there are 12 vari-
ables per node and 12 auxiliary variables per element. When
considering the full mesh of N nodes and Ne elements, the
total number of degrees of freedom of the quadratic first or-
der DAE is then Ndof = 12N +12Ne.

2.3.2 Harmonic balance method

Now that the system of equations is in the form of a quadratic
first order DAE, the next step is to apply the harmonic bal-
ance method (HBM). Each variable x of the Ndof variables
of the DAE (primary and auxiliary variables) is assumed pe-
riodic of period 2π/ω , ω being the angular frequency. The
variable x is expanded in the form of a truncated Fourier se-
ries (up to harmonic H ∈ N):

x(t) = x0 +
H

∑
k=1

(xc
k coskωt + xs

k sinkωt), (45)

where x0, xc
k and xs

k are the Fourier coefficients of the vari-
able x.

In the HBM, the ansatz in Eq. (45) is substituted into
the quadratic DAE in Eq. (44) and the residual is projected
orthogonally onto the (truncated) Fourier basis. This leads
to an algebraic set of equations that may depend on one or
several parameters (excitation frequency, forcing amplitude,

etc.). From a general point of view, the system of (quadratic)
algebraic equations resulting from the application of the HBM
can be written as:

R(X,ω,λ ) = R(X̃) = 0, (46)

where X ∈ RN
t is the vector containing the Fourier coeffi-

cients of all of the variables (primary and auxiliary), of size:

Nt = Ndof(2H +1) = (12N +4Ne)(2H +1), (47)

λ is a continuation parameter, X̃ =
[
XT ω λ

]T ∈RNt+2 and
R : RNt+2→ RN

t is the function defining the residual of the
HBM. The solutions to Eq. (46) will be obtained using the
asymptotic numerical method (ANM) described hereafter,
after describing the two main cases of computations.

2.3.3 Nonlinear modes and forced response

In the applications presented in Section 3, two kinds of so-
lutions will be computed, namely, the periodic response of
the system under harmonic forcing (forced response) and the
periodic response of the free and undamped system (nonlin-
ear modes).

In the forced response case, the FE equation (34) to be
solved is as follows:

Mq̈(t)+Dq̇(t)+ fint[q(t)] = FsinΩ t, (48)

where F is the vector of applied harmonic forcing amplitude
and Ω is the angular frequency of the forcing. The computa-
tion of the forced response is quite straightforward: the user
inputs the DAE Eq. (44) and the angular frequency of the
periodic solution is chosen equal to that of the forcing. The
continuation parameter λ is also set equal to the value of
the frequency, such that λ = ω = Ω . The equation λ = ω is
thus added to the residual Eq. (46). The continuation of the
periodic solution can then be carried out for several constant
forcing amplitudes to reveal the effect of the nonlinearity on
the dynamic behavior of the system.

In the free response case, the FE equation (34) to be
solved is initially written as follows:

Mq̈(t)+ fint[q(t)] = 0, (49)

where the damping and forcing terms have been canceled.
The main differences with the forced response case are that
now the system is (a) autonomous and (b) conservative. Due
to (a), there is no explicit phase information in the system, so
if a periodic orbit of period 2π/ω is a solution of (49), any
periodic orbit identical in amplitude and period, but with a
different phase, is likewise a solution. This can lead to nu-
merical instabilities and is traditionally solved with the addi-
tion of a phase condition (Eq. (50b)). Futhermore, because
of (b), there is an additional variable – the energy of the
system – which is implicit and which plays the role of the
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bifurcation parameter λ . However, because this variable is
implicit, the system is overdetermined with the addition of
the phase condition. To solve this problem, following [73,
74], a fictitious bifurcation parameter λ is introduced and
Eq. (49) is replaced with:{

Mq̈(t)+λ q̇(t)+ fint[q(t)] = 0,

q̇i(0) = 0.

(50a)

(50b)

Note that the above system has the form of a classical
dissipative autonomous system, well posed for numerical
continuation. However, since periodic solutions are com-
puted, the only solution to problem (50) is undamped, and
thus the solution computed by the algorithm is λ ' 0 [53].
The resulting branches of solution can be plotted in an am-
plitude / frequency plot in order to visualize the backbone
curve of the system.

2.3.4 Asymptotic numerical method and MANLAB

Due to the implicit functions theorem, the solution of Eq. (46)
with the additional equation (λ = ω in the forced case or the
phase equation (50b) in the free conservative case) defines
a one-dimensional manifold in the RNt+2 space mapped by
(X,λ ,ω) that can be followed through continuation given an
initial point. In this paper, the asymptotic numerical method
(ANM), first presented in [64] and derived at length in [65,
66,72], is used to carry out the continuation procedure.

The ANM basically relies on a high order predictor. The
solution is sought in a parametrized form along with a Taylor
series expansion, up to degree P:

X̃(a) = X̃0 +aX̃1 +a2X̃2 +a3X̃3 + ...+aPX̃P, (51)

where a is a pseudo arc-length and P typically chosen equal
to 20. In order to obtain the coefficients of this expansion,
the ansatz in Eqs. (51) is substituted into the HBM residual
Eq. (46) and terms are gathered relative to the power of the
parameter (zero-th order a0 = 1, first order a1 = a, second
order a2, . . . ). Balancing the coefficients of ap for each order
p ∈ [0, P] and injecting the definition of a results in [66]:

1. A nonlinear algebraic system R(X̃0)= 0 at zero-th order,
2. A cascade of linear systems for the higher orders, which

enables the computation of X̃p at order p≥ 1 as a func-
tion of all of the previous orders X̃i, i < p.

Using this procedure, all X̃p, p∈{0, . . .P} are computed and
a branch of solution is obtained as a continuous function of
a. This branch has a radius of convergence am, automati-
cally computed, such that ∀a < am ||R(X̃p(a),λp(a))||< ε ,
with ε a tolerance chosen by the user. A numerical contin-
uation process consists then in computing several contin-
uous branches, such that the first point of a given branch
X̃(a= 0) = X̃0 is taken as the final point of the previous one,

thus identically verifying the zero-th order R(X̃0) = 0 up to
the chosen tolerance ε . The value of X̃0 for the first branch
is computed by a Newton-Raphson algorithm, initiated by
an initial guess defined by the user. This latter operation will
be called the initialization step in the following section.

In practice, the MANLAB package [75], implemented in
the MATLAB environment, is used to carry out the numer-
ical continuation. In addition, it also offers tools to detect
bifurcation points [76], to compute bifurcated branches and
to evaluate the stability of periodic solutions [53].

2.3.5 Initialization

Proper initialization of the calculation (i.e., the computation
of X̃0 for the first branch of the continuation) is crucial, as
the accuracy of the computation of X̃0 guarantees the accu-
racy of all of the branches computed thereafter. Since res-
onant systems are under investigation here, a preliminary
computation of the low frequency eigenmodes is necessary.
One solves:

(K−ω
2M)ΦΦΦ = 0, (52)

to obtain the natural frequencies ωi and mode shapes ΦΦΦ i for
i = 1,2, . . .

When performing forced computations, initializing the
Newton-Raphson algorithm with a zero solution far from a
resonance works in most cases. Restated more precisely, one
prescribes (X = 0, Ω far from ωi) as the initial guess.

When investigating the nonlinear modes, however, the
initialization of a given backbone curve computation is more
delicate. Two different options are presented. The first method
initializes the algorithm on a linear single-mode solution;
namely, for the ith nonlinear mode q(t) = βΦΦΦ i cosωit, with
β ∈ R small so that the amplitude ||βΦΦΦ i|| of the vibration
pattern is small enough not to activate the geometrical non-
linearities. The second option, which is the one used in the
simulations of the test cases shown in Section 3, is to com-
pute first a harmonically-forced solution branch and then
pick a solution (X,ω) close to the i-th phase resonance point,
where the displacement is in phase quadrature with the forc-
ing (as done in experimental continuation [77]).

2.3.6 Scaling of the equations

To improve the numerical conditioning of the residual R, it
can be useful to scale the parameters such that the equations
are rendered dimensionless. Following [78], we define the
dimensionless variables (denoted by ◦̂):

Ûx =
Ux,Uy

L
, x̂ =

x
L
, t̂ =

t
L2

√
EI
ρA

, (53a)

N̂, T̂ , q̂ =
L2

EI
(N,T,q), M̂ =

L
EI

M, p̂ =
L3

EI
p, (53b)
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where L is a characteristic length of the structure (e.g. the
length of a beam, the diameter of a ring, see examples in
Section 3). Rewritten in this way, it can be shown (see Ap-
pendix C) that the dimensionless equations of motion of a
geometrically exact beam based on Euler-Bernoulli kine-
matics with uniform cross-section depend on only one pa-
rameter, the slenderness ratio:

η = I/(AL2). (54)

In the present case of Timoshenko kinematics, the slen-
derness ratio depends also on the shear parameter µ defined
in Appendix C. The highly flexible structures considered in
this article naturally have a very small η , underlining their
slenderness. This indicates that there will be very little effect
of shearing of the cross-section even at extreme amplitudes
of deformation, meaning that there is virtually no difference
between Timoshenko and Euler-Bernoulli kinematics.

Furthermore, introducing dimensionless parameters brings
more universality to the results of this article. The dynamical
behavior of any structure with the same shape and parameter
η as the test cases of Section 3 can be quantitatively recov-
ered using the change of variable of Eqs. (53).

In practice, for a beam structure with uniform cross-
section and homogeneous material, the dimensionless ver-
sion of system (34) can be obtained simply by setting EI =
1, ρA = 1, L = 1, EA = 1/η and kGA = k/[2(1+ν)η ] with
ν the Poisson’s ratio of the material.

3 Test cases

Table 1 Material properties of flexible beam structures, all structures.

Structure Density ρ [kg/m3] Young’s modulus E [GPa]

Cantilever 7800 210
Fixed 7800 210
Ring 4400 104
Truss 7800 210
Tree 600 13

In all computations, k = 1 and G = E/[2(1+ν)] with ν = 0.3.

In this section, the numerical strategy developed in Sec-
tion 2 is used in the simulation of various flexible beam
structures. To highlight the capabilities of the method, dif-
ferent test cases are selected: a simple cantilever beam, a
beam clamped at both ends, a circular ring, a truss structure
and an idealized model of a tree, as shown in Fig. 3. In each
case, the nonlinear modes of the system are computed with
Eq. (50). The forced responses, however, are only shown for
the cantilever beam test case for the sake of efficiency, al-
though they can be easily calculated for each structure.

eY

eX

eY

Uy

Ux

Uy

Ux

L

(a)
p0

(b)

eY

eX

L
L/3

(c)

L

(d)

Uy

Ux

θ

Uy

Ux

eY

R

eX

α

l2

l1

(e) eY

eX

L/10
eXUy

Ux

l3

θ

Fig. 3 Sketches of the test cases. The red bullet shows for each test
case the selected node and the associated displacement / rotation com-
ponents where backbone curves are plotted.

The nonlinear modes are graphically represented in two
ways. Firstly, we show the backbone curve, representing the
evolution of the amplitude of the motion as a function of
the free oscillation frequency. Precisely, the maximum value
of the absolute value over one period of oscillation of the
rotation of the cross-section (θ(t)) and/or the displacement
components of a selected point of the structure (Ux(t),Uy(t))
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Table 2 Number of discrete elements per structure and corresponding
number of FE nodes.

Structure Mode Elements Ne Nodes N Harmonics H

Cantilever 1 20 21 20
2 25 26 20
3 30 31 20

Fixed 1 50 51 10
Ring 1 30 30 10

2 40 40 10
Truss 1 85 78 20

2 85 78 10
Tree 1 54 55 20

2 54 55 20
3 54 55 10

are depicted. Examples are Figs. 4(a,b,c) for the fundamen-
tal nonlinear mode of the cantilever beam. An alternative
would have been to show some of the harmonics of these
quantities instead of the maximum over a period, in order
to investigate the harmonic content of the oscillation. This is
addressed with the inclusion of several bar diagrams, mainly
in Section 4.

The second graphical representation of the nonlinear modes
is their deformed shapes, shown for selected points along the
backbone. They are plotted here as several snapshots of the
deformed configuration of the structure taken at fixed time
over one half period of the periodic motion. Examples are
Figs. 4(d,e,f) for the fundamental nonlinear modes of the
cantilever beam. The deformed configurations are useful in
order to understand more deeply the complex nonlinear dy-
namics that are observed.

3.1 Cantilever beam

We first consider a cantilever beam, with one end fixed and
the other free, shown in Fig. 3(a). This configuration allows
for very large deformations under small transverse loading
conditions, manifesting extreme changes in shape of the struc-
ture. The extreme deformation sometimes even reaches the
point of “bending backwards,” where the free end of the can-
tilever achieves a displacement behind the opposite fixed
end. For this reason, the geometrically exact beam model
is a necessity in order to properly capture the geometrically
nonlinear behavior. Additionally, the cantilever beam is the
simplest example that can be selected in order to validate the
numerical strategy proposed in this paper. Many works have
been published in the past on nonlinear vibrations of can-
tilever beams and the interested reader can refer to [12] for
an overview, as well as the recent numerical contributions
[36,35,49,37].

A mesh corresponding to a cantilever beam of length
L = 1 m, width b = 0.05 m and thickness h = 0.001 m,
with material properties as shown in Table 1, is generated.

Its slenderness ratio is η = 8.33 ·10−8, implying a very slen-
der beam. Details on the mesh/system properties, such as the
number of discrete elements, are collected in Table 2 for all
test cases. For the simulations, as explained in Section 2.3.6,
the system’s geometry is normalized such that the character-
istic length L is the length of the beam.

For simulation of the forced response of this system, a
uniformly distributed transverse loading p(x, t) = p0 sinΩ t,
as defined in Eq. (33), is prescribed, with p0 its amplitude, in
[N/m]. It is equivalent to a support motion. In the finite ele-
ment context, this load appears as an external force fext(t) in
Eq. (48) of the form fext(t) = FsinΩ t, with the components
associated to the transverse displacement in F of the form
F0
[ 1

2 1 . . .1 1
2

]T and the others being zero. Note that this is
valid if the elements are of constant length Le, in which case
F0 = p0Le. In Fig. 4, we indicated its dimensionless value:
F̂0 = L2 p0Le/(EI).

The linear damping coefficient α of Eq. (35) is chosen
to be α = 2ξ ωi with ξ = 0.005 and ωi the (linear) natural
frequency of the considered mode.

Figs. 4, 5 and 6 depict typical results of our computa-
tions for the first three modes of the cantilever. Some fre-
quency responses under forced excitation for a given value
of the forcing amplitude F̂0 are shown in blue with the back-
bone curves added in black. Many interesting nonlinear dy-
namic phenomena, as were described in Section 1, are un-
covered.

Beginning with the first mode of vibration, shown in
Fig. 4(a-c), it can be seen that it manifests a slightly hard-
ening behavior, meaning that the resonant frequency Ω in-
creases as the vibration amplitude increases, a characteristic
well documented in the literature, see [79,12,37]. Point A
represents a point of moderate amplitude of displacement
along the backbone curve and point C a point of high ampli-
tude. The solving method introduced in this paper is capable
of pushing the cantilever simulation to very extreme ampli-
tudes, as evidenced by the deformed shape at point C. At
this point, the cantilever has fully bent backwards, with the
free end of the beam vibrating well beyond the location of
the fixed end. Note that even though the maximum of the
absolute value is shown in Fig. 4(c), the Ux displacement is
always negative in value as the tip of the beam is always
deformed “backwards” relative to its initial position.

Point B represents an instance of an internal resonance,
wherein some of the energy is transferred to another vibra-
tion mode. Typically, in order to characterize the type of in-
ternal resonance, one must look at the spatial pattern de-
picted by each harmonic and compare it to the mode shapes
of the structure in order to conclude the type of internal res-
onance involved, as explained in Section 3.2. In the present
case, because this internal resonance is less clear and lacks
convergence within the number of retained harmonics, the
discussion is left for Section 4.
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(b)(a) (c)

(d) (e) (f)

A

A

A

B

B

B
C

C

C

C
B

A

Fig. 4 First vibration mode of the cantilever beam of Fig. 3(a). Top row: forced responses (F̂0 = 0.05 and F̂0 = 0.08) and backbone curve of (a) the
cross-section rotation θ , (b) the scaled transverse dispacement Uy/L, (c) the scaled axial displacement Ux/L at the tip of the cantilever. Maximum
amplitude over one period of oscillation. Bottom row: nonlinear deformed shape at (a) low amplitude (point A), (b) internal resonance (point B)
and (c) high amplitude (point C); 20 snapshots per half period.

The second and third vibration modes of the cantilever
are shown in Figs. 5 and 6, respectively. The forced responses
and nonlinear modes are shown in θ for both modes as the
rotation of the cross-section θ gives a good idea of the extent
of the beam’s deformation. Both the second and third modes
of the cantilever beam exhibit a softening trend, wherein Ω

decreases with increasing amplitude of vibration, a fact also
well documented (see [79,12]). The amplitude of deforma-
tion Uy of the beam is less pronounced on the second and
third modes than on the first, due to the presence of node
points in the deformed shape. Expressed more concretely,
due to the particular geometry of the nonlinear mode shapes,
a certain maximum rotation amplitude θ of the cross-section
observed at the tip of the beam is obtained for an amplitude
Uy of transverse displacement, which decreases as the in-
dex of the considered mode increases. Since the mechanism
of geometrical nonlinearities is linked to the amplitude of
the rotations of the cross-sections, the effect of the geomet-
rical nonlinearities is associated to a certain θ and thus to
a Uy that decreases with the index of the modes. Another
internal resonance point, however, was captured in the sim-
ulation of the third mode and appears as an offshoot of the
primary backbone curve. This particular internal resonance
was not investigated, but a discussion on these internal res-
onance offshoots appears in Section 5.

3.2 Clamped-clamped beam

A second classical type of beam structure is the clamped-
clamped (CC) beam. This example is considered here since
the mechanism of geometrical nonlinearities is different. For
all the other test cases considered in this article, the physical
source of geometrical nonlinearities is the large rotation of
the cross-sections, but in the case of the CC beam it is the
bending / axial coupling (see Fig. 1 and e.g. [2]). Due to the
presence of boundary conditions that restrain axial motion,
a bending deformation induces an increase in the axial ten-
sion that increases the bending stiffness and creates a strong
nonlinear hardening effect.

We consider the same beam as in the previous section,
but fixed now at its two ends. For the computations, like
the cantilever, the CC beam is normalized by its length. The
fundamental nonlinear mode is computed with the geomet-
rically exact model. Fig. 7(a) shows the corresponding back-
bone curve for Uy/h at the node located at x = 0.3L from the
left end of the beam (see Fig. 3(b)). Fig. 7(a) depicts this
backbone curve, with a decidedly strong hardening behav-
ior, classical of all flat structures subjected to bending / axial
coupling [80]. This coupling is responsible for the stronger
geometrically nonlinear effects than were seen with the can-
tilever beam. The hardening / softening behavior in partic-
ular is significant for much lower amplitudes of transverse
displacement when comparing on the order of the thickness
h of the CC beam and not of the length of the beam.
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D

D

(a)

(b)

Fig. 5 Second vibration mode of the cantilever beam. Above: forced
responses (F0 = 0.16 and F0 = 0.3) and backbone curve of θ rotation of
the cross-section at free end of beam. Bottom: deformed configuration
of the cantilever at point D; 14 snapshots per half period.

The deformed shape of the beam is also shown at two
points of the backbone curve. Point F (Fig. 7(b)) represents
the classical 1:5 internal resonance (IR) of the first mode
with the third mode (see [81]). The IR is responsible for a
strong coupling between these two modes, which is clearly
seen in the deformed configuration at this point. The de-
formed shape exhibits a mix of the first mode shape oscil-
lating at frequency Ω and the third mode shape oscillating
at 5Ω , a pattern visible in Fig. 7(b) as well as in Fig. 13(c).
Point G (Fig. 7(c)) is characterized by the deformed shape
of the first mode at a high amplitude of displacement, very
close to the linear mode shape of mode 1 even for this os-
cillating frequency (1.5 times higher than the linear natu-
ral frequency ω1 of the structure). Other internal resonances
are also computed on the main backbone curve, a 1:9 with
mode 5 around Ω/ω1 = 1.56 and a 1:7 with mode 5 around
Ω/ω1 = 2.15.

The results of the geometrically exact model and solv-
ing method proposed in this paper were compared against
the nonlinear von Kármán (VK) analytical model, provided
in [81]. It is solved in [81] by a modal expansion on the
first 8 natural mode shapes of the beam and a numerical
continuation of the obtained dynamical system, solved with
MANLAB with H = 10 harmonics retained in the HBM.

(a)

(b)
E

E

Fig. 6 Third vibration mode of the cantilever beam. Above: forced
responses (F0 = 1 and F0 = 3) and backbone curve of θ rotation of the
cross-section at free end of beam. Bottom: deformed configuration of
the cantilever at point E; 10 snapshots per half period.

The results of this comparison are shown in Fig. 7(a), where
the dashed blue line represents the nonlinear VK solution.
It can be seen that the geometrically exact model perfectly
agrees with the VK model, including the detection of in-
ternal resonances during simulation. However, it is noted
that the internal resonance “offshoots” (known also as in-
ternal resonance “tongues” [82]) are predicted slightly dif-
ferently in the two models, departing from the central back-
bone at slightly shifted locations and sometimes in different
directions. This can be explained by the different spatial dis-
cretizations used in the two models. For the VK model, an
analytical modal basis is used with exact natural frequen-
cies, whose ratios to the first natural frequency are:

ω
VK
i /ω

V K
1 ∈ {1;2.76;5.40;8.93;13.34}.

In the FE model, they are:

ω
FE
i /ω

FE
1 ∈ {1;2.79;5.58;9.47;14.64},

for i = 1, . . .5. Considering that the internal resonance stems
from the coincidence of one harmonic of the oscillation with
the (nonlinear) frequency of a given nonlinear mode (see
[81] for examples), the slight differences between the values
of the natural frequencies in the two models explains the dis-
crepancies between the two models. This is illustrated in the
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F

G

F

G

(a)

(b)

(c)

Fig. 7 First vibration mode of a beam fixed on both ends (clamped-
clamped beam). Top: backbone curve of Uy/h displacement at a dis-
tance x = 0.3 [m] from left end of beam (in blue: Von Kármán so-
lution). Center: deformed configuration at internal resonance point F.
Bottom: deformed configuration at point G; 20 snapshots per half pe-
riod.

inset of Fig. 7(a), in which the shape of the 1:5 IR tongue is
computed identically in both models, but with a slight shift
in frequency.

Fig. 7(a) is also useful to quantify the limitations on the
validity of the VK model, since it is based on a truncation
of the beam’s cross-sectional rotations and is thus valid only
for moderate amplitude of vibration. By contrast, the FE ge-
ometrically exact model introduced in this paper has no limit
of validity. Looking at Fig. 7(a), the backbone computed
from the VK model begins to depart from the geometrically
exact backbone around Uy ' 3h.

3.3 Circular ring

Another interesting structure that was tested is the flexible
ring. Previous studies have investigated the dynamics of ring
structures, notably the studies of Santillan, Virgin and Plaut
[83,20] and, more recently, Lu et. al. [84], which were the
inspiration for the circular ring structure considered here.
The ring of radius R = 1 m is discretized into beam elements
of circular (radius r = 10 mm) cross-section with material
properties shown in Table 1 and mesh properties shown in
Table 2. Prior to solving, this system is normalized by its
characteristic length, which in this case is chosen as the ra-
dius R. The circular ring is clamped on the rightmost node
(see Fig. 3(c)).

The resulting dynamical response is shown for the first
two nonlinear modes of vibration in Fig. 8. It is readily seen
that the first vibration mode is a transverse mode, while the
second represents an axial mode of vibration. The backbone
curves representing the nonlinear modes of the system are
traced for the Uy/R (for mode 1) and Ux/R (for mode 2)
displacements at the node directly opposite the fixed node
(see Fig. 3(c)).

The first nonlinear mode of vibration is obviously soft-
ening (Fig. 8(a)). However, an interesting feature is observed
in its deformed shape (Figs. 8(b,c)). Typically, if the am-
plitude of the modal motion were small, related to a lin-
ear oscillation, the displacement could be written u(t) =
aΦΦΦ cosΩ t, where ΦΦΦ is the eigenvector and a ∈ R the am-
plitude of the motion. Once in the period of oscillation (t =
0,2π/Ω ,3π/Ω , . . . here), the structure would recover ex-
actly its undeformed shape at this particular time, no matter
the extent of the deformation, since u(0) = 0 ∀a. In other
words, when looking at the deformed configurations of the
ring in Fig. 8 at points H, I, J and K, the colored lines should
pass exactly through the (undeformed) black line. However,
at high amplitudes of vibration, the deformed shape of the
ring vibrating on its first mode does not return to its initial
configuration. Looking at the deformed shape of the ring at
point I in Fig. 8(c), the ring does not pass through its initial
circular shape, instead maintaining a distorted and slightly
elongated oval shape. This is surely linked to a centrifugal
effect gaining importance at extreme amplitudes of vibra-
tion, due to a “swinging” effect of the ring. At lower am-
plitude (traced at point H), the centrifugal effect is less pro-
nounced, since the ring nearly passes back through its initial
circular shape. A second interesting feature is observed in
the second mode. Although its backbone curve is globally
softening, at low forcing amplitude, the curve is initially of
the hardening type, before bending in a softening trend at
a higher amplitude. Whereas a switching from softening to
hardening behavior as the amplitude increases is classical
for slightly curved structures (some examples include shal-
low shells in [85] and shallow arches in [36,86]), this re-
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Fig. 8 First and second vibration modes of a clamped circular ring. Top row: (left) mode 1 backbone curve of Uy : R displacement at node opposite
the clamp, (center) deformed configuration of the ring at point H, (right) at point I; 14 snapshots per half period. Bottom row: (left) mode 2
backbone curve of Ux/R displacement at node opposite the clamp, (center) deformed configuration at point J, (right) at point K; 20 snapshots per
half period.

versed phenomenon has never been encountered previously,
to the knowledge of the authors.

3.4 Truss structure

A fourth structure, that of a cantilever-style truss structure,
is here considered (see Fig. 3(d)). The analysis of this style
of beam was inspired by the work of Guillot, Cochelin and
Vergez [70] on similar beams. The truss is of length L = 1 m
and height L/10 and is composed of beams of rectangular
cross-section of width b = 0.1 m and height h = 0.1 m with
material properties as shown in Table 1. The truss is divided
into four frames of L/4, with a diagonal beam connecting
the upper left and lower right corners of each frame. The
construction of the asymmetrical truss can be seen in Fig.
9, where the solid black lines shown at points L, M and N
outline the undeformed configuration of the structure. The
nodes making up the left edge of the structure are fixed,
while all other nodes are free. Like the cantilever, this struc-
ture was also normalized by its characteristic length, consid-
ered here the length of the structure.

Results of the dynamic simulations are shown for the
first two modes of vibration in Fig. 9. The backbone curves
trace the rotation of the cross-section θ at the lower, right-
most node (the bottom right corner of the truss, see Fig. 3(d)).
The deformed shapes of the truss are shown at points L and

M for the first mode, and N for the second mode. The behav-
ior of the truss mirrors the behavior of the cantilever beam,
since the first two modes of the truss have the same global
shape as the first two modes of the cantilever. At higher am-
plitudes, it was observed during simulations (not reproduced
here) that some local “buckling”-like modes, involving sin-
gle beam members, appeared in the deformed shape. More-
over, one can notice the asymmetrical shape of the deformed
shape of the truss, especially visible in Fig. 9(e), for which
the maximum (blue) and minimum (green) position of the
truss are not symmetrical with respect to the horizontal axis.
This is due to the asymmetry in the structure, brought by the
four inclined beams that cross the frames.

It is noted that despite the global resemblance between
the cantilever beam and the cantilever truss structure, the
trend of the backbone curves is reversed: mode 1 of the
truss manifests a softening nonlinear behavior, while it is
hardening for the cantilever beam; mode 2 of the truss is
hardening, whereas it is softening for the cantilever beam.
Furthermore, the convergence in harmonics of θ at point N,
shown in Fig. 9(f), is included in order to confirm that, even
at the relatively high deformation shown at point N, the so-
lution remains converged with only 10 harmonics included
(see Section 4 for more on convergence studies).
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Fig. 9 First and second vibration modes of a truss structure. Top row: (left) mode 1 backbone curve of θ rotation of the cross-section at top right
corner of free end, (center) deformed configuration of the truss at point L; 2 snapshots per half period, (right) at point M; 4 snapshots per half
period. Bottom row: (left) mode 2 backbone curve of θ rotation of the cross-section at top right corner of free end, (center) deformed configuration
at point N; 4 snapshots per half period, (right) harmonic convergence of θ at point N.

3.5 Symmetrical tree model

A fifth and final structure is considered in order to confirm
that the numerical method outlined in this paper for the non-
linear dynamical simulation of flexible structures is appli-
cable to any finite element structure. For this, a simple fi-
nite element model of a tree is introduced. The tree is repre-
sented as a collection of several branching beams connected
to a central “trunk”. The tree simulations were inspired by
the work of Kovačić et. al. [87,88] on the dynamic analy-
sis of tree-like structures based on beam models. The work
of Kovačić et. al. takes into account in the model many bi-
ological inspirations from real trees, such as the diameter,
length and mass ratios of branches at each branching point,
slenderness coefficient and branching angle. Some of these
features are taken into account here to obtain the structure
of Fig. 3(e), in particular constant branching angle α = π/9
and length ratio l2/l1 = l3/l2 = 0.79, as used in [88]. The
“trunk” of the tree is of length l1 = 0.5 m. The tree struc-
ture is constructed of beam elements with constant mate-
rial properties (see Table 1) and circular cross-section with
constant diameter d = 0.1 m, simplifying the pattern of de-
creasing cross-section area of each branch used by Kovačić
et. al. Unlike the previous four test cases, this model was
not normalized by any characteristic length for the simula-
tions. Finally, the bottom-most node is considered fixed in

this model, to represent the trunk of the tree being fixed to
the ground.

The backbone curves representing the nonlinear modes
are traced for the first three vibration modes at the tip of the
rightmost branch, considered as a point that experiences ex-
treme amplitudes of vibration. The deformed shapes of the
tree on its first three modes of vibration are shown at both
low and high amplitudes of vibration. Interestingly, the de-
formed configurations of the first three vibration modes of
the tree share some similarities with the cantilever beam.
The first mode shape of the tree closely resembles the first
mode shape of the cantilever. Similarly, the two primary
branches of the tree resemble the first mode shape of the
cantilever when the tree vibrates on its second mode. The
backbone curves of these two modes also manifest harden-
ing behaviors, the same trend as the cantilever’s first mode.

By contrast, the third mode of the tree mirrors the sec-
ond mode of the cantilever. The deformed configuration of
the tree’s third mode reveals a set of nodes at the secondary
branching points where little to no vibration occurs, which is
very similar to the node that appears on the cantilever’s sec-
ond mode. The backbone curve of the tree’s third mode also
exhibits a softening trend, the same as the cantilever’s sec-
ond mode, furthering the similarities between the two struc-
tures.
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Fig. 10 First, second and third vibration modes of a tree-like structure. Top row: (left) mode 1 backbone curve of Ux displacement at top rightmost
node, (center) deformed configuration of the tree at point O; 2 snapshots per half period, (right) at point P; 4 snapshots per half period. Center row:
(left) mode 2 backbone curve of Ux displacement at top rightmost node, (center) deformed configuration at point Q, (right) at point R; 2 snapshots
per half period. Bottom row: (left) mode 3 backbone curve of Ux displacement at top rightmost node, (center) deformed configuration at point S,
(right) at point T; 2 snapshots per half period.

4 Convergence studies

An investigation into the convergence of the solutions is here
presented based on the harmonic spectra of the variables at
various points throughout the simulations. The convergence
is presented for the primary variables Ux, Uy and θ and the
auxiliary variables defined in Eqs. (36), (37) and (40). For
the solution to be considered accurate, the amplitude of the
higher harmonic terms should converge to zero within H,
the number of harmonics retained during the HBM in Eq.
(45). Table 2 tabulates the number of retained harmonics in
each test case.

Fig. 11 depicts the harmonic spectra of Ûx, Ûy and θ

and the auxiliary variables at two points, points A and B,
on the backbone of the cantilever beam’s first mode of vi-
bration (see Fig. 4). Due to the geometrical symmetry of

the structure in the transverse direction (eY ), the harmonic
content of the transverse displacement Ûy and the rotation
θ is odd, whereas that of the axial displacement Ûx is even.
The spectrum at point A demonstrates an example of a con-
verged solution. In this simulation, H = 20 and it is easily
seen that the solution has converged within approximately 5
harmonics.

Also in Fig. 11, it is noted that the convergence of the
auxiliary variables closely mirrors the convergence of θ ,
which makes sense as the critical auxiliary variables are those
that govern the rotation, c and s, which are based on θ as
shown in Eq. (37). Ux and Uy converge “faster” than θ , mean-
ing fewer harmonics are needed. This is confirmed in Fig.
12, showing the convergence in H at point L on the back-
bone calculation of the first mode of the truss structure. For
this reason, a general and simple rule for checking conver-
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gence of a given computation would be to focus on the con-
vergence of θ . The convergence in H is shown for the second
vibration mode of the truss in Fig. 9(f), where even at the
higher amplitude of vibration, point N on the backbone, the
simulation has converged within H = 10. Fig. 13 illustrates
the harmonic convergence of θ for two additional points,
point C on the backbone of the cantilever’s first mode of
vibration, at very high amplitude, and point F, the location
of the first internal resonance detected on the backbone of
the clamped-clamped beam’s first mode. Point B’s θ con-
vergence is recopied for comparison.

Throughout all of the calculations, the harmonic content
increases as a function of the amplitude of the motion, since
the oscillations become more complex and require more har-
monics to be properly reconstructed. An example of this
trend is visible when comparing the θ convergence at point
A (Fig. 11) on the cantilever’s first mode backbone and point
C (Fig. 13) further up the backbone: point A converges more
rapidly than point C. Beyond point C, convergence is no
longer assured within H = 20. Care must be taken to ensure
that each solution is properly converged. For this reason, the
simulations presented in this paper are only presented up to
the point where convergence is lost.

A final point to consider is the convergence of the in-
ternal resonance tongues, more demanding than the main
backbone curve because of the strong coupling with higher
harmonics. This point is addressed in the next section and in
Appendix E.
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A

B

Fig. 11 Convergence in number of retained harmonics H for Ux, Uy, θ and auxiliary variables at point A (top) and internal resonance point B
(bottom) of cantilever simulation vibrating on its first mode.
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5 Internal resonances

As already explained and illustrated for instance in [81], an
internal resonance (IR) is observed when there is a coinci-
dence between some harmonics of the oscillation frequency
of a given mode and the nonlinear frequency of other non-
linear modes. This results in a strong coupling and a rad-
ical change of the topology of the backbone curve, giving
rise to offshoots, often called IR “tongues.” We do not con-
sider here the case in which there exists a particular tuning
between the (linear) natural frequencies, in which case the
backbone curves are completely changed (see e.g [89,90]
for 1:1 and 1:2 internal resonances).

From our experience and as shown in [53,91], there are
three topologies for the connections between the IR tongues
and the main backbone curve, as illustrated in Fig. 14:

1. In type 1, the tongue is connected to the backbone by
several bifurcation points that are merged in the plane
(amplitude / frequency). The interested reader can refer
to [91], which shows nice plots of the unfolding of such
bifucation points. This case appears in particular when
there are symmetries in the system, such as in the case
of the 1:3 IR between modes 1 and 2 of a hinged-hinged
beam (see [53,91]).

2. In type 2, there are no bifurcations and, during the con-
tinuation, the IR tongue appears smoothly by an increase
of the harmonics involved in the IR and a sudden bend
of the backbone curve. An example of this type is the 1:5
IR of point F in Fig. 7.

3. In type 3, the IR tongue is obtained after symmetry-
breaking bifurcations, usually in the case of even IRs
such as a 1:2 (see examples in [53]).

In practice, computing the IR tongues is often tedious and
one usually prefers to avoid it since the main backbone is
often the primary concern. In this context, IR types 1 and 3
are interesting in practice, since a basic continuation driver
follows the main backbone and the user has the choice to
compute the IR tongue or not, using in the former case a
bifurcation detector and a branching algorithm (such as the
one implemented in MANLAB [76]). The case of type 2 IR
tongues is more tricky since the user must compute a priori
the whole loop of the tongue before returning to the main
backbone. In such circumstances, the MANLAB solver gives
us the capability to “jump” over the birth point of the in-
ternal resonance on the backbone, from 1 to 2 in Fig. 14.
A tangent prediction is used, followed by several Newton-
Raphson corrections to converge back to the main branch.

In the test cases presented in Section 3, many type 1 or 3
IRs were detected but not indicated in the figures. Moreover,
several type 2 IRs were also detected and, rather than com-
puting the tongues, we chose to “jump” over them using the
“jump” tool of MANLAB. They appear in the figures only
with the bottom of their connection to the main backbone

curve, so as not to overload the figures and to focus on the
main backbone curve.

An unusual case was discovered for the first mode of
the cantilever beam around Ω/ω1 = 1.031. At this point
a strong internal resonance of type 2 was detected, with a
particularly large gap between the two connections of the
tongue with the main backbone. Moreover, we noticed the
smooth apparition of even harmonics in the spectrum, with-
out symmetry-breaking bifurcation (compare points C and B
in Fig. 13). Then, following this IR tongue, it was impossi-
ble to obtain proper convergence of the number of harmon-
ics within H = 20, as seen for Point B in Fig. 13. Looking
at the spatial pattern of the harmonics, it seems that a 1:6:15
IR with modes 2 and 3 would be at hand, with some en-
ergy spread over several harmonics (3 to 9, including even,
and 13, 15, 17). The cantilever’s IR is much less clear than
the 1:5 IR, Point C of Fig. 13, for which the pattern of the
third mode is clearly visible at the fifth harmonic, the en-
ergy being largely concentrated in this harmonic. Complete
understanding of this particular internal resonance, not mea-
sured in the forced regime in [37] likely due to damping of
the higher modes, is left for further studies.

6 Conclusion

This paper presented a novel method for the simulation of
highly flexible beam structures, based on geometrically ex-
act beam theory and solved using a numerical strategy rooted
entirely in the frequency domain. An analytical derivation
of the geometrically exact finite element beam model is out-
lined in the first parts of Section 2. Section 2.3 introduces the
solving method. The solver combines principles of the har-
monic balance method (HBM) with a continuation method
called the asymptotic numerical method (ANM), based in
the frequency domain and automated in the MANLAB pack-
age.

In order to demonstrate the capabilities of the proposed
method, the forced responses and/or nonlinear modes of sev-
eral test cases were shown in Section 3, including a discus-
sion of the nonlinear phenomena observed in each system
and a convergence analysis with respect to the number of
harmonics in Section 4. The model is able to capture vari-
ous nonlinear phenomena, including the classical frequency-
dependence on the amplitude of vibration (i.e. hardening
and softening trends), bifurcations and instabilities, energy
transfers between different modes of vibrations, etc. The re-
sults of the test cases highlight the power of the method pro-
posed in this paper for the simulation of flexible structures
across a variety of applications.

Many advances in the proposed model are planned for
the near future in order to better capture the behavior of the
flexible structures at extreme amplitudes of vibration. In par-
ticular, two main topics will be addressed. First, a stability
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L

Fig. 12 Convergence in number of retained harmonics H for Ux, Uy, θ and auxiliary variables at point L of truss simulation vibrating on its first
mode.

C B F

Fig. 13 Convergence in number of retained harmonics H for θ variable at point C (left) and internal resonance point B (center) of cantilever
simulation vibrating on its first mode, and at point F (left) of clamped-clamped beam simulation vibrating on its first mode.

B
SB

SB

Type 1 Type 2 Type 3
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Fig. 14 Types of connections between the internal resonance tongues
and the main backbone curve. B indicates a “bifurcation” and SB in-
dicates “symmetry-breaking.” Dashed lines represent unstable parts of
the branches.

analysis will be carried out for the free and forced solution,
and, second, the model (currently restricted to two dimen-
sions) will be generalized to three dimensions in order to
allow for out-of-plane and torsional motion. Finally, future

work will aim to validate the proposed model using experi-
mental results and develop a novel nonlinear reduced-order
model to reduce computation time.
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Appendix A Elementary quantities in the global frame

This section specifies the change of basis procedure from the
local frames to the global frame prior to the finite element
assembly process. The angle ψ(x) = (êX ,ex) previously in-
troduced defines the orientation of the local frame (ex,ey) of
a given finite element in the global frame (eX ,eX ), as shown
in Fig. 2.

Following discretization of the beam into finite beam
elements, the assembly of the elements into the complete
structure must be performed in the global frame (eX ,eY ) in
order to properly define the deformation of the elements rel-
ative to each other. To this end, the displacement degrees
of freedom [ui,wi,θi]

T, written in the local frame, must be
projected in the global frame to obtain [Uxi,Uyi,θi]

T. This is
done by using the change of basis matrix:

Te =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 , (A.1)

such that:

qe
global = Reqe, Re =

[
Te 0
0 Te

]
, (A.2)

where qe
global = [Ux1,Uy1,θ1,Ux2,Uy2,θ2]

T gathers the de-
grees of freedom in the global frame. Inserting the above
equation into Eqs. (26), (23), and (33) leads to the transfor-
mation of all elementary quantities into the global frame, as
follows:

Me
global = ReMeReT,

fe
int,global = Refe

int,

fe
ext,global = Refe

ext, (A.3)

prior to assembly, to obtain Eq. (34).

Appendix B Details on the quadratic recast of the
equations of motion

The transformation of the FEM Eq. (34) into a quadratic
DAE involves the definition of new variables, called auxil-
iary variables. Note that the quadratic recast is not unique.

In this section, two other alternative quadratic recasts are
given, with less auxiliary variables than the recast presented
in Section 2.3.1.

B.1 Minimal quadratic recast with 4 auxiliary variables
per element

In this recast, we consider the definition of 4 auxiliary vari-
ables for each element, leading to a minimal number of auxi-
lary variables. We first add the two sine and cosine variables:

c = cos
θ1 +θ2

2
, s = sin

θ1 +θ2

2
. (B.1)

The cosine and sine functions are redefined in terms of
differential equations, given by:

dc =−s(dθ1 +dθ2)/2, ds = c(dθ1 +dθ2)/2. (B.2)

We also define the auxiliary variables e and γ related to
the axial and shear strains, respectively:

e =
(

1+
u2−u1

Le

)
c+
(

w2−w1

Le

)
s−1, (B.3)

γ =

(
w2−w1

Le

)
c−
(

1+
u2−u1

Le

)
s.

To summarize, the full quadratic DAE for a single finite
element is stated explicitly. For each element, there are:

1. Twelve primary variables:
– Six positions:

qe =
[
u1 w1 θ1 u2 w2 θ2

]T
, (B.4)

– Six velocities:

Ve =
[
Vu1 Vw1 Vθ1 Vu2 Vw2 Vθ2

]T
, (B.5)

2. Four auxiliary variables:

X4 aux =
[
c s e γ

]T
, (B.6)

so that there are 12 + 4 = 18 variables per element. The
quadratic DAE is given by (for a single element):

q̇e = Ve, (B.7a)

MeV̇e = fe
ext−DeVe−


EAe



−c
−s

γLe/2
c
s

γLe/2

+ kGAγ



s
−c

−(1+ e)Le/2
−s
c

−(1+ e)Le/2

+EI



0
0

(θ1−θ2)/2
0
0

(θ2−θ1)/2



︸ ︷︷ ︸
fe
int

, (B.7b)

0 = dc+ s(dθ1 +dθ2)/2, c = cos[(θ1 +θ2)/2], (B.7c)

0 = ds− c(dθ1 +dθ2)/2, s = sin[(θ1 +θ2)/2], (B.7d)

0 = e−
(

1+
u2−u1

Le

)
c−
(

w2−w1

Le

)
s+1, (B.7e)

0 = γ−
(

w2−w1

Le

)
c+
(

1+
u2−u1

Le

)
s. (B.7f)
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B.2 Quadratic recast with 8 auxiliary variables per
element

In this recast, we consider the definition of 8 auxiliary vari-
ables for each element. With respect to the quadratic recast
of Section 2.3.1, the terms Fx, Fy, M and T2 are not defined
as auxiliary variables. For each element, there are:
1. Twelve primary variables:

– Six positions:

qe =
[
u1 w1 θ1 u2 w2 θ2

]T
, (B.8)

– Six velocities:

Ve =
[
Vu1 Vw1 Vθ1 Vu2 Vw2 Vθ2

]T
, (B.9)

2. Eight auxiliary variables:

X8 aux =
[
θ̄ up wp θp c s e γ

]T
, (B.10)

so that there are 12 + 8 = 20 variables per element. The
quadratic DAE is given by (for a single element):

q̇e = Ve, (B.11a)

MeV̇e = fe
ext−DeVe−

EAe



−c
−s

γLe/2
c
s

γLe/2

+ kGAγ



s
−c

−(1+ e)Le/2
−s
c

−(1+ e)Le/2

+EI



0
0
−θp

0
0
θp



 , (B.11b)

0 = θ̄ − (θ1 +θ2)/2, (B.11c)

0 = up−
1

2Le (u2−u1), (B.11d)

0 = wp−
1

2Le (w2−w1), (B.11e)

0 = θp−
1

2Le (θ2−θ1), (B.11f)

0 = dc+ sdθ̄ , c = cos θ̄ , (B.11g)

0 = ds− cdθ̄ , s = sin θ̄ , (B.11h)

0 = e− (1+up)c−wps+1, (B.11i)

0 = γ−wpc+(1+up)s. (B.11j)

B.3 Comparison of computation time

In this paragraph, we illustrate the difference in computa-
tion time when using the three different formulations of the
quadratic recast (resp. with 4, 8 and 12 auxiliary variables).
The computations were carried out for the cantilever beam
of Section 3.1, discretized with 20 elements and using 20
harmonics in the HBM development. In each case, 50 ANM
branches are computed with an ANM threshold set to 10−6.
Note that for each formulation, the results are the same and
only the computation time differs. Table 3 shows the mean
computation time per ANM branch for each of the three
quadratic formulations presented in this paper. It can be seen
that the smallest computation time is obtained when using
the quadratic formulation using 12 auxiliary variables. As
explained in the main text, what increases the computation
time is the number of products of variables and not the ad-

dition of auxiliary variables. Looking at the proposed DAE,
one finds, for each finite element, 12 products of the vari-
ables in Eqs. (44), 24 products in Eqs. (B.7) and 18 products
in Eqs. (B.11). Table 3 confirms that the computation time
increases with the number of products.

Table 3 Comparison of computation time for the different formula-
tions of the quadratic recast (example of cantilever beam with 20 ele-
ments and 20 harmonics).

No. aux vars per element 4 8 12
No. of products 24 18 12
Mean time per ANM branch [s] 2.65 2.63 1.96

Appendix C Dimensionless form of the equations

Following [12], the strong form of the beam equations equiv-
alent to the weak form of Eq. (7) for a geometrically exact
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beam model with a Timoshenko kinematics is written:
ρAü = (N cosθ −T sinθ)′+n,

ρAẅ = (N sinθ +T cosθ)′+ p,

ρIθ̈ = T (1+ e)−Nγ +M′+q,

N = EAe, T = kGAγ, M = EIθ
′.

(C.1)

(C.2)

(C.3)

(C.4)

Using the dimensionless variable definitions of Eqs. (53),
one obtains:

ˆ̈u = (N̂ cosθ − T̂ sinθ)′+ n̂,
ˆ̈w = (N̂ sinθ + T̂ cosθ)′+ p̂,

θ̈ = T̂ (1+ e)− N̂γ + M̂′+ q̂,

N̂ = e/η , T̂ = γ/µ, M̂ = θ
′,

(C.5)

(C.6)

(C.7)

(C.8)

where η is defined by Eq. (54) and:

µ =
EI

kGAL2 =
2(1+ν)η

k
, (C.9)

is the shear parameter [92], ν is the material Poisson’s ra-
tio and where the second equation is valid for a homoge-
neous material with G = E/[2(1+ν)]. In the case of Euler-
Bernoulli kinematics, γ = 0, so that µ does not appear in the
equations.

Appendix D Quadratic recast of transcendental
function

Let us consider two time functions x(t) and y(t) related by a
transcendental function. To better understand the ideas, con-
sider here an exponential function:

y(t) = exp[x(t)]. (D.1)

Differentiating the above equation and adding an initial
condition yields the following equivalent system:

dy = ydx, (D.2a)

y(0) = exp[x(0)], (D.2b)

where the first equation is quadratic with respect to x, y, dx
and dy.

To illustrate the HBM treatment, we consider only two
harmonics in cosine for x(t) and y(t):

x(t) = x(0)+ x(1) cosωt + x(2) cos2ωt, (D.3)

y(t) = y(0)+ y(1) cosωt + y(2) cos2ωt. (D.4)

Introducing the above equations into Eq. (D.2a), with d◦
considered as a time differentiation d◦/dt and balancing the

zero-th and first two harmonics in a standard HBM process
leads to:

0 = 0, (D.6)

y(1) = x(1)y(0), (D.7)

y(2) = x(2)y(0)+ x(1)y(1)/4. (D.8)

Because of the differentiation in Eq. (D.2a), the zero-
th harmonics do not yield an equation. This is corrected by
considering Eq. (D.2b) with the Fourier series expansion:

y(0)+ y(1)+ y(2) = exp
(

x(0)+ x(1)+ x(2)
)
. (D.9)

As a preliminary conclusion, the above equation proves
that the Fourier coefficients of x(t) and y(t) are solutions of
an algebraic system that is almost quadratic, with only one
of the equations (Eq. (D.9) here) incorporating the transcen-
dental function. In the ANM process, this function is treated
in the same manner, by differentiating with respect to the
arclength parameter a. Namely, Eq. (D.9) is rewritten:

y(a) = exp[x(a)], (D.10)

and the two functions x and y of a are expanded in Taylor
series (see Eq. (51)):

x(a) = x0 +ax1 +a2x2, y(a) = y0 +ay1 +a2y2. (D.11)

Then, considering Eq. (D.2a) with d◦ replaced by a dif-
ferentiation with respect to a (d ◦ /da) and balancing each
power of a, one obtains:

y1 = y0x1, (D.12)

y2 = x2y0 + y1x1/2. (D.13)

Again, because of the differentiation in Eq. (D.2a), one
equation is lacking. This is corrected by considering Eq. (D.2b):

y0 = exp(x0), (D.14)

which is evaluated by computing R(X̃0) of the zero-th order
of the first series with a Newton-Raphson.

In conclusion, it has been shown with this simple exam-
ple that replacing the transcendental equation (D.1) with (D.2)
leads to a quadratic ANM-HBM process enabling computa-
tion of all of the unknowns X̃p of the problem. This process
is hard-coded in the MANLAB software.

Appendix E Effect of the number of harmonics

In this appendix, we present a quick convergence study with
relation to the number of retained harmonics in the HBM
development. The computations are carried out for the first
mode of the cantilever beam presented in Section 3.1, dis-
cretized with 20 elements and using a quadratic recast with
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Fig. 15 Amplitude of the rotation at the free end of the cantilever beam
for the first nonlinear mode as a function of the angular frequency for
several numbers of retained harmonic (H = 20, H = 40 and H = 60).

12 auxiliary variables. Fig. 15 depicts the evolution of the
rotation at the free end of the beam as a function of angular
frequency for H = 20, H = 40 and H = 60 harmonics.

It can be seen that the backbone curve of the first mode
is well-approximated with H = 20 harmonics so as long as
the amplitude of the rotation is lower than 3 rad. At higher
amplitudes, the harmonic content must be increased in order
to obtain a converged solution.

It is also observed that the location of the internal reso-
nance depends on the number of harmonics retained in the
HBM development. The higher the number of retained har-
monics, the higher the number of uncovered internal reso-
nances, which may be disadvantageous during computation
if the primary interest is in the principal resonance curve
of a mode. In addition, in order to obtain a correct solution
around the internal resonance, a large number of harmon-
ics is required in the HBM development. Even with H = 60,
the solution around the internal resonance occurring close to
Ω/ω1 ≈ 1.03 is clearly not converged, as can be observed
in Fig.16.

For information purposes, Table 4 shows the mean com-
putation time per ANM branch as a function of the number
of retained harmonics H.

Table 4 Comparison of computation time as a function of the
harmonic number (example of cantilever beam with 20 elements,
quadratic recast with 12 auxiliary variables).

No. harmonics H 20 40 60
No. unknowns in algebraic system 14022 27702 41382
Mean time per ANM branch [s] 1.96 10.15 15.23
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57. C. Touzé, O. Thomas, and A. Chaigne. Hardening/softening be-
haviour in non-linear oscillations of structural systems using non-
linear normal modes. Journal of Sound Vibration, 273(1-2):77–
101, 2004.

58. S. Shaw and C. Pierre. Nonlinear normal modes and invariant
manifolds. J. Sound. Vib., 150(1):170–173, 1991.
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bone curves, Neimark-Sacker boundaries and appearance of quasi-
periodicity in nonlinear oscillators: Application to 1:2 internal res-
onance and frequency combs in MEMS. Meccanica, 56(8):1937–
1969, August 2021.

91. R. Lewandowski. Solutions with bifurcation points for free vi-
bration of beams: an analytical approach. Journal of Sound and
Vibration, 177(2):239 – 249, 1994.
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