
HAL Id: hal-03819556
https://hal.science/hal-03819556v1

Submitted on 20 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3Worlds, a simulation platform for ecosystem modelling
Jacques Gignoux, Ian D Davies, Shayne R Flint

To cite this version:
Jacques Gignoux, Ian D Davies, Shayne R Flint. 3Worlds, a simulation platform for ecosystem
modelling. Ecological Modelling, 2022, 473, pp.110121. �10.1016/j.ecolmodel.2022.110121�. �hal-
03819556�

https://hal.science/hal-03819556v1
https://hal.archives-ouvertes.fr

3Worlds, a simulation platform for
ecosystem modelling

Jacques Gignoux1, Ian D. Davies2, Shayne R. Flint3

1 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris),
Centre National de la Recherche Scientifique,
Sorbonne Université,
4 place Jussieu,
75005 Paris, France

jacques.gignoux@umpc.fr

2 Research Institute for the Environment and Livelihoods,
College of Engineering, IT and Environment,
Charles Darwin University,
Darwin, Northern Territory 0909 Australia
and
Fenner School of Environment and Society,
The Australian National University,
Canberra ACT 0200 Australia

3 School of Computing,
College of Engineering and Computer Science,
The Australian National University,
Canberra ACT 0200 Australia

submitted to Ecological Modelling as an original research paper

(8738 words, including tables, figure legends and bibliography)

Running head (34 char): 3Worlds: simulating any ecosystem

Version 15/06/2022

mailto:jacques.gignoux@umpc.fr

Highlights

• We present 3Worlds, a new modelling platform that represents any ecosystem as a dynamic
graph.

• Ecological meaning of the graph is defined by adding descriptors and selecting from 10
possible atomic transformations to its nodes and edges.

• Model configurations are also graphs which largely reduces model comparison to a
comparison of graphs.

• The software enables modellers to find an appropriate level of abstraction for their problem
by accelerating model construction and facilitating model comparisons.

• By focusing on system representation rather than simulation technique, modellers can
implement discrete event, multi-agent, system dynamics and individual-based models within
the one platform.

Abstract (280 words)

Ecology, like many disciplines, commonly relies on simulation to provide insights into the
dynamics of complex systems. Yet there are two unresolved problems for ecological studies relying
on simulation. First, it is often the case that simulators representing the same system, designed for
ostensibly the same purpose, differ in their results with the reasons buried deep within computer
code. Second, ecology is a diverse discipline and each sub-discipline necessarily has its particular
simulation methods. This raises a problem as to how models from these various fields can be
coupled for transdisciplinary studies. We built a new simulation platform named 3Worlds, grounded
on a concept familiar and common to all fields of ecology: the ecosystem. We defined the
ecosystem for the purpose of simulation by a precise set of rules. The platform can implement
models from fields as diverse as food web, population and landscape ecology, energy and material
stocks and fluxes, and techniques such as agent-based, cellular automata and discrete-event
simulation. In addition, we developed a dynamic graph to represent ecosystems as a set of
interacting components. Our approach goes some way to unifying ecology for the purpose of
simulation and reduces the problem of code comparison to a comparison of two graphs: (1) a
specification graph that complies with the rules of what constitutes an ecosystem, and (2) the
successive graph states of a particular simulation trajectory representing the ecosystem. Two
applications constitute the core of 3Worlds. ModelMaker builds the ecosystem compliant model and
ModelRunner executes the model represented as a dynamic graph. A library of ~24 models
illustrates how 3Worlds can simulate very different systems, from simple 1-equation 1-variable
models to individual-based systems with thousands of ecosystem components.

Keywords

ecosystem, dynamic graph, emergence, simulation, model comparison, multiple scales

1. Introduction
Ecology and other sciences use simulation models (or simulators) to study systems where
experimental manipulation of those systems is either impractical, unethical, dangerous or
intractable. Despite the adage ‘To predict is not to explain’ (Thom & Noël, 1993), as exploratory
tools, simulation models are used to do both: they are used to predict the future of ecosystems under
changing circumstances, and to explain real-world observations.

Problems arise however, when simulators representing the same processes yield different outcomes
for the same case study, as has been shown by many model intercomparison studies (Bugmann et
al., 1996; Cary et al., 2006; Friedlingstein et al., 2006; Gritti et al., 2013; Hantson et al., 2020;
Jepsen et al., 2005; Melilo et al., 1995; Roxburgh et al., 2004; P. Smith et al., 1997). Although
formal methods exist to assess the significance of differences between model outputs (J. Smith et
al., 1996) and to verify the individual models (Woodcock et al., 2009), tracking the cause of the
differences between independently developed models or even versions of the same model remains
an open problem. This contributes to the lack of confidence in findings derived from simulation
modelling (Lenhard & Winsberg, 2010), despite their crucial role and the time invested in their
development.

The problem is particularly apparent when the simulators are derived from the same dynamic
equations (e.g. Lim & Roderick, 2009). The difficulty of identifying the causes of differences in
model outputs results in variation in output being attributed to random error and subsumed within
estimates of uncertainty (Intergovernmental Panel on Climate Change, 2014). This would seem a
missed opportunity to consider these differences as informative.

This need not be so. All simulators in ecology deal with some kind of ecosystem representation, and
thus should share a common conceptual background. But most often, their design is method-based
rather than concept-based, leading to incompatible modelling worlds: differential equation systems
(Gurney & Nisbet, 1998), cellular automata (Ermentrout & Edelstein-Keshet, 1993; Favier &
Dubois, 2004; Hernandez Encinas et al., 2007; Muci et al., 2012), individual-based models (Grimm
& Railsback, 2005) and multi-agent systems (Amouroux et al., 2009; Bellifemine et al., 2001;
Minar et al., 1996; North et al., 2007; Wilensky, 1999). We argued (Gignoux et al., 2011) that the
ecosystem concept, as proposed by Tansley (1935), was well adapted to simulation modelling: the
ecosystem is a multi-aspect, scale-independent, observer-selected and recursive object. We further
proposed (Gignoux et al., 2017) that a dynamic graph (Harary & Gupta, 1997) is a representation
applicable to any hierarchical system, i.e. any system able to display the emergent properties
characteristic of complex systems. We captured these ideas in a set of rules, hereafter called a
specification archetype (Flint, 2006), describing any ecosystem. The interest of such a method for
model comparison is obvious: since the path from abstract knowledge to code is explicit and
recorded, differences in implementation can be traced and analysed.

3Worlds is new software for researchers interested in modelling any aspect of ecosystems. It is
named after the lithograph ‘Three Worlds’ by M.C. Escher.

https://www.wikiart.org/en/m-c-escher/three-worlds

2. Software design
Most simulation models in ecology are developed for a single application, although they often
require considerable programming skill (e.g. individual-based or agent-based models: Bousquet &
Le Page, 2004; Dorri et al., 2018; Ferber, 1995), a skill in which ecologists are not necessarily
trained. Scientists spend ~30 % of their time writing code rather than doing the science in which
they are expert (Hannay et al., 2009). Many platforms already exist to address these issues by
providing a formal framework to guide and accelerate development time (GAMA: Amouroux et al.,
2009; ASCEND: Piela et al., 1991; VLE: Quesnel et al., 2009; STELLA: Richmond et al., 1987;
NETLOGO: Wilensky, 1999; DEVS: Zeigler et al., 1997). However, to the best of our knowledge,
all these platforms focus on the simulation technique they implement rather than the domain of the
system they represent: system dynamics (Richmond et al., 1987), discrete event simulation (Zeigler
et al., 1997) and the multi-agent paradigm (Bonasso et al., 1997) are examples.

2.1. The archetype: rules for modelling ecosystems
Rather than imposing a specific simulation technique, 3Worlds focuses on the concept of the
ecosystem as it applies to ecological simulation. In practice, this means we have developed an
ecosystem archetype (Appendix 1): a list of rules specifying, among other things, the structure and
dynamics of the ecological model. For example, some rules describing a properly formed
specification for dynamics of a simulator are: (i) a simulator must have at least one process; (ii) that
process must have at least one function chosen from one of ten function types; (iii) all processes
must have a common conception of the passage of time; (iv) processes can define the order of
execution if they occur simultaneously… and so on. While the archetype is a large document, we
have been careful to maintain generality and avoid over-specification, allowing, to the best of our
knowledge, any model to be proposed. Thus, while models can be arbitrary, their design is not
because their specification will necessarily comply with the specification archetype. In a general
sense, the specification archetype is a drawing together of all knowledge required from potentially
diverse fields for the specific purpose of building an ecological simulator and follows the
methodology of aspect-oriented thinking (Flint, 2006) (Appendix 1).

Software architectural and code generation concepts are also used to manage code for ecological
processes (e.g. growth, reproduction, survival, environment dynamics functions) by automatically
generating code that modellers modify with their preferred formulations (a solution formerly tested
in the MUSE simulator: Gignoux et al., 1998). This limits program coding to just those parts
relevant to the modeller.

3Worlds includes a tool called ModelMaker (Appendix 2) which can be used to form specifications
for ecological simulations in accordance with the 3Worlds specification archetype (Fig. 1). Another
tool, called ModelRunner (Appendix 2), can then be used to run, analyse and document these
simulations. ModelRunner can also extract analytical data that can be used to compare models in
terms of clearly defined ecological concepts. Separating the two phases of simulator construction
and execution (Appendix 3) adds confidence that we are running, analysing and documenting
simulations underpinned by the same shared concept of what constitutes an ecosystem.

2.2. Representing the ecosytem as a dynamic graph
3Worlds uses a dynamic graph (Harary & Gupta, 1997) to represent ecosystems at any spatial,
temporal and organisational scale. The ecosystem is a graph (Gross & Yellen, 1999), its
components, whatever they are in reality, are nodes, and their relations are edges. Because the graph
is dynamic, nodes and edges can be created or deleted during a simulation (Fig. 2). All graph
elements (nodes, edges, but also the graph itself) carry descriptors, used to characterise their state at
any instant in time (Gignoux et al., 2017). Relations (edges) can be of any kind, including a
hierarchical relation describing the complex nesting of sub-systems. This provides an elegant
solution to the apparent complexity of ecosystems: it allows for various types of emergence (cf.
discussion in Gignoux et al., 2017), enables the comparison of system structures and simulation
trajectories, and can represent virtually anything an ecological modeller can propose.

Representing the modelled ecosystem as a dynamic graph has the benefit of reducing the possible
ways a system can change to just ten atomic graph operations (Fig 2).

2.3. Dynamics
What makes the ecosystem graph dynamic are ecological processes. Processes apply to families of
nodes sharing common descriptors (e.g., members of an animal species, landscape units of a certain
type, etc.). They enable modification of descriptors of a single node or a pair of nodes linked by an
edge, and the deletion or creation of nodes or edges. Process interactions are scheduled by timers
that manage regular (recurring), irregular (event-driven) or predetermined (scenario) time steps.
Timers can handle time units from microseconds to millennia, spanning a wide range of scales
covering most problems studied by the numerous fields of ecology. Many timers can interact during
a 3Worlds simulation, based on the most relevant time representation for each simulated process.

In most modern multi-agent systems, the strong autonomy of agents translates to assuming no
simultaneous events exist, and this is modelled through a random order of activation of agents at
each time step (e.g. GAMA: Amouroux et al., 2009). This is incompatible with computing exact
resource budgets (usually matter and energy) where agents share a common resource. As with
(parallel) DEVS (Chow et al., 1994), the 3Worlds simulator manages the simultaneity of events.
Due to the analytical decomposition of natural phenomena into separate processes, simultaneous
processes may actually be linked by causal relations, in which case the cause must be computed
before its consequence, even if they occur within the same time step. For example, resource uptake
must precede growth. It is important that modellers are able to decide in which order to compute
simultaneous processes to satisfy the logic of their causal analysis of processes. Interaction between
processes and graph components is handled by our re-implementation of the rendezvous system
from the A d a programming language (rvgrid library).

2.4. Structure
In an individual-based model (Grimm & Railsback, 2005), every individual differs from all others.
But it is common practice to assume that some groups of individuals share some things in common.
This is the essence of modelling: finding commonalities within an ocean of particular cases. We use
the concept of category to group system components that ‘look like each other’ in some way. In the
3Worlds dynamic graph, categories are used to specify (examples based on two categories, plant
and animal):

https://github.com/3worlds/rvgrid
https://www.adaic.org/ada-resources/standards/
https://www.adaic.org/ada-resources/standards/

1. common descriptors to groups of components (e.g. a plant species average growth rate, an
animal cohort survival rate, etc.);

2. functions that operate on a group of components of that same category (e.g., plant growth
differs from animal growth. Fig. 3);

3. which type of relation is possible between components of different categories (i.e. herbivory
is an animal → plant relation).

This category concept is similar in many ways to the class concept used in the UML and in object
oriented programming: categories group data to indicate what ‘type’ or ‘class’ a component is.
Categories can be nested, and partitioned into sets of mutually exclusive categories (e.g. to define
something as either a plant or animal but not both: Fig. 4). They are central to the organisation and
execution of a simulation in 3Worlds as they formalise the coexistence of entities with completely
different characteristics and behaviours, something familiar to ecologists manipulating all sorts of
classifications such as taxons, trophic levels, development stages, functional groups and so on.

2.5. Space
Ecosystem models may be spatially explicit, i.e. space may be required to compute interactions
between ecosystem components. In 3Worlds, we provide some state-of-the-art spatial algorithms
like optimised space searching using k-dimensional (k-d) trees (Samet, 1984) and a variety of
methods to manage edge-effects in spatial models (Table 1). We re-implemented and generalised the
k-d tree algorithm proposed by P. Toivanen (https://dev.solita.fi/2015/08/06/quad-tree.html) in the
uit library.

2.6. Abstraction
3Worlds can produce models at any temporal, spatial and organisational scale. This enables
researchers to test the effect of the detail of system representation on simulation outputs. This is
rarely done (e.g. Davies, 2014, for an extensive study of spatial and temporal scale effects in fire
propagation models) although it has long been known that not only scale, but also the level of detail
in model construction, has significant effects on simulation outputs (e.g. Gauzens et al., 2013). This
has been formalised in abstraction theory (Zucker, 2003): the more abstract a model, the less detail
it has. 3Worlds makes it possible to quickly check the effect of abstraction on model outputs, thus
enabling selection of an appropriate level of abstraction for the question at hand.

2.7. Outputs
All simulation platforms provide some means of visualising or saving the state of the simulation at
any time. In 3Worlds, any descriptor at any hierarchical level of any of the components of the
dynamic graph, whether they persist throughout the simulation or are ephemeral, can be tracked and
sent to a versatile, customisable, graphical interface providing quick runtime feedback. A library of
visualisation objects (graphs, maps, time series) building on the scientific charting chartfx library
(Steinhagen et al., 2019) can be freely assembled to adapt outputs to the needs of the researcher.
Simulators can also be run with file output alone for unattended deployment on local or remote
systems.

https://dev.solita.fi/2015/08/06/quad-tree.html
https://github.com/GSI-CS-CO/chart-fx
https://github.com/3worlds/uit
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
http://uml.org/what-is-uml.htm

2.8. Experiment design
Once a simulator is ready to run, it will be subjected to experiments of various designs (Kleijnen et
al., 2005; Peck, 2004) to provide insight and publishable results. We currently handle simple
factorial and sensitivity analysis experiments, but plan to integrate 3Worlds with OpenMole
(Reuillon et al., 2013), a platform specially designed for managing big simulation experiments
(including deployment on supercomputers, clusters, grids, etc.) in the near future.

3. Comparing models
Our overall aim in developing 3Worlds is to enhance confidence in the knowledge gained from
simulation. Confidence can be traced through the following chain of reasoning:

• The 3Worlds Specification Archetype (3WSA) is, in effect, a (meta-) specification for
3Worlds model specifications. This archetype has been validated against Tansley (1935) in
the sense that it is presented as peer-reviewed public statements (Gignoux et al., 2011) – a
paper that can be discussed and challenged by experts as required.

• 3Worlds model specifications are formed using ModelMaker. Because ModelMaker
enforces the 3WSA, we have some confidence that all 3Worlds models are well formed
using clear concepts – that is, they are (automatically) verified against the archetype.

• All software is validated in some sense, by stakeholders agreeing that the specifications
correctly reflect their modelling requirements. There is no automation here; it is often a
cycle of testing and improvement, but the process is eased in 3Worlds because the
specifications are verified against a clear set of ecological and simulation concepts captured
in the archetype (in effect agreed among experts).

• Because ModelRunner executes every specification in the same way, and because every
specification has been verified by ModelMaker, we can say that every running simulation is
also verified. That is, every running simulation does what its specification says it should do
(assuming ModelRunner has no bugs – if it does, they will impact all simulations and fixes
will fix all simulations).

It follows we have verification all the way from the archetype to the running code, and therefore, a
very good start for model comparison because we can (increasingly) trust ModelRunner to correctly
implement every specification in the same way every time and we can (increasingly) trust
ModelMaker to ensure that every specification is well formed in terms of well defined ecological
concepts.

This means that we can compare models by comparing their specifications. As noted above, this is a
human process, but because the specifications are properly formed using a clear set of concepts
captured in the 3WSA, comparison of specifications is simplified and can be supported by the
generation of statistics and documentation.

Model comparison is generally difficult because models are not usually developed with comparison
in mind. This is because specifications for the systems to be compared may be represented in
different forms: from nothing, through informal sets of ideas, to something written down in natural
or formal languages. If the specifications are written in a formal language, they might be compared
using automation and expertise. However, we would still need to verify the software against the

https://openmole.org/

specifications using one or more of the established techniques and validate each specification
against the needs of the modeller.

Comparing model structure is a way to better understand how models work, and hopefully the
systems they represent. Model comparison is more easily done in 3Worlds by experiments testing
various modifications to the (verified) specification graph to see their effect on the dynamics.
Model comparison can also improve confidence in models by giving arguments for considering a
model as a reference rather than, for example, considering the average of current models as a
reference (Intergovernmental Panel on Climate Change, 2014).

Classifying models based on metrics can provide a valuable framework for comparing models
(Keane et al., 2004). 3Worlds automatically computes statistics on the model’s specification graph
(Table 2). These allow comparison of models in a standard way: some of these quantities measure
model size (e.g. the first column of Table 2), others measure its complexity (last column of Table 2).
Other more elaborate data can be extracted, like the category tree or the main execution loop flow
diagram, that would enable a much finer assessment of model differences. These data may seem
trivial to collect, but they were once so difficult to find in the literature that a specific model
description standard was developed to improve model publication practices (ODD: Grimm et al.,
2006, 2010). ModelRunner can generate all the quantitative data needed to write the ODD
description of a model: all the data of Table 2, but also pseudo-code and flow chart of the main
iteration loop, user code, code structure (which ecological functions were implemented), entities
modelled and spatial representation used.

4. Examples of applications
These examples have been developed to illustrate the versatility of 3Worlds. As such, even though
some are based on field data, they do not constitute full ecological studies, which is not the focus of
this paper. Full details of the models can be found in appendices 4-7.

When setting up a model in 3Worlds, the modeller has to (1) define all model entities, variables,
constants, processes, scheduling rules, as well as outputs and inputs, by building a configuration
graph with the ModelMaker application; (2) write ecologically meaningful java ‘user code’ in the
process templates produced by ModelMaker at step (1). Appendix 3 details all the steps of a model
building / simulation experiment session with 3Worlds in full.

4.1. A system dynamics model: testing the intermediate
disturbance hypothesis
Purpose - The intermediate disturbance hypothesis (IDH: Connell, 1978) states that an appropriate
disturbance regime can maintain a high local diversity when the disturbance is not ‘too rare’ or ‘too
frequent’, but inbetween theses ‘extremes’. The rationale is: (1) during primary succession, species
richness is low at the beginning (only pioneer species), high during a dynamic species replacement
phase, and low at the end when a few dominant species have eliminated most competitors; (2) we
assume the existence of randomly occurring disturbances that kill most of the community, reverting
succession to its initial stage; (3) if the disturbance frequency is very high, the community will stay
in its early, low-diversity stage most of the time ; if it’s very low, it will spend most of its time in its
late, low-diversity stage ; when frequency is intermediate, the community will spend most of its
time in its dynamic phase with maximal diversity. The IDH makes a very nice simulation

experiment to run for a student training session: (1) does it really work? (2) for what frequency? and
(3) can we find a general link between disturbance frequency and community diversity?

Entities, state variables and scales - To implement this, we use a competition Lotka-Volterra model
with many species (40 at most in our example), coupled with disturbances which occur at irregular
intervals by resetting population sizes close to zero. We used the Euler explict solving method
supplied by 3Worlds. For more elaborate methods, it is possible to integrate the solvers of the
org.apache.commons.math3 library into the user code. In 3Worlds terms, there are:

• 2 component types, the community and the disturbance;

• 3 permanent instances of them, one community and two disturbances;

• 1 relation type, with two instances, relating disturbance to community

• community variables (drivers) consist of a table of 40 population sizes x[40] and a single
number, the time since last disturbance tsd;

• community has 3 tables of constants: the specific growth rates r[40], the carrying capacity
for each species K[40], and the interspecific competition coefficients alpha[40,40].

• disturbance has two constants: frequency freq and intensity inten.

• the time scale and time step are arbitrary;

• the model is non spatial;

• simulation stops after 1000 time steps

As a result, the simulated dynamic graph is very simple: it only has 3 permanent nodes (1
community and 2 disturbances) and at most two ephemeral relations (from each disturbance to the
community). Only the descriptors and relations are dynamic.

Process overview and scheduling – There are three ecological processes in this model:

• community growth (commGrowth, of type changeState, cf. fig. 2) applies the Lotka-Volterra
equations to the community;

• disturbance occurrence (distOcc, of type relateToDecision, cf. fig. 2), uses random numbers
to decide when a disturbance event occurs;

• disturbance effect (distEffectComm, of type changeOtherState, cf fig.2) reduces the
population sizes when a disturbance occurs.

Since there are two disturbance instances, the community is subject to two different regimes of
perturbation. Scheduling and java code for these functions can be found in appendix 4.

Details – Full configuration graph, variable list, flow chart, user code and a screen copy can be
found in appendix 4. Model metrics are in Table 2.

Conclusion – This model is among the simplest ones that can be implemented within 3Worlds.

4.2. An agent-based model: Boids
Purpose – The Boids model was initially proposed by Reynolds (1987, 1999) to demonstrate that
‘complex’ behaviour could emerge from simple interactions between autonomous agents. It

https://commons.apache.org/proper/commons-math/userguide/ode.html
https://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations

simulates flocking behaviour of animals like birds or fish when flying or swimming together in a
seemingly coordinated way. The test of the self-organisation of the flock/school is essentially
visual: when starting from a random distribution of animals, after a while they should organise into
clumps that move together. The precise algorithm we used for this toy model was found here:
https://betterprogramming.pub/boids-simulating-birds-flock-behavior-in-python-9fff99375118.

Entities, state variables and scales – We used an individual-based representation of the population,
with identical individuals located in a 2D-space. Each individual detects other animals within a
sight range and maps its movement to its neighbours. In 3Worlds terms, there are:

• 1 component type, the bird, with 250 instances at simulation start. Since the simulation time
is short relative to their lifespan, they are permanent;

• 1 ephemeral relation type, called sight, for which instances are established between any two
birds whenever they come within a detection range from each other;

• 6 bird driver variables: x and y coordinates of position in space, velocity in x and y
directions (vx, vy) and acceleration (ax, ay);

• 8 bird decorator variables: bird flock barycentre (sumX, sumY), average velocity (sumdX,
sumdY), movement to avoid collision with neighbours (avoidX, avoidY), distance to
neighbour (sepX, sepY);

• 5 constants shared among all birds, hence attached to the whole system (called the arena in
3Worlds): minimal distance to maintain between birds (safetyRange), maximal attraction
force (maxForce), radius of the local group (range), visual field extent (visualFieldAngle),
and maximal flight speed (maxSpeed);

• the time step is 1s and the time extent is unbounded;

• the space is represented as a flat rectangular 2D continuous surface of 1000 × 1000 m. Space
definition includes a search radius parameter, here 100 m;

• simulations are run until user intervention.

The resulting simulated dynamic graph comprises 250 permanent bird components with ephemeral
sight relations between birds that are within detection distance. As before, only descriptors and
relations are dynamic. Since bird drivers comprise locations in space, they can be represented as
moving items on a map.

Process overview and scheduling – There are four ecological processes in this model. Notice that a
process runs a full loop on all relations or on all components:

• detect (of type RelateToDecision, fig.2) searches if a bird is within the searchRadius of
another. If so, a sight relation is established between the two making it a member of its local
flock;

• follow (of type maintainRelationDecision, fig.2) decides if a bird, already related through
sight to another one, maintains that relation, i.e. remains in its local flock;

• prepareMove (of type changeRelationState, fig. 2) loops on all neighbours (= all birds
related through a sight relation) of a bird to compute their barycentre, average speed, etc.,
and stores the values in the bird decorators;

https://betterprogramming.pub/boids-simulating-birds-flock-behavior-in-python-9fff99375118

• move (of type changeState, fig. 2) applies the boids rules (cohesion, separation and
alignment) to the bird based on its current driver and decorator values;

Unlike most current multi-agent implementations, computations are made simultaneously for all
birds, i.e. state change (new position) only takes place after the move loop on all birds. Scheduling
and java code for these functions can be found in appendix 5.

Details – Full configuration graph, variable list, flow chart, user code and a screen copy can be
found in appendix 5. Model metrics are in Table 2.

Conclusion – This model illustrates emergent properties (a complex coordinated movement) in a
system of simple agents (birds). It shows 3Worlds can implement multi-agent systems, on the
condition that they do not modify their state instantly (they must do it synchronously at the end of a
time step, i.e. the system state is kept time-consistent).

4.3. A cellular automaton model: the ‘Rabbit Rules’ fire spread
model
Purpose – Fire spread is difficult to model realistically, specially when one wants to precisely
predict area burnt, due to threshold effects in the combustion process that cause increasing large
variations in prediction with time (Davies, 2014). Achtemeier (2003) proposed an original model as
an intermediate between the pure physics model, so heavy that they are actually slower to run than
the process they represent, and empirical cellular automata where temporal and spatial resolution
affect the final results. The model makes an analogy between fire and ‘rabbits’ that ‘eat’ the fuel and
jump to neighbouring fuel cells, this to represent spotting, a major source of imprecision in fire
spread modelling. Agent-based in its design, this model can be implemented as a cellular
automaton, and has been coupled with atmospheric physics to predict smoke plumes and feedback
of fire on wind field (Achtemeier, 2013). The goal of this model was to empirically but correctly
simulate the effect of spotting on fire spread, and it was heavily tested against field data. We re-
implemented it in 3Worlds as a pure cellular automaton to illustrate this type of modelling.

Entities, state variables and scales – Everything takes place on a rectangular grid of cells which
can take three states: unburnt, burning, burnt. In 3Worlds terms, there is:

• no component type – everything takes place in the arena component which represents the
whole system;

• 2 main driver tables of dimension 300 × 300 cells of 10 m that represent the simulated
system: fuelBed and windMap. These tables in turn contain fields that characterize every
cell;

• fuel cells are described by 7 variables, among which fuelType and fuelLoad are the most
important;

• 2 other drivers characterize the system, the areaBurnt and the number of burning cells
(nRabbits);

• wind cells contain 2 variables, the x and y components of wind velocity;

• 1 constant table of dimension 300 × 300 cells represents the topography through a slope
factor with x and y components;

• other constants include spatial parameters (site dimensions, cell size) and fire parameters:
average fuel height per fuel type, flame lifespan as a function of fuel type, wind effect on
spotting distance, etc...

• the time step is 1s and the time extent is unbounded;

• the model does not use 3Worlds spatial features although it is spatial in nature;

• simulations are run until user intervention.

The simulated dynamic graph is reduced to the simplest: no nodes, no relations – only the system as
a whole (an empty graph) exists.

Process overview and scheduling – Only one processes is required to run this model:

• burn (of type changeState, fig. 2) applies all the changes to the fuel grid

Scheduling and java code for this function can be found in appendix 6.

Details – Full configuration graph, variable list, flow chart, user code and a screen copy can be
found in appendix 6. Model metrics are in Table 2.

Conclusion – Although this model makes very little use of 3Worlds capabillities, except concerning
data structuration, its complexity is relatively high as the user code is quite elaborate compared to
previous examples.

4.4. An individual-based vegetation model: the Lamto palm
tree dynamics model
Purpose – This model illustrates the strong link a simulation model can have with field data by
synthetizing various papers dealing with the population dynamics of Borassus aethiopum, a palm
tree from West African savannas (Barot et al., 1999a, 2000; Barot & Gignoux, 1999, 2003). The
population dynamics of this species heavily interacts with its spatial distribution: seedlings and
juveniles do not grow where adults are found (Barot et al., 1999b). This discrepancy suggests that
there has been a recent change in seed dispersal patterns, possibly linked to the local extinction of
animal dispersers (elephants and baboons). The model we propose here is entirely based on field
data and aims at testing the hypothesis that the current dispersal regime cannot maintain the
currently observed spatial patterns of adults.

Entities, state variables and scales - To represent the spatial distribution of trees in this model, we
used an individual-based model where each individual tree (adult, juvenile, or seedling) is located
within a rectangular plot representing a few hectares of savanna. In 3Worlds terms, we have:

• 4 component types: palm seedlings, juveniles and adults, and termite mounds. Palm types
are linked through a life cycle;

• 3 relation types used to define 4 different neighbourhood indices, as described in (Barot &
Gignoux, 2003);

• 5 driver variables (2 for adults, 2 for juveniles, 1 for seedlings);

• 4 neighbourhood indices as decorators (number of trees, adult palms, juveniles, termite
mounds);

• 43 constants, among which the plant locations (x, y) are the most important. Others include
the parameters of the regressions found in (Barot et al., 1999a, 2000; Barot & Gignoux,
1999, 2003). See appendix 7 for details;

• the time step is 1 year;

• space is a continuous flat surface of size 300 × 300 m where palm trees and termite mounds
are located;

• simulations are run until user intervention.

The dynamic graph at run time comprises hundreds to thousands of ephemeral nodes representing
individual palm trees of the 3 demographic stages, and permanent termite mounds present in the
landscape. Palm trees and mounds are linked through permanent (life-long) neighbourhood
relations.

Process overview and scheduling – This model comprises 17 processes with a fairly elaborate
organisation (cf. flowchart in appendix 7). First come computations of neighbourhood indices and
their consequences:

• adultNeighbour, juvenileNeighbour, moundNeighbour (of type relateToDecision, fig. 2)
respectively relate an adult palm, a juvenile palm and a termite mound, to the neighbours
they influence;

• competitionA, competitionJ, moundEffect (of type relateToDecision, fig. 2) compute the
weight of adults, juveniles and mounds in the neighbourhood indices affecting palm stage
biology;

Then come computations describing the biology of every palm stage. Some of them depend on the
neighbourhood indices computed before :

• adults:

◦ growAdult (of type changeState, fig. 2) computes the growth of adult palms in height
and number of leaves;

◦ mortalityAdult (of type deleteDecision, fig. 2) decides if an adult dies;

◦ reproduction (of type createOtherDecision, fig. 2) computes the number of seedlings
produced by an adult female palm;

◦ dispersal (of type setOtherInitialState, fig. 2) computes the initial state of a newborn
seedling, essentially its location relative to its mother;

• seedlings:

◦ mortalitySeedling (of type deleteDecision, fig. 2) decides if a seedling dies;

◦ recruitSeedling (of type changeCategoryDecision, fig.2) decides if a seedling mutates to
the next stage according to the life cycle, i.e. juvenile;

◦ seedlingToJuvenile (of type setOtherInitialState, fig. 2) carries over internal data from
seedling to juvenile (given that the two stages do not have the same descriptors)

• juveniles:

◦ growJuvenile (of type changeState, fig. 2) computes the growth of juvenile palms in
height and number of leaves;

◦ mortalityJuvenile (of type deleteDecision, fig. 2) decides if a juvenile dies;

◦ recruitJuvenile (of type changeCategoryDecision, fig.2) decides if a juvenile mutates to
the next stage according to the life cycle, i.e. adult;

◦ juvenileToAdult (of type setOtherInitialState, fig. 2) carries over internal data from
juvenile to adult.

Scheduling and java code for these functions can be found in appendix 7.

Details – Full configuration graph, variable list, flow chart, user code and a screen copy can be
found in appendix 7. Model metrics are in Table 2.

Conclusion – This is currently one of the most complex models available in 3Worlds. It uses all the
concepts developed in 3Worlds to describe complex life cycles in an individual-based framework,
although in a fairly simple case. It should be further expanded by adding the influence of other
savanna trees as shown in the references used to parameter the model before running simulation
experiments on the influence of dispersal on adult population spatial pattern.

5. Conclusion
Following the principles of aspect-oriented-thinking we have developed a flexible system for
unambiguously specifying and simulating ecosystems.

We have also developed a graph system that can represent any system evolving over time and
capture all forms of emergence we have identified.

These two developments underpin 3Worlds: a platform within which any dynamic system can be
implemented; where model abstraction level can be manipulated; and in which the causes of
different model outcomes can be identified more easily. This is because all models built using
3Worlds will necessarily comply with the one definition of an ecosystem: something that is multi-
aspect, scale-independent, observer-selected and recursive.

6. Availability
3Worlds code, binary application and documentation are freely available as an Open-source project
under the GPL 3.0 license at https://github.com/3worlds/3w.

Currently, 3Worlds comprises a library of 24 models: 10 are test models focusing on a particular
feature of the platform, 10 are tutorial models of increasing complexity, 4 are new ecological
models of interest to the authors and their collaborators.

It is written in J ava 11 for portability. It totals ~125,000 lines of code organised in 12 libraries
(Table 3). It can be run under linux, windows or MacOS. Dependencies are managed using apache
ivy. Low-level libraries have been tested using Junit v.5.0. Higher level libraries have been tested
with specific test models available in the distribution. We have made a significant effort to write
extensive and useful documentation (~120 pages: https://3worlds.github.io/tw-uifx/tw-uifx/doc/
reference/html/reference.html).

https://3worlds.github.io/tw-uifx/tw-uifx/doc/reference/html/reference.html
https://3worlds.github.io/tw-uifx/tw-uifx/doc/reference/html/reference.html
https://github.com/3worlds/3w
https://junit.org/junit5/
https://ant.apache.org/ivy/
https://ant.apache.org/ivy/
https://www.oracle.com/fr/java/technologies/javase-downloads.html
https://www.oracle.com/fr/java/technologies/javase-downloads.html
https://www.gnu.org/licenses/gpl-3.0.en.html

Acknowledgements
We thank all the people who contributed their time to the development of the software. We thank
Sam Banks, Anne Forsythe, Naoise Nunan and Xavier Raynaud for their reading and editing of the
manuscript, and Perrine Cribier-Delande for setting up the github site for public distribution.

Funding
3Worlds is the result of a 20 year collaboration between two teams based in France and Australia.
This project would not have been possible without two kinds of funding, unconditional, long-term,
informal support, and short-term more substantive support. We thank the Centre national de la
recherche scientifique (CNRS, France), the Australian National University (ANU, Australia), and
the Charles Darwin University (CDU, Australia) for the former; and the Agence nationale pour la
recherche (project ANR-07-CIS7-001-01), the CNRS (international cooperation project DRI N° 16
059), and the Australian research council (grant DP210103227) for the latter.

Bibliography

Achtemeier, G. L. (2003). “Rabbit Rules”–An Application of Stephen Wolfram’s “New Kind of

Science” to Fire Spread Modeling. Fifth Symposium on Fire and Forest Meteorology, 16–

20. https://ams.confex.com/ams/pdfpapers/65944.pdf

Achtemeier, G. L. (2013). Field validation of a free-agent cellular automata model of fire spread

with fire—Atmosphere coupling. International Journal of Wildland Fire, 22(2), 148.

https://doi.org/10.1071/WF11055

Amouroux, E., Chu, T. Q., Boucher, A., & Drogoul, A. (2009). GAMA: An Environment for

Implementing and Running Spatially Explicit Multi-agent Simulations. Agent Computing

and Multi-Agent Systems, 5044, 359–371.

Barot, S., & Gignoux, J. (1999). Population structure and life cycle of Borassus aethiopum Mart.:

Evidence of senescence in a palm tree. Biotropica, 31(3), 439–448.

Barot, S., & Gignoux, J. (2003). Neighbourhood analysis in the savanna palm Borassus aethiopum:

Interplay of intraspecific competition and soil patchiness. Journal of Vegetation Science,

14(1), 79–88.

Barot, S., Gignoux, J., & Menaut, J. (1999a). Seed shadows, survival and recruitment: How simple

mechanisms lead to the dynamics of population recruitment curves. Oikos, 86, 320–330.

Barot, S., Gignoux, J., & Menaut, J. C. (1999b). Demography of a savanna palm tree: Predictions

from comprehensive spatial pattern analyses. Ecology, 80(6), 1987–2005.

Barot, S., Gignoux, J., Vuattoux, R., & Legendre, S. (2000). Demography of a savanna palm tree in

Ivory Coast (Lamto): Population persistence, and life history. Journal of Tropical Ecology,

16, 637–655.

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi‐agent systems with a FIPA‐

compliant agent framework. Software: Practice and Experience, 31(2), 103–128.

https://doi.org/10.1002/1097-024X(200102)31:2<103::AID-SPE358>3.0.CO;2-O

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., & Slack, M. G. (1997).

Experiences with an architecture for intelligent, reactive agents. Journal of Experimental &

Theoretical Artificial Intelligence, 9(2–3), 237–256.

https://doi.org/10.1080/095281397147103

Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review.

Ecological Modelling, 176(3–4), 313–332. https://doi.org/10.1016/j.ecolmodel.2004.01.011

Bugmann, H. K. M., Yan, X. D., Sykes, M. T., Martin, P., Lindner, M., Desanker, P. V., &

Cumming, S. G. (1996). A comparison of forest gap models: Model structure and behaviour.

Climatic Change, 34(2), 289–313.

Cary, G. J., Keane, R. E., Gardner, R. H., Lavorel, S., Flannigan, M. D., Davies, I. D., Li, C.,

Lenihan, J. M., Rupp, T. S., & Mouillot, F. (2006). Comparison of the Sensitivity of

Landscape-fire-succession Models to Variation in Terrain, Fuel Pattern, Climate and

Weather. Landscape Ecology, 21(1), 121–137. https://doi.org/10.1007/s10980-005-7302-9

Chow, A. C., Zeigler, B. P., & Doo Hwan Kim. (1994). Abstract simulator for the parallel DEVS

formalism. Fifth Annual Conference on AI, and Planning in High Autonomy Systems, 157–

163. https://doi.org/10.1109/AIHAS.1994.390488

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs — High diversity of trees and

corals is maintained only in a nonequilibrium state. Science, 199(4335), 1302–1310.

Davies, I. D. (2014). Scale and Abstraction: The Sensitivity of Fire-Regime Simulation to Nuisance

Parameters. PhD, Australian National University.

Dorri, A., Kanhere, S. S., & Jurdak, R. (2018). Multi-Agent Systems: A Survey. IEEE Access, 6,

28573–28593. https://doi.org/10.1109/ACCESS.2018.2831228

Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular Automata Approaches to Biological

Modelling. Journal of Theoretical Biology, 160, 97–133.

Favier, C., & Dubois, M. A. (2004). Reconstructing forest savanna dynamics in Africa using a

cellular automata model, FORSAT. Lecture Notes in Computer Science, 3305, 484–491.

Ferber, J. (1995). Les systèmes multi-agents. Vers une intelligence collective. InterEditions.

Flint, S. R. (2006). Aspect-Oriented Thinking—An approach to bridging the disciplinary divides.

PhD, Australian National University.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S.,

Eby, M., Fung, I., & others. (2006). Climate-carbon cycle feedback analysis: Results from

the C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353.

Gauzens, B., Legendre, S., Lazzaro, X., & Lacroix, G. (2013). Food-web aggregation,

methodological and functional issues. Oikos, 122(11), 1606–1615.

https://doi.org/10.1111/j.1600-0706.2013.00266.x

Gignoux, J., Chérel, G., Davies, I. D., Flint, S. R., & Lateltin, E. (2017). Emergence and complex

systems: The contribution of dynamic graph theory. Ecological Complexity, 31, 34–49.

https://doi.org/10.1016/j.ecocom.2017.02.006

Gignoux, J., Davies, I. D., Flint, S. R., & Zucker, J.-D. (2011). The Ecosystem in Practice: Interest

and Problems of an Old Definition for Constructing Ecological Models. Ecosystems, 14(7),

1039–1054. https://doi.org/10.1007/s10021-011-9466-2

Gignoux, J., Menaut, J. C., Noble, I. R., & Davies, I. D. (1998). A spatial model of savanna

dynamics: Model description and preliminary results. In D. M. Newbery, H. H. T. Prins, &

N. D. Brown (Eds.), Dynamics of tropical communities (pp. 361–383). Blackwell Science.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T.,

Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B.,

Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., … DeAngelis, D. L. (2006). A standard

protocol for describing individual-based and agent-based models. Ecological Modelling,

198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The

ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768.

https://doi.org/10.1016/j.ecolmodel.2010.08.019

Grimm, V., & Railsback, S. (2005). Individual-based modelling and ecology. Princeton University

Press.

Gritti, E. S., Gaucherel, C., Crespo-Perez, M.-V., & Chuine, I. (2013). How Can Model Comparison

Help Improving Species Distribution Models? PLoS ONE, 8(7), e68823.

https://doi.org/10.1371/journal.pone.0068823

Gross, J. L., & Yellen, J. (1999). Graph Theory and Its Applications. Chapman & Hall/CRC.

Gurney, W. S. C., & Nisbet, R. M. (1998). Ecological Dynamics. Oxford University Press.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. (2009). How do

scientists develop and use scientific software? 2009 ICSE Workshop on Software

Engineering for Computational Science and Engineering, 1–8.

https://doi.org/10.1109/SECSE.2009.5069155

Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M.,

Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S.,

Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., & Yue, C. (2020).

Quantitative assessment of fire and vegetation properties in simulations with fire-enabled

vegetation models from the Fire Model Intercomparison Project. Geoscientific Model

Development, 13(7), 3299–3318. https://doi.org/10.5194/gmd-13-3299-2020

Harary, F., & Gupta, G. (1997). Dynamic graph models. Mathematical and Computer Modelling,

25(7), 79–87. https://doi.org/10.1016/S0895-7177(97)00050-2

Hernandez Encinas, A., Hernandez Encinas, L., Hoya White, S., Martin del Rey, A., & Rodriguez

Sanchez, G. (2007). Simulation of forest fire fronts using cellular automata. Advances in

Engineering Software, 38(6), 372–378.

Intergovernmental Panel on Climate Change (Ed.). (2014). Evaluation of Climate Models. In

Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (pp. 741–866).

Cambridge University Press; Cambridge Core.

https://doi.org/10.1017/CBO9781107415324.020

Jepsen, J. U., Baveco, J. M., Topping, C. J., Verboom, J., & Vos, C. C. (2005). Evaluating the effect

of corridors and landscape heterogeneity on dispersal probability: A comparison of three

spatially explicit modelling approaches. Ecological Modelling, 181(4), 445–459.

https://doi.org/10.1016/j.ecolmodel.2003.11.019

Keane, R. E., Cary, G. J., Davies, I. D., Flannigan, M. D., Gardner, R. H., Lavorel, S., Lenihan, J.

M., Li, C., & Rupp, T. S. (2004). A classification of landscape fire succession models:

Spatial simulations of fire and vegetation dynamics. Ecological Modelling, 179(1), 3–27.

https://doi.org/10.1016/j.ecolmodel.2004.03.015

Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). State-of-the-Art Review: A

User’s Guide to the Brave New World of Designing Simulation Experiments. INFORMS

Journal on Computing, 17(3), 263–289. https://doi.org/10.1287/ijoc.1050.0136

Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model

pluralism. Studies in History and Philosophy of Science Part B: Studies in History and

Philosophy of Modern Physics, 41(3), 253–262. https://doi.org/10.1016/j.shpsb.2010.07.001

Lim, W. H., & Roderick, M. L. (2009). An atlas of the global water cycle based on the IPCC AR4

climate models. ANU E Press.

Melilo, J. M., Borchers, J., Chaney, J., Fisher, H., Fox, S., Haxeltine, A., Janetos, A., Kicklighter, D.

C., Kittel, T. G. F., McGuire, A. D., McKeown, R., Neilson, R., Nemani, R., Ojima, D. S.,

Painter, T., Pan, Y., Parton, W. J., Pierce, L., Pitelka, L., … Woodward, F. I. (1995).

Vegetation/ecosystem modeling and analysis project: Comparing biogeography and

biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to

climate change and CO2 doubling. Global Biogeochemical Cycles, 9(4), 407–437.

Minar, N., Burkhart, R., Langton, C., & Askenazi, M. (1996). The swarm simulation system: A

toolkit for building multi-agent simulations. Working Paper No. 96-06–042; 11 pp., Santa Fe

Institute. http://cobweb.cs.uga.edu/~maria/pads/papers/swarm-MinarEtAl96.pdf

Muci, A. L., Jorquera, M. A., Avila, A. I., Rengel, Z., Crowley, D. E., & Mora, M. D. (2012). A

combination of cellular automata and agent-based models for simulating the root surface

colonization by bacteria. Ecological Modelling, 247, 1–10.

North, M. J., Tatara, E., Collier, N. T., & Ozik, J. (2007). Visual Agent-based Model Development

with Repast Simphony. Proceedings of the Agent 2007 Conference on Complex Interaction

and Social Emergence.

Peck, S. L. (2004). Simulation as experiment: A philosophical reassessment for biological

modeling. Trends in Ecology & Evolution, 19(10), 530–534.

https://doi.org/10.1016/j.tree.2004.07.019

Piela, P. C., Epperly, T. G., Westerberg, K. M., & Westerberg, A. W. (1991). ASCEND: An object-

oriented computer environment for modeling and analysis: The modeling language.

Computers & Chemical Engineering, 15, 53–72.

Quesnel, G., Duboz, R., & Ramat, E. (2009). The Virtual Laboratory Environment—An operational

framework for multi-modelling, simulation and analysis of complex dynamical systems.

Simulation Modelling Practice and Theory, 17(4), 641–653.

Reuillon, R., Leclaire, M., & Rey-Coyrehourcq, S. (2013). OpenMOLE, a workflow engine

specifically tailored for the distributed exploration of simulation models. Future Generation

Computer Systems, 29(8), 1981–1990. https://doi.org/10.1016/j.future.2013.05.003

Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer

Graphics, 21(4), 25–34.

Reynolds, C. W. (1999). Steering Behaviors For Autonomous Characters. 21pp.

Richmond, B., Peterson, S., & Vescuso, P. (1987). An Academic User’s Guide to STELLA. High

Performance Systems, Inc.

Roxburgh, S. H., Barrett, D. J., Berry, S. L., Carter, J. O., Davies, I. D., Gifford, R. M., Kirschbaum,

M. U. E., McBeth, B. P., Noble, I. R., Parton, W. G., Raupach, M. R., & Roderick, M. L.

(2004). A critical overview of model estimates of net primary productivity for the Australian

continent. Functional Plant Biology, 31(11), 1043–1059.

Samet, H. (1984). The Quadtree and Related Hierarchical Data Structures. Computing Surveys, 16,

187–260.

Smith, J., Smith, P., & Addiscott, T. (1996). Quantitative methods to evaluate and compare soil

organic matter (SOM) models. In D. Powlson, P. Smith, & J. Smith (Eds.), Evaluation of

soil organic matter models (Vol. 38, pp. 181–200). Springer Verlag, Berlin.

Smith, P., Smith, J., Powlson, D., McGill, W., Arah, J., Chertov, O., Coleman, K., Franko, U.,

Frolking, S., Jenkinson, D., Jensen, L., Kelly, R., Klein-Gunnewiek, H., Komarov, A.,

Molina, J., Mueller, T., Parton, W., Thornley, J., & Whitmore, A. (1997). A comparison of

the performance of nine soil organic matter models using datasets from seven long-term

experiments. Geoderma, 81, 153–225.

Steinhagen, R. J., Bräuning, H., Krimm, A., & Milosic, T. (2019). Redesign of the JavaFX Charts

Library in View of Real-Time Visualisation of Scientific Data. Proc. 10th International

Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, 3868–

3871. https://doi.org/doi:10.18429/JACoW-IPAC2019-THPRB028

Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.

Thom, R., & Noël, E. (1993). Prédire n’est pas expliquer. Flammarion.

Wilensky, U. (1999). NetLogo: Http://ccl.northwestern.edu/netlogo/.

Woodcock, J., Larsen, P. G., Bicarregui, J., & Fitzgerald, J. (2009). Formal methods: Practice and

experience. ACM Computing Surveys, 41(4), 9.1-9.36.

https://doi.org/10.1145/1592434.1592436

Zeigler, B. P., Moon, Y., Kim, D., & Ball, G. (1997). The DEVS environment for high-performance

modeling and simulation. IEEE Computational Science & Engineering, 4(3), 61–71.

https://doi.org/10.1109/99.615432

Zucker, J.-D. (2003). A grounded theory of abstraction in artificial intelligence. Philosophical

Transactions of the Royal Society B: Biological Sciences, 358(1435), 1293–1309.

https://doi.org/10.1098/rstb.2003.1308

Tables

border type effect on edge

wrap
objects crossing the border reappear at the opposite end of that same
dimension. Therefore these borders must come as a pair and cannot be
applied to circles or spheres for example.

reflection a hard border at which objects bounce

sticky a hard border to which objects stick

oblivion objects crossing the border are removed from the simulation

infinite no border – dimension extends in one direction following object movements

border combination effect on space

periodic
Symmetric, finite and unbounded: wrap in all dimensions, (e.g.
topologically a torus in a 2 dimensional space)

reflective
Symmetric, finite and bounded: all borders are reflective, i.e. objects bounce
at borders

island
Symmetric, finite and bounded: all borders are oblivious, i.e. items crossing
any border are lost from the simulation

unbounded
Symmetric, infinite and unbounded: an infinite space adapting to location of
objects (all borders are infinite)

bounded
Symmetric, finite and bounded: a space with sticky borders in all directions,
i.e. objects that arrive at the border stay there forever

tubular
Asymmetric, finite and unbounded in one dimension, bounded in all others:
wrap around borders in the first dimension, sticky borders in all other
dimensions

custom
user-specified border properties – provide a (possibly different) border type
property for each side of the space

Table 1. Edge effect-correction methods. Whatever its dimension, the simulated space has borders;
the border type property defines how a spatial object located in the space interacts with a single
border. Border combinations are a few predefined standard settings of space commonly used, but
total freedom is left to define other combinations (custom). Finally, an observation window smaller
than the space can be defined: objects can exist anywhere in the space, but only outputs from within
the observation window are reported.

model
configuration

size

descriptors classifiers complexity

drv cst dec
component

types
relation

types
CCUCS (bytes)

RNG 40 2 0 0 0 0 2,988

spatial 51 2 0 0 1 0 3,356

logistic 33 1 1 0 0 0 4,498

pulseNS 69 0 3 0 1 0 4,588

lotkavolterra 57 4 12 0 0 0 5,557

pulseS 105 2 3 0 1 0 9,012

IDH 136 41 122 1 2 1 14,060

panmixia 126 2 6 0 1 1 14,909

boids 189 6 5 9 1 1 16,301

Rabbit Rules 194 270,011 90,019 0 0 0 17,638

littleForest 150 1 6 1 1 1 18,353

LMA 245 10,003 8 30,006 1 0 31,148

LMB 321 10,005 12 40,026 1 0 37,404

LMC 384 10,005 15 40,025 1 1 57,752

palms 656 5 43 5 4 3 60,109

LMD 519 10,005 26 207,864 1 1 75,637

Table 2. Some measures of model size and complexity for models developed in 3Worlds so far.
configuration size = number of nodes + edges + properties of the model configuration graph; drv =
drivers, or state variables; cst = constants; dec = decorators, or secondary variables; classifiers =
numbers of component and relation types of different categories; CCUCS = the size of the
compressed compiled user code in bytes. If we assume the user code is efficiently written and
compiled, then we can consider its size as a measure of Kolmogorov complexity (Kolmogorov,
1963, cited by wikipedia) of the ecosystem it represents. Very large numbers of descriptors indicate
the model uses tables: each table cell is counted as one descriptor.

https://en.wikipedia.org/wiki/Kolmogorov_complexity

library content depends on

omhtk generic concepts and utilities org.apache.commons:commons-io

omugi lightweight graph implementation omhtk

rvgrid Ada rendezvous + generic state
machine implementations

omhtk

uit generic K-d trees omhtk

qgraph tools for searching & querying graphs omhtk, omugi

ymuit Javafx utilities for user interface omhtk, uit,
org.openjfx:javafx-controls, org.openjfx:javafx-graphics,
org.openjfx:javafx-base

tw-models library of 3worlds models omugi

aot aspect-oriented thinking tools omhtk, omugi, qgraph

tw-core the core of 3Worlds omhtk, uit, rvgrid, omugi, qgraph, aot,
org.apache.commons:commons-math3,
org.apache.commons:commons-text,
org.apache.odftoolkit:simple-odf, com.hp.hpl.jena:jena

tw-setup packaging utility omhtk, tw-core,
org.apache.ivy:ivy

tw-apps ModelMaker & ModelRunner code omhtk, omugi, qgraph, aot, tw-core, tw-models,
org.apache.commons:commons-text

tw-uifx Javafx implementation of
ModelMaker, ModelRunner and the
3Worlds graphical user interface
collection of simulation output
’widgets’.

omhtk, rvgrid, omugi, ymuit, tw-models, qgraph, aot, tw-core,
tw-apps,
org.openjfx:javafx-fxml, org.controlsfx:controlsfx,
de.gsi:chartfx, de.gsi:chartfx-samples,
de.gsi.chart:chartfx-chart, de.gsi.dataset:chartfx-dataset,
de.gsi.math:chartfx-math, de.gsi.acc:chartfx-acc,
de.gsi:microservice, org.slf4j:slf4j-api,
org.openjfx:javafx-controls, org.openjfx:javafx-graphics,
org.openjfx:javafx-base,
org.apache.commons:commons-math3

Table 3. 3Worlds libraries and their dependencies (external dependencies in italics). All 3Worlds
libraries can be downloaded from https://github.com/3worlds/<library>

Figure legends

Fig. 1. The (simplified) configuration tree of ModelMaker, as expected from the 3Worlds
specification archetype. All models developed in 3Worlds must declare nodes compatible with this
general requirement.

Fig. 2. Illustration of the dynamic graph used to represent ecosystems in 3Worlds. Circles = nodes
(different colours represent membership to different categories); green lines = edges; blue lines =
changes. Top: a dynamic graph with components ci and relations rj undergoes some

transformations along five successive time steps. Transformations are local and propagate along the
graph structure (arrows). Bottom: illustration of all the possible transformations that can occur to a
component or a relation; ecological processes must map to these transformations. Some of them
have direct interpretation (i.e. createOther = reproduction, deleteDecision = death, etc...).

Fig. 3. UML class diagram showing the central role of the category concept in 3Worlds. For any
element of the system (i.e. any node of the system graph), its descriptors and the processes that can
act on it are determined by categories and relations.

Fig. 4. Example of a category tree. CategorySets are in gray and Categories are in green.

Categories within the same set are mutually exclusive, ie a component is either plant or animal,

biotic or abiotic, tree or grass, etc. In this example, a component can be

‘abiotic:fire’ or ‘biotic:juvenile:animal’ or ‘biotic:senescent:plant:

tree:C3’.

Figures

Figure 1

Figure 2

Figure 3

Figure 4

