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Abstract—Due to their promising applications and intriguing
characteristics, Unmanned Aerial Vehicles (UAVs) can
be dispatched as flying base stations to serve multiple
energy-constrained Internet-of-Things (IoT) sensors. Moreover,
to ensure fresh data collection while providing sustainable
energy support to a large set of IoT devices, a required number
of UAVs should be deployed to carry out these two tasks
efficiently and promptly. Indeed, the data collection requires
that UAVs first make Wireless Energy Transfer (WET) to supply
IoT devices with the necessary energy in the downlink. Then,
IoT devices perform Wireless Information Transmission (WIT)
to UAVs in the uplink based on the harvested energy. However,
it turns out that when the same UAV performs WIT and
WET, its energy usage and the data collection time are severely
penalized. Worse yet, it is difficult to efficiently coordinate
between UAVs to improve the performance in terms of WET
and WIT. This work proposes to divide UAVs into two teams to
behave as data collectors and energy transmitters, respectively. A
Multi-Agent Deep Reinforcement Learning (MADRL) method,
called TEAM, is leveraged to jointly optimize both teams’
trajectories, minimize the expected Age of Information (AoI),
maximize the throughput of IoT devices, minimize the energy
utilization of UAVs, and enhance the energy transfer. Simulation
results depict that TEAM can effectively synchronize UAV teams
and adapt their trajectories while serving a large-scale dynamic
IoT environment.

Index Terms—UAV, Wireless Powered Communication
Network (WPCN), Trajectory optimization, Multi-Agent Deep
Reinforcement Learning (MADRL).

I. INTRODUCTION

As 5G mobile networks advance and become a reality,
Unmanned Aerial Vehicles (UAVs) are more often deployed
as aerial base stations to support such networks and build
a communication bridge between distant and unconnected
ground nodes [1], [2]. In another application, UAVs are able to
gather data from IoT devices, and relay the collected data to a
central controller for decision making. However, the freshness
of gathered information, the energy utilization of both UAVs
and IoT devices, and the optimization of UAV trajectories play
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important roles in increasing the central controller’s decision
quality [3]. The freshness of information generated by a given
IoT device is measured by tracking the time passed since the
last information intercepted at the UAV was created on the IoT
device, which is well-known as the age of information (AoI)
[4]. This metric is widely adopted in recent UAV-based data
collection schemes, such as in [5]. However, most of these
works did not consider the restricted energy of IoT devices.

Wireless Energy Transfer (WET) process has recently
emerged as an alternative solution for wirelessly powering
IoT devices using Radio Frequency (RF) signals. Once IoT
devices are charged, they will be able to transfer information to
UAVs or establish what is known as the Wireless Information
Transfer (WIT) process. A novel concept, called Wireless
Powered Communication Network (WPCN), was proposed to
support both WET and WIT processes under a single system
based on UAVs [6]. The WPCN concept is adopted in a wide
range of works in the literature, e.g., in [7], where the UAV
trajectories are optimized to maximize the available energy
on a restricted number of IoT devices. Furthermore, in [8],
the authors dispatch a single UAV-enabled WPCN at a fixed
position to reduce the accomplishment time of gathering a
given amount of bits per IoT device. Nevertheless, as far as we
know, most UAV-assisted WPCN solutions did not investigate
the high densities of IoT devices and their dynamics over a
vast area. Moreover, three other main issues are frequently
distinguished in the previously discussed works. First, it was
noticed that the adopted RF-based WET process in most
UAV-enabled WPCN schemes is impacted energy attenuation
due to the path loss. Second, the WET process frequently
causes the problem of collecting stale information, especially
when it is jointly integrated with the WIT process in the same
UAV. Finally, the constant mobility of UAVs could quickly
deplete their batteries, and consequently, they could always
stop working after a short period of time.

To address all these issues, it is required to provide an
efficient energy supply and a punctual collection of fresh
information over a large-scale dynamic IoT environment. For
this purpose, in this work, it is assumed that the WIT and
WET processes are allotted to two distinct teams of UAVs,
as in the motivating scenario shown in Fig. 1. In addition,
the trajectories of UAVs should be optimized and adequate
technologies have to be exploited to supply IoT devices
with exhausted batteries, to ensure a certain freshness of
collected information, and to reduce the energy consumption
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Fig. 1: Application scenario of TEAM framework.

of UAVs. However, since it is the case of a time-varying and
unknown environment (i.e., dynamic IoT devices), it will be
difficult to proceed using traditional optimization techniques.
Hence, each UAV of both teams is controlled by its own
Deep Reinforcement Learning-based (DRL-based) agent to
intelligently control and manage its trajectories and resource
allocation. To do so, it is supposed that both teams of UAVs are
backhaul-connected either with a satellite or a fully working
terrestrial BS, which is a popular hypothesis in different works
[9]. This allows to ensure the centralized training of the
different agents and to have a global vision and continuous
observation of the environment (i.e., locations of UAVs, energy
usages, AoI, etc.) and to intelligently control each UAV
movement towards achieving an intelligent synchronization
with both teams and efficiently assist IoT devices. However,
transmitting periodical updates from the environment to these
central units causes significant energy consumption, without
mentioning the different communications restrictions due to
the existing obstacles. These constraints are out of the scope
of this paper, and therefore the focus is to be placed on how to
control and synchronize the movements of both UAV teams to
adapt to the dynamics of the IoT environment and optimally
serve it. To sum up, the following contributions are carried
out:

• Designing a multi-UAV-enabled WPCN system
consisting of two teams providing an optimal AoI-aware
data collection over a large set of dynamic IoT devices.

• Leveraging a Multi-Agent DRL (MADRL) based strategy
for minimizing the overall AoI of the system by jointly
maximizing the throughput of IoT devices, optimizing
the trajectories and energy consumption of UAVs, and
the resource allocations of UAVs in each team.

• Conducting simulation experiments to study the
effectiveness of the system and evaluate its numerical
results.

The remaining organization of this paper can be outlined
as follows. Section II presents an extensive review of the
related work. Section III provides a detailed description of
the system model and formulates the problem statement.
Section IV briefly introduces the background of reinforcement
learning and presents the proposed MADRL framework,
namely TEAM. In Section V, the obtained numerical results
are analyzed. Finally, the paper is concluded in Section VI.

II. RELATED WORK

Due to their advantages and flexibility, UAVs are expected
to be fully integrated into the future generation of mobile
networks, such as B5G and even 6G, for a win-win situation
[16]. This integration efficiently addresses the problems related
to data collection, such as the energy consumption of mobile
devices (i.e., UAVs and served ground devices), and access
protocols and security. Moreover, UAVs are an excellent
choice to serve ground users and IoT devices. To avoid being
out of the scope of this work, this section will be focused on
three significant research challenges related to UAV-assisted
IoT devices: (i) Data collection, (ii) AoI, and (iii) WPCN.

A. UAV-based data collection and AoI

Due to their flexibility, UAVs could be considered a
promising solution to be deployed as data collectors, allowing
IoT devices to upload their data in the uplink with low
energy and in a reduced time. For instance, in [10], the
transmission scheduling of terrestrial sensors and the UAV
trajectory are jointly optimized to minimize the energy
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TABLE I: Features comparison of the related approaches for UAV-assisted IoT networks.

Features Data Collection AoI-aware Data Collection WPCN TEAM frameworkRef. [10] Ref. [11] Ref. [12] Ref. [13] Ref. [14] Ref. [15]

Main topic
Energy consumption
minimization of IoT

devices.

Completion time
minimization of data

collection

Minimizing weight
sum AoI while

leveraging a DRL
strategy

Trajectory
optimization of

multiple UAVs to
minimize AoI

Trajectory
optimization of

multiple UAVs to
maximize throughput

Optimization of
resource allocation in
UAV-enabled WPCN

Intelligent trajectories
of multiple UAVs
enabled WPCN

Optimization Differential
Evolution (DE)

Min-max multiple
Travelling Salesman DRL MADRL Bellman dynamic

programming MADRL

IoT deployment Uniform stationary positions Stationary on grids Moving on Roads Stationary on clusters Categorized with
stationary positions Randomly moving

Major advantage
Minimization of

energy consumption
of data collection.

Minimization of data
collection completion

and flying times

Minimization of AoI
while considering the
energy consumption

of UAV

Minimization of AoI
while considering the

mobility of IoT
devices

Enhancing the
trajectories in each

cluster and
maximizing the

minimum throughput

Achieving optimal
power and price
control of UAV

Minimizing the
average AoI and

energy consumption
of UAVs and

maximizing the
throughput while

considering the IoT
devices’ mobility

Major Limitation Energy consumption
of UAV is omitted

Energy consumption
and collisions

avoidance are not
considered

Increasing of AoI
when the number of
IoT devices increases

Energy of UAVs is
neglected

The freshness of
collected information
is not considered and
it not cost-effective

Energy consumption
of UAVs in
overlooked

Complexity of the
system

consumption of sensors, while ensuring the required amounts
of collected data. In [17], multiple UAVs are deployed to
collect data from time-constrained vehicles while maximizing
the vehicular network throughput. Orfanus et al. [18] adopted
the promising paradigm of self-organization to deploy a
set of UAVs as wireless relays to serve ground sensors in
the context of military scenarios. In [19],an energy-efficient
self-organization model with two-level data aggregations was
adopted for cluster-based communication UAV networks.
Guan et al. [20] proposed a novel distributed algorithm for
controlling self-organizing UAVs with massive Multiple Input
Multiple Output (MIMO) network capacities. The authors
of [11] minimized the completion time of data collection
by employing multiple UAVs under the constraint of a
defined amount of data to be collected. The authors of [12]
applied a DRL strategy to optimize the trajectory and energy
consumption of the UAV to minimize the AoI of IoT devices.
Finally, in [13], multiple UAVs are dispatched to gather data
from vehicles moving on a highway while leveraging a DRL
method to reduce their average AoI.

B. UAV-enabled WPCN

Recently, UAVs have been considered as adequate objects
for playing the role of energy sources, powering IoT devices,
and collecting data. This concept is known as WPCN, which
is widely investigated in the literature. For example, Park
et al. [21] deployed a UAV-enabled WPCN to maximize
the minimum throughput of sensors by jointly optimizing
the movement and energy of UAV and resource allocation
based on linear and non-linear energy harvesting models. The
authors of [14] adopted a MADRL strategy to maximize
the minimum throughput in UAV-enabled WPCN system
by jointly optimizing the 3D trajectories of UAVs and
resource allocation. In [15], the authors designed UAV-assisted
wireless powered IoT network and addressed the resource
allocation problem between IoT devices and the UAV, which
is formulated as a dynamic game theory.

Table I selects a set of crucial features to make a
comprehensive comparative study between the discussed
schemes and TEAM framework. From this study, it comes
that the majority of UAV-assisted network schemes adopt

three main MADRL based methods. First, as in [14],
MA-Deep Q Network (MADQN) based methods are mainly
deployed to face small-scale discrete space problems with
discrete action space of UAVs. However, as a drawback,
MADQN-based methods could suffer from the problem
of over-fitting, where the values of different actions get
overestimated under certain situations, and thus the system
converges more slowly. Second, MA-Double Deep Q Network
(MADDQN) based methods are based on neural networks
and extra layers to overcome the problem of over-fitting,
which could slow down the learning speed of the system.
Finally, as in TEAM framework, MA-Deep Deterministic
Policy Gradient (MADDPG)-based methods could address
all the issues mentioned above by facing complex and
dynamic environments generating high-dimensional states
and learning continuous control policies. Moreover, it was
distinguished that there are four main challenges in most
UAV-enabled data collection contributions to overcome. First,
as already mentioned, most of these contributions are mainly
based on straightforward scenarios involving a small set
of IoT devices or sensors assisted with single or multiple
UAVs, while omitting the scenarios where IoT devices are
dynamic and consume a significant energy amount in both
communication and movement. Second, the deployed UAVs
in these contributions perform WET and WIT in an integrated
way where UAVs should first perform Wireless Energy
Transfer (WET) to supply IoT devices with the necessary
energy, and then IoT devices transmit their sensed data based
on the harvested energy. This technique causes a significant
delay in data collection, and the energy usage of UAVs
is severely penalized. Third, the WET process in these
contributions is mainly based on RF-signals transmitted in an
omnidirectional manner, which suffers from attenuation due
to path loss and interference, thus significantly decreasing its
performance. Finally, the relevant DRL-based contributions
mainly consider a single agent and discretized UAV trajectory
in their architectures, which substantially increases the
error rate of obtained policies and considerably limits the
deployment and adaptation of UAVs in a dynamic real-world
and large-scale IoT environment.

The main differences that distinguish our work from other
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schemes discussed above are threefold:
• Two teams of UAVs are deployed for supporting a

scalable number of dynamic and energy-constrained IoT
devices that intermittently transmit amounts of data
towards a central controller for decision making.

• The WET and WIT processes are performed separately by
two distinct UAV teams to efficiently decrease the AoI of
collected data and make IoT devices always sufficiently
charged and ready for transmitting their data towards
UAV-DCs. Moreover, the WET process is supported by
the energy beamforming to increase the energy transfer
efficiency and avoid the interference problem.

• A multi-agent DRL method is leveraged to optimally
control and synchronize the movements of UAVs in
both teams to optimally adapt them to the scalability
and dynamics of the IoT environment while jointly
maximizing the throughput of IoT devices, reducing
the energy consumption of UAVs, and optimizing the
energy charging of IoT devices to avoid unsuccessful data
collection due to the insufficient energy of IoT devices.

III. SYSTEM MODEL

As illustrated in Fig. 1, a multi-UAV-enabled WPCN system
is deployed, which is consisting of two teams of UAVs
acting separately as data collectors and energy transmitters.
The team of UAV-ETs is indicated as N , and the team
of UAV-DCs is denoted as M, where N

⋂
M = ∅. An

important number of moving terrestrial energy-constrained
IoT devices are uniformly distributed over a harsh region to
sense various physical phenomena, which are denoted as K ,
{k = 1, 2, . . . ,K}. A typical example of these IoT devices
could be small dynamic robots deployed in areas where the
human intervention is constraining. The system is analyzed
during a predefined flight duration of UAVs, represented as
t ∈ [0, ψ]. To simplify the analysis, the flight period is
discretize into T time-slots, where Θ = ψ

T is the length of
each time-slot. T is supposed to be sufficiently large such that
UAVs in both teams appear to be approximately stationary
at each time-slot. The locations of each IoT device k ∈ K
is represented by pk[t] = [xk(t), yk(t)]T at each time-slot
t ∈ T , {t = 1, 2, . . . , T}, which are supposed to move
only inside the target square area of width lmax. All UAVs
from both teams are constantly flying around IoT devices to
supply them with energy and gathering fresh information, all
in a timely manner. At each time-slot t ∈ T , the instantaneous
trajectories of UAV-ETn and UAV-DCm projected onto the
horizontal plane are denoted as pn[t] = [xn(t), yn(t)]T and
pm[t] = [xm(t), ym(t)]T , respectively, ∀n ∈ N ,∀m ∈ M.
The altitudes of both UAV-ETn and UAV-DCm are denoted
as hn[t] and hm[t] ∈ [hmin, hmax], respectively. The distance
between each UAV i and device k are given by:

dik[t] =
√
‖pi[t]− pk[t]‖2 + h2

i [t], (1)

where i ∈ M ∪ N . It is assumed that all UAVs are
backhaul-connected to a satellite or a fully working terrestrial
BS in which the centralized training of each DRL agent is

operated (see Section IV). For the sake of clarity, Table II
defines the different notations used in this paper.

TABLE II: List of notations.

Notation(s) Description

M,M,m Set, number, and index of UAV-DCs
N , N, n Set, number, and index of UAV-ETs
K,K, k Set, number, and index of IoT devices
T , T, t Set, number, and index of time-slots
dji [t] Distance between nodes i and j
pi[t] Coordinates of node i
Ri, Ei[t] Transmission power and residual energy of node i
Atk, O

m
k [t],Γtk,m[k] AoI, rate, and data harvesting decision of device k

Ωtk, $
t
k Status of unsuccessful data upload and unserved

device k at time-slot t
Fmaxi , Emaxi Maximum speed and energy capacity of UAV i
Rti , P

t
i Reward and penalty of UAV i

oti, a
t
i Observation and action of UAV i

stx, a
t
x States and actions of the set x ∈ {ET,DC}

πi(.), Qi(.) Actor and critic networks
πi

′
(.), Qi

′
(.) Target actor and critic networks

ηQ
i
, ηπ

i
Parameters of critic and actor networks

ηQ
i′
, ηπ

i′
Parameters of target critic and actor networks

Bi,∆, δ Replay buffer of UAV i, Mini-batch size and index
ε, ζ Action noise and discount factor

It is noteworthy that the trajectory optimization of UAVs
in both teams using the DRL method exploits different
technologies to support WET and WIT processes. Therefore,
in the following subsections, each technology will be defined
along with a set of parameters that the DRL algorithm will
fully exploit to synchronize the UAV teams to timely serve
the IoT environment.

A. Channel Modeling

Each UAV-ET is mounted with an U × V uniform
planar array (UPA), while each UAV-DC is equipped with a
single antenna for collecting information from IoT devices.
Furthermore, each IoT device k is mounted with two antennas
operating over different orthogonal frequency bands, each
of which is devoted to either energy harvesting or data
transmission to avoid interference. Therefore, each UAV-ET
could generate multiple narrow beams to simultaneously
transmit RF signals to IoT devices. After receiving energy
beams, the IoT devices convert the RF energy and satisfy
the energy supply through RF-energy gathering devices. For
effortlessness, the dynamicity of beam angles is disregarded
because of the mechanical vibration of UAVs and wind flow.
In the WET process, it is expected that the line-of-sight
(LoS) dominates the channel between IoT devices and UAVs.
According to [22], [23], the channel CHn

k between UAV-ETn
and device k can be expressed as follows:

CHn
k =

√
η0(dnk )−αr(ϕ, ω), (2)

where α ≥ 2 represents the path loss factor. η0 represents the
median of the power gain at the reference distance d0 = 1m.
r(ϕ, ω) denotes the steering vector of the LoS path with input
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parameters ϕ and ω as the azimuth and elevation angles, which
are estimated by:

r(ϕ, ω) = [1, . . .

, exp(j2π/λaarray sin(ϕ)[(u− 1) cos(ω) + (v − 1) sin(ω)]),

. . . ,

exp(j2π/λaarray sin(ϕ)[(U − 1) cos(ω)

+ (V − 1) sin(ω)])]T ,
(3)

where aarray denotes the spacing between antenna elements.
λ = c

fc
represent the wavelength, c is the light speed, and fc

is the carrier frequency. u and v represents the coordinate of
antenna elements. [.]T denotes the conjugate transpose. The
time-varying channel gain between UAV-ETn and device k is
calculated by:

Gnk [t] =
η0

(dnk [t])
α
2
|r(ϕ, ω)B|2, (4)

where B = [b1v, . . . , buv, . . . , bUV ] denotes the beamforming
vector describing the phase and amplitude excitation of each
array element buv = cuv(ϕ, ω) × Iuv × exp(ρuv), where
cuv(ϕ, ω) is the active pattern, Iuv is the amplitude excitation
of (u, v) − th array element, ρuv denotes the progressive
phase shift. There is a scenario when multiple UAV-ETs
cooperatively serve a given IoT device. In this case, a
distributed energy beamforming protocol as proposed in [24]
is adopted to achieve optimal energy transfer towards the
IoT device. In the case when the batteries embedded on IoT
devices have unlimited capacity, the total harvested energy
at time-slot t from all UAV-ETs can be expressed using the
following linear energy harvesting model:

EETk [t] =

N∑
n=1

Enk [t] =

N∑
n=1

ξkG
n
k [t]RnΘ, (5)

where Rn and Enk [t] denote the transmit power and the
transmitted energy of UAV-ETn, respectively. 0 < ξk < 1
represents the energy conversion efficiency of device k and
it is set to a certain value for all IoT devices. We are aware
that exploiting linear energy harvesting is not accurate enough
because as the input RF power progressively increases in the
practical energy harvesting circuits, the output direct current
(DC) power eventually gets saturated. However, the energy
harvester in this work is supposed to not operate in the
saturation region, and the received power from UAV-ETs is not
high. Therefore, a linear harvester may roughly represent the
energy harvesting process. To be more realistic, the batteries
of IoT devices are supposed to have a capacity restricted to
Emaxk . Thus, the total residual energy of device k at time-slot
t+ 1 (i.e., after energy harvesting) is calculated as follows:

Ek[t+ 1] =

{
Emaxk , ifEk[t] + EETk [t] ≥ Emaxk ,

Ek[t] + EETk [t], Otherwise,
(6)

where Ek[t] is the energy level (i.e., residual energy) of
device k at time-slot t. According to [25], the adopted WET
technology could suffer from three major issues. First, IoT
devices’ limited energy capacity should suffice not only for

data transmission, but also for sensing and idle listening
made by the IoT devices. To address this issue, an RF-based
wake-up mechanism can be deployed to activate IoT devices
for data transmission and avoid maintaining them activated all
the time while enhancing the energy consumption of sensing
and idle listening. This mechanism is out of the scope of
this framework, but it can be considered in it. Second, WET
technology is sensitive to the UAV’s restricted powering range,
limiting the energy harvested at the IoT devices. In TEAM
framework, the mobility and altitude of UAV-ETs are flexible
and optimized through time to ensure an acceptable level
of transferred energy. Finally, IoT devices generally use the
result of spectrum sensing as a basis for energy harvesting or
data transmission. Therefore, channel fading is not considered
in this framework, and it is assumed to be constant during
spectrum sensing.

As for the WIT process, since our framework is LoS
dominant, it is appropriate to adopt a Rician fading model [26].
However, for the sake of simplicity, we adopted a pure LOS
to model the used channel due to the neglect of small-scale
fading in this work. Therefore, the effect of small-scale fading
is considered as insignificant [27], [28]. Thus, the time-varying
uplink channel gain between UAV-DCm and device k at
time-slot t can be expressed as follows:

Gmk [t] =
η0

‖pm[t]− pk[t]‖2 + h2
m[t]

. (7)

As depicted in Fig. 1, a given UAV-DCm can simultaneously
serve multiple IoT devices in a single time-slot t. Thus, TDMA
is adopted during the WIT process, where each time-slot t is
divided into K sub-slots. Each k-th sub-slot of a duration %tk
is dedicated to a covered device k. For the proper functionality
of the data collection, the following constraints should be
satisfied:

‖pm[t]− pm[t− 1]‖2 ≤ (Fmaxm Θ)2, ∀m ∈M, ∀t ∈ T̂ , (8a)
K∑
k=1

Γtk,m[k] ≤ 1, ∀t ∈ T ,∀m ∈M, (8b)

M∑
m=1

Γtk,m[k] ≤ 1, ∀k ∈ K,∀t ∈ T , (8c)

where Fmaxm is the maximum speed of each UAV-DCm in m/s
and T̂ = {1, . . . , T−1}. Let Γtk,m[k] denotes a binary variable,
which indicates that UAV-DCm is collecting the update of
device k at sub-slot k within time-slot t if Γtk,m[k] = 1, and
0 otherwise. The constraint (8a) indicates that the positions
UAV-DCs are approximately constant according to the devices
at t. The constraints (8b) and (8c) suppose that at each sub-slot
k, each dispatched UAV-DCm only collects the update of at
most one device k and each device k is scheduled by at most
one UAV-DCm. TDMA is adopted for its simplicity despite its
major drawback that forces each covered IoT device to have a
fixed allocation of channel time whether or not it has data to
transmit, especially when the other covered IoT devices with
the same UAV-DC do not plan to transmit data.
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Suppose that Rk denotes the transmission power of the
device k. Therefore, the instantaneous rate for device k to
UAV-DCm at time-slot t is calculated as follows:

Omk [t] = Γtk,m[k]W log2

(
1 +

RkG
m
k [t]

σ2

)
, (9)

where σ2 = WL0 denotes the additive white Gaussian noise
at UAV-DCm, where L0 represents the power spectral density
of the Additive White Gaussian Noise (AWGN). W is the
channel bandwidth in Hertz (Hz). Consequently, the distance
between UAV-DCs and devices defines the amount of data
that can be successfully transmitted to UAV-DCs in the uplink.
Let Zmk [t] denotes the fraction of bits, which is successfully
transmitted by device k to UAV-DCm at time-slot t based on
the following equation:

Zmk [t] = %tkO
m
k [t]. (10)

where %tk is the duration of each k-th sub-slot dedicated to a
covered device k.

B. Age of Information (AoI) of moving IoT devices
To calculate the freshness of collected information by

UAV-DCs, the AoI metric is calculated for each served device.
Indeed, the most popular definition of AoI has been that it is
the time elapsed since the latest update generated by device k
and received by UAV-DCm. For instance, the AoI of device k
that generated an update at Uk[t] and successfully transmitted
it at time-slot t is given by:

Atk = t− Uk[t]. (11)

In TEAM system, Atk is incremented whenever an update
fails to be received by a given UAV-DCm. Otherwise, Atk is
reset to one. It should be stressed that UAV-DCs calculate the
AoI at the end of each time-slot t, and the devices generate
the number of bits at the beginning of each time-slot. The AoI
evolution estimation of device k can be expressed by:

Atk =

{
1, ifZmk [t] ≥ Zmink ∧ Γtk,m[k] = 1,

At−1
k + 1, Otherwise,

(12)

where Zmink denotes the minimum amount of bits required
for ensuring the right decoding of a generated update by a
given UAV-DCm. It is worthy to note that the AoI of each
device is defined based on the movement of UAV-DCs, the
dynamics of devices, the transmission scheduling, and the
density of UAVs deployed during the whole flight period.
Realistically, the calculation of AoI during the entire data
collection mission by considering the movement randomness
of IoT devices and the importance of their generated updates

is given by
∑
k∈K

E
[
T∑
t=1

κkA
t
k

]
, where E[.] is defined as the

expected value of AoI with respect to the randomness of
devices’ mobility and κk denotes the weight associated with
each device k depending on the nature and importance of its
processing task. After applying equation (12) to a specified
device k during a flight period of 12 time-slots, the obtained
AoI evolution of device k illustrated in Fig. 2.

A
oI

 [s
]  

Time [s] 

Flight period (T) 

AoI of 
Devicek 

 

1 

Update is delivered 

Fig. 2: Associate AoI of devicek in twelve (12) time-slots.

C. Energy consumption of UAVs

UAVs tend to be energy-constrained devices, and their
lifetime is highly dependent on energy storage. As mentioned
earlier, each UAV i, i ∈ M ∪ N , is supposed to fly with
a maximum speed Fmaxi . It is worthy of mentioning that
the communication energy consumption is relatively small
compared to the energy dedicated for propulsion [29], and
therefore it is not considered in this work. The energy
utilization of all UAVs follows the same model proposed
in [30] in which the propulsion energy of all UAVs can be
calculated as follows:

(13)

P (F ) = Rb

(
1 +

3F 2

F 2
tip

)
︸ ︷︷ ︸

blade profile power

+Ru

(√
1 +

F 4

4z2
0

− F 2

2z2
0

)
︸ ︷︷ ︸

induced power

+
1

2
f0azHF

3︸ ︷︷ ︸
parasite power

,

where F represents the speed of UAVs, Ftip denotes the rotor
blade’s tip speed, z0 indicates the mean induced velocity,
and z is the rotor solidity. Rb and Ru are the blade profile
power and the induced power in a static flight (i.e., hovering),
respectively. H , a, and f0 are the rotor disc area, air density,
and fuselage drag ratio. However, there is an exception for
UAV-ETs, where their energy consumption is also related to
energy transmission to IoT devices from their own energy
source. In this context, two functionality modes of UAV-ETs
are distinguished, where ln[t] = 1 means that UAV-ETn is
executing a WET process, otherwise, ln[t] = 0. The energy
consumption of UAV-ETn and UAV-DCm until the current
time-slot t can be calculated based on the following equations:

Cn({ln[t], pn[t]}, t) =

∫ t

0
P (‖fn[t]‖)dt︸ ︷︷ ︸

propulsion energy

+

∫ t

0
ln[t]Rndt︸ ︷︷ ︸

energy transfer

, (14a)

Cm({pm[t]}, t) =

∫ t

0
P (‖fm[t]‖)dt︸ ︷︷ ︸

propulsion energy

, (14b)

where fn[t] = ṗn[t] and fm[t] = ˙pm[t] represent the velocities
of UAV-ETn and UAV-DCm, respectively. Moreover, ‖fn[t]‖
and ‖fm[t]‖ denote the speeds of UAV-ETn and UAV-DCm,
respectively. Therefore, the residual energy of UAV-DCm and
UAV-ETn, ∀m ∈M,∀n ∈ N at each time-slot t is expressed
as follows:

En[t+ 1] = Emaxn − Cn({ln[t], pn[t]}, t), ∀n ∈ N , (15a)
Em[t+ 1] = Emaxm − Cm({pm[t]}, t), ∀m ∈M, (15b)
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Fig. 3: Structure of UAV i agent.

where Emaxn and Emaxm are the maximum energy capacity of
UAV-ETn and UAV-DCm, respectively. The average residual
energy of all UAVs at each time-slot t can be calculated as
follows:

Ē[t] =

(
N∑
n=1

En[t] +
M∑
m=1

Em[t]

)
M +N

. (16)

D. Problem formulation

The target of this work is to optimize the trajectories of
UAV-ETs and UAV-DCs with the aim to enhance several
parameters, such as the expected AoI of all devices, the
transmission scheduling, the WET process, and the energy
consumption of UAVs, all under mobility constraint of
IoT devices. For the convenient presentation, let PET =
{pn[t],∀n ∈ N} and PDC = {pm[t],∀m ∈ M} be the set
of locations of UAV-ETs and UAV-DCs at each time-slot t,
respectively. Thus, an optimization problem can be formulated
as follows:

max
{PDC},{PET },{Γtk,m[k]}

E

 M∑
m=1

T∑
t=1

∑
k∈K

Omk [t]

∑
k∈K

T∑
t=1

κkAtk

 T∑
t=1

Ē[t]

T


(17)

s.t. C1: ‖pi[t]− pi[t− 1]‖2 ≤ (Fmaxi Θ)2,

C2:
K∑
k=1

Γtk,m[k] ≤ 1,

C3:
M∑
m=1

Γtk,m[k] ≤ 1,

C4: Ek[t] ≥ %tkRk,
C5: dji [t] ≥ L,
C6: Ei[t] > 0.

Note that κk is considered as a positive weight of IoT
device k, indicating the nature and relative importance of
the IoT device’s processing task. The definition of κk can

be carried out manually according to the importance of the
AoI for different processes. The higher is the weight, the
higher will be the priority of the generated information from
the IoT device. C1 represents the distance traveled by all
UAVs at each time-slot t, ∀t ∈ T̂ ,∀i ∈ M ∪ N . C2 and
C3 indicate the scheduling limit where each device k can be
served by at most one UAV-DCm and one UAV-DCm can
schedule at most one device k at each sub-slot k, ∀m ∈
M,∀t ∈ T ,∀k ∈ K. C4 indicates that the residual energy
of each device k should be sufficient for the data transmission
towards UAV-DCs, ∀t ∈ T ,∀k ∈ K. The condition C4
will be satisfied all the time if, and only if, the team of
UAV-ETs are held responsible for each unsuccessful data
collection (i.e., when condition Ek[t] < %tkRk is verified in
equation (21)). The satisfaction of C4 allows us to guarantee
that the IoT devices are always sufficiently charged with
energy prior to any data transmission towards UAV-DCs.
C5 denotes that the distance between all UAVs should take
into account the safety distance L at each time-slot t, ∀t ∈
T ,∀i, j ∈ M ∪ N , where i 6= j. It should be noted that
the distance dji [t] =

√
‖pi[t]− pj [t]‖2 + (hi[t]− hj [t])2. C6

imposes that the energy consumed by all UAVs at each
time-slot t should be within their available energy, ∀i ∈
M∪N ,∀t ∈ T . Our optimization aims to find a near-optimal
control policy π(.) to adequately move and synchronize UAVs
in each team while simultaneously: (i) minimizing the AoI and
maximizing the throughput of all IoT devices, (ii) reducing
the energy consumption of UAVs and enhancing the energy
transfer towards IoT devices, and (iii) ensuring the proper
functionality of WIT and WET while preventing UAVs from
colliding with each other. However, achieving all of these
goals simultaneously is somewhat tricky due to two factors.
On the one hand, to minimize the average AoI, UAVs in both
teams should continuously move around to appropriately serve
IoT devices. But, on the other hand, to minimize the energy
consumption of UAVs, the mobility of UAVs has to be reduced
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to save more energy. It is distinguished that (17) is mainly a
non-convex mixed-integer optimization problem, which could
be relieved based on some heuristic approaches. However, due
to the lack of knowledge of the mobility of IoT devices, it
would be impossible to probe and be adjusted to the IoT
environment’s dynamics.

IV. MADRL-BASED FRAMEWORK: TEAM

To solve the problem (17) based on an efficient solution,
an MADRL method is involved in learning the environment
and optimally planning the trajectories of UAVs. Indeed,
multiple AI-based agents are located at a satellite or a
terrestrial BS level. As shown in Fig. 3, each agent i, i ∈
N ∪ M, consistently monitors the IoT environment and
routinely explores UAV trajectory and scheduling policy,
and synchronizes between dispatched UAVs. Moreover, a
sequence of observations, actions, and rewards, results from
the interaction between each agent and the IoT environment.
Next, the background of MADRL is provided, and then the
MADRL-based method will be described and used for solving
the multi-UAV cooperative AoI aware WCPN problem.

A. A MADRL Background

A traditional Reinforcement Learning (RL) setup is modeled
as a Markov Decision Process (MDP) consisting of a tuple
(S,A,R,P) representing the spaces of state, action, reward,
and transition probability. At each time-slot t, every agent has
to discover the state st ∈ S and takes the action at ∈ A based
on the policy π(st, at). After that, the agent gets a reward
rt ∈ R and updates the current state st to st+1 ∈ S. P
is the transition probability that leads to the new state st+1

after performing an action at at the state st. This process
is repeated by exploiting the tuple (st, at, rt, st+1) until the
convergence of π to the optimal policy. However, it is worthy
to note that RL is not adequate for complex environments
that are characterized by continuous state-action spaces. To
address this issue, RL leverages a Deep Neural Network
(DNN) to enhance the learning speed and the performance
of RL algorithms, and thus creating the concept of DRL.
DDPG [31] is a DRL algorithm that can handle continuous
control problems. A DDPG algorithm maintains two DNNs,
called Actor and Critic neural (AC) networks, where the
actor neural networks π(st|ηπ) generates the optimal action
at according to the current state st. As for the critic neural
network Q(st, at|ηQ), it is updated based on the Bellman
equation the same applied in Q-learning [32]. The actor neural
network π(st|ηπ) is trained using the chain rule from the start
distribution J to the expected reward rt with respect to the
weights (parameters) of the actor as in [33] as follows:

∇ηπJ(ηπ) ≈ E
[
∇ηππ(s|ηπ)|s=st∇aQ(s, a|ηQ)|s=st,a=π(st)

]
.

(18)
The problem (17) can be solved based on a multi-agent

Markov Decision Process (MA-MDP), which is called an
observable Markov game [34]. In this work, it is supposed
that there are M + N agents interacting with a dynamic IoT

environment, which are characterized by a series of actions
A , {atET , atDC , t ∈ T } and a series of states S ,
{stET , stDC , t ∈ T }, respectively. The states are defined as
stET = {otn,∀n ∈ N} and stDC = {otm,∀m ∈M}, where otn,
otm, are the private observation of UAV-ETn and UAV-DCm,
respectively. The actions are denoted as atET = {atn,∀n ∈ N}
and atDC = {atm,∀m ∈M}, where atn, atm are the respective
actions of UAV-ETn and UAV-DCm. After executing their
respective actions, UAV-ETn and UAV-DCm receive their
respective rewards Rtn and Rtm and the environment is updated
to new states st+1

ET and st+1
DC , respectively. It is important to

note that each agent i,∀i ∈M∪N maintains an actor neural
network, where ati = πi(oti|ηπ

i

) and a critic neural network
Qi(stx, a

t
x|ηQ

i

), where x ∈ {ET,DC}.

B. TEAM Description

As depicted in Fig. 3, the TEAM algorithm is based on a
centralized training framework combined with a distributed
execution. During the learning phase, each agent i, ∀i ∈
M∪N , sends its own action ati to the environment, and then
the reward Rti and the state stx, x ∈ {ET,DC} which consists
of the observations of all the agents are sent back to each
agent. Moreover, each agent does not have only the knowledge
of its private information, but also other extra information
related to other agents (e.g., their coordinates). Therefore, the
critic neural network is trained based on all agents’ different
observations and actions belonging to a given team. In what
follows, the different components of TEAM framework are
described.

1) State Space: The environment state stx of a given team
x ∈ {ET,DC} is composed of the private observations of all
its agents, which is expressed as stx = {oti,∀i ∈ M ⊕ N}.
Each observation oti includes the following information:
• pi[t] = [xi(t), yi(t), hi(t)],∀i ∈ M ∪ N : the current

locations of all UAVs.
• pk[t] = [xk(t), yk(t)],∀k ∈ K: the current locations of

all IoT devices.
• Atk,∀k ∈ K: the current AoI of all IoT devices.
• Ek[t],∀k ∈ K: the current residual energy of all IoT

devices.
• Ei[t], i ∈M∪N : the current residual energy of UAV i.
• Γtk,m[k] ∈ {0, 1},∀k ∈ K,∀m ∈ M: denotes the

uploading status of all devices, which is represented as
a variable that could take the value of 1 if device k has
currently started an upload of its data (i.e., device k is
served), and 0 otherwise.

At each time-slot t, the format of the observation oti is
represented as oti = [p1[t], . . . , pM+N [t], p1[s], . . . , pK [t],
At1, . . . , A

t
K , E1[t], . . . , EK [t],Γt1,m[1], . . . ,ΓtK,m[K], Ei[t]]

with a cardinality of (M + N + 4K + 1). To accelerate the
learning process, all the elements of oti are normalized. In
detail, all elements that can take values greater than 1 are
divided into their maximum corresponding values.

2) Action Space: The action ati of each UAV i consists of
three parts:
• ωti ∈ [0, 2π[: the horizontal flying direction of UAV i at

time-slot t.
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• dti ∈ [0, dmax]: the flying distance of UAV i under the
constraint of the flying speed F ∈ [0, Fmaxi ].

• hi[t] ∈ [hmin, hmax]: the interval altitudes of UAV i.
At each time-slot t, the DDPG algorithm defines the action
ati based on the trained control policy. Moreover, multi-rotor
UAVs are considered adequate devices to perform all possible
actions from the action space due to their small size,
maneuverability, and low inertia. These parameters are the
reasons behind adopting such a kind of UAVs in TEAM
evaluation. However, deploying other types of UAVs, such as
fixed-wing UAVs, may lead to neglect specific actions, e.g.,
hovering in place, making sharp turns (e.g., π

2 , or π
4 ), and

moving backward. Thus, the deployment of such UAVs will
be inefficient as they cannot adapt to the dynamics of the
environment, and it will take a long period of time for such
UAVs to learn it.

3) Reward Functions: The main goals of this work are
to minimize the energy consumption of the deployed UAVs,
maximize the throughput, and reduce the expected AoI of the
whole system. Therefore, a reward is given to each UAV-ETn
according to both the energy harvested by IoT devices and
the data collection successfully made by UAV-DCs from fully
charged IoT devices. Moreover, each UAV-DCm is rewarded
when it collects information from IoT devices with low AoI.
Rtn and Rtm are the rewards for UAV-ETn and UAV-DCm,
respectively, as:

Rtn = En[t]


K∑
k=1

Ek[t]

K

−∑
k∈K

Ωtk − P tn, (19)

Rtm = Em[t]


K∑
k=1

Omk [t]

K∑
k=1

κkAtk

−∑
k∈K

$t
k − P tm, (20)

where P tn and P tm are the penalties incurred at each time-slot
t by UAV-ETn and UAV-DCm, respectively. Ωtk represents the
number of times where a device k tries to upload its data to
UAV-DCm, but it fails due to its insufficient energy, whereas
$t
k denotes the number of IoT devices that are not served. Ωtk

and $t
k are expressed as follows:

Ωtk =

{
Γtk,m[k], ifEk[t] < %tkRk,

0, Otherwise,
(21)

$t
k =

{
1, if Γtk,m[k] = 0,

0, Otherwise.
(22)

Generally speaking, the reward function of UAV-ETs’
agents focuses on increasing the average residual energy levels
of IoT devices while maintaining the energy consumption of
UAV-ETs at its lowest level. Moreover, UAV-ETs are held
responsible for each unsuccessful data collection due to the
insufficient energy of IoT devices. The reward function of
UAV-DCs focuses on maximizing the throughput of all devices
while minimizing their AoI. Also, UAV-DCs are rewarded

when they do not consume much energy while holding them
responsible for each IoT device not served. When a given UAV
i runs out of energy and fails, it will undoubtedly penalize
and disturb not only their corresponding team. To address
these problems and avoid incorporating a novel mechanism of
charging UAVs, the respective agents of the failed UAVs will
receive a zero or negative reward during the exploitation phase.
This considerably helps the UAVs decrease their movements
in the following training episodes and charge IoT devices only
when required.

4) Expected Penalties: Two crucial constraints should be
considered when all UAVs select actions, maintaining a safe
distance between UAVs and flying UAVs inside the zone of
interest. Consequently, two penalties are incurred by UAVs:

PEN1
i [t] =

{
0, if xi(t), yi(t) ∈ [0, lmax],

Υ1, Otherwise,
(23)

PEN2
i [t] =

{
Υ2, if dji [t] < L,

0, Otherwise.
(24)

The penalties Υ1 and Υ2 are incurred by each UAV i
whenever an action ati would result in crossing the target zone
boundaries or violating the safety distance L, respectively.
Then, at each time-slot t, all penalties are summed for each
UAV i, P ti = PEN1

i [t] + PEN2
i [t] and incurred from its

respective reward Rti , ∀i ∈ M ∪ N . At each time-slot t,
each IoT device k selects the adequate UAV-DCm for data
transmission based on the following expression:

Γtk,m[k] =

{
1, m = argmaxm∈M{Omk [t]},
0, Otherwise.

(25)

Specifically, after each movement of UAV-DCs, each device
k selects the most suitable UAV-DCm for data collection,
which has the maximum data rate. Otherwise, device k
does not transmit its data. Generally, to address the problem
of non-stationary environment, we consider a non-stationary
multi-agent MDP, where the environment state st ∈ S ,
the actions of UAVs at ∈ A, the possible state-action
combinations Pt ⊂ S × A , and the rewards R : Pt → R.
For a clear understanding, each agent in TEAM continuously
interacts with the dynamic IoT environment and observes
the positions and energy consumption of UAVs and the AoI,
throughput, and energy usage of each IoT device. The values
of these parameters enable it to select the adequate actions for
its corresponding UAV. This strategy allows UAVs to adapt
to the realistic deployment of IoT devices and their dynamics,
and maximizes the cumulative rewards across the flight period
T .

5) Algorithm: The pseudo-code of TEAM is executed by
each agent, which controls the movements of its respective
UAV i (see Algorithm 1 and Fig. 3).

At the beginning of the algorithm, each UAV i initialize its
replay buffer Bi of size B (Line 2). At Line 3, the critic Qi(.)
and actor πi(.) networks are initialized with their respective
weights ηQ

i

and ηπ
i

. The target critic Qi
′
(.) and actor πi

′
(.)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 10

Algorithm 1: TEAM pseudo-code.
1 begin
2 Initialize replay buffer Bi to capacity B, where (Bi = ∅);
3 Randomly initialize actor network πi(.) and critic network

Qi(.) with their respective parameters ηπ
i

and ηQ
i
;

4 Initialize target networks πi
′
(.) and Qi

′
(.) with weights

ηπ
i′ ← ηπ

i
and ηQ

i′ ← ηQ
i
;

5 EPS ← Number of episodes;
6 T ← Number of time-slots;
7 Initialize the action noise ε;
99 for Episode← 0, . . . , EPS do

10 Initialize the location of UAV i;
11 Initialize observation o0

i , ∀i ∈M∪N ;
// o0

i takes the initial values of all
the components in the environment

1313 for t← 0, . . . , T do
14 ati = πi(oti|ηπ

i
) + ε;

15 Execute: action ati = [ωti , d
t
i, hi[t]], ∀i ∈M∪N ;

1717 if P ti > 0 then
18 Cancel action ati of UAV i and update

st+1
x , x ∈ {ET,DC};

19 foreach device k ∈ K do
20 Calculate: obtain omk [t] based on (9), ∀m ∈M;
21 Define: get data collection decision Γtk,m[k]

based on (25);

22 Evaluate: get reward Rti based on (19) or (20)
according to the team to which UAV i belongs;

23 Observe: obtain a new state st+1
x , x ∈ {ET,DC};

24 Store transition sample (stx, a
t
x, R

t
i , s

t+1
x ) into

experience buffer replay Bi, x ∈ {ET,DC}
// Store tuples directly in the

experience replay buffer
25 Sample random minibatch of size ∆ samples of

transitions (sδx, a
δ
x, R

δ
i , s

δ+1
x ) from Bi;

26 Set target value TGT iδ :

27 TGRiδ = Rδi + ζQi
′
(sδ+1
x , πi

′
(sδ+1
x |ηπi

′
)|ηQi

′
);

28 Update weight ηQ
i

of Qi(.) by minimizing the loss
(L(ηQ

i
)):

29 Loss(ηQ
i
) = 1

∆

∑∆
δ=1(TGRiδ−Q

i(sδx, a
δ
x|ηQ

i
))2;

30 Update weight ηπ
i

of πi(.) by:
31 ∇

ηπ
i J(ηπ

i
) ≈

1
∆

∑∆
δ=1∇ηπi π

i(oti|ηπ
i
)∇atiQ

i(stx, a
t
x|ηQ

i
)|, ∀i ∈

M∪N , ∀t ∈ T , x ∈ {ET,DC}
32 Update the corresponding target network weights ηQ

i′

of ηπ
i′

by:
33 ηQ

i′
= χηQ

i
+ (1− χ)ηQ

i′
;

34 ηπ
i′

= χηπ
i

+ (1− χ)ηπ
i′

;

networks are initialized while updating their respective weights
ηQ

i′

and ηπ
i′

(Line 4). Then, the number of episodes and
epochs are initialized. The action noise ε is defined, which
follows a normal distribution with a variance of 1 and zero
mean (Lines 5, 6, and 7).

The second part of the pseudo-code TEAM (Lines 9-23)
denotes the training process of TEAM over EPS episodes,
each of which consists of T time-slots. In Lines 10 and 11,
the environment is initialized where the location and settings
of each UAV i and each IoT device k are defined to their initial
values. Moreover, each UAV i receives its initial observation
o0
i ¬. At each time-slot t, each UAV i selects a trajectory

action ati based on its actor network πi(oti|ηπ
i

). For a better

exploration, a random noise parameter ε is added, which
decays over time-slots with the rate of 0.9995 . Once UAV
i executes the action ati, the restrictions (23) and (24) are
checked to see if they are satisfied or not. If it not the case,
UAV i cancels the action ati and obtains a penalty P ti and the
state st+1

x is updated accordingly. Then, for each device k, the
most suitable UAV m is selected for data harvesting based on
(25). After that, each UAV i receives a reward Rti and transit
to the next state st+1

x , x ∈ {ET,DC}.
In the third part of TEAM (Lines 24-34), each UAV i

collects a transition (stx, a
t
x, R

t
i, s

t+1
x ) of each training epoch,

which is stored in its replay buffer Bi ®. Then, a random
mini-batch samples ∆ transitions from Bi to update the actor
and critic networks based on four steps °. First, the target
value TGT iδ is calculated based on the target critic network
Qi

′
(.), where ζ is a discount factor ². Second, the loss

function L(ηQ
i

) updates the critic network ¯. Third, the
policy gradient∇ηπiJ(ηπ

i

) updates the actor network. Finally,

for the sake of stability, the weights ηQ
i′

and ηπ
i′

are slowly
updated based on the parameter χ = 0.001 (Lines 33-34).

C. Complexity and Convergence Analysis

For the sake of simplicity, each agent’s computational
complexity in TEAM is mainly related to its neural networks’
configuration, where the density of agents is supposed to be
linear to the dimension of the input layers (see Table IV in
Section V-A). To estimate the computational complexity, let
ıAc,i be the number of the neurons in the ith layer of the actor
network. Also, we define the number of neurons in the jth layer
of the critic network as ıCr,i. Therefore, the computational
complexity of both networks is expressed as follows:

Πcplx =

2×
<−1∑
i=1

ıAc,iıAc,i+1 + 2×
=−1∑
j=1

ıCr,iıCr,i+1

 ,

= O

<−1∑
i=1

ıAc,iıAc,i+1 +

=−1∑
j=1

ıCr,iıCr,i+1


(26)

where < and = are the number of fully-connected layers in
the actor and critic networks, respectively. Since the networks
in Algorithm 1 are trained at the same time and extracting
∆ experiences from the replay buffer Bi, the computational
complexity of Algorithm 1 is expressed as:

(27)

Πalg1 = O

(N +M)× T × EPS ×∆

×

<−1∑
i=1

ıAc,iıAc,i+1 +

=−1∑
j=1

ıCr,iıCr,i+1

 ,

In the testing phase, each agent uses only its actor
network online and therefore the complexity will be

O

(
(N +M)× T ×

(
<−1∑
i=1

ıAc,iıAc,i+1 +
=−1∑
j=1

ıCr,iıCr,i+1

))
.

As for the convergence of TEAM, a gradient descent method
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is adopted to train critic Qi(.) and actor πi(.) networks for
each agent to update their respective weights ηQ

n

and ηπ
n

while decaying the learning rates with iterations. After a
certain number of iterations, the weights will converge to
given values that allow the convergence of TEAM. According
to [35] and [36], the theoretical convergence analysis is
very complicated to be performed before the training phase.
Instead, the readers can observe the convergence of TEAM
during the simulation part in Section V-B.

V. PERFORMANCE EVALUATION

In this section, the numerical results are presented and the
performance of TEAM algorithm is analyzed. The simulation
experiments of TEAM are performed in two phases: (i)
Learning phase and (ii) Testing phase. The learning phase
is offline centralized training, which can carry out all
communications and calculation overheads. This phase studies
the convergence of the TEAM algorithm over 2000 episodes
compared to other DRL algorithms, such as MADQN [37]
and DDQN [38] under the same parameters. After the learning
phase, the network parameters are saved for the testing phase
that is carried out online. This phase evaluates and compares
the performance of TEAM with those of two baseline methods,
namely random and greedy. In the random method, each UAV i
randomly selects an action, while in the greedy method, each
UAV i selects an action that can maximize its own reward
Rti , all under the constraint of the area boundary. In the next
subsections, the simulation settings and the TEAM training
configurations are comprehensively presented, followed by the
interpretation and discussion of the obtained results in each
phase.

A. Simulation setup

To evaluate the performance of TEAM, a set of experiments
is conducted using Python 3.6.9 and Tensorflow 1.14.0. A
square area of width lmax = 5 km and a surface of 25 km2

is considered, which comprises 100 randomly moving IoT
devices. It should be stressed that IoT devices are considered
as a part of the environment, and their configurations cannot
be modified during the learning and testing phases. Table III
clearly outlines the different considered simulation parameters.

TABLE III: Simulation Setup.

Parameter Description Value

Surface Area size 25 km2

lmax Area width 5 km
hi Altitude of UAV i 50m–150m
UAV density Nb. of UAV-ETs and UAV-DCs 2–20
Rn Transmission power of UAV-ETn 40 dBm
Rk Transmission power of device k -20 dBm
Fmax Maximum speed of UAVs 20m/s
α Path loss factor 2
fc Carrier frequency 700 MHz
W Bandwidth 1 MHz
ξk Energy conversion 0.1
η0 Reference channel gain -30 dB
σ2 Noise power -100 dBm
Zmink

Status-update size 10 bits

TEAM algorithm is trained over 2000 episodes with 100
steps each. Four fully-connected hidden layers are defined in
both actor and critic networks, which comprises in the order
400, 400, 300, and 300 neurons. Each neuron uses Rectified
Linear Unit (ReLU) as an activation function. In addition,
Hyperbolic tangent (tanh) is used as an activation function in
the output layer of the actor-network to limit the movement of
each UAV according to its maximum travel distance. The input
of each critic network is represented as a concatenation of
actions and observations, and its output is a scalar that assesses
the states according to the global policy. The parameters of the
learning phase can be found in Table IV.

TABLE IV: Parameters of TEAM.

Parameters of actor neural network
Layers Number Size Act. Function
Input 1 M +N + 4K + 1 –
Hidden 4 400, 400, 300, 300 ReLU
Output 1 3 Tanh

Parameters of critic neural network
Layers Number Size Act. Functions
Input 1 (M +N)× (M +N + 4K + 4) –
Hidden 4 400, 400, 300, 300 ReLU
Output 1 1 –

Key parameters of the training stage
Parameter Value

Memory size B 105

Mini-batch size U 256
Actor learning rate 0.0002
Critic learning rate 0.0001
Optimizer method Adam
Updating steps 1000
Reward discount, ζ 0.99
Υ1, Υ2 10.0
RL Comparisons MADQN, Double DQN

The simulation setup, as well as the parameters of TEAM,
are selected from the evaluations of related and relevant
UAV-enabled WPCN and MADRL-based solutions [5], [8].
Furthermore, all these parameters are validated through
repetitive experiments, which help us select the adequate ones.

B. Learning phase

The training curve of TEAM in Fig. 5 is obtained by
deploying 8 UAVs (i.e., 4 UAV-ETs and 4 UAV-DCs) to
serve 100 devices. It is clearly shown that the obtained
reward for each episode remains under 2.5×106 at the
beginning and starts increasing from the 100th episode until
convergence. Indeed, in the beginning, each agent calculates
random actions to explore the IoT environment and its
dynamics. Then, our TEAM model is trained using all the
experiences learned from this step to optimally serve dynamic
IoT devices with continuous action space. These two steps
allow TEAM agents to avoid the different penalties and
slowly optimize the placements of their corresponding UAVs.
This can significantly increase the rewards obtained by each
agent until convergence. It should be stressed that due to
the non-stationary environment, the rewards vary around their
average while overall increasing with more learning.

Under the same density of UAVs and devices, the
convergence of TEAM is evaluated in terms of accumulated
reward, average AoI of devices, and average throughput.
Overall, it has been distinguished that the learning phase
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Fig. 4: Performance comparisons over episodes (Nb. of UAV-DCs=4, Nb. of UAV-ETs=4, Nb. of IoT devices=100).
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Fig. 5: Reward per episode in TEAM (Nb. of UAV-DCs=4,
Nb. of UAV-ETs=4, and Nb.of IoT devices=100).

has converged at about 1000-1500 episodes, and it remains
approximately stable afterward (c.f., Fig. 4). For instance, it
is observed from Fig. 4(a) that in the first 750 episodes, the
obtained rewards are not stable and remain at their lowest
levels. Then, the rewards increase with the number of episodes
and never decrease after. This is because, during the learning
phase, UAVs are moving randomly over the dynamic devices
without considering neither their energy capacity nor their
mobility, and thus penalties are severely incurred by UAVs.
After a certain number of learning episodes, UAVs learn and
try to synchronize with each other (UAV-ETs and UAV-DCs)
so that they can play their role at the appropriate time. Next, in
Fig. 4(b), the average of AoI is analyzed. It is clearly seen that
TEAM achieves the best performance, followed by MADQN
and DDQN. This is due to the optimal policy built by TEAM
to control the trajectory of UAVs and, more particularly,
ensures that the devices are fully charged with energy and
ready for uploading their updates to UAV-DCs. In Fig. 4(c),
it is distinguished that the average throughput increases very
rapidly at the outset of the training step (until 750 episodes),
and then the rise would be comparatively sluggish. This is
explained by the fact that more and more devices will be
served at each time by UAV-DCs. It should be stressed that in
Fig. 4, UAVs in MADQN cannot perform continuous actions,
and thus slow convergence and not good performances as in
TEAM. Moreover, the actions made by UAVs in DDQN are

performed through a single agent, and therefore it delays in
providing appropriate UAV actions.
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(b) Residual energy of devices.

Fig. 6: Residual energy of IoT devices and UAVs (Nb. of
UAV-DCs=4, Nb. of UAV-ETs=4, Nb. of IoT devices=100).

In Fig. 6, the energy consumption of IoT devices and
UAVs is calculated under the same number of episodes.
Indeed, as expected, we distinguish that TEAM in both figures
outperforms MADQN and DDQN. This is because TEAM
has quickly built an optimal policy compared to MADQN
and DDQN, which allows controlling the movements of UAVs
according to both the mobility of IoT devices and the energy
level (i.e., residual energy) of each UAV (see Fig. 6(a)). As
for Fig. 6(b), it is clearly observed that TEAM preserves the
residual energy of devices up to 9% better than MADQN and
DDQN. This is because UAV-ETs in TEAM learn faster to
place themselves in the right places where IoT devices need
energy.

C. Testing phase

At a first step, four IoT devices are randomly selected, and
the AoI evolution is measured for each of them according
to the different considered policies (c.f., Fig. 7). Overall, it
is noticed that by adopting TEAM, the real-time AoI of the
four devices is noticeably smaller than that of the baseline
techniques. As explained above, TEAM quickly learns the
dynamics of the environment and builds an optimal policy to
allow UAVs to fly closer to IoT devices, harvest updates from
them, and supply them with energy when needed. Regarding
the baseline methods, particularly the random method, it is
noticed that the AoI of the four devices is much larger than
the AoI obtained by TEAM, which is due to the fact that
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Fig. 7: The evolution of AoI of four IoT devices based on different policies.
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Fig. 8: The performance of TEAM in terms of different metrics.

UAVs find it challenging to adapt to the dynamics of devices.
As for the greedy method, it is observed that the obtained AoI
is reduced than that of the random method, which is explained
by the selection of the device with higher AoI at each time-slot
t to increase the reward. However, the greedy method is not
effective as TEAM because of the long flight period carried
out by UAVs to find the appropriate UAVs.

At a second step, the average throughput is studied during
the whole flight period (see Fig. 8(a)). It is clearly observed
that TEAM has significantly optimized the average throughput
compared to other policies. To explain this observation, two
reasons can be provided. First, based on the built optimal
policy, TEAM allows UAV-DCs to serve more IoT devices,
i.e., more time-slots will be available in which devices can
take advantage of the channel gain. Second, UAV-ETs inspect
as many devices as possible and prepare them for an eventual
service of UAV-DCs. In Fig. 8(b), the effect of UAV density
on UAV energy consumption (Residual energy on UAVs)
is carefully studied. Overall, TEAM outperforms the other
algorithms in terms of energy utilization (i.e., average of
energy levels) for each density of UAVs, representing an
enhancement of 25% over DRL algorithms and more than
40% over baseline methods. It is because TEAM has quickly
learned the dynamics of the environment, and therefore UAVs
can quickly find the appropriate places to maximize their
rewards and minimize their mobility. Moreover, it is also
distinguished that the energy consumption is high at low
densities of UAVs, which is due to the constant movements of
UAVs looking to serve the maximum number of IoT devices.
However, at high densities of UAVs, the number of IoT devices
to serve is getting weaker and weaker, which considerably
minimizes the movements of UAVs, and thus their energy
consumption. As for the baseline methods, at any density,
UAVs are permanently moving either randomly or looking
for a more accumulating reward, which significantly increases

the energy consumption. In general, Fig. 8(c) shows that with
the increased density of UAVs, the average AoI becomes
lower and lower. This is because the density of UAVs defines
how devices have been served, i.e., by increasing the number
of UAVs, more devices will be served either by UAV-ETs
(energy) or by UAV-DCs (data harvesting). Furthermore, the
performance gap between the different policies demonstrates
the efficiency of the speed of the UAV trajectory optimization
deployed by each policy with the increasing density of UAVs.
The average residual energy of devices is another performance
metric, which has been evaluated and depicted in Fig. 8(d).
The average residual energy of devices is calculated at each
flight period by updating the number of UAVs at each
time. Clearly, TEAM increases the embedded energy in IoT
devices compared to other policies, which is explained by
the provided optimal trajectories of UAV-ETs to charge IoT
devices directly after uploading their updates. Consequently,
TEAM outperforms the other DRL approaches and baseline
methods due to its high adaptability to the environment and
optimal trajectories provided for UAVs, respectively.
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Fig. 9: System performance and energy efficiency of TEAM
(Nb. of UAV-DCs=Nb. of UAV-ETs=UAV Density

2 ).
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Fig. 10: Paths obtained by the TEAM method for a scenario of 2 UAV-ETs and 2 UAV-DCs serving 100 IoT devices.
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Fig. 11: Paths obtained by the Greedy method for a scenario of 2 UAV-ETs and 2 UAV-DCs serving 100 IoT devices.
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Fig. 12: Paths obtained by the Random method for a scenario of 2 UAV-ETs and 2 UAV-DCs serving 100 IoT devices.

From Figs. 9, the system performance in terms of
accumulated rewards and UAV energy levels are increasing as
the density of UAVs increases because the number of unserved
IoT devices is getting weaker and weaker. Fig. 9(a) shows
the system performance in terms of accumulated rewards.
Generally, TEAM has optimally increased the accumulated
rewards compared to other methods, whatever the density of
UAV-DCs and UAV-ETs. This is because TEAM is mainly
based on a continuous control mechanism to adapt to the
dynamics of the IoT environment. In Fig. 9(b), we clearly
distinguish that the residual energy levels of UAV-ETs are
less than those of UAV-DCs. It is due to the WET process
that consumes more energy from their embedded batteries.

D. Trajectory analysis

Figs. 10, 11, and 12 show the trajectories of two UAVs
in both teams, which are provided by TEAM framework,
Random method, and Greedy method. The evaluation is
carried out during five time-steps where UAVs are serving
100 IoT devices. In Fig. 10, it is clearly demonstrated that
TEAM framework prompts UAVs in both teams to cooperate
to optimally serve the IoT devices. Indeed, UAV-DCs are
always following UAV-ETs that ensure the powering of
IoT devices and make them fully charged with energy and
ready for uploading their updates to UAV-DCs. Moreover,
we distinguished that the trajectories provided by TEAM
framework have no collisions and very low interference to IoT

devices. However, it is not the case of Random and Greedy
methods (see Figs. 12 and 11), where UAVs in both teams are
not synchronized and cannot optimally serve IoT devices. This
can significantly increase the AoI of IoT devices and cause an
excessive energy consumption of UAVs.

VI. CONCLUSION

In this work, a multi-UAV system is deployed in which
two teams of UAVs are cooperatively dispatched to behave as
data collectors and energy transmitters to supply a large scale
of dynamic IoT devices. This work aims to jointly minimize
the AoI of IoT devices and maximize their throughput while
reducing the energy utilization of UAVs. To do so, the
trajectories and resource allocation of UAVs are optimized
by considering the dynamics of the IoT environment. All
the more explicitly, the optimization problem was formulated
as a non-convex mixed-integer program that turned out
to be challenging to solve straightforward. Therefore, a
MADRL-based method, called TEAM, is proposed to address
the trajectory design issue of UAVs and learn the dynamicity of
the IoT environment. Numerical results show that TEAM has
a significant performance gain over the compared benchmark
algorithms and baseline mechanisms.

In future work, several approaches could be generated
from this work. For example, TEAM framework could be
split into two parts, each dedicated to a specific task (i.e.,
energy charging or data collection) using the appropriate
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technologies. Moreover, the TEAM strategy could be exploited
in mobile edge computing scenarios assisted by multiple UAVs
to support the computing task offloading of IoT devices while
charging those running out of energy. Also, UAV-ETs could
be exploited to serve not only IoT devices, but also UAV-DCs.
These are just a few proposals that require further efforts and
adaptation.
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